4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
54 #include <asm/unistd.h>
57 * Convert user-nice values [ -20 ... 0 ... 19 ]
58 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
62 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
63 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66 * 'User priority' is the nice value converted to something we
67 * can work with better when scaling various scheduler parameters,
68 * it's a [ 0 ... 39 ] range.
70 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
71 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
72 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75 * Some helpers for converting nanosecond timing to jiffy resolution
77 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
78 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81 * These are the 'tuning knobs' of the scheduler:
83 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
84 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
85 * Timeslices get refilled after they expire.
87 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
88 #define DEF_TIMESLICE (100 * HZ / 1000)
89 #define ON_RUNQUEUE_WEIGHT 30
90 #define CHILD_PENALTY 95
91 #define PARENT_PENALTY 100
93 #define PRIO_BONUS_RATIO 25
94 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
95 #define INTERACTIVE_DELTA 2
96 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
97 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
98 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101 * If a task is 'interactive' then we reinsert it in the active
102 * array after it has expired its current timeslice. (it will not
103 * continue to run immediately, it will still roundrobin with
104 * other interactive tasks.)
106 * This part scales the interactivity limit depending on niceness.
108 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
109 * Here are a few examples of different nice levels:
111 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
112 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
113 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
118 * priority range a task can explore, a value of '1' means the
119 * task is rated interactive.)
121 * Ie. nice +19 tasks can never get 'interactive' enough to be
122 * reinserted into the active array. And only heavily CPU-hog nice -20
123 * tasks will be expired. Default nice 0 tasks are somewhere between,
124 * it takes some effort for them to get interactive, but it's not
128 #define CURRENT_BONUS(p) \
129 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 #define GRANULARITY (10 * HZ / 1000 ? : 1)
135 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
136 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
140 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143 #define SCALE(v1,v1_max,v2_max) \
144 (v1) * (v2_max) / (v1_max)
147 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
149 #define TASK_INTERACTIVE(p) \
150 ((p)->prio <= (p)->static_prio - DELTA(p))
152 #define INTERACTIVE_SLEEP(p) \
153 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
154 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
156 #define TASK_PREEMPTS_CURR(p, rq) \
157 ((p)->prio < (rq)->curr->prio)
160 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
161 * to time slice values: [800ms ... 100ms ... 5ms]
163 * The higher a thread's priority, the bigger timeslices
164 * it gets during one round of execution. But even the lowest
165 * priority thread gets MIN_TIMESLICE worth of execution time.
168 #define SCALE_PRIO(x, prio) \
169 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
171 static unsigned int task_timeslice(task_t *p)
173 if (p->static_prio < NICE_TO_PRIO(0))
174 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
176 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
178 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
179 < (long long) (sd)->cache_hot_time)
182 * These are the runqueue data structures:
185 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
187 typedef struct runqueue runqueue_t;
190 unsigned int nr_active;
191 unsigned long bitmap[BITMAP_SIZE];
192 struct list_head queue[MAX_PRIO];
196 * This is the main, per-CPU runqueue data structure.
198 * Locking rule: those places that want to lock multiple runqueues
199 * (such as the load balancing or the thread migration code), lock
200 * acquire operations must be ordered by ascending &runqueue.
206 * nr_running and cpu_load should be in the same cacheline because
207 * remote CPUs use both these fields when doing load calculation.
209 unsigned long nr_running;
211 unsigned long cpu_load[3];
213 unsigned long long nr_switches;
216 * This is part of a global counter where only the total sum
217 * over all CPUs matters. A task can increase this counter on
218 * one CPU and if it got migrated afterwards it may decrease
219 * it on another CPU. Always updated under the runqueue lock:
221 unsigned long nr_uninterruptible;
223 unsigned long expired_timestamp;
224 unsigned long long timestamp_last_tick;
226 struct mm_struct *prev_mm;
227 prio_array_t *active, *expired, arrays[2];
228 int best_expired_prio;
232 struct sched_domain *sd;
234 /* For active balancing */
238 task_t *migration_thread;
239 struct list_head migration_queue;
243 #ifdef CONFIG_SCHEDSTATS
245 struct sched_info rq_sched_info;
247 /* sys_sched_yield() stats */
248 unsigned long yld_exp_empty;
249 unsigned long yld_act_empty;
250 unsigned long yld_both_empty;
251 unsigned long yld_cnt;
253 /* schedule() stats */
254 unsigned long sched_switch;
255 unsigned long sched_cnt;
256 unsigned long sched_goidle;
258 /* try_to_wake_up() stats */
259 unsigned long ttwu_cnt;
260 unsigned long ttwu_local;
264 static DEFINE_PER_CPU(struct runqueue, runqueues);
267 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
268 * See detach_destroy_domains: synchronize_sched for details.
270 * The domain tree of any CPU may only be accessed from within
271 * preempt-disabled sections.
273 #define for_each_domain(cpu, domain) \
274 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
276 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
277 #define this_rq() (&__get_cpu_var(runqueues))
278 #define task_rq(p) cpu_rq(task_cpu(p))
279 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
281 #ifndef prepare_arch_switch
282 # define prepare_arch_switch(next) do { } while (0)
284 #ifndef finish_arch_switch
285 # define finish_arch_switch(prev) do { } while (0)
288 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
289 static inline int task_running(runqueue_t *rq, task_t *p)
291 return rq->curr == p;
294 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
298 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
300 #ifdef CONFIG_DEBUG_SPINLOCK
301 /* this is a valid case when another task releases the spinlock */
302 rq->lock.owner = current;
304 spin_unlock_irq(&rq->lock);
307 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
308 static inline int task_running(runqueue_t *rq, task_t *p)
313 return rq->curr == p;
317 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
321 * We can optimise this out completely for !SMP, because the
322 * SMP rebalancing from interrupt is the only thing that cares
327 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
328 spin_unlock_irq(&rq->lock);
330 spin_unlock(&rq->lock);
334 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
338 * After ->oncpu is cleared, the task can be moved to a different CPU.
339 * We must ensure this doesn't happen until the switch is completely
345 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
349 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
352 * task_rq_lock - lock the runqueue a given task resides on and disable
353 * interrupts. Note the ordering: we can safely lookup the task_rq without
354 * explicitly disabling preemption.
356 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
362 local_irq_save(*flags);
364 spin_lock(&rq->lock);
365 if (unlikely(rq != task_rq(p))) {
366 spin_unlock_irqrestore(&rq->lock, *flags);
367 goto repeat_lock_task;
372 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
375 spin_unlock_irqrestore(&rq->lock, *flags);
378 #ifdef CONFIG_SCHEDSTATS
380 * bump this up when changing the output format or the meaning of an existing
381 * format, so that tools can adapt (or abort)
383 #define SCHEDSTAT_VERSION 12
385 static int show_schedstat(struct seq_file *seq, void *v)
389 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
390 seq_printf(seq, "timestamp %lu\n", jiffies);
391 for_each_online_cpu(cpu) {
392 runqueue_t *rq = cpu_rq(cpu);
394 struct sched_domain *sd;
398 /* runqueue-specific stats */
400 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
401 cpu, rq->yld_both_empty,
402 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
403 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
404 rq->ttwu_cnt, rq->ttwu_local,
405 rq->rq_sched_info.cpu_time,
406 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
408 seq_printf(seq, "\n");
411 /* domain-specific stats */
413 for_each_domain(cpu, sd) {
414 enum idle_type itype;
415 char mask_str[NR_CPUS];
417 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
418 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
419 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
421 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
423 sd->lb_balanced[itype],
424 sd->lb_failed[itype],
425 sd->lb_imbalance[itype],
426 sd->lb_gained[itype],
427 sd->lb_hot_gained[itype],
428 sd->lb_nobusyq[itype],
429 sd->lb_nobusyg[itype]);
431 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
432 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
433 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
434 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
435 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
443 static int schedstat_open(struct inode *inode, struct file *file)
445 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
446 char *buf = kmalloc(size, GFP_KERNEL);
452 res = single_open(file, show_schedstat, NULL);
454 m = file->private_data;
462 struct file_operations proc_schedstat_operations = {
463 .open = schedstat_open,
466 .release = single_release,
469 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
470 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
471 #else /* !CONFIG_SCHEDSTATS */
472 # define schedstat_inc(rq, field) do { } while (0)
473 # define schedstat_add(rq, field, amt) do { } while (0)
477 * rq_lock - lock a given runqueue and disable interrupts.
479 static inline runqueue_t *this_rq_lock(void)
486 spin_lock(&rq->lock);
491 #ifdef CONFIG_SCHEDSTATS
493 * Called when a process is dequeued from the active array and given
494 * the cpu. We should note that with the exception of interactive
495 * tasks, the expired queue will become the active queue after the active
496 * queue is empty, without explicitly dequeuing and requeuing tasks in the
497 * expired queue. (Interactive tasks may be requeued directly to the
498 * active queue, thus delaying tasks in the expired queue from running;
499 * see scheduler_tick()).
501 * This function is only called from sched_info_arrive(), rather than
502 * dequeue_task(). Even though a task may be queued and dequeued multiple
503 * times as it is shuffled about, we're really interested in knowing how
504 * long it was from the *first* time it was queued to the time that it
507 static inline void sched_info_dequeued(task_t *t)
509 t->sched_info.last_queued = 0;
513 * Called when a task finally hits the cpu. We can now calculate how
514 * long it was waiting to run. We also note when it began so that we
515 * can keep stats on how long its timeslice is.
517 static void sched_info_arrive(task_t *t)
519 unsigned long now = jiffies, diff = 0;
520 struct runqueue *rq = task_rq(t);
522 if (t->sched_info.last_queued)
523 diff = now - t->sched_info.last_queued;
524 sched_info_dequeued(t);
525 t->sched_info.run_delay += diff;
526 t->sched_info.last_arrival = now;
527 t->sched_info.pcnt++;
532 rq->rq_sched_info.run_delay += diff;
533 rq->rq_sched_info.pcnt++;
537 * Called when a process is queued into either the active or expired
538 * array. The time is noted and later used to determine how long we
539 * had to wait for us to reach the cpu. Since the expired queue will
540 * become the active queue after active queue is empty, without dequeuing
541 * and requeuing any tasks, we are interested in queuing to either. It
542 * is unusual but not impossible for tasks to be dequeued and immediately
543 * requeued in the same or another array: this can happen in sched_yield(),
544 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
547 * This function is only called from enqueue_task(), but also only updates
548 * the timestamp if it is already not set. It's assumed that
549 * sched_info_dequeued() will clear that stamp when appropriate.
551 static inline void sched_info_queued(task_t *t)
553 if (!t->sched_info.last_queued)
554 t->sched_info.last_queued = jiffies;
558 * Called when a process ceases being the active-running process, either
559 * voluntarily or involuntarily. Now we can calculate how long we ran.
561 static inline void sched_info_depart(task_t *t)
563 struct runqueue *rq = task_rq(t);
564 unsigned long diff = jiffies - t->sched_info.last_arrival;
566 t->sched_info.cpu_time += diff;
569 rq->rq_sched_info.cpu_time += diff;
573 * Called when tasks are switched involuntarily due, typically, to expiring
574 * their time slice. (This may also be called when switching to or from
575 * the idle task.) We are only called when prev != next.
577 static inline void sched_info_switch(task_t *prev, task_t *next)
579 struct runqueue *rq = task_rq(prev);
582 * prev now departs the cpu. It's not interesting to record
583 * stats about how efficient we were at scheduling the idle
586 if (prev != rq->idle)
587 sched_info_depart(prev);
589 if (next != rq->idle)
590 sched_info_arrive(next);
593 #define sched_info_queued(t) do { } while (0)
594 #define sched_info_switch(t, next) do { } while (0)
595 #endif /* CONFIG_SCHEDSTATS */
598 * Adding/removing a task to/from a priority array:
600 static void dequeue_task(struct task_struct *p, prio_array_t *array)
603 list_del(&p->run_list);
604 if (list_empty(array->queue + p->prio))
605 __clear_bit(p->prio, array->bitmap);
608 static void enqueue_task(struct task_struct *p, prio_array_t *array)
610 sched_info_queued(p);
611 list_add_tail(&p->run_list, array->queue + p->prio);
612 __set_bit(p->prio, array->bitmap);
618 * Put task to the end of the run list without the overhead of dequeue
619 * followed by enqueue.
621 static void requeue_task(struct task_struct *p, prio_array_t *array)
623 list_move_tail(&p->run_list, array->queue + p->prio);
626 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
628 list_add(&p->run_list, array->queue + p->prio);
629 __set_bit(p->prio, array->bitmap);
635 * effective_prio - return the priority that is based on the static
636 * priority but is modified by bonuses/penalties.
638 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
639 * into the -5 ... 0 ... +5 bonus/penalty range.
641 * We use 25% of the full 0...39 priority range so that:
643 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
644 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
646 * Both properties are important to certain workloads.
648 static int effective_prio(task_t *p)
655 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
657 prio = p->static_prio - bonus;
658 if (prio < MAX_RT_PRIO)
660 if (prio > MAX_PRIO-1)
666 * __activate_task - move a task to the runqueue.
668 static inline void __activate_task(task_t *p, runqueue_t *rq)
670 enqueue_task(p, rq->active);
675 * __activate_idle_task - move idle task to the _front_ of runqueue.
677 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
679 enqueue_task_head(p, rq->active);
683 static int recalc_task_prio(task_t *p, unsigned long long now)
685 /* Caller must always ensure 'now >= p->timestamp' */
686 unsigned long long __sleep_time = now - p->timestamp;
687 unsigned long sleep_time;
689 if (unlikely(p->policy == SCHED_BATCH))
692 if (__sleep_time > NS_MAX_SLEEP_AVG)
693 sleep_time = NS_MAX_SLEEP_AVG;
695 sleep_time = (unsigned long)__sleep_time;
698 if (likely(sleep_time > 0)) {
700 * User tasks that sleep a long time are categorised as
701 * idle and will get just interactive status to stay active &
702 * prevent them suddenly becoming cpu hogs and starving
705 if (p->mm && p->activated != -1 &&
706 sleep_time > INTERACTIVE_SLEEP(p)) {
707 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
711 * Tasks waking from uninterruptible sleep are
712 * limited in their sleep_avg rise as they
713 * are likely to be waiting on I/O
715 if (p->activated == -1 && p->mm) {
716 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
718 else if (p->sleep_avg + sleep_time >=
719 INTERACTIVE_SLEEP(p)) {
720 p->sleep_avg = INTERACTIVE_SLEEP(p);
726 * This code gives a bonus to interactive tasks.
728 * The boost works by updating the 'average sleep time'
729 * value here, based on ->timestamp. The more time a
730 * task spends sleeping, the higher the average gets -
731 * and the higher the priority boost gets as well.
733 p->sleep_avg += sleep_time;
735 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
736 p->sleep_avg = NS_MAX_SLEEP_AVG;
740 return effective_prio(p);
744 * activate_task - move a task to the runqueue and do priority recalculation
746 * Update all the scheduling statistics stuff. (sleep average
747 * calculation, priority modifiers, etc.)
749 static void activate_task(task_t *p, runqueue_t *rq, int local)
751 unsigned long long now;
756 /* Compensate for drifting sched_clock */
757 runqueue_t *this_rq = this_rq();
758 now = (now - this_rq->timestamp_last_tick)
759 + rq->timestamp_last_tick;
764 p->prio = recalc_task_prio(p, now);
767 * This checks to make sure it's not an uninterruptible task
768 * that is now waking up.
772 * Tasks which were woken up by interrupts (ie. hw events)
773 * are most likely of interactive nature. So we give them
774 * the credit of extending their sleep time to the period
775 * of time they spend on the runqueue, waiting for execution
776 * on a CPU, first time around:
782 * Normal first-time wakeups get a credit too for
783 * on-runqueue time, but it will be weighted down:
790 __activate_task(p, rq);
794 * deactivate_task - remove a task from the runqueue.
796 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
799 dequeue_task(p, p->array);
804 * resched_task - mark a task 'to be rescheduled now'.
806 * On UP this means the setting of the need_resched flag, on SMP it
807 * might also involve a cross-CPU call to trigger the scheduler on
811 static void resched_task(task_t *p)
815 assert_spin_locked(&task_rq(p)->lock);
817 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
820 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
823 if (cpu == smp_processor_id())
826 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
828 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
829 smp_send_reschedule(cpu);
832 static inline void resched_task(task_t *p)
834 assert_spin_locked(&task_rq(p)->lock);
835 set_tsk_need_resched(p);
840 * task_curr - is this task currently executing on a CPU?
841 * @p: the task in question.
843 inline int task_curr(const task_t *p)
845 return cpu_curr(task_cpu(p)) == p;
850 struct list_head list;
855 struct completion done;
859 * The task's runqueue lock must be held.
860 * Returns true if you have to wait for migration thread.
862 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
864 runqueue_t *rq = task_rq(p);
867 * If the task is not on a runqueue (and not running), then
868 * it is sufficient to simply update the task's cpu field.
870 if (!p->array && !task_running(rq, p)) {
871 set_task_cpu(p, dest_cpu);
875 init_completion(&req->done);
877 req->dest_cpu = dest_cpu;
878 list_add(&req->list, &rq->migration_queue);
883 * wait_task_inactive - wait for a thread to unschedule.
