2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/config.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/param.h>
41 #include <linux/string.h>
43 #include <linux/interrupt.h>
44 #include <linux/timex.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/time.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
55 #include <asm/processor.h>
56 #include <asm/nvram.h>
57 #include <asm/cache.h>
58 #include <asm/machdep.h>
59 #include <asm/uaccess.h>
63 #include <asm/div64.h>
65 #include <asm/systemcfg.h>
66 #include <asm/firmware.h>
68 #ifdef CONFIG_PPC_ISERIES
69 #include <asm/iseries/it_lp_queue.h>
70 #include <asm/iseries/hv_call_xm.h>
73 /* keep track of when we need to update the rtc */
74 time_t last_rtc_update;
75 extern int piranha_simulator;
76 #ifdef CONFIG_PPC_ISERIES
77 unsigned long iSeries_recal_titan = 0;
78 unsigned long iSeries_recal_tb = 0;
79 static unsigned long first_settimeofday = 1;
82 /* The decrementer counts down by 128 every 128ns on a 601. */
83 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
85 #define XSEC_PER_SEC (1024*1024)
88 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
90 /* compute ((xsec << 12) * max) >> 32 */
91 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
94 unsigned long tb_ticks_per_jiffy;
95 unsigned long tb_ticks_per_usec = 100; /* sane default */
96 EXPORT_SYMBOL(tb_ticks_per_usec);
97 unsigned long tb_ticks_per_sec;
100 unsigned long processor_freq;
101 DEFINE_SPINLOCK(rtc_lock);
102 EXPORT_SYMBOL_GPL(rtc_lock);
105 unsigned tb_to_ns_shift;
107 struct gettimeofday_struct do_gtod;
109 extern unsigned long wall_jiffies;
111 extern struct timezone sys_tz;
112 static long timezone_offset;
114 void ppc_adjtimex(void);
116 static unsigned adjusting_time = 0;
118 unsigned long ppc_proc_freq;
119 unsigned long ppc_tb_freq;
121 #ifdef CONFIG_PPC32 /* XXX for now */
125 u64 tb_last_jiffy __cacheline_aligned_in_smp;
126 unsigned long tb_last_stamp;
129 * Note that on ppc32 this only stores the bottom 32 bits of
130 * the timebase value, but that's enough to tell when a jiffy
133 DEFINE_PER_CPU(unsigned long, last_jiffy);
135 static __inline__ void timer_check_rtc(void)
138 * update the rtc when needed, this should be performed on the
139 * right fraction of a second. Half or full second ?
140 * Full second works on mk48t59 clocks, others need testing.
141 * Note that this update is basically only used through
142 * the adjtimex system calls. Setting the HW clock in
143 * any other way is a /dev/rtc and userland business.
144 * This is still wrong by -0.5/+1.5 jiffies because of the
145 * timer interrupt resolution and possible delay, but here we
146 * hit a quantization limit which can only be solved by higher
147 * resolution timers and decoupling time management from timer
148 * interrupts. This is also wrong on the clocks
149 * which require being written at the half second boundary.
150 * We should have an rtc call that only sets the minutes and
151 * seconds like on Intel to avoid problems with non UTC clocks.
153 if (ppc_md.set_rtc_time && ntp_synced() &&
154 xtime.tv_sec - last_rtc_update >= 659 &&
155 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
156 jiffies - wall_jiffies == 1) {
158 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
161 if (ppc_md.set_rtc_time(&tm) == 0)
162 last_rtc_update = xtime.tv_sec + 1;
164 /* Try again one minute later */
165 last_rtc_update += 60;
170 * This version of gettimeofday has microsecond resolution.
172 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
174 unsigned long sec, usec;
176 struct gettimeofday_vars *temp_varp;
177 u64 temp_tb_to_xs, temp_stamp_xsec;
180 * These calculations are faster (gets rid of divides)
181 * if done in units of 1/2^20 rather than microseconds.