885 * The caller must ensure that the task *will* unschedule sometime soon,
886 * else this function might spin for a *long* time. This function can't
887 * be called with interrupts off, or it may introduce deadlock with
888 * smp_call_function() if an IPI is sent by the same process we are
889 * waiting to become inactive.
891 void wait_task_inactive(task_t *p)
898 rq = task_rq_lock(p, &flags);
899 /* Must be off runqueue entirely, not preempted. */
900 if (unlikely(p->array || task_running(rq, p))) {
901 /* If it's preempted, we yield. It could be a while. */
902 preempted = !task_running(rq, p);
903 task_rq_unlock(rq, &flags);
909 task_rq_unlock(rq, &flags);
913 * kick_process - kick a running thread to enter/exit the kernel
914 * @p: the to-be-kicked thread
916 * Cause a process which is running on another CPU to enter
917 * kernel-mode, without any delay. (to get signals handled.)
919 * NOTE: this function doesnt have to take the runqueue lock,
920 * because all it wants to ensure is that the remote task enters
921 * the kernel. If the IPI races and the task has been migrated
922 * to another CPU then no harm is done and the purpose has been
925 void kick_process(task_t *p)
931 if ((cpu != smp_processor_id()) && task_curr(p))
932 smp_send_reschedule(cpu);
937 * Return a low guess at the load of a migration-source cpu.
939 * We want to under-estimate the load of migration sources, to
940 * balance conservatively.
942 static inline unsigned long source_load(int cpu, int type)
944 runqueue_t *rq = cpu_rq(cpu);
945 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
949 return min(rq->cpu_load[type-1], load_now);
953 * Return a high guess at the load of a migration-target cpu
955 static inline unsigned long target_load(int cpu, int type)
957 runqueue_t *rq = cpu_rq(cpu);
958 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
962 return max(rq->cpu_load[type-1], load_now);
966 * find_idlest_group finds and returns the least busy CPU group within the
969 static struct sched_group *
970 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
972 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
973 unsigned long min_load = ULONG_MAX, this_load = 0;
974 int load_idx = sd->forkexec_idx;
975 int imbalance = 100 + (sd->imbalance_pct-100)/2;
978 unsigned long load, avg_load;
982 /* Skip over this group if it has no CPUs allowed */
983 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
986 local_group = cpu_isset(this_cpu, group->cpumask);
988 /* Tally up the load of all CPUs in the group */
991 for_each_cpu_mask(i, group->cpumask) {
992 /* Bias balancing toward cpus of our domain */
994 load = source_load(i, load_idx);
996 load = target_load(i, load_idx);
1001 /* Adjust by relative CPU power of the group */
1002 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1005 this_load = avg_load;
1007 } else if (avg_load < min_load) {
1008 min_load = avg_load;
1012 group = group->next;
1013 } while (group != sd->groups);
1015 if (!idlest || 100*this_load < imbalance*min_load)
1021 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1024 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1027 unsigned long load, min_load = ULONG_MAX;
1031 /* Traverse only the allowed CPUs */
1032 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1034 for_each_cpu_mask(i, tmp) {
1035 load = source_load(i, 0);
1037 if (load < min_load || (load == min_load && i == this_cpu)) {
1047 * sched_balance_self: balance the current task (running on cpu) in domains
1048 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1051 * Balance, ie. select the least loaded group.
1053 * Returns the target CPU number, or the same CPU if no balancing is needed.
1055 * preempt must be disabled.
1057 static int sched_balance_self(int cpu, int flag)
1059 struct task_struct *t = current;
1060 struct sched_domain *tmp, *sd = NULL;
1062 for_each_domain(cpu, tmp)
1063 if (tmp->flags & flag)
1068 struct sched_group *group;
1073 group = find_idlest_group(sd, t, cpu);
1077 new_cpu = find_idlest_cpu(group, t, cpu);
1078 if (new_cpu == -1 || new_cpu == cpu)
1081 /* Now try balancing at a lower domain level */
1085 weight = cpus_weight(span);
1086 for_each_domain(cpu, tmp) {
1087 if (weight <= cpus_weight(tmp->span))
1089 if (tmp->flags & flag)
1092 /* while loop will break here if sd == NULL */
1098 #endif /* CONFIG_SMP */
1101 * wake_idle() will wake a task on an idle cpu if task->cpu is
1102 * not idle and an idle cpu is available. The span of cpus to
1103 * search starts with cpus closest then further out as needed,
1104 * so we always favor a closer, idle cpu.
1106 * Returns the CPU we should wake onto.
1108 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1109 static int wake_idle(int cpu, task_t *p)
1112 struct sched_domain *sd;
1118 for_each_domain(cpu, sd) {
1119 if (sd->flags & SD_WAKE_IDLE) {
1120 cpus_and(tmp, sd->span, p->cpus_allowed);
1121 for_each_cpu_mask(i, tmp) {
1132 static inline int wake_idle(int cpu, task_t *p)
1139 * try_to_wake_up - wake up a thread
1140 * @p: the to-be-woken-up thread
1141 * @state: the mask of task states that can be woken
1142 * @sync: do a synchronous wakeup?
1144 * Put it on the run-queue if it's not already there. The "current"
1145 * thread is always on the run-queue (except when the actual
1146 * re-schedule is in progress), and as such you're allowed to do
1147 * the simpler "current->state = TASK_RUNNING" to mark yourself
1148 * runnable without the overhead of this.
1150 * returns failure only if the task is already active.
1152 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1154 int cpu, this_cpu, success = 0;
1155 unsigned long flags;
1159 unsigned long load, this_load;
1160 struct sched_domain *sd, *this_sd = NULL;
1164 rq = task_rq_lock(p, &flags);
1165 old_state = p->state;
1166 if (!(old_state & state))
1173 this_cpu = smp_processor_id();
1176 if (unlikely(task_running(rq, p)))
1181 schedstat_inc(rq, ttwu_cnt);
1182 if (cpu == this_cpu) {
1183 schedstat_inc(rq, ttwu_local);
1187 for_each_domain(this_cpu, sd) {
1188 if (cpu_isset(cpu, sd->span)) {
1189 schedstat_inc(sd, ttwu_wake_remote);
1195 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1199 * Check for affine wakeup and passive balancing possibilities.
1202 int idx = this_sd->wake_idx;
1203 unsigned int imbalance;
1205 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1207 load = source_load(cpu, idx);
1208 this_load = target_load(this_cpu, idx);
1210 new_cpu = this_cpu; /* Wake to this CPU if we can */
1212 if (this_sd->flags & SD_WAKE_AFFINE) {
1213 unsigned long tl = this_load;
1215 * If sync wakeup then subtract the (maximum possible)
1216 * effect of the currently running task from the load
1217 * of the current CPU:
1220 tl -= SCHED_LOAD_SCALE;
1223 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1224 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1226 * This domain has SD_WAKE_AFFINE and
1227 * p is cache cold in this domain, and
1228 * there is no bad imbalance.
1230 schedstat_inc(this_sd, ttwu_move_affine);
1236 * Start passive balancing when half the imbalance_pct
1239 if (this_sd->flags & SD_WAKE_BALANCE) {
1240 if (imbalance*this_load <= 100*load) {
1241 schedstat_inc(this_sd, ttwu_move_balance);
1247 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1249 new_cpu = wake_idle(new_cpu, p);
1250 if (new_cpu != cpu) {
1251 set_task_cpu(p, new_cpu);
1252 task_rq_unlock(rq, &flags);
1253 /* might preempt at this point */
1254 rq = task_rq_lock(p, &flags);
1255 old_state = p->state;
1256 if (!(old_state & state))
1261 this_cpu = smp_processor_id();
1266 #endif /* CONFIG_SMP */
1267 if (old_state == TASK_UNINTERRUPTIBLE) {
1268 rq->nr_uninterruptible--;
1270 * Tasks on involuntary sleep don't earn
1271 * sleep_avg beyond just interactive state.
1277 * Tasks that have marked their sleep as noninteractive get
1278 * woken up without updating their sleep average. (i.e. their
1279 * sleep is handled in a priority-neutral manner, no priority
1280 * boost and no penalty.)
1282 if (old_state & TASK_NONINTERACTIVE)
1283 __activate_task(p, rq);
1285 activate_task(p, rq, cpu == this_cpu);
1287 * Sync wakeups (i.e. those types of wakeups where the waker
1288 * has indicated that it will leave the CPU in short order)
1289 * don't trigger a preemption, if the woken up task will run on
1290 * this cpu. (in this case the 'I will reschedule' promise of
1291 * the waker guarantees that the freshly woken up task is going
1292 * to be considered on this CPU.)
1294 if (!sync || cpu != this_cpu) {
1295 if (TASK_PREEMPTS_CURR(p, rq))
1296 resched_task(rq->curr);
1301 p->state = TASK_RUNNING;
1303 task_rq_unlock(rq, &flags);
1308 int fastcall wake_up_process(task_t *p)
1310 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1311 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1314 EXPORT_SYMBOL(wake_up_process);
1316 int fastcall wake_up_state(task_t *p, unsigned int state)
1318 return try_to_wake_up(p, state, 0);
1322 * Perform scheduler related setup for a newly forked process p.
1323 * p is forked by current.
1325 void fastcall sched_fork(task_t *p, int clone_flags)
1327 int cpu = get_cpu();
1330 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1332 set_task_cpu(p, cpu);
1335 * We mark the process as running here, but have not actually
1336 * inserted it onto the runqueue yet. This guarantees that
1337 * nobody will actually run it, and a signal or other external
1338 * event cannot wake it up and insert it on the runqueue either.
1340 p->state = TASK_RUNNING;
1341 INIT_LIST_HEAD(&p->run_list);
1343 #ifdef CONFIG_SCHEDSTATS
1344 memset(&p->sched_info, 0, sizeof(p->sched_info));
1346 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1349 #ifdef CONFIG_PREEMPT
1350 /* Want to start with kernel preemption disabled. */
1351 task_thread_info(p)->preempt_count = 1;
1354 * Share the timeslice between parent and child, thus the
1355 * total amount of pending timeslices in the system doesn't change,
1356 * resulting in more scheduling fairness.
1358 local_irq_disable();
1359 p->time_slice = (current->time_slice + 1) >> 1;
1361 * The remainder of the first timeslice might be recovered by
1362 * the parent if the child exits early enough.
1364 p->first_time_slice = 1;
1365 current->time_slice >>= 1;
1366 p->timestamp = sched_clock();
1367 if (unlikely(!current->time_slice)) {
1369 * This case is rare, it happens when the parent has only
1370 * a single jiffy left from its timeslice. Taking the
1371 * runqueue lock is not a problem.
1373 current->time_slice = 1;
1381 * wake_up_new_task - wake up a newly created task for the first time.
1383 * This function will do some initial scheduler statistics housekeeping
1384 * that must be done for every newly created context, then puts the task
1385 * on the runqueue and wakes it.
1387 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1389 unsigned long flags;
1391 runqueue_t *rq, *this_rq;
1393 rq = task_rq_lock(p, &flags);
1394 BUG_ON(p->state != TASK_RUNNING);
1395 this_cpu = smp_processor_id();
1399 * We decrease the sleep average of forking parents
1400 * and children as well, to keep max-interactive tasks
1401 * from forking tasks that are max-interactive. The parent
1402 * (current) is done further down, under its lock.
1404 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1405 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1407 p->prio = effective_prio(p);
1409 if (likely(cpu == this_cpu)) {
1410 if (!(clone_flags & CLONE_VM)) {
1412 * The VM isn't cloned, so we're in a good position to
1413 * do child-runs-first in anticipation of an exec. This
1414 * usually avoids a lot of COW overhead.
1416 if (unlikely(!current->array))
1417 __activate_task(p, rq);
1419 p->prio = current->prio;
1420 list_add_tail(&p->run_list, ¤t->run_list);
1421 p->array = current->array;
1422 p->array->nr_active++;
1427 /* Run child last */
1428 __activate_task(p, rq);
1430 * We skip the following code due to cpu == this_cpu
1432 * task_rq_unlock(rq, &flags);
1433 * this_rq = task_rq_lock(current, &flags);
1437 this_rq = cpu_rq(this_cpu);
1440 * Not the local CPU - must adjust timestamp. This should
1441 * get optimised away in the !CONFIG_SMP case.
1443 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1444 + rq->timestamp_last_tick;
1445 __activate_task(p, rq);
1446 if (TASK_PREEMPTS_CURR(p, rq))
1447 resched_task(rq->curr);
1450 * Parent and child are on different CPUs, now get the
1451 * parent runqueue to update the parent's ->sleep_avg:
1453 task_rq_unlock(rq, &flags);
1454 this_rq = task_rq_lock(current, &flags);
1456 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1457 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1458 task_rq_unlock(this_rq, &flags);
1462 * Potentially available exiting-child timeslices are
1463 * retrieved here - this way the parent does not get
1464 * penalized for creating too many threads.
1466 * (this cannot be used to 'generate' timeslices
1467 * artificially, because any timeslice recovered here
1468 * was given away by the parent in the first place.)
1470 void fastcall sched_exit(task_t *p)
1472 unsigned long flags;
1476 * If the child was a (relative-) CPU hog then decrease
1477 * the sleep_avg of the parent as well.
1479 rq = task_rq_lock(p->parent, &flags);
1480 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1481 p->parent->time_slice += p->time_slice;
1482 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1483 p->parent->time_slice = task_timeslice(p);
1485 if (p->sleep_avg < p->parent->sleep_avg)
1486 p->parent->sleep_avg = p->parent->sleep_avg /
1487 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1489 task_rq_unlock(rq, &flags);
1493 * prepare_task_switch - prepare to switch tasks
1494 * @rq: the runqueue preparing to switch
1495 * @next: the task we are going to switch to.
1497 * This is called with the rq lock held and interrupts off. It must
1498 * be paired with a subsequent finish_task_switch after the context
1501 * prepare_task_switch sets up locking and calls architecture specific
1504 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1506 prepare_lock_switch(rq, next);
1507 prepare_arch_switch(next);
1511 * finish_task_switch - clean up after a task-switch
1512 * @rq: runqueue associated with task-switch
1513 * @prev: the thread we just switched away from.
1515 * finish_task_switch must be called after the context switch, paired
1516 * with a prepare_task_switch call before the context switch.
1517 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1518 * and do any other architecture-specific cleanup actions.
1520 * Note that we may have delayed dropping an mm in context_switch(). If
1521 * so, we finish that here outside of the runqueue lock. (Doing it
1522 * with the lock held can cause deadlocks; see schedule() for
1525 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1526 __releases(rq->lock)
1528 struct mm_struct *mm = rq->prev_mm;
1529 unsigned long prev_task_flags;
1534 * A task struct has one reference for the use as "current".
1535 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1536 * calls schedule one last time. The schedule call will never return,
1537 * and the scheduled task must drop that reference.
1538 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1539 * still held, otherwise prev could be scheduled on another cpu, die
1540 * there before we look at prev->state, and then the reference would
1542 * Manfred Spraul <manfred@colorfullife.com>
1544 prev_task_flags = prev->flags;
1545 finish_arch_switch(prev);
1546 finish_lock_switch(rq, prev);
1549 if (unlikely(prev_task_flags & PF_DEAD))
1550 put_task_struct(prev);
1554 * schedule_tail - first thing a freshly forked thread must call.
1555 * @prev: the thread we just switched away from.
1557 asmlinkage void schedule_tail(task_t *prev)
1558 __releases(rq->lock)
1560 runqueue_t *rq = this_rq();
1561 finish_task_switch(rq, prev);
1562 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1563 /* In this case, finish_task_switch does not reenable preemption */
1566 if (current->set_child_tid)
1567 put_user(current->pid, current->set_child_tid);
1571 * context_switch - switch to the new MM and the new
1572 * thread's register state.
1575 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1577 struct mm_struct *mm = next->mm;
1578 struct mm_struct *oldmm = prev->active_mm;
1580 if (unlikely(!mm)) {
1581 next->active_mm = oldmm;
1582 atomic_inc(&oldmm->mm_count);
1583 enter_lazy_tlb(oldmm, next);
1585 switch_mm(oldmm, mm, next);
1587 if (unlikely(!prev->mm)) {
1588 prev->active_mm = NULL;
1589 WARN_ON(rq->prev_mm);
1590 rq->prev_mm = oldmm;
1593 /* Here we just switch the register state and the stack. */
1594 switch_to(prev, next, prev);
1600 * nr_running, nr_uninterruptible and nr_context_switches:
1602 * externally visible scheduler statistics: current number of runnable
1603 * threads, current number of uninterruptible-sleeping threads, total
1604 * number of context switches performed since bootup.
1606 unsigned long nr_running(void)
1608 unsigned long i, sum = 0;
1610 for_each_online_cpu(i)
1611 sum += cpu_rq(i)->nr_running;
1616 unsigned long nr_uninterruptible(void)
1618 unsigned long i, sum = 0;
1621 sum += cpu_rq(i)->nr_uninterruptible;
1624 * Since we read the counters lockless, it might be slightly
1625 * inaccurate. Do not allow it to go below zero though:
1627 if (unlikely((long)sum < 0))
1633 unsigned long long nr_context_switches(void)
1635 unsigned long long i, sum = 0;
1638 sum += cpu_rq(i)->nr_switches;
1643 unsigned long nr_iowait(void)
1645 unsigned long i, sum = 0;
1648 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1656 * double_rq_lock - safely lock two runqueues
1658 * We must take them in cpu order to match code in
1659 * dependent_sleeper and wake_dependent_sleeper.
1661 * Note this does not disable interrupts like task_rq_lock,
1662 * you need to do so manually before calling.
1664 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1665 __acquires(rq1->lock)
1666 __acquires(rq2->lock)
1669 spin_lock(&rq1->lock);
1670 __acquire(rq2->lock); /* Fake it out ;) */
1672 if (rq1->cpu < rq2->cpu) {
1673 spin_lock(&rq1->lock);
1674 spin_lock(&rq2->lock);
1676 spin_lock(&rq2->lock);
1677 spin_lock(&rq1->lock);
1683 * double_rq_unlock - safely unlock two runqueues
1685 * Note this does not restore interrupts like task_rq_unlock,
1686 * you need to do so manually after calling.
1688 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1689 __releases(rq1->lock)
1690 __releases(rq2->lock)
1692 spin_unlock(&rq1->lock);
1694 spin_unlock(&rq2->lock);
1696 __release(rq2->lock);
1700 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1702 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1703 __releases(this_rq->lock)
1704 __acquires(busiest->lock)
1705 __acquires(this_rq->lock)
1707 if (unlikely(!spin_trylock(&busiest->lock))) {
1708 if (busiest->cpu < this_rq->cpu) {
1709 spin_unlock(&this_rq->lock);
1710 spin_lock(&busiest->lock);
1711 spin_lock(&this_rq->lock);
1713 spin_lock(&busiest->lock);
1718 * If dest_cpu is allowed for this process, migrate the task to it.
1719 * This is accomplished by forcing the cpu_allowed mask to only
1720 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1721 * the cpu_allowed mask is restored.
1723 static void sched_migrate_task(task_t *p, int dest_cpu)
1725 migration_req_t req;
1727 unsigned long flags;
1729 rq = task_rq_lock(p, &flags);
1730 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1731 || unlikely(cpu_is_offline(dest_cpu)))
1734 /* force the process onto the specified CPU */
1735 if (migrate_task(p, dest_cpu, &req)) {
1736 /* Need to wait for migration thread (might exit: take ref). */
1737 struct task_struct *mt = rq->migration_thread;
1738 get_task_struct(mt);
1739 task_rq_unlock(rq, &flags);
1740 wake_up_process(mt);
1741 put_task_struct(mt);
1742 wait_for_completion(&req.done);
1746 task_rq_unlock(rq, &flags);
1750 * sched_exec - execve() is a valuable balancing opportunity, because at
1751 * this point the task has the smallest effective memory and cache footprint.
1753 void sched_exec(void)
1755 int new_cpu, this_cpu = get_cpu();
1756 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1758 if (new_cpu != this_cpu)
1759 sched_migrate_task(current, new_cpu);
1763 * pull_task - move a task from a remote runqueue to the local runqueue.
1764 * Both runqueues must be locked.
1767 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1768 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1770 dequeue_task(p, src_array);
1771 src_rq->nr_running--;
1772 set_task_cpu(p, this_cpu);
1773 this_rq->nr_running++;
1774 enqueue_task(p, this_array);
1775 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1776 + this_rq->timestamp_last_tick;
1778 * Note that idle threads have a prio of MAX_PRIO, for this test
1779 * to be always true for them.
1781 if (TASK_PREEMPTS_CURR(p, this_rq))
1782 resched_task(this_rq->curr);
1786 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1789 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1790 struct sched_domain *sd, enum idle_type idle,
1794 * We do not migrate tasks that are:
1795 * 1) running (obviously), or
1796 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1797 * 3) are cache-hot on their current CPU.
1799 if (!cpu_isset(this_cpu, p->cpus_allowed))
1803 if (task_running(rq, p))
1807 * Aggressive migration if:
1808 * 1) task is cache cold, or
1809 * 2) too many balance attempts have failed.
1812 if (sd->nr_balance_failed > sd->cache_nice_tries)
1815 if (task_hot(p, rq->timestamp_last_tick, sd))
1821 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1822 * as part of a balancing operation within "domain". Returns the number of
1825 * Called with both runqueues locked.
1827 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1828 unsigned long max_nr_move, struct sched_domain *sd,
1829 enum idle_type idle, int *all_pinned)
1831 prio_array_t *array, *dst_array;
1832 struct list_head *head, *curr;
1833 int idx, pulled = 0, pinned = 0;
1836 if (max_nr_move == 0)
1842 * We first consider expired tasks. Those will likely not be
1843 * executed in the near future, and they are most likely to
1844 * be cache-cold, thus switching CPUs has the least effect
1847 if (busiest->expired->nr_active) {
1848 array = busiest->expired;
1849 dst_array = this_rq->expired;
1851 array = busiest->active;
1852 dst_array = this_rq->active;
1856 /* Start searching at priority 0: */
1860 idx = sched_find_first_bit(array->bitmap);
1862 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1863 if (idx >= MAX_PRIO) {
1864 if (array == busiest->expired && busiest->active->nr_active) {
1865 array = busiest->active;
1866 dst_array = this_rq->active;
1872 head = array->queue + idx;
1875 tmp = list_entry(curr, task_t, run_list);
1879 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1886 #ifdef CONFIG_SCHEDSTATS
1887 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1888 schedstat_inc(sd, lb_hot_gained[idle]);
1891 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1894 /* We only want to steal up to the prescribed number of tasks. */
1895 if (pulled < max_nr_move) {
1903 * Right now, this is the only place pull_task() is called,
1904 * so we can safely collect pull_task() stats here rather than
1905 * inside pull_task().
1907 schedstat_add(sd, lb_gained[idle], pulled);
1910 *all_pinned = pinned;
1915 * find_busiest_group finds and returns the busiest CPU group within the
1916 * domain. It calculates and returns the number of tasks which should be
1917 * moved to restore balance via the imbalance parameter.
1919 static struct sched_group *
1920 find_busiest_group(struct sched_domain *sd, int this_cpu,
1921 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1923 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1924 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1925 unsigned long max_pull;
1928 max_load = this_load = total_load = total_pwr = 0;
1929 if (idle == NOT_IDLE)
1930 load_idx = sd->busy_idx;
1931 else if (idle == NEWLY_IDLE)
1932 load_idx = sd->newidle_idx;
1934 load_idx = sd->idle_idx;
1941 local_group = cpu_isset(this_cpu, group->cpumask);
1943 /* Tally up the load of all CPUs in the group */
1946 for_each_cpu_mask(i, group->cpumask) {
1947 if (*sd_idle && !idle_cpu(i))
1950 /* Bias balancing toward cpus of our domain */
1952 load = target_load(i, load_idx);
1954 load = source_load(i, load_idx);
1959 total_load += avg_load;
1960 total_pwr += group->cpu_power;
1962 /* Adjust by relative CPU power of the group */
1963 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1966 this_load = avg_load;
1968 } else if (avg_load > max_load) {
1969 max_load = avg_load;
1972 group = group->next;
1973 } while (group != sd->groups);
1975 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1978 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1980 if (this_load >= avg_load ||
1981 100*max_load <= sd->imbalance_pct*this_load)
1985 * We're trying to get all the cpus to the average_load, so we don't
1986 * want to push ourselves above the average load, nor do we wish to
1987 * reduce the max loaded cpu below the average load, as either of these
1988 * actions would just result in more rebalancing later, and ping-pong
1989 * tasks around. Thus we look for the minimum possible imbalance.
1990 * Negative imbalances (*we* are more loaded than anyone else) will
1991 * be counted as no imbalance for these purposes -- we can't fix that
1992 * by pulling tasks to us. Be careful of negative numbers as they'll
1993 * appear as very large values with unsigned longs.
1996 /* Don't want to pull so many tasks that a group would go idle */
1997 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
1999 /* How much load to actually move to equalise the imbalance */
2000 *imbalance = min(max_pull * busiest->cpu_power,
2001 (avg_load - this_load) * this->cpu_power)
2004 if (*imbalance < SCHED_LOAD_SCALE) {
2005 unsigned long pwr_now = 0, pwr_move = 0;
2008 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2014 * OK, we don't have enough imbalance to justify moving tasks,
2015 * however we may be able to increase total CPU power used by
2019 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2020 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2021 pwr_now /= SCHED_LOAD_SCALE;
2023 /* Amount of load we'd subtract */
2024 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2026 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2029 /* Amount of load we'd add */
2030 if (max_load*busiest->cpu_power <
2031 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2032 tmp = max_load*busiest->cpu_power/this->cpu_power;
2034 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2035 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2036 pwr_move /= SCHED_LOAD_SCALE;
2038 /* Move if we gain throughput */
2039 if (pwr_move <= pwr_now)
2046 /* Get rid of the scaling factor, rounding down as we divide */
2047 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2057 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2059 static runqueue_t *find_busiest_queue(struct sched_group *group,
2060 enum idle_type idle)
2062 unsigned long load, max_load = 0;
2063 runqueue_t *busiest = NULL;
2066 for_each_cpu_mask(i, group->cpumask) {
2067 load = source_load(i, 0);
2069 if (load > max_load) {
2071 busiest = cpu_rq(i);
2079 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2080 * so long as it is large enough.
2082 #define MAX_PINNED_INTERVAL 512
2085 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2086 * tasks if there is an imbalance.
2088 * Called with this_rq unlocked.
2090 static int load_balance(int this_cpu, runqueue_t *this_rq,
2091 struct sched_domain *sd, enum idle_type idle)
2093 struct sched_group *group;
2094 runqueue_t *busiest;
2095 unsigned long imbalance;
2096 int nr_moved, all_pinned = 0;
2097 int active_balance = 0;
2100 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2103 schedstat_inc(sd, lb_cnt[idle]);
2105 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2107 schedstat_inc(sd, lb_nobusyg[idle]);
2111 busiest = find_busiest_queue(group, idle);
2113 schedstat_inc(sd, lb_nobusyq[idle]);
2117 BUG_ON(busiest == this_rq);
2119 schedstat_add(sd, lb_imbalance[idle], imbalance);
2122 if (busiest->nr_running > 1) {
2124 * Attempt to move tasks. If find_busiest_group has found
2125 * an imbalance but busiest->nr_running <= 1, the group is
2126 * still unbalanced. nr_moved simply stays zero, so it is
2127 * correctly treated as an imbalance.
2129 double_rq_lock(this_rq, busiest);
2130 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2131 imbalance, sd, idle, &all_pinned);
2132 double_rq_unlock(this_rq, busiest);
2134 /* All tasks on this runqueue were pinned by CPU affinity */
2135 if (unlikely(all_pinned))
2140 schedstat_inc(sd, lb_failed[idle]);
2141 sd->nr_balance_failed++;
2143 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2145 spin_lock(&busiest->lock);
2147 /* don't kick the migration_thread, if the curr
2148 * task on busiest cpu can't be moved to this_cpu
2150 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2151 spin_unlock(&busiest->lock);
2153 goto out_one_pinned;
2156 if (!busiest->active_balance) {
2157 busiest->active_balance = 1;
2158 busiest->push_cpu = this_cpu;
2161 spin_unlock(&busiest->lock);
2163 wake_up_process(busiest->migration_thread);
2166 * We've kicked active balancing, reset the failure
2169 sd->nr_balance_failed = sd->cache_nice_tries+1;
2172 sd->nr_balance_failed = 0;
2174 if (likely(!active_balance)) {
2175 /* We were unbalanced, so reset the balancing interval */
2176 sd->balance_interval = sd->min_interval;
2179 * If we've begun active balancing, start to back off. This
2180 * case may not be covered by the all_pinned logic if there
2181 * is only 1 task on the busy runqueue (because we don't call
2184 if (sd->balance_interval < sd->max_interval)
2185 sd->balance_interval *= 2;
2188 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2193 schedstat_inc(sd, lb_balanced[idle]);
2195 sd->nr_balance_failed = 0;
2198 /* tune up the balancing interval */
2199 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2200 (sd->balance_interval < sd->max_interval))
2201 sd->balance_interval *= 2;
2203 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2209 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2210 * tasks if there is an imbalance.
2212 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2213 * this_rq is locked.
2215 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2216 struct sched_domain *sd)
2218 struct sched_group *group;
2219 runqueue_t *busiest = NULL;
2220 unsigned long imbalance;
2224 if (sd->flags & SD_SHARE_CPUPOWER)
2227 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2228 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2230 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2234 busiest = find_busiest_queue(group, NEWLY_IDLE);
2236 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2240 BUG_ON(busiest == this_rq);
2242 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2245 if (busiest->nr_running > 1) {
2246 /* Attempt to move tasks */
2247 double_lock_balance(this_rq, busiest);
2248 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2249 imbalance, sd, NEWLY_IDLE, NULL);
2250 spin_unlock(&busiest->lock);
2254 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2255 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2258 sd->nr_balance_failed = 0;
2263 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2264 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2266 sd->nr_balance_failed = 0;
2271 * idle_balance is called by schedule() if this_cpu is about to become
2272 * idle. Attempts to pull tasks from other CPUs.
2274 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2276 struct sched_domain *sd;
2278 for_each_domain(this_cpu, sd) {
2279 if (sd->flags & SD_BALANCE_NEWIDLE) {
2280 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2281 /* We've pulled tasks over so stop searching */
2289 * active_load_balance is run by migration threads. It pushes running tasks
2290 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2291 * running on each physical CPU where possible, and avoids physical /
2292 * logical imbalances.
2294 * Called with busiest_rq locked.
2296 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2298 struct sched_domain *sd;
2299 runqueue_t *target_rq;
2300 int target_cpu = busiest_rq->push_cpu;
2302 if (busiest_rq->nr_running <= 1)
2303 /* no task to move */
2306 target_rq = cpu_rq(target_cpu);
2309 * This condition is "impossible", if it occurs
2310 * we need to fix it. Originally reported by
2311 * Bjorn Helgaas on a 128-cpu setup.
2313 BUG_ON(busiest_rq == target_rq);
2315 /* move a task from busiest_rq to target_rq */
2316 double_lock_balance(busiest_rq, target_rq);
2318 /* Search for an sd spanning us and the target CPU. */
2319 for_each_domain(target_cpu, sd)
2320 if ((sd->flags & SD_LOAD_BALANCE) &&
2321 cpu_isset(busiest_cpu, sd->span))
2324 if (unlikely(sd == NULL))
2327 schedstat_inc(sd, alb_cnt);
2329 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2330 schedstat_inc(sd, alb_pushed);
2332 schedstat_inc(sd, alb_failed);
2334 spin_unlock(&target_rq->lock);
2338 * rebalance_tick will get called every timer tick, on every CPU.
2340 * It checks each scheduling domain to see if it is due to be balanced,
2341 * and initiates a balancing operation if so.
2343 * Balancing parameters are set up in arch_init_sched_domains.
2346 /* Don't have all balancing operations going off at once */
2347 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2349 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2350 enum idle_type idle)
2352 unsigned long old_load, this_load;
2353 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2354 struct sched_domain *sd;
2357 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2358 /* Update our load */
2359 for (i = 0; i < 3; i++) {
2360 unsigned long new_load = this_load;
2362 old_load = this_rq->cpu_load[i];
2364 * Round up the averaging division if load is increasing. This
2365 * prevents us from getting stuck on 9 if the load is 10, for
2368 if (new_load > old_load)
2369 new_load += scale-1;
2370 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2373 for_each_domain(this_cpu, sd) {
2374 unsigned long interval;
2376 if (!(sd->flags & SD_LOAD_BALANCE))
2379 interval = sd->balance_interval;
2380 if (idle != SCHED_IDLE)
2381 interval *= sd->busy_factor;
2383 /* scale ms to jiffies */
2384 interval = msecs_to_jiffies(interval);
2385 if (unlikely(!interval))
2388 if (j - sd->last_balance >= interval) {
2389 if (load_balance(this_cpu, this_rq, sd, idle)) {
2391 * We've pulled tasks over so either we're no
2392 * longer idle, or one of our SMT siblings is
2397 sd->last_balance += interval;
2403 * on UP we do not need to balance between CPUs:
2405 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2408 static inline void idle_balance(int cpu, runqueue_t *rq)
2413 static inline int wake_priority_sleeper(runqueue_t *rq)
2416 #ifdef CONFIG_SCHED_SMT
2417 spin_lock(&rq->lock);
2419 * If an SMT sibling task has been put to sleep for priority
2420 * reasons reschedule the idle task to see if it can now run.
2422 if (rq->nr_running) {
2423 resched_task(rq->idle);
2426 spin_unlock(&rq->lock);
2431 DEFINE_PER_CPU(struct kernel_stat, kstat);
2433 EXPORT_PER_CPU_SYMBOL(kstat);
2436 * This is called on clock ticks and on context switches.
2437 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2439 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2440 unsigned long long now)
2442 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2443 p->sched_time += now - last;
2447 * Return current->sched_time plus any more ns on the sched_clock
2448 * that have not yet been banked.
2450 unsigned long long current_sched_time(const task_t *tsk)
2452 unsigned long long ns;
2453 unsigned long flags;
2454 local_irq_save(flags);
2455 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2456 ns = tsk->sched_time + (sched_clock() - ns);
2457 local_irq_restore(flags);
2462 * We place interactive tasks back into the active array, if possible.
2464 * To guarantee that this does not starve expired tasks we ignore the
2465 * interactivity of a task if the first expired task had to wait more
2466 * than a 'reasonable' amount of time. This deadline timeout is
2467 * load-dependent, as the frequency of array switched decreases with
2468 * increasing number of running tasks. We also ignore the interactivity
2469 * if a better static_prio task has expired:
2471 #define EXPIRED_STARVING(rq) \
2472 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2473 (jiffies - (rq)->expired_timestamp >= \
2474 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2475 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2478 * Account user cpu time to a process.
2479 * @p: the process that the cpu time gets accounted to
2480 * @hardirq_offset: the offset to subtract from hardirq_count()
2481 * @cputime: the cpu time spent in user space since the last update
2483 void account_user_time(struct task_struct *p, cputime_t cputime)
2485 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2488 p->utime = cputime_add(p->utime, cputime);
2490 /* Add user time to cpustat. */
2491 tmp = cputime_to_cputime64(cputime);
2492 if (TASK_NICE(p) > 0)
2493 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2495 cpustat->user = cputime64_add(cpustat->user, tmp);
2499 * Account system cpu time to a process.
2500 * @p: the process that the cpu time gets accounted to
2501 * @hardirq_offset: the offset to subtract from hardirq_count()
2502 * @cputime: the cpu time spent in kernel space since the last update
2504 void account_system_time(struct task_struct *p, int hardirq_offset,
2507 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2508 runqueue_t *rq = this_rq();
2511 p->stime = cputime_add(p->stime, cputime);
2513 /* Add system time to cpustat. */
2514 tmp = cputime_to_cputime64(cputime);
2515 if (hardirq_count() - hardirq_offset)
2516 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2517 else if (softirq_count())
2518 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2519 else if (p != rq->idle)
2520 cpustat->system = cputime64_add(cpustat->system, tmp);
2521 else if (atomic_read(&rq->nr_iowait) > 0)
2522 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2524 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2525 /* Account for system time used */
2526 acct_update_integrals(p);
2530 * Account for involuntary wait time.
2531 * @p: the process from which the cpu time has been stolen
2532 * @steal: the cpu time spent in involuntary wait
2534 void account_steal_time(struct task_struct *p, cputime_t steal)
2536 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2537 cputime64_t tmp = cputime_to_cputime64(steal);
2538 runqueue_t *rq = this_rq();
2540 if (p == rq->idle) {
2541 p->stime = cputime_add(p->stime, steal);
2542 if (atomic_read(&rq->nr_iowait) > 0)
2543 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2545 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2547 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2551 * This function gets called by the timer code, with HZ frequency.
2552 * We call it with interrupts disabled.
2554 * It also gets called by the fork code, when changing the parent's
2557 void scheduler_tick(void)
2559 int cpu = smp_processor_id();
2560 runqueue_t *rq = this_rq();
2561 task_t *p = current;
2562 unsigned long long now = sched_clock();
2564 update_cpu_clock(p, rq, now);
2566 rq->timestamp_last_tick = now;
2568 if (p == rq->idle) {
2569 if (wake_priority_sleeper(rq))
2571 rebalance_tick(cpu, rq, SCHED_IDLE);
2575 /* Task might have expired already, but not scheduled off yet */
2576 if (p->array != rq->active) {
2577 set_tsk_need_resched(p);
2580 spin_lock(&rq->lock);
2582 * The task was running during this tick - update the
2583 * time slice counter. Note: we do not update a thread's
2584 * priority until it either goes to sleep or uses up its
2585 * timeslice. This makes it possible for interactive tasks
2586 * to use up their timeslices at their highest priority levels.
2590 * RR tasks need a special form of timeslice management.
2591 * FIFO tasks have no timeslices.
2593 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2594 p->time_slice = task_timeslice(p);
2595 p->first_time_slice = 0;
2596 set_tsk_need_resched(p);
2598 /* put it at the end of the queue: */
2599 requeue_task(p, rq->active);
2603 if (!--p->time_slice) {
2604 dequeue_task(p, rq->active);
2605 set_tsk_need_resched(p);
2606 p->prio = effective_prio(p);
2607 p->time_slice = task_timeslice(p);
2608 p->first_time_slice = 0;
2610 if (!rq->expired_timestamp)
2611 rq->expired_timestamp = jiffies;
2612 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2613 enqueue_task(p, rq->expired);
2614 if (p->static_prio < rq->best_expired_prio)
2615 rq->best_expired_prio = p->static_prio;
2617 enqueue_task(p, rq->active);
2620 * Prevent a too long timeslice allowing a task to monopolize
2621 * the CPU. We do this by splitting up the timeslice into
2624 * Note: this does not mean the task's timeslices expire or
2625 * get lost in any way, they just might be preempted by
2626 * another task of equal priority. (one with higher
2627 * priority would have preempted this task already.) We
2628 * requeue this task to the end of the list on this priority
2629 * level, which is in essence a round-robin of tasks with
2632 * This only applies to tasks in the interactive
2633 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2635 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2636 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2637 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2638 (p->array == rq->active)) {
2640 requeue_task(p, rq->active);
2641 set_tsk_need_resched(p);
2645 spin_unlock(&rq->lock);
2647 rebalance_tick(cpu, rq, NOT_IDLE);
2650 #ifdef CONFIG_SCHED_SMT
2651 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2653 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2654 if (rq->curr == rq->idle && rq->nr_running)
2655 resched_task(rq->idle);
2658 static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2660 struct sched_domain *tmp, *sd = NULL;
2661 cpumask_t sibling_map;
2664 for_each_domain(this_cpu, tmp)
2665 if (tmp->flags & SD_SHARE_CPUPOWER)
2672 * Unlock the current runqueue because we have to lock in
2673 * CPU order to avoid deadlocks. Caller knows that we might
2674 * unlock. We keep IRQs disabled.
2676 spin_unlock(&this_rq->lock);
2678 sibling_map = sd->span;
2680 for_each_cpu_mask(i, sibling_map)
2681 spin_lock(&cpu_rq(i)->lock);
2683 * We clear this CPU from the mask. This both simplifies the
2684 * inner loop and keps this_rq locked when we exit:
2686 cpu_clear(this_cpu, sibling_map);
2688 for_each_cpu_mask(i, sibling_map) {
2689 runqueue_t *smt_rq = cpu_rq(i);
2691 wakeup_busy_runqueue(smt_rq);
2694 for_each_cpu_mask(i, sibling_map)
2695 spin_unlock(&cpu_rq(i)->lock);
2697 * We exit with this_cpu's rq still held and IRQs
2703 * number of 'lost' timeslices this task wont be able to fully
2704 * utilize, if another task runs on a sibling. This models the
2705 * slowdown effect of other tasks running on siblings:
2707 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2709 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2712 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2714 struct sched_domain *tmp, *sd = NULL;
2715 cpumask_t sibling_map;
2716 prio_array_t *array;
2720 for_each_domain(this_cpu, tmp)
2721 if (tmp->flags & SD_SHARE_CPUPOWER)
2728 * The same locking rules and details apply as for
2729 * wake_sleeping_dependent():
2731 spin_unlock(&this_rq->lock);
2732 sibling_map = sd->span;
2733 for_each_cpu_mask(i, sibling_map)
2734 spin_lock(&cpu_rq(i)->lock);
2735 cpu_clear(this_cpu, sibling_map);
2738 * Establish next task to be run - it might have gone away because
2739 * we released the runqueue lock above:
2741 if (!this_rq->nr_running)
2743 array = this_rq->active;
2744 if (!array->nr_active)
2745 array = this_rq->expired;
2746 BUG_ON(!array->nr_active);
2748 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2751 for_each_cpu_mask(i, sibling_map) {
2752 runqueue_t *smt_rq = cpu_rq(i);
2753 task_t *smt_curr = smt_rq->curr;
2755 /* Kernel threads do not participate in dependent sleeping */
2756 if (!p->mm || !smt_curr->mm || rt_task(p))
2757 goto check_smt_task;
2760 * If a user task with lower static priority than the
2761 * running task on the SMT sibling is trying to schedule,
2762 * delay it till there is proportionately less timeslice
2763 * left of the sibling task to prevent a lower priority
2764 * task from using an unfair proportion of the
2765 * physical cpu's resources. -ck
2767 if (rt_task(smt_curr)) {
2769 * With real time tasks we run non-rt tasks only
2770 * per_cpu_gain% of the time.
2772 if ((jiffies % DEF_TIMESLICE) >
2773 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2776 if (smt_curr->static_prio < p->static_prio &&
2777 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2778 smt_slice(smt_curr, sd) > task_timeslice(p))
2782 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2786 wakeup_busy_runqueue(smt_rq);
2791 * Reschedule a lower priority task on the SMT sibling for
2792 * it to be put to sleep, or wake it up if it has been put to
2793 * sleep for priority reasons to see if it should run now.
2796 if ((jiffies % DEF_TIMESLICE) >
2797 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2798 resched_task(smt_curr);
2800 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2801 smt_slice(p, sd) > task_timeslice(smt_curr))
2802 resched_task(smt_curr);
2804 wakeup_busy_runqueue(smt_rq);
2808 for_each_cpu_mask(i, sibling_map)
2809 spin_unlock(&cpu_rq(i)->lock);
2813 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2817 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2823 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2825 void fastcall add_preempt_count(int val)
2830 BUG_ON((preempt_count() < 0));
2831 preempt_count() += val;
2833 * Spinlock count overflowing soon?
2835 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2837 EXPORT_SYMBOL(add_preempt_count);
2839 void fastcall sub_preempt_count(int val)
2844 BUG_ON(val > preempt_count());
2846 * Is the spinlock portion underflowing?
2848 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2849 preempt_count() -= val;
2851 EXPORT_SYMBOL(sub_preempt_count);
2856 * schedule() is the main scheduler function.
2858 asmlinkage void __sched schedule(void)
2861 task_t *prev, *next;
2863 prio_array_t *array;
2864 struct list_head *queue;
2865 unsigned long long now;
2866 unsigned long run_time;
2867 int cpu, idx, new_prio;
2870 * Test if we are atomic. Since do_exit() needs to call into
2871 * schedule() atomically, we ignore that path for now.
2872 * Otherwise, whine if we are scheduling when we should not be.
2874 if (likely(!current->exit_state)) {
2875 if (unlikely(in_atomic())) {
2876 printk(KERN_ERR "BUG: scheduling while atomic: "
2878 current->comm, preempt_count(), current->pid);
2882 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2887 release_kernel_lock(prev);
2888 need_resched_nonpreemptible:
2892 * The idle thread is not allowed to schedule!
2893 * Remove this check after it has been exercised a bit.
2895 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2896 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2900 schedstat_inc(rq, sched_cnt);
2901 now = sched_clock();
2902 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2903 run_time = now - prev->timestamp;
2904 if (unlikely((long long)(now - prev->timestamp) < 0))
2907 run_time = NS_MAX_SLEEP_AVG;
2910 * Tasks charged proportionately less run_time at high sleep_avg to
2911 * delay them losing their interactive status
2913 run_time /= (CURRENT_BONUS(prev) ? : 1);
2915 spin_lock_irq(&rq->lock);
2917 if (unlikely(prev->flags & PF_DEAD))
2918 prev->state = EXIT_DEAD;
2920 switch_count = &prev->nivcsw;
2921 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2922 switch_count = &prev->nvcsw;
2923 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2924 unlikely(signal_pending(prev))))
2925 prev->state = TASK_RUNNING;
2927 if (prev->state == TASK_UNINTERRUPTIBLE)
2928 rq->nr_uninterruptible++;
2929 deactivate_task(prev, rq);
2933 cpu = smp_processor_id();
2934 if (unlikely(!rq->nr_running)) {
2936 idle_balance(cpu, rq);
2937 if (!rq->nr_running) {
2939 rq->expired_timestamp = 0;
2940 wake_sleeping_dependent(cpu, rq);
2942 * wake_sleeping_dependent() might have released
2943 * the runqueue, so break out if we got new
2946 if (!rq->nr_running)
2950 if (dependent_sleeper(cpu, rq)) {
2955 * dependent_sleeper() releases and reacquires the runqueue
2956 * lock, hence go into the idle loop if the rq went
2959 if (unlikely(!rq->nr_running))
2964 if (unlikely(!array->nr_active)) {
2966 * Switch the active and expired arrays.
2968 schedstat_inc(rq, sched_switch);
2969 rq->active = rq->expired;
2970 rq->expired = array;
2972 rq->expired_timestamp = 0;
2973 rq->best_expired_prio = MAX_PRIO;
2976 idx = sched_find_first_bit(array->bitmap);
2977 queue = array->queue + idx;
2978 next = list_entry(queue->next, task_t, run_list);
2980 if (!rt_task(next) && next->activated > 0) {
2981 unsigned long long delta = now - next->timestamp;
2982 if (unlikely((long long)(now - next->timestamp) < 0))
2985 if (next->activated == 1)
2986 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2988 array = next->array;
2989 new_prio = recalc_task_prio(next, next->timestamp + delta);
2991 if (unlikely(next->prio != new_prio)) {
2992 dequeue_task(next, array);
2993 next->prio = new_prio;
2994 enqueue_task(next, array);
2996 requeue_task(next, array);
2998 next->activated = 0;
3000 if (next == rq->idle)
3001 schedstat_inc(rq, sched_goidle);
3003 prefetch_stack(next);
3004 clear_tsk_need_resched(prev);
3005 rcu_qsctr_inc(task_cpu(prev));
3007 update_cpu_clock(prev, rq, now);
3009 prev->sleep_avg -= run_time;
3010 if ((long)prev->sleep_avg <= 0)
3011 prev->sleep_avg = 0;
3012 prev->timestamp = prev->last_ran = now;
3014 sched_info_switch(prev, next);
3015 if (likely(prev != next)) {
3016 next->timestamp = now;
3021 prepare_task_switch(rq, next);
3022 prev = context_switch(rq, prev, next);
3025 * this_rq must be evaluated again because prev may have moved
3026 * CPUs since it called schedule(), thus the 'rq' on its stack
3027 * frame will be invalid.
3029 finish_task_switch(this_rq(), prev);
3031 spin_unlock_irq(&rq->lock);
3034 if (unlikely(reacquire_kernel_lock(prev) < 0))
3035 goto need_resched_nonpreemptible;
3036 preempt_enable_no_resched();
3037 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3041 EXPORT_SYMBOL(schedule);
3043 #ifdef CONFIG_PREEMPT
3045 * this is is the entry point to schedule() from in-kernel preemption
3046 * off of preempt_enable. Kernel preemptions off return from interrupt
3047 * occur there and call schedule directly.
3049 asmlinkage void __sched preempt_schedule(void)
3051 struct thread_info *ti = current_thread_info();
3052 #ifdef CONFIG_PREEMPT_BKL
3053 struct task_struct *task = current;
3054 int saved_lock_depth;
3057 * If there is a non-zero preempt_count or interrupts are disabled,
3058 * we do not want to preempt the current task. Just return..
3060 if (unlikely(ti->preempt_count || irqs_disabled()))
3064 add_preempt_count(PREEMPT_ACTIVE);
3066 * We keep the big kernel semaphore locked, but we
3067 * clear ->lock_depth so that schedule() doesnt
3068 * auto-release the semaphore:
3070 #ifdef CONFIG_PREEMPT_BKL
3071 saved_lock_depth = task->lock_depth;
3072 task->lock_depth = -1;
3075 #ifdef CONFIG_PREEMPT_BKL
3076 task->lock_depth = saved_lock_depth;
3078 sub_preempt_count(PREEMPT_ACTIVE);
3080 /* we could miss a preemption opportunity between schedule and now */
3082 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3086 EXPORT_SYMBOL(preempt_schedule);
3089 * this is is the entry point to schedule() from kernel preemption
3090 * off of irq context.
3091 * Note, that this is called and return with irqs disabled. This will
3092 * protect us against recursive calling from irq.
3094 asmlinkage void __sched preempt_schedule_irq(void)
3096 struct thread_info *ti = current_thread_info();
3097 #ifdef CONFIG_PREEMPT_BKL
3098 struct task_struct *task = current;
3099 int saved_lock_depth;
3101 /* Catch callers which need to be fixed*/
3102 BUG_ON(ti->preempt_count || !irqs_disabled());
3105 add_preempt_count(PREEMPT_ACTIVE);
3107 * We keep the big kernel semaphore locked, but we
3108 * clear ->lock_depth so that schedule() doesnt
3109 * auto-release the semaphore:
3111 #ifdef CONFIG_PREEMPT_BKL
3112 saved_lock_depth = task->lock_depth;
3113 task->lock_depth = -1;
3117 local_irq_disable();
3118 #ifdef CONFIG_PREEMPT_BKL
3119 task->lock_depth = saved_lock_depth;
3121 sub_preempt_count(PREEMPT_ACTIVE);
3123 /* we could miss a preemption opportunity between schedule and now */
3125 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3129 #endif /* CONFIG_PREEMPT */
3131 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3134 task_t *p = curr->private;
3135 return try_to_wake_up(p, mode, sync);
3138 EXPORT_SYMBOL(default_wake_function);
3141 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3142 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3143 * number) then we wake all the non-exclusive tasks and one exclusive task.
3145 * There are circumstances in which we can try to wake a task which has already
3146 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3147 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3149 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3150 int nr_exclusive, int sync, void *key)
3152 struct list_head *tmp, *next;
3154 list_for_each_safe(tmp, next, &q->task_list) {
3157 curr = list_entry(tmp, wait_queue_t, task_list);
3158 flags = curr->flags;
3159 if (curr->func(curr, mode, sync, key) &&
3160 (flags & WQ_FLAG_EXCLUSIVE) &&
3167 * __wake_up - wake up threads blocked on a waitqueue.
3169 * @mode: which threads
3170 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3171 * @key: is directly passed to the wakeup function
3173 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3174 int nr_exclusive, void *key)
3176 unsigned long flags;
3178 spin_lock_irqsave(&q->lock, flags);
3179 __wake_up_common(q, mode, nr_exclusive, 0, key);
3180 spin_unlock_irqrestore(&q->lock, flags);
3183 EXPORT_SYMBOL(__wake_up);
3186 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3188 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3190 __wake_up_common(q, mode, 1, 0, NULL);
3194 * __wake_up_sync - wake up threads blocked on a waitqueue.
3196 * @mode: which threads
3197 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3199 * The sync wakeup differs that the waker knows that it will schedule
3200 * away soon, so while the target thread will be woken up, it will not
3201 * be migrated to another CPU - ie. the two threads are 'synchronized'
3202 * with each other. This can prevent needless bouncing between CPUs.
3204 * On UP it can prevent extra preemption.
3207 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3209 unsigned long flags;
3215 if (unlikely(!nr_exclusive))
3218 spin_lock_irqsave(&q->lock, flags);
3219 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3220 spin_unlock_irqrestore(&q->lock, flags);
3222 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3224 void fastcall complete(struct completion *x)
3226 unsigned long flags;
3228 spin_lock_irqsave(&x->wait.lock, flags);
3230 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3232 spin_unlock_irqrestore(&x->wait.lock, flags);
3234 EXPORT_SYMBOL(complete);
3236 void fastcall complete_all(struct completion *x)
3238 unsigned long flags;
3240 spin_lock_irqsave(&x->wait.lock, flags);
3241 x->done += UINT_MAX/2;
3242 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3244 spin_unlock_irqrestore(&x->wait.lock, flags);
3246 EXPORT_SYMBOL(complete_all);
3248 void fastcall __sched wait_for_completion(struct completion *x)
3251 spin_lock_irq(&x->wait.lock);
3253 DECLARE_WAITQUEUE(wait, current);
3255 wait.flags |= WQ_FLAG_EXCLUSIVE;
3256 __add_wait_queue_tail(&x->wait, &wait);
3258 __set_current_state(TASK_UNINTERRUPTIBLE);
3259 spin_unlock_irq(&x->wait.lock);
3261 spin_lock_irq(&x->wait.lock);
3263 __remove_wait_queue(&x->wait, &wait);
3266 spin_unlock_irq(&x->wait.lock);
3268 EXPORT_SYMBOL(wait_for_completion);
3270 unsigned long fastcall __sched
3271 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3275 spin_lock_irq(&x->wait.lock);
3277 DECLARE_WAITQUEUE(wait, current);
3279 wait.flags |= WQ_FLAG_EXCLUSIVE;
3280 __add_wait_queue_tail(&x->wait, &wait);
3282 __set_current_state(TASK_UNINTERRUPTIBLE);
3283 spin_unlock_irq(&x->wait.lock);
3284 timeout = schedule_timeout(timeout);
3285 spin_lock_irq(&x->wait.lock);
3287 __remove_wait_queue(&x->wait, &wait);
3291 __remove_wait_queue(&x->wait, &wait);
3295 spin_unlock_irq(&x->wait.lock);
3298 EXPORT_SYMBOL(wait_for_completion_timeout);
3300 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3306 spin_lock_irq(&x->wait.lock);
3308 DECLARE_WAITQUEUE(wait, current);
3310 wait.flags |= WQ_FLAG_EXCLUSIVE;
3311 __add_wait_queue_tail(&x->wait, &wait);
3313 if (signal_pending(current)) {
3315 __remove_wait_queue(&x->wait, &wait);
3318 __set_current_state(TASK_INTERRUPTIBLE);
3319 spin_unlock_irq(&x->wait.lock);
3321 spin_lock_irq(&x->wait.lock);
3323 __remove_wait_queue(&x->wait, &wait);
3327 spin_unlock_irq(&x->wait.lock);
3331 EXPORT_SYMBOL(wait_for_completion_interruptible);
3333 unsigned long fastcall __sched
3334 wait_for_completion_interruptible_timeout(struct completion *x,
3335 unsigned long timeout)
3339 spin_lock_irq(&x->wait.lock);
3341 DECLARE_WAITQUEUE(wait, current);
3343 wait.flags |= WQ_FLAG_EXCLUSIVE;
3344 __add_wait_queue_tail(&x->wait, &wait);
3346 if (signal_pending(current)) {
3347 timeout = -ERESTARTSYS;
3348 __remove_wait_queue(&x->wait, &wait);
3351 __set_current_state(TASK_INTERRUPTIBLE);
3352 spin_unlock_irq(&x->wait.lock);
3353 timeout = schedule_timeout(timeout);
3354 spin_lock_irq(&x->wait.lock);
3356 __remove_wait_queue(&x->wait, &wait);
3360 __remove_wait_queue(&x->wait, &wait);
3364 spin_unlock_irq(&x->wait.lock);
3367 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3370 #define SLEEP_ON_VAR \
3371 unsigned long flags; \
3372 wait_queue_t wait; \
3373 init_waitqueue_entry(&wait, current);
3375 #define SLEEP_ON_HEAD \
3376 spin_lock_irqsave(&q->lock,flags); \
3377 __add_wait_queue(q, &wait); \
3378 spin_unlock(&q->lock);
3380 #define SLEEP_ON_TAIL \
3381 spin_lock_irq(&q->lock); \
3382 __remove_wait_queue(q, &wait); \
3383 spin_unlock_irqrestore(&q->lock, flags);
3385 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3389 current->state = TASK_INTERRUPTIBLE;
3396 EXPORT_SYMBOL(interruptible_sleep_on);
3398 long fastcall __sched
3399 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3403 current->state = TASK_INTERRUPTIBLE;
3406 timeout = schedule_timeout(timeout);
3412 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3414 void fastcall __sched sleep_on(wait_queue_head_t *q)
3418 current->state = TASK_UNINTERRUPTIBLE;
3425 EXPORT_SYMBOL(sleep_on);
3427 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3431 current->state = TASK_UNINTERRUPTIBLE;
3434 timeout = schedule_timeout(timeout);
3440 EXPORT_SYMBOL(sleep_on_timeout);
3442 void set_user_nice(task_t *p, long nice)
3444 unsigned long flags;
3445 prio_array_t *array;
3447 int old_prio, new_prio, delta;
3449 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3452 * We have to be careful, if called from sys_setpriority(),
3453 * the task might be in the middle of scheduling on another CPU.
3455 rq = task_rq_lock(p, &flags);
3457 * The RT priorities are set via sched_setscheduler(), but we still
3458 * allow the 'normal' nice value to be set - but as expected
3459 * it wont have any effect on scheduling until the task is
3460 * not SCHED_NORMAL/SCHED_BATCH:
3463 p->static_prio = NICE_TO_PRIO(nice);
3468 dequeue_task(p, array);
3471 new_prio = NICE_TO_PRIO(nice);
3472 delta = new_prio - old_prio;
3473 p->static_prio = NICE_TO_PRIO(nice);
3477 enqueue_task(p, array);
3479 * If the task increased its priority or is running and
3480 * lowered its priority, then reschedule its CPU:
3482 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3483 resched_task(rq->curr);
3486 task_rq_unlock(rq, &flags);
3489 EXPORT_SYMBOL(set_user_nice);
3492 * can_nice - check if a task can reduce its nice value
3496 int can_nice(const task_t *p, const int nice)
3498 /* convert nice value [19,-20] to rlimit style value [1,40] */
3499 int nice_rlim = 20 - nice;
3500 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3501 capable(CAP_SYS_NICE));
3504 #ifdef __ARCH_WANT_SYS_NICE
3507 * sys_nice - change the priority of the current process.
3508 * @increment: priority increment
3510 * sys_setpriority is a more generic, but much slower function that
3511 * does similar things.
3513 asmlinkage long sys_nice(int increment)
3519 * Setpriority might change our priority at the same moment.
3520 * We don't have to worry. Conceptually one call occurs first
3521 * and we have a single winner.
3523 if (increment < -40)
3528 nice = PRIO_TO_NICE(current->static_prio) + increment;
3534 if (increment < 0 && !can_nice(current, nice))
3537 retval = security_task_setnice(current, nice);
3541 set_user_nice(current, nice);
3548 * task_prio - return the priority value of a given task.
3549 * @p: the task in question.
3551 * This is the priority value as seen by users in /proc.
3552 * RT tasks are offset by -200. Normal tasks are centered
3553 * around 0, value goes from -16 to +15.
3555 int task_prio(const task_t *p)
3557 return p->prio - MAX_RT_PRIO;
3561 * task_nice - return the nice value of a given task.
3562 * @p: the task in question.
3564 int task_nice(const task_t *p)
3566 return TASK_NICE(p);
3568 EXPORT_SYMBOL_GPL(task_nice);
3571 * idle_cpu - is a given cpu idle currently?
3572 * @cpu: the processor in question.
3574 int idle_cpu(int cpu)
3576 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3580 * idle_task - return the idle task for a given cpu.
3581 * @cpu: the processor in question.
3583 task_t *idle_task(int cpu)
3585 return cpu_rq(cpu)->idle;
3589 * find_process_by_pid - find a process with a matching PID value.
3590 * @pid: the pid in question.
3592 static inline task_t *find_process_by_pid(pid_t pid)
3594 return pid ? find_task_by_pid(pid) : current;
3597 /* Actually do priority change: must hold rq lock. */
3598 static void __setscheduler(struct task_struct *p, int policy, int prio)
3602 p->rt_priority = prio;
3603 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3604 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3606 p->prio = p->static_prio;
3608 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3610 if (policy == SCHED_BATCH)
3616 * sched_setscheduler - change the scheduling policy and/or RT priority of
3618 * @p: the task in question.
3619 * @policy: new policy.
3620 * @param: structure containing the new RT priority.
3622 int sched_setscheduler(struct task_struct *p, int policy,
3623 struct sched_param *param)
3626 int oldprio, oldpolicy = -1;
3627 prio_array_t *array;
3628 unsigned long flags;
3632 /* double check policy once rq lock held */
3634 policy = oldpolicy = p->policy;
3635 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3636 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3639 * Valid priorities for SCHED_FIFO and SCHED_RR are
3640 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3643 if (param->sched_priority < 0 ||
3644 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3645 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3647 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3648 != (param->sched_priority == 0))
3652 * Allow unprivileged RT tasks to decrease priority:
3654 if (!capable(CAP_SYS_NICE)) {
3656 * can't change policy, except between SCHED_NORMAL
3659 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3660 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3661 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3663 /* can't increase priority */
3664 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3665 param->sched_priority > p->rt_priority &&
3666 param->sched_priority >
3667 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3669 /* can't change other user's priorities */
3670 if ((current->euid != p->euid) &&
3671 (current->euid != p->uid))
3675 retval = security_task_setscheduler(p, policy, param);
3679 * To be able to change p->policy safely, the apropriate
3680 * runqueue lock must be held.
3682 rq = task_rq_lock(p, &flags);
3683 /* recheck policy now with rq lock held */
3684 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3685 policy = oldpolicy = -1;
3686 task_rq_unlock(rq, &flags);
3691 deactivate_task(p, rq);
3693 __setscheduler(p, policy, param->sched_priority);
3695 __activate_task(p, rq);
3697 * Reschedule if we are currently running on this runqueue and
3698 * our priority decreased, or if we are not currently running on
3699 * this runqueue and our priority is higher than the current's
3701 if (task_running(rq, p)) {
3702 if (p->prio > oldprio)
3703 resched_task(rq->curr);
3704 } else if (TASK_PREEMPTS_CURR(p, rq))
3705 resched_task(rq->curr);
3707 task_rq_unlock(rq, &flags);
3710 EXPORT_SYMBOL_GPL(sched_setscheduler);
3713 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3716 struct sched_param lparam;
3717 struct task_struct *p;
3719 if (!param || pid < 0)
3721 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3723 read_lock_irq(&tasklist_lock);
3724 p = find_process_by_pid(pid);
3726 read_unlock_irq(&tasklist_lock);
3729 retval = sched_setscheduler(p, policy, &lparam);
3730 read_unlock_irq(&tasklist_lock);
3735 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3736 * @pid: the pid in question.
3737 * @policy: new policy.
3738 * @param: structure containing the new RT priority.
3740 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3741 struct sched_param __user *param)
3743 /* negative values for policy are not valid */
3747 return do_sched_setscheduler(pid, policy, param);
3751 * sys_sched_setparam - set/change the RT priority of a thread
3752 * @pid: the pid in question.
3753 * @param: structure containing the new RT priority.
3755 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3757 return do_sched_setscheduler(pid, -1, param);
3761 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3762 * @pid: the pid in question.
3764 asmlinkage long sys_sched_getscheduler(pid_t pid)
3766 int retval = -EINVAL;
3773 read_lock(&tasklist_lock);
3774 p = find_process_by_pid(pid);
3776 retval = security_task_getscheduler(p);
3780 read_unlock(&tasklist_lock);
3787 * sys_sched_getscheduler - get the RT priority of a thread
3788 * @pid: the pid in question.
3789 * @param: structure containing the RT priority.
3791 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3793 struct sched_param lp;
3794 int retval = -EINVAL;
3797 if (!param || pid < 0)
3800 read_lock(&tasklist_lock);
3801 p = find_process_by_pid(pid);
3806 retval = security_task_getscheduler(p);
3810 lp.sched_priority = p->rt_priority;
3811 read_unlock(&tasklist_lock);
3814 * This one might sleep, we cannot do it with a spinlock held ...
3816 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3822 read_unlock(&tasklist_lock);
3826 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3830 cpumask_t cpus_allowed;
3833 read_lock(&tasklist_lock);
3835 p = find_process_by_pid(pid);
3837 read_unlock(&tasklist_lock);
3838 unlock_cpu_hotplug();
3843 * It is not safe to call set_cpus_allowed with the
3844 * tasklist_lock held. We will bump the task_struct's
3845 * usage count and then drop tasklist_lock.
3848 read_unlock(&tasklist_lock);
3851 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3852 !capable(CAP_SYS_NICE))
3855 cpus_allowed = cpuset_cpus_allowed(p);
3856 cpus_and(new_mask, new_mask, cpus_allowed);
3857 retval = set_cpus_allowed(p, new_mask);
3861 unlock_cpu_hotplug();
3865 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3866 cpumask_t *new_mask)
3868 if (len < sizeof(cpumask_t)) {
3869 memset(new_mask, 0, sizeof(cpumask_t));
3870 } else if (len > sizeof(cpumask_t)) {
3871 len = sizeof(cpumask_t);
3873 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3877 * sys_sched_setaffinity - set the cpu affinity of a process
3878 * @pid: pid of the process
3879 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3880 * @user_mask_ptr: user-space pointer to the new cpu mask
3882 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3883 unsigned long __user *user_mask_ptr)
3888 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3892 return sched_setaffinity(pid, new_mask);
3896 * Represents all cpu's present in the system
3897 * In systems capable of hotplug, this map could dynamically grow
3898 * as new cpu's are detected in the system via any platform specific
3899 * method, such as ACPI for e.g.
3902 cpumask_t cpu_present_map __read_mostly;
3903 EXPORT_SYMBOL(cpu_present_map);
3906 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3907 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3910 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3916 read_lock(&tasklist_lock);
3919 p = find_process_by_pid(pid);
3924 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
3927 read_unlock(&tasklist_lock);
3928 unlock_cpu_hotplug();
3936 * sys_sched_getaffinity - get the cpu affinity of a process
3937 * @pid: pid of the process
3938 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3939 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3941 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3942 unsigned long __user *user_mask_ptr)
3947 if (len < sizeof(cpumask_t))
3950 ret = sched_getaffinity(pid, &mask);
3954 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3957 return sizeof(cpumask_t);
3961 * sys_sched_yield - yield the current processor to other threads.
3963 * this function yields the current CPU by moving the calling thread
3964 * to the expired array. If there are no other threads running on this
3965 * CPU then this function will return.
3967 asmlinkage long sys_sched_yield(void)
3969 runqueue_t *rq = this_rq_lock();
3970 prio_array_t *array = current->array;
3971 prio_array_t *target = rq->expired;
3973 schedstat_inc(rq, yld_cnt);
3975 * We implement yielding by moving the task into the expired
3978 * (special rule: RT tasks will just roundrobin in the active
3981 if (rt_task(current))
3982 target = rq->active;
3984 if (array->nr_active == 1) {
3985 schedstat_inc(rq, yld_act_empty);
3986 if (!rq->expired->nr_active)
3987 schedstat_inc(rq, yld_both_empty);
3988 } else if (!rq->expired->nr_active)
3989 schedstat_inc(rq, yld_exp_empty);
3991 if (array != target) {
3992 dequeue_task(current, array);
3993 enqueue_task(current, target);
3996 * requeue_task is cheaper so perform that if possible.
3998 requeue_task(current, array);
4001 * Since we are going to call schedule() anyway, there's
4002 * no need to preempt or enable interrupts:
4004 __release(rq->lock);
4005 _raw_spin_unlock(&rq->lock);
4006 preempt_enable_no_resched();
4013 static inline void __cond_resched(void)
4016 * The BKS might be reacquired before we have dropped
4017 * PREEMPT_ACTIVE, which could trigger a second
4018 * cond_resched() call.
4020 if (unlikely(preempt_count()))
4022 if (unlikely(system_state != SYSTEM_RUNNING))
4025 add_preempt_count(PREEMPT_ACTIVE);
4027 sub_preempt_count(PREEMPT_ACTIVE);
4028 } while (need_resched());
4031 int __sched cond_resched(void)
4033 if (need_resched()) {
4040 EXPORT_SYMBOL(cond_resched);
4043 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4044 * call schedule, and on return reacquire the lock.
4046 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4047 * operations here to prevent schedule() from being called twice (once via
4048 * spin_unlock(), once by hand).
4050 int cond_resched_lock(spinlock_t *lock)
4054 if (need_lockbreak(lock)) {
4060 if (need_resched()) {
4061 _raw_spin_unlock(lock);
4062 preempt_enable_no_resched();
4070 EXPORT_SYMBOL(cond_resched_lock);
4072 int __sched cond_resched_softirq(void)
4074 BUG_ON(!in_softirq());
4076 if (need_resched()) {
4077 __local_bh_enable();
4085 EXPORT_SYMBOL(cond_resched_softirq);
4089 * yield - yield the current processor to other threads.
4091 * this is a shortcut for kernel-space yielding - it marks the
4092 * thread runnable and calls sys_sched_yield().
4094 void __sched yield(void)
4096 set_current_state(TASK_RUNNING);
4100 EXPORT_SYMBOL(yield);
4103 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4104 * that process accounting knows that this is a task in IO wait state.
4106 * But don't do that if it is a deliberate, throttling IO wait (this task
4107 * has set its backing_dev_info: the queue against which it should throttle)
4109 void __sched io_schedule(void)
4111 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4113 atomic_inc(&rq->nr_iowait);
4115 atomic_dec(&rq->nr_iowait);
4118 EXPORT_SYMBOL(io_schedule);
4120 long __sched io_schedule_timeout(long timeout)
4122 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4125 atomic_inc(&rq->nr_iowait);
4126 ret = schedule_timeout(timeout);
4127 atomic_dec(&rq->nr_iowait);
4132 * sys_sched_get_priority_max - return maximum RT priority.
4133 * @policy: scheduling class.
4135 * this syscall returns the maximum rt_priority that can be used
4136 * by a given scheduling class.
4138 asmlinkage long sys_sched_get_priority_max(int policy)
4145 ret = MAX_USER_RT_PRIO-1;
4156 * sys_sched_get_priority_min - return minimum RT priority.
4157 * @policy: scheduling class.
4159 * this syscall returns the minimum rt_priority that can be used
4160 * by a given scheduling class.
4162 asmlinkage long sys_sched_get_priority_min(int policy)
4179 * sys_sched_rr_get_interval - return the default timeslice of a process.
4180 * @pid: pid of the process.
4181 * @interval: userspace pointer to the timeslice value.
4183 * this syscall writes the default timeslice value of a given process
4184 * into the user-space timespec buffer. A value of '0' means infinity.
4187 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4189 int retval = -EINVAL;
4197 read_lock(&tasklist_lock);
4198 p = find_process_by_pid(pid);
4202 retval = security_task_getscheduler(p);
4206 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4207 0 : task_timeslice(p), &t);
4208 read_unlock(&tasklist_lock);
4209 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4213 read_unlock(&tasklist_lock);
4217 static inline struct task_struct *eldest_child(struct task_struct *p)
4219 if (list_empty(&p->children)) return NULL;
4220 return list_entry(p->children.next,struct task_struct,sibling);
4223 static inline struct task_struct *older_sibling(struct task_struct *p)
4225 if (p->sibling.prev==&p->parent->children) return NULL;
4226 return list_entry(p->sibling.prev,struct task_struct,sibling);
4229 static inline struct task_struct *younger_sibling(struct task_struct *p)
4231 if (p->sibling.next==&p->parent->children) return NULL;
4232 return list_entry(p->sibling.next,struct task_struct,sibling);
4235 static void show_task(task_t *p)
4239 unsigned long free = 0;
4240 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4242 printk("%-13.13s ", p->comm);
4243 state = p->state ? __ffs(p->state) + 1 : 0;
4244 if (state < ARRAY_SIZE(stat_nam))
4245 printk(stat_nam[state]);
4248 #if (BITS_PER_LONG == 32)
4249 if (state == TASK_RUNNING)
4250 printk(" running ");
4252 printk(" %08lX ", thread_saved_pc(p));
4254 if (state == TASK_RUNNING)
4255 printk(" running task ");
4257 printk(" %016lx ", thread_saved_pc(p));
4259 #ifdef CONFIG_DEBUG_STACK_USAGE
4261 unsigned long *n = end_of_stack(p);
4264 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4267 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4268 if ((relative = eldest_child(p)))
4269 printk("%5d ", relative->pid);
4272 if ((relative = younger_sibling(p)))
4273 printk("%7d", relative->pid);
4276 if ((relative = older_sibling(p)))
4277 printk(" %5d", relative->pid);
4281 printk(" (L-TLB)\n");
4283 printk(" (NOTLB)\n");
4285 if (state != TASK_RUNNING)
4286 show_stack(p, NULL);
4289 void show_state(void)
4293 #if (BITS_PER_LONG == 32)
4296 printk(" task PC pid father child younger older\n");
4300 printk(" task PC pid father child younger older\n");
4302 read_lock(&tasklist_lock);
4303 do_each_thread(g, p) {
4305 * reset the NMI-timeout, listing all files on a slow
4306 * console might take alot of time:
4308 touch_nmi_watchdog();
4310 } while_each_thread(g, p);
4312 read_unlock(&tasklist_lock);
4313 mutex_debug_show_all_locks();
4317 * init_idle - set up an idle thread for a given CPU
4318 * @idle: task in question
4319 * @cpu: cpu the idle task belongs to
4321 * NOTE: this function does not set the idle thread's NEED_RESCHED
4322 * flag, to make booting more robust.
4324 void __devinit init_idle(task_t *idle, int cpu)
4326 runqueue_t *rq = cpu_rq(cpu);
4327 unsigned long flags;
4329 idle->timestamp = sched_clock();
4330 idle->sleep_avg = 0;
4332 idle->prio = MAX_PRIO;
4333 idle->state = TASK_RUNNING;
4334 idle->cpus_allowed = cpumask_of_cpu(cpu);
4335 set_task_cpu(idle, cpu);
4337 spin_lock_irqsave(&rq->lock, flags);
4338 rq->curr = rq->idle = idle;
4339 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4342 spin_unlock_irqrestore(&rq->lock, flags);
4344 /* Set the preempt count _outside_ the spinlocks! */
4345 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4346 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4348 task_thread_info(idle)->preempt_count = 0;
4353 * In a system that switches off the HZ timer nohz_cpu_mask
4354 * indicates which cpus entered this state. This is used
4355 * in the rcu update to wait only for active cpus. For system
4356 * which do not switch off the HZ timer nohz_cpu_mask should
4357 * always be CPU_MASK_NONE.
4359 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4363 * This is how migration works:
4365 * 1) we queue a migration_req_t structure in the source CPU's
4366 * runqueue and wake up that CPU's migration thread.
4367 * 2) we down() the locked semaphore => thread blocks.
4368 * 3) migration thread wakes up (implicitly it forces the migrated
4369 * thread off the CPU)
4370 * 4) it gets the migration request and checks whether the migrated
4371 * task is still in the wrong runqueue.
4372 * 5) if it's in the wrong runqueue then the migration thread removes
4373 * it and puts it into the right queue.
4374 * 6) migration thread up()s the semaphore.
4375 * 7) we wake up and the migration is done.
4379 * Change a given task's CPU affinity. Migrate the thread to a
4380 * proper CPU and schedule it away if the CPU it's executing on
4381 * is removed from the allowed bitmask.
4383 * NOTE: the caller must have a valid reference to the task, the
4384 * task must not exit() & deallocate itself prematurely. The
4385 * call is not atomic; no spinlocks may be held.
4387 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4389 unsigned long flags;
4391 migration_req_t req;
4394 rq = task_rq_lock(p, &flags);
4395 if (!cpus_intersects(new_mask, cpu_online_map)) {
4400 p->cpus_allowed = new_mask;
4401 /* Can the task run on the task's current CPU? If so, we're done */
4402 if (cpu_isset(task_cpu(p), new_mask))
4405 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4406 /* Need help from migration thread: drop lock and wait. */
4407 task_rq_unlock(rq, &flags);
4408 wake_up_process(rq->migration_thread);
4409 wait_for_completion(&req.done);
4410 tlb_migrate_finish(p->mm);
4414 task_rq_unlock(rq, &flags);
4418 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4421 * Move (not current) task off this cpu, onto dest cpu. We're doing
4422 * this because either it can't run here any more (set_cpus_allowed()
4423 * away from this CPU, or CPU going down), or because we're
4424 * attempting to rebalance this task on exec (sched_exec).
4426 * So we race with normal scheduler movements, but that's OK, as long
4427 * as the task is no longer on this CPU.
4429 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4431 runqueue_t *rq_dest, *rq_src;
4433 if (unlikely(cpu_is_offline(dest_cpu)))
4436 rq_src = cpu_rq(src_cpu);
4437 rq_dest = cpu_rq(dest_cpu);
4439 double_rq_lock(rq_src, rq_dest);
4440 /* Already moved. */
4441 if (task_cpu(p) != src_cpu)
4443 /* Affinity changed (again). */
4444 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4447 set_task_cpu(p, dest_cpu);
4450 * Sync timestamp with rq_dest's before activating.
4451 * The same thing could be achieved by doing this step
4452 * afterwards, and pretending it was a local activate.
4453 * This way is cleaner and logically correct.
4455 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4456 + rq_dest->timestamp_last_tick;
4457 deactivate_task(p, rq_src);
4458 activate_task(p, rq_dest, 0);
4459 if (TASK_PREEMPTS_CURR(p, rq_dest))
4460 resched_task(rq_dest->curr);
4464 double_rq_unlock(rq_src, rq_dest);
4468 * migration_thread - this is a highprio system thread that performs
4469 * thread migration by bumping thread off CPU then 'pushing' onto
4472 static int migration_thread(void *data)
4475 int cpu = (long)data;
4478 BUG_ON(rq->migration_thread != current);
4480 set_current_state(TASK_INTERRUPTIBLE);
4481 while (!kthread_should_stop()) {
4482 struct list_head *head;
4483 migration_req_t *req;
4487 spin_lock_irq(&rq->lock);
4489 if (cpu_is_offline(cpu)) {
4490 spin_unlock_irq(&rq->lock);
4494 if (rq->active_balance) {
4495 active_load_balance(rq, cpu);
4496 rq->active_balance = 0;
4499 head = &rq->migration_queue;
4501 if (list_empty(head)) {
4502 spin_unlock_irq(&rq->lock);
4504 set_current_state(TASK_INTERRUPTIBLE);
4507 req = list_entry(head->next, migration_req_t, list);
4508 list_del_init(head->next);
4510 spin_unlock(&rq->lock);
4511 __migrate_task(req->task, cpu, req->dest_cpu);
4514 complete(&req->done);
4516 __set_current_state(TASK_RUNNING);
4520 /* Wait for kthread_stop */
4521 set_current_state(TASK_INTERRUPTIBLE);
4522 while (!kthread_should_stop()) {
4524 set_current_state(TASK_INTERRUPTIBLE);
4526 __set_current_state(TASK_RUNNING);
4530 #ifdef CONFIG_HOTPLUG_CPU
4531 /* Figure out where task on dead CPU should go, use force if neccessary. */
4532 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4538 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4539 cpus_and(mask, mask, tsk->cpus_allowed);
4540 dest_cpu = any_online_cpu(mask);
4542 /* On any allowed CPU? */
4543 if (dest_cpu == NR_CPUS)
4544 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4546 /* No more Mr. Nice Guy. */
4547 if (dest_cpu == NR_CPUS) {
4548 cpus_setall(tsk->cpus_allowed);
4549 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4552 * Don't tell them about moving exiting tasks or
4553 * kernel threads (both mm NULL), since they never
4556 if (tsk->mm && printk_ratelimit())
4557 printk(KERN_INFO "process %d (%s) no "
4558 "longer affine to cpu%d\n",
4559 tsk->pid, tsk->comm, dead_cpu);
4561 __migrate_task(tsk, dead_cpu, dest_cpu);
4565 * While a dead CPU has no uninterruptible tasks queued at this point,
4566 * it might still have a nonzero ->nr_uninterruptible counter, because
4567 * for performance reasons the counter is not stricly tracking tasks to
4568 * their home CPUs. So we just add the counter to another CPU's counter,
4569 * to keep the global sum constant after CPU-down:
4571 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4573 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4574 unsigned long flags;
4576 local_irq_save(flags);
4577 double_rq_lock(rq_src, rq_dest);
4578 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4579 rq_src->nr_uninterruptible = 0;
4580 double_rq_unlock(rq_src, rq_dest);
4581 local_irq_restore(flags);
4584 /* Run through task list and migrate tasks from the dead cpu. */
4585 static void migrate_live_tasks(int src_cpu)
4587 struct task_struct *tsk, *t;
4589 write_lock_irq(&tasklist_lock);
4591 do_each_thread(t, tsk) {
4595 if (task_cpu(tsk) == src_cpu)
4596 move_task_off_dead_cpu(src_cpu, tsk);
4597 } while_each_thread(t, tsk);
4599 write_unlock_irq(&tasklist_lock);
4602 /* Schedules idle task to be the next runnable task on current CPU.
4603 * It does so by boosting its priority to highest possible and adding it to
4604 * the _front_ of runqueue. Used by CPU offline code.
4606 void sched_idle_next(void)
4608 int cpu = smp_processor_id();
4609 runqueue_t *rq = this_rq();
4610 struct task_struct *p = rq->idle;
4611 unsigned long flags;
4613 /* cpu has to be offline */
4614 BUG_ON(cpu_online(cpu));
4616 /* Strictly not necessary since rest of the CPUs are stopped by now
4617 * and interrupts disabled on current cpu.
4619 spin_lock_irqsave(&rq->lock, flags);
4621 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4622 /* Add idle task to _front_ of it's priority queue */
4623 __activate_idle_task(p, rq);
4625 spin_unlock_irqrestore(&rq->lock, flags);
4628 /* Ensures that the idle task is using init_mm right before its cpu goes
4631 void idle_task_exit(void)
4633 struct mm_struct *mm = current->active_mm;
4635 BUG_ON(cpu_online(smp_processor_id()));
4638 switch_mm(mm, &init_mm, current);
4642 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4644 struct runqueue *rq = cpu_rq(dead_cpu);
4646 /* Must be exiting, otherwise would be on tasklist. */
4647 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4649 /* Cannot have done final schedule yet: would have vanished. */
4650 BUG_ON(tsk->flags & PF_DEAD);
4652 get_task_struct(tsk);
4655 * Drop lock around migration; if someone else moves it,
4656 * that's OK. No task can be added to this CPU, so iteration is
4659 spin_unlock_irq(&rq->lock);
4660 move_task_off_dead_cpu(dead_cpu, tsk);
4661 spin_lock_irq(&rq->lock);
4663 put_task_struct(tsk);
4666 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4667 static void migrate_dead_tasks(unsigned int dead_cpu)
4670 struct runqueue *rq = cpu_rq(dead_cpu);
4672 for (arr = 0; arr < 2; arr++) {
4673 for (i = 0; i < MAX_PRIO; i++) {
4674 struct list_head *list = &rq->arrays[arr].queue[i];
4675 while (!list_empty(list))
4676 migrate_dead(dead_cpu,
4677 list_entry(list->next, task_t,
4682 #endif /* CONFIG_HOTPLUG_CPU */
4685 * migration_call - callback that gets triggered when a CPU is added.
4686 * Here we can start up the necessary migration thread for the new CPU.
4688 static int migration_call(struct notifier_block *nfb, unsigned long action,
4691 int cpu = (long)hcpu;
4692 struct task_struct *p;
4693 struct runqueue *rq;
4694 unsigned long flags;
4697 case CPU_UP_PREPARE:
4698 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4701 p->flags |= PF_NOFREEZE;
4702 kthread_bind(p, cpu);
4703 /* Must be high prio: stop_machine expects to yield to it. */
4704 rq = task_rq_lock(p, &flags);
4705 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4706 task_rq_unlock(rq, &flags);
4707 cpu_rq(cpu)->migration_thread = p;
4710 /* Strictly unneccessary, as first user will wake it. */
4711 wake_up_process(cpu_rq(cpu)->migration_thread);
4713 #ifdef CONFIG_HOTPLUG_CPU
4714 case CPU_UP_CANCELED:
4715 /* Unbind it from offline cpu so it can run. Fall thru. */
4716 kthread_bind(cpu_rq(cpu)->migration_thread,
4717 any_online_cpu(cpu_online_map));
4718 kthread_stop(cpu_rq(cpu)->migration_thread);
4719 cpu_rq(cpu)->migration_thread = NULL;
4722 migrate_live_tasks(cpu);
4724 kthread_stop(rq->migration_thread);
4725 rq->migration_thread = NULL;
4726 /* Idle task back to normal (off runqueue, low prio) */
4727 rq = task_rq_lock(rq->idle, &flags);
4728 deactivate_task(rq->idle, rq);
4729 rq->idle->static_prio = MAX_PRIO;
4730 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4731 migrate_dead_tasks(cpu);
4732 task_rq_unlock(rq, &flags);
4733 migrate_nr_uninterruptible(rq);
4734 BUG_ON(rq->nr_running != 0);
4736 /* No need to migrate the tasks: it was best-effort if
4737 * they didn't do lock_cpu_hotplug(). Just wake up
4738 * the requestors. */
4739 spin_lock_irq(&rq->lock);
4740 while (!list_empty(&rq->migration_queue)) {
4741 migration_req_t *req;
4742 req = list_entry(rq->migration_queue.next,
4743 migration_req_t, list);
4744 list_del_init(&req->list);
4745 complete(&req->done);
4747 spin_unlock_irq(&rq->lock);
4754 /* Register at highest priority so that task migration (migrate_all_tasks)
4755 * happens before everything else.
4757 static struct notifier_block __devinitdata migration_notifier = {
4758 .notifier_call = migration_call,
4762 int __init migration_init(void)
4764 void *cpu = (void *)(long)smp_processor_id();
4765 /* Start one for boot CPU. */
4766 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4767 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4768 register_cpu_notifier(&migration_notifier);
4774 #undef SCHED_DOMAIN_DEBUG
4775 #ifdef SCHED_DOMAIN_DEBUG
4776 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4781 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4785 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4790 struct sched_group *group = sd->groups;
4791 cpumask_t groupmask;
4793 cpumask_scnprintf(str, NR_CPUS, sd->span);
4794 cpus_clear(groupmask);
4797 for (i = 0; i < level + 1; i++)
4799 printk("domain %d: ", level);
4801 if (!(sd->flags & SD_LOAD_BALANCE)) {
4802 printk("does not load-balance\n");
4804 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4808 printk("span %s\n", str);
4810 if (!cpu_isset(cpu, sd->span))
4811 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4812 if (!cpu_isset(cpu, group->cpumask))
4813 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4816 for (i = 0; i < level + 2; i++)
4822 printk(KERN_ERR "ERROR: group is NULL\n");
4826 if (!group->cpu_power) {
4828 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4831 if (!cpus_weight(group->cpumask)) {
4833 printk(KERN_ERR "ERROR: empty group\n");
4836 if (cpus_intersects(groupmask, group->cpumask)) {
4838 printk(KERN_ERR "ERROR: repeated CPUs\n");
4841 cpus_or(groupmask, groupmask, group->cpumask);
4843 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4846 group = group->next;
4847 } while (group != sd->groups);
4850 if (!cpus_equal(sd->span, groupmask))
4851 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4857 if (!cpus_subset(groupmask, sd->span))
4858 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4864 #define sched_domain_debug(sd, cpu) {}
4867 static int sd_degenerate(struct sched_domain *sd)
4869 if (cpus_weight(sd->span) == 1)
4872 /* Following flags need at least 2 groups */
4873 if (sd->flags & (SD_LOAD_BALANCE |
4874 SD_BALANCE_NEWIDLE |
4877 if (sd->groups != sd->groups->next)
4881 /* Following flags don't use groups */
4882 if (sd->flags & (SD_WAKE_IDLE |
4890 static int sd_parent_degenerate(struct sched_domain *sd,
4891 struct sched_domain *parent)
4893 unsigned long cflags = sd->flags, pflags = parent->flags;
4895 if (sd_degenerate(parent))
4898 if (!cpus_equal(sd->span, parent->span))
4901 /* Does parent contain flags not in child? */
4902 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4903 if (cflags & SD_WAKE_AFFINE)
4904 pflags &= ~SD_WAKE_BALANCE;
4905 /* Flags needing groups don't count if only 1 group in parent */
4906 if (parent->groups == parent->groups->next) {
4907 pflags &= ~(SD_LOAD_BALANCE |
4908 SD_BALANCE_NEWIDLE |
4912 if (~cflags & pflags)
4919 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4920 * hold the hotplug lock.
4922 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4924 runqueue_t *rq = cpu_rq(cpu);
4925 struct sched_domain *tmp;
4927 /* Remove the sched domains which do not contribute to scheduling. */
4928 for (tmp = sd; tmp; tmp = tmp->parent) {
4929 struct sched_domain *parent = tmp->parent;
4932 if (sd_parent_degenerate(tmp, parent))
4933 tmp->parent = parent->parent;
4936 if (sd && sd_degenerate(sd))
4939 sched_domain_debug(sd, cpu);
4941 rcu_assign_pointer(rq->sd, sd);
4944 /* cpus with isolated domains */
4945 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4947 /* Setup the mask of cpus configured for isolated domains */
4948 static int __init isolated_cpu_setup(char *str)
4950 int ints[NR_CPUS], i;
4952 str = get_options(str, ARRAY_SIZE(ints), ints);
4953 cpus_clear(cpu_isolated_map);
4954 for (i = 1; i <= ints[0]; i++)
4955 if (ints[i] < NR_CPUS)
4956 cpu_set(ints[i], cpu_isolated_map);
4960 __setup ("isolcpus=", isolated_cpu_setup);
4963 * init_sched_build_groups takes an array of groups, the cpumask we wish
4964 * to span, and a pointer to a function which identifies what group a CPU
4965 * belongs to. The return value of group_fn must be a valid index into the
4966 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4967 * keep track of groups covered with a cpumask_t).
4969 * init_sched_build_groups will build a circular linked list of the groups
4970 * covered by the given span, and will set each group's ->cpumask correctly,
4971 * and ->cpu_power to 0.
4973 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4974 int (*group_fn)(int cpu))
4976 struct sched_group *first = NULL, *last = NULL;
4977 cpumask_t covered = CPU_MASK_NONE;
4980 for_each_cpu_mask(i, span) {
4981 int group = group_fn(i);
4982 struct sched_group *sg = &groups[group];
4985 if (cpu_isset(i, covered))
4988 sg->cpumask = CPU_MASK_NONE;
4991 for_each_cpu_mask(j, span) {
4992 if (group_fn(j) != group)
4995 cpu_set(j, covered);
4996 cpu_set(j, sg->cpumask);
5007 #define SD_NODES_PER_DOMAIN 16
5010 * Self-tuning task migration cost measurement between source and target CPUs.
5012 * This is done by measuring the cost of manipulating buffers of varying
5013 * sizes. For a given buffer-size here are the steps that are taken:
5015 * 1) the source CPU reads+dirties a shared buffer
5016 * 2) the target CPU reads+dirties the same shared buffer
5018 * We measure how long they take, in the following 4 scenarios:
5020 * - source: CPU1, target: CPU2 | cost1
5021 * - source: CPU2, target: CPU1 | cost2
5022 * - source: CPU1, target: CPU1 | cost3
5023 * - source: CPU2, target: CPU2 | cost4
5025 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5026 * the cost of migration.
5028 * We then start off from a small buffer-size and iterate up to larger
5029 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5030 * doing a maximum search for the cost. (The maximum cost for a migration
5031 * normally occurs when the working set size is around the effective cache
5034 #define SEARCH_SCOPE 2
5035 #define MIN_CACHE_SIZE (64*1024U)
5036 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5037 #define ITERATIONS 1
5038 #define SIZE_THRESH 130
5039 #define COST_THRESH 130
5042 * The migration cost is a function of 'domain distance'. Domain
5043 * distance is the number of steps a CPU has to iterate down its
5044 * domain tree to share a domain with the other CPU. The farther
5045 * two CPUs are from each other, the larger the distance gets.
5047 * Note that we use the distance only to cache measurement results,
5048 * the distance value is not used numerically otherwise. When two
5049 * CPUs have the same distance it is assumed that the migration
5050 * cost is the same. (this is a simplification but quite practical)
5052 #define MAX_DOMAIN_DISTANCE 32
5054 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5055 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5057 * Architectures may override the migration cost and thus avoid
5058 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5059 * virtualized hardware:
5061 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5062 CONFIG_DEFAULT_MIGRATION_COST
5069 * Allow override of migration cost - in units of microseconds.
5070 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5071 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5073 static int __init migration_cost_setup(char *str)
5075 int ints[MAX_DOMAIN_DISTANCE+1], i;
5077 str = get_options(str, ARRAY_SIZE(ints), ints);
5079 printk("#ints: %d\n", ints[0]);
5080 for (i = 1; i <= ints[0]; i++) {
5081 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5082 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5087 __setup ("migration_cost=", migration_cost_setup);
5090 * Global multiplier (divisor) for migration-cutoff values,
5091 * in percentiles. E.g. use a value of 150 to get 1.5 times
5092 * longer cache-hot cutoff times.
5094 * (We scale it from 100 to 128 to long long handling easier.)
5097 #define MIGRATION_FACTOR_SCALE 128
5099 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5101 static int __init setup_migration_factor(char *str)
5103 get_option(&str, &migration_factor);
5104 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5108 __setup("migration_factor=", setup_migration_factor);
5111 * Estimated distance of two CPUs, measured via the number of domains
5112 * we have to pass for the two CPUs to be in the same span:
5114 static unsigned long domain_distance(int cpu1, int cpu2)
5116 unsigned long distance = 0;
5117 struct sched_domain *sd;
5119 for_each_domain(cpu1, sd) {
5120 WARN_ON(!cpu_isset(cpu1, sd->span));
5121 if (cpu_isset(cpu2, sd->span))
5125 if (distance >= MAX_DOMAIN_DISTANCE) {
5127 distance = MAX_DOMAIN_DISTANCE-1;
5133 static unsigned int migration_debug;
5135 static int __init setup_migration_debug(char *str)
5137 get_option(&str, &migration_debug);
5141 __setup("migration_debug=", setup_migration_debug);
5144 * Maximum cache-size that the scheduler should try to measure.
5145 * Architectures with larger caches should tune this up during
5146 * bootup. Gets used in the domain-setup code (i.e. during SMP
5149 unsigned int max_cache_size;
5151 static int __init setup_max_cache_size(char *str)
5153 get_option(&str, &max_cache_size);
5157 __setup("max_cache_size=", setup_max_cache_size);
5160 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5161 * is the operation that is timed, so we try to generate unpredictable
5162 * cachemisses that still end up filling the L2 cache:
5164 static void touch_cache(void *__cache, unsigned long __size)
5166 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5168 unsigned long *cache = __cache;
5171 for (i = 0; i < size/6; i += 8) {
5174 case 1: cache[size-1-i]++;
5175 case 2: cache[chunk1-i]++;
5176 case 3: cache[chunk1+i]++;
5177 case 4: cache[chunk2-i]++;
5178 case 5: cache[chunk2+i]++;
5184 * Measure the cache-cost of one task migration. Returns in units of nsec.
5186 static unsigned long long measure_one(void *cache, unsigned long size,
5187 int source, int target)
5189 cpumask_t mask, saved_mask;
5190 unsigned long long t0, t1, t2, t3, cost;
5192 saved_mask = current->cpus_allowed;
5195 * Flush source caches to RAM and invalidate them:
5200 * Migrate to the source CPU:
5202 mask = cpumask_of_cpu(source);
5203 set_cpus_allowed(current, mask);
5204 WARN_ON(smp_processor_id() != source);
5207 * Dirty the working set:
5210 touch_cache(cache, size);
5214 * Migrate to the target CPU, dirty the L2 cache and access
5215 * the shared buffer. (which represents the working set
5216 * of a migrated task.)
5218 mask = cpumask_of_cpu(target);
5219 set_cpus_allowed(current, mask);
5220 WARN_ON(smp_processor_id() != target);
5223 touch_cache(cache, size);
5226 cost = t1-t0 + t3-t2;
5228 if (migration_debug >= 2)
5229 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5230 source, target, t1-t0, t1-t0, t3-t2, cost);
5232 * Flush target caches to RAM and invalidate them:
5236 set_cpus_allowed(current, saved_mask);
5242 * Measure a series of task migrations and return the average
5243 * result. Since this code runs early during bootup the system
5244 * is 'undisturbed' and the average latency makes sense.
5246 * The algorithm in essence auto-detects the relevant cache-size,
5247 * so it will properly detect different cachesizes for different
5248 * cache-hierarchies, depending on how the CPUs are connected.
5250 * Architectures can prime the upper limit of the search range via
5251 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5253 static unsigned long long
5254 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5256 unsigned long long cost1, cost2;
5260 * Measure the migration cost of 'size' bytes, over an
5261 * average of 10 runs:
5263 * (We perturb the cache size by a small (0..4k)
5264 * value to compensate size/alignment related artifacts.
5265 * We also subtract the cost of the operation done on
5271 * dry run, to make sure we start off cache-cold on cpu1,
5272 * and to get any vmalloc pagefaults in advance:
5274 measure_one(cache, size, cpu1, cpu2);
5275 for (i = 0; i < ITERATIONS; i++)
5276 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5278 measure_one(cache, size, cpu2, cpu1);
5279 for (i = 0; i < ITERATIONS; i++)
5280 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5283 * (We measure the non-migrating [cached] cost on both
5284 * cpu1 and cpu2, to handle CPUs with different speeds)
5288 measure_one(cache, size, cpu1, cpu1);
5289 for (i = 0; i < ITERATIONS; i++)
5290 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5292 measure_one(cache, size, cpu2, cpu2);
5293 for (i = 0; i < ITERATIONS; i++)
5294 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5297 * Get the per-iteration migration cost:
5299 do_div(cost1, 2*ITERATIONS);
5300 do_div(cost2, 2*ITERATIONS);
5302 return cost1 - cost2;
5305 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5307 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5308 unsigned int max_size, size, size_found = 0;
5309 long long cost = 0, prev_cost;
5313 * Search from max_cache_size*5 down to 64K - the real relevant
5314 * cachesize has to lie somewhere inbetween.
5316 if (max_cache_size) {
5317 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5318 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5321 * Since we have no estimation about the relevant
5324 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5325 size = MIN_CACHE_SIZE;
5328 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5329 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5334 * Allocate the working set:
5336 cache = vmalloc(max_size);
5338 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5339 return 1000000; // return 1 msec on very small boxen
5342 while (size <= max_size) {
5344 cost = measure_cost(cpu1, cpu2, cache, size);
5350 if (max_cost < cost) {
5356 * Calculate average fluctuation, we use this to prevent
5357 * noise from triggering an early break out of the loop:
5359 fluct = abs(cost - prev_cost);
5360 avg_fluct = (avg_fluct + fluct)/2;
5362 if (migration_debug)
5363 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5365 (long)cost / 1000000,
5366 ((long)cost / 100000) % 10,
5367 (long)max_cost / 1000000,
5368 ((long)max_cost / 100000) % 10,
5369 domain_distance(cpu1, cpu2),
5373 * If we iterated at least 20% past the previous maximum,
5374 * and the cost has dropped by more than 20% already,
5375 * (taking fluctuations into account) then we assume to
5376 * have found the maximum and break out of the loop early:
5378 if (size_found && (size*100 > size_found*SIZE_THRESH))
5379 if (cost+avg_fluct <= 0 ||
5380 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5382 if (migration_debug)
5383 printk("-> found max.\n");
5387 * Increase the cachesize in 10% steps:
5389 size = size * 10 / 9;
5392 if (migration_debug)
5393 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5394 cpu1, cpu2, size_found, max_cost);
5399 * A task is considered 'cache cold' if at least 2 times
5400 * the worst-case cost of migration has passed.
5402 * (this limit is only listened to if the load-balancing
5403 * situation is 'nice' - if there is a large imbalance we
5404 * ignore it for the sake of CPU utilization and
5405 * processing fairness.)
5407 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5410 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5412 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5413 unsigned long j0, j1, distance, max_distance = 0;
5414 struct sched_domain *sd;
5419 * First pass - calculate the cacheflush times:
5421 for_each_cpu_mask(cpu1, *cpu_map) {
5422 for_each_cpu_mask(cpu2, *cpu_map) {
5425 distance = domain_distance(cpu1, cpu2);
5426 max_distance = max(max_distance, distance);
5428 * No result cached yet?
5430 if (migration_cost[distance] == -1LL)
5431 migration_cost[distance] =
5432 measure_migration_cost(cpu1, cpu2);
5436 * Second pass - update the sched domain hierarchy with
5437 * the new cache-hot-time estimations:
5439 for_each_cpu_mask(cpu, *cpu_map) {
5441 for_each_domain(cpu, sd) {
5442 sd->cache_hot_time = migration_cost[distance];
5449 if (migration_debug)
5450 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5458 if (system_state == SYSTEM_BOOTING) {
5459 printk("migration_cost=");
5460 for (distance = 0; distance <= max_distance; distance++) {
5463 printk("%ld", (long)migration_cost[distance] / 1000);
5468 if (migration_debug)
5469 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5472 * Move back to the original CPU. NUMA-Q gets confused
5473 * if we migrate to another quad during bootup.
5475 if (raw_smp_processor_id() != orig_cpu) {
5476 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5477 saved_mask = current->cpus_allowed;
5479 set_cpus_allowed(current, mask);
5480 set_cpus_allowed(current, saved_mask);
5487 * find_next_best_node - find the next node to include in a sched_domain
5488 * @node: node whose sched_domain we're building
5489 * @used_nodes: nodes already in the sched_domain
5491 * Find the next node to include in a given scheduling domain. Simply
5492 * finds the closest node not already in the @used_nodes map.
5494 * Should use nodemask_t.
5496 static int find_next_best_node(int node, unsigned long *used_nodes)
5498 int i, n, val, min_val, best_node = 0;
5502 for (i = 0; i < MAX_NUMNODES; i++) {
5503 /* Start at @node */
5504 n = (node + i) % MAX_NUMNODES;
5506 if (!nr_cpus_node(n))
5509 /* Skip already used nodes */
5510 if (test_bit(n, used_nodes))
5513 /* Simple min distance search */
5514 val = node_distance(node, n);
5516 if (val < min_val) {
5522 set_bit(best_node, used_nodes);
5527 * sched_domain_node_span - get a cpumask for a node's sched_domain
5528 * @node: node whose cpumask we're constructing
5529 * @size: number of nodes to include in this span
5531 * Given a node, construct a good cpumask for its sched_domain to span. It
5532 * should be one that prevents unnecessary balancing, but also spreads tasks
5535 static cpumask_t sched_domain_node_span(int node)
5538 cpumask_t span, nodemask;
5539 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5542 bitmap_zero(used_nodes, MAX_NUMNODES);
5544 nodemask = node_to_cpumask(node);
5545 cpus_or(span, span, nodemask);
5546 set_bit(node, used_nodes);
5548 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5549 int next_node = find_next_best_node(node, used_nodes);
5550 nodemask = node_to_cpumask(next_node);
5551 cpus_or(span, span, nodemask);
5559 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5560 * can switch it on easily if needed.
5562 #ifdef CONFIG_SCHED_SMT
5563 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5564 static struct sched_group sched_group_cpus[NR_CPUS];
5565 static int cpu_to_cpu_group(int cpu)
5571 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5572 static struct sched_group sched_group_phys[NR_CPUS];
5573 static int cpu_to_phys_group(int cpu)
5575 #ifdef CONFIG_SCHED_SMT
5576 return first_cpu(cpu_sibling_map[cpu]);
5584 * The init_sched_build_groups can't handle what we want to do with node
5585 * groups, so roll our own. Now each node has its own list of groups which
5586 * gets dynamically allocated.
5588 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5589 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5591 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5592 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5594 static int cpu_to_allnodes_group(int cpu)
5596 return cpu_to_node(cpu);
5601 * Build sched domains for a given set of cpus and attach the sched domains
5602 * to the individual cpus
5604 void build_sched_domains(const cpumask_t *cpu_map)
5608 struct sched_group **sched_group_nodes = NULL;
5609 struct sched_group *sched_group_allnodes = NULL;
5612 * Allocate the per-node list of sched groups
5614 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5616 if (!sched_group_nodes) {
5617 printk(KERN_WARNING "Can not alloc sched group node list\n");
5620 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5624 * Set up domains for cpus specified by the cpu_map.
5626 for_each_cpu_mask(i, *cpu_map) {
5628 struct sched_domain *sd = NULL, *p;
5629 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5631 cpus_and(nodemask, nodemask, *cpu_map);
5634 if (cpus_weight(*cpu_map)
5635 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5636 if (!sched_group_allnodes) {
5637 sched_group_allnodes
5638 = kmalloc(sizeof(struct sched_group)
5641 if (!sched_group_allnodes) {
5643 "Can not alloc allnodes sched group\n");
5646 sched_group_allnodes_bycpu[i]
5647 = sched_group_allnodes;
5649 sd = &per_cpu(allnodes_domains, i);
5650 *sd = SD_ALLNODES_INIT;
5651 sd->span = *cpu_map;
5652 group = cpu_to_allnodes_group(i);
5653 sd->groups = &sched_group_allnodes[group];
5658 sd = &per_cpu(node_domains, i);
5660 sd->span = sched_domain_node_span(cpu_to_node(i));
5662 cpus_and(sd->span, sd->span, *cpu_map);
5666 sd = &per_cpu(phys_domains, i);
5667 group = cpu_to_phys_group(i);
5669 sd->span = nodemask;
5671 sd->groups = &sched_group_phys[group];
5673 #ifdef CONFIG_SCHED_SMT
5675 sd = &per_cpu(cpu_domains, i);
5676 group = cpu_to_cpu_group(i);
5677 *sd = SD_SIBLING_INIT;
5678 sd->span = cpu_sibling_map[i];
5679 cpus_and(sd->span, sd->span, *cpu_map);
5681 sd->groups = &sched_group_cpus[group];
5685 #ifdef CONFIG_SCHED_SMT
5686 /* Set up CPU (sibling) groups */
5687 for_each_cpu_mask(i, *cpu_map) {
5688 cpumask_t this_sibling_map = cpu_sibling_map[i];
5689 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5690 if (i != first_cpu(this_sibling_map))
5693 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5698 /* Set up physical groups */
5699 for (i = 0; i < MAX_NUMNODES; i++) {
5700 cpumask_t nodemask = node_to_cpumask(i);
5702 cpus_and(nodemask, nodemask, *cpu_map);
5703 if (cpus_empty(nodemask))
5706 init_sched_build_groups(sched_group_phys, nodemask,
5707 &cpu_to_phys_group);
5711 /* Set up node groups */
5712 if (sched_group_allnodes)
5713 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5714 &cpu_to_allnodes_group);
5716 for (i = 0; i < MAX_NUMNODES; i++) {
5717 /* Set up node groups */
5718 struct sched_group *sg, *prev;
5719 cpumask_t nodemask = node_to_cpumask(i);
5720 cpumask_t domainspan;
5721 cpumask_t covered = CPU_MASK_NONE;
5724 cpus_and(nodemask, nodemask, *cpu_map);
5725 if (cpus_empty(nodemask)) {
5726 sched_group_nodes[i] = NULL;
5730 domainspan = sched_domain_node_span(i);
5731 cpus_and(domainspan, domainspan, *cpu_map);
5733 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5734 sched_group_nodes[i] = sg;
5735 for_each_cpu_mask(j, nodemask) {
5736 struct sched_domain *sd;
5737 sd = &per_cpu(node_domains, j);
5739 if (sd->groups == NULL) {
5740 /* Turn off balancing if we have no groups */
5746 "Can not alloc domain group for node %d\n", i);
5750 sg->cpumask = nodemask;
5751 cpus_or(covered, covered, nodemask);
5754 for (j = 0; j < MAX_NUMNODES; j++) {
5755 cpumask_t tmp, notcovered;
5756 int n = (i + j) % MAX_NUMNODES;
5758 cpus_complement(notcovered, covered);
5759 cpus_and(tmp, notcovered, *cpu_map);
5760 cpus_and(tmp, tmp, domainspan);
5761 if (cpus_empty(tmp))
5764 nodemask = node_to_cpumask(n);
5765 cpus_and(tmp, tmp, nodemask);
5766 if (cpus_empty(tmp))
5769 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5772 "Can not alloc domain group for node %d\n", j);
5777 cpus_or(covered, covered, tmp);
5781 prev->next = sched_group_nodes[i];
5785 /* Calculate CPU power for physical packages and nodes */
5786 for_each_cpu_mask(i, *cpu_map) {
5788 struct sched_domain *sd;
5789 #ifdef CONFIG_SCHED_SMT
5790 sd = &per_cpu(cpu_domains, i);
5791 power = SCHED_LOAD_SCALE;
5792 sd->groups->cpu_power = power;
5795 sd = &per_cpu(phys_domains, i);
5796 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5797 (cpus_weight(sd->groups->cpumask)-1) / 10;
5798 sd->groups->cpu_power = power;
5801 sd = &per_cpu(allnodes_domains, i);
5803 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5804 (cpus_weight(sd->groups->cpumask)-1) / 10;
5805 sd->groups->cpu_power = power;
5811 for (i = 0; i < MAX_NUMNODES; i++) {
5812 struct sched_group *sg = sched_group_nodes[i];
5818 for_each_cpu_mask(j, sg->cpumask) {
5819 struct sched_domain *sd;
5822 sd = &per_cpu(phys_domains, j);
5823 if (j != first_cpu(sd->groups->cpumask)) {
5825 * Only add "power" once for each
5830 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5831 (cpus_weight(sd->groups->cpumask)-1) / 10;
5833 sg->cpu_power += power;
5836 if (sg != sched_group_nodes[i])
5841 /* Attach the domains */
5842 for_each_cpu_mask(i, *cpu_map) {
5843 struct sched_domain *sd;
5844 #ifdef CONFIG_SCHED_SMT
5845 sd = &per_cpu(cpu_domains, i);
5847 sd = &per_cpu(phys_domains, i);
5849 cpu_attach_domain(sd, i);
5852 * Tune cache-hot values:
5854 calibrate_migration_costs(cpu_map);
5857 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5859 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5861 cpumask_t cpu_default_map;
5864 * Setup mask for cpus without special case scheduling requirements.
5865 * For now this just excludes isolated cpus, but could be used to
5866 * exclude other special cases in the future.
5868 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5870 build_sched_domains(&cpu_default_map);
5873 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5879 for_each_cpu_mask(cpu, *cpu_map) {
5880 struct sched_group *sched_group_allnodes
5881 = sched_group_allnodes_bycpu[cpu];
5882 struct sched_group **sched_group_nodes
5883 = sched_group_nodes_bycpu[cpu];
5885 if (sched_group_allnodes) {
5886 kfree(sched_group_allnodes);
5887 sched_group_allnodes_bycpu[cpu] = NULL;
5890 if (!sched_group_nodes)
5893 for (i = 0; i < MAX_NUMNODES; i++) {
5894 cpumask_t nodemask = node_to_cpumask(i);
5895 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5897 cpus_and(nodemask, nodemask, *cpu_map);
5898 if (cpus_empty(nodemask))
5908 if (oldsg != sched_group_nodes[i])
5911 kfree(sched_group_nodes);
5912 sched_group_nodes_bycpu[cpu] = NULL;
5918 * Detach sched domains from a group of cpus specified in cpu_map
5919 * These cpus will now be attached to the NULL domain
5921 static void detach_destroy_domains(const cpumask_t *cpu_map)
5925 for_each_cpu_mask(i, *cpu_map)
5926 cpu_attach_domain(NULL, i);
5927 synchronize_sched();
5928 arch_destroy_sched_domains(cpu_map);
5932 * Partition sched domains as specified by the cpumasks below.
5933 * This attaches all cpus from the cpumasks to the NULL domain,
5934 * waits for a RCU quiescent period, recalculates sched
5935 * domain information and then attaches them back to the
5936 * correct sched domains
5937 * Call with hotplug lock held
5939 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5941 cpumask_t change_map;
5943 cpus_and(*partition1, *partition1, cpu_online_map);
5944 cpus_and(*partition2, *partition2, cpu_online_map);
5945 cpus_or(change_map, *partition1, *partition2);
5947 /* Detach sched domains from all of the affected cpus */
5948 detach_destroy_domains(&change_map);
5949 if (!cpus_empty(*partition1))
5950 build_sched_domains(partition1);
5951 if (!cpus_empty(*partition2))
5952 build_sched_domains(partition2);
5955 #ifdef CONFIG_HOTPLUG_CPU
5957 * Force a reinitialization of the sched domains hierarchy. The domains
5958 * and groups cannot be updated in place without racing with the balancing
5959 * code, so we temporarily attach all running cpus to the NULL domain
5960 * which will prevent rebalancing while the sched domains are recalculated.
5962 static int update_sched_domains(struct notifier_block *nfb,
5963 unsigned long action, void *hcpu)
5966 case CPU_UP_PREPARE:
5967 case CPU_DOWN_PREPARE:
5968 detach_destroy_domains(&cpu_online_map);
5971 case CPU_UP_CANCELED:
5972 case CPU_DOWN_FAILED:
5976 * Fall through and re-initialise the domains.
5983 /* The hotplug lock is already held by cpu_up/cpu_down */
5984 arch_init_sched_domains(&cpu_online_map);
5990 void __init sched_init_smp(void)
5993 arch_init_sched_domains(&cpu_online_map);
5994 unlock_cpu_hotplug();
5995 /* XXX: Theoretical race here - CPU may be hotplugged now */
5996 hotcpu_notifier(update_sched_domains, 0);
5999 void __init sched_init_smp(void)
6002 #endif /* CONFIG_SMP */
6004 int in_sched_functions(unsigned long addr)
6006 /* Linker adds these: start and end of __sched functions */
6007 extern char __sched_text_start[], __sched_text_end[];
6008 return in_lock_functions(addr) ||
6009 (addr >= (unsigned long)__sched_text_start
6010 && addr < (unsigned long)__sched_text_end);
6013 void __init sched_init(void)
6019 prio_array_t *array;
6022 spin_lock_init(&rq->lock);
6024 rq->active = rq->arrays;
6025 rq->expired = rq->arrays + 1;
6026 rq->best_expired_prio = MAX_PRIO;
6030 for (j = 1; j < 3; j++)
6031 rq->cpu_load[j] = 0;
6032 rq->active_balance = 0;
6034 rq->migration_thread = NULL;
6035 INIT_LIST_HEAD(&rq->migration_queue);
6038 atomic_set(&rq->nr_iowait, 0);
6040 for (j = 0; j < 2; j++) {
6041 array = rq->arrays + j;
6042 for (k = 0; k < MAX_PRIO; k++) {
6043 INIT_LIST_HEAD(array->queue + k);
6044 __clear_bit(k, array->bitmap);
6046 // delimiter for bitsearch
6047 __set_bit(MAX_PRIO, array->bitmap);
6052 * The boot idle thread does lazy MMU switching as well:
6054 atomic_inc(&init_mm.mm_count);
6055 enter_lazy_tlb(&init_mm, current);
6058 * Make us the idle thread. Technically, schedule() should not be
6059 * called from this thread, however somewhere below it might be,
6060 * but because we are the idle thread, we just pick up running again
6061 * when this runqueue becomes "idle".
6063 init_idle(current, smp_processor_id());
6066 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6067 void __might_sleep(char *file, int line)
6069 #if defined(in_atomic)
6070 static unsigned long prev_jiffy; /* ratelimiting */
6072 if ((in_atomic() || irqs_disabled()) &&
6073 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6074 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6076 prev_jiffy = jiffies;
6077 printk(KERN_ERR "BUG: sleeping function called from invalid"
6078 " context at %s:%d\n", file, line);
6079 printk("in_atomic():%d, irqs_disabled():%d\n",
6080 in_atomic(), irqs_disabled());
6085 EXPORT_SYMBOL(__might_sleep);
6088 #ifdef CONFIG_MAGIC_SYSRQ
6089 void normalize_rt_tasks(void)
6091 struct task_struct *p;
6092 prio_array_t *array;
6093 unsigned long flags;
6096 read_lock_irq(&tasklist_lock);
6097 for_each_process (p) {
6101 rq = task_rq_lock(p, &flags);
6105 deactivate_task(p, task_rq(p));
6106 __setscheduler(p, SCHED_NORMAL, 0);
6108 __activate_task(p, task_rq(p));
6109 resched_task(rq->curr);
6112 task_rq_unlock(rq, &flags);
6114 read_unlock_irq(&tasklist_lock);
6117 #endif /* CONFIG_MAGIC_SYSRQ */
6121 * These functions are only useful for the IA64 MCA handling.
6123 * They can only be called when the whole system has been
6124 * stopped - every CPU needs to be quiescent, and no scheduling
6125 * activity can take place. Using them for anything else would
6126 * be a serious bug, and as a result, they aren't even visible
6127 * under any other configuration.
6131 * curr_task - return the current task for a given cpu.
6132 * @cpu: the processor in question.
6134 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6136 task_t *curr_task(int cpu)
6138 return cpu_curr(cpu);
6142 * set_curr_task - set the current task for a given cpu.
6143 * @cpu: the processor in question.
6144 * @p: the task pointer to set.
6146 * Description: This function must only be used when non-maskable interrupts
6147 * are serviced on a separate stack. It allows the architecture to switch the
6148 * notion of the current task on a cpu in a non-blocking manner. This function
6149 * must be called with all CPU's synchronized, and interrupts disabled, the
6150 * and caller must save the original value of the current task (see
6151 * curr_task() above) and restore that value before reenabling interrupts and
6152 * re-starting the system.
6154 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6156 void set_curr_task(int cpu, task_t *p)