182 * The conversion to microseconds at the end is done
183 * without a divide (and in fact, without a multiply)
185 temp_varp = do_gtod.varp;
186 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
187 temp_tb_to_xs = temp_varp->tb_to_xs;
188 temp_stamp_xsec = temp_varp->stamp_xsec;
189 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
190 sec = xsec / XSEC_PER_SEC;
191 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
192 usec = SCALE_XSEC(usec, 1000000);
198 void do_gettimeofday(struct timeval *tv)
201 /* do this the old way */
202 unsigned long flags, seq;
203 unsigned int sec, nsec, usec, lost;
206 seq = read_seqbegin_irqsave(&xtime_lock, flags);
208 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
209 lost = jiffies - wall_jiffies;
210 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
211 usec = nsec / 1000 + lost * (1000000 / HZ);
212 while (usec >= 1000000) {
220 __do_gettimeofday(tv, get_tb());
223 EXPORT_SYMBOL(do_gettimeofday);
225 /* Synchronize xtime with do_gettimeofday */
227 static inline void timer_sync_xtime(unsigned long cur_tb)
230 /* why do we do this? */
231 struct timeval my_tv;
233 __do_gettimeofday(&my_tv, cur_tb);
235 if (xtime.tv_sec <= my_tv.tv_sec) {
236 xtime.tv_sec = my_tv.tv_sec;
237 xtime.tv_nsec = my_tv.tv_usec * 1000;
243 * There are two copies of tb_to_xs and stamp_xsec so that no
244 * lock is needed to access and use these values in
245 * do_gettimeofday. We alternate the copies and as long as a
246 * reasonable time elapses between changes, there will never
247 * be inconsistent values. ntpd has a minimum of one minute
250 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
254 struct gettimeofday_vars *temp_varp;
256 temp_idx = (do_gtod.var_idx == 0);
257 temp_varp = &do_gtod.vars[temp_idx];
259 temp_varp->tb_to_xs = new_tb_to_xs;
260 temp_varp->tb_orig_stamp = new_tb_stamp;
261 temp_varp->stamp_xsec = new_stamp_xsec;
263 do_gtod.varp = temp_varp;
264 do_gtod.var_idx = temp_idx;
268 * tb_update_count is used to allow the userspace gettimeofday code
269 * to assure itself that it sees a consistent view of the tb_to_xs and
270 * stamp_xsec variables. It reads the tb_update_count, then reads
271 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
272 * the two values of tb_update_count match and are even then the
273 * tb_to_xs and stamp_xsec values are consistent. If not, then it
274 * loops back and reads them again until this criteria is met.
276 ++(systemcfg->tb_update_count);
278 systemcfg->tb_orig_stamp = new_tb_stamp;
279 systemcfg->stamp_xsec = new_stamp_xsec;
280 systemcfg->tb_to_xs = new_tb_to_xs;
282 ++(systemcfg->tb_update_count);
287 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
288 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
289 * difference tb - tb_orig_stamp small enough to always fit inside a
290 * 32 bits number. This is a requirement of our fast 32 bits userland
291 * implementation in the vdso. If we "miss" a call to this function
292 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
293 * with a too big difference, then the vdso will fallback to calling
296 static __inline__ void timer_recalc_offset(u64 cur_tb)
298 unsigned long offset;
303 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
304 if ((offset & 0x80000000u) == 0)
306 new_stamp_xsec = do_gtod.varp->stamp_xsec
307 + mulhdu(offset, do_gtod.varp->tb_to_xs);
308 update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
312 unsigned long profile_pc(struct pt_regs *regs)
314 unsigned long pc = instruction_pointer(regs);
316 if (in_lock_functions(pc))
321 EXPORT_SYMBOL(profile_pc);
324 #ifdef CONFIG_PPC_ISERIES
327 * This function recalibrates the timebase based on the 49-bit time-of-day
328 * value in the Titan chip. The Titan is much more accurate than the value
329 * returned by the service processor for the timebase frequency.
332 static void iSeries_tb_recal(void)
334 struct div_result divres;
335 unsigned long titan, tb;
337 titan = HvCallXm_loadTod();
338 if ( iSeries_recal_titan ) {
339 unsigned long tb_ticks = tb - iSeries_recal_tb;
340 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
341 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
342 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
343 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
345 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
346 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
348 if ( tick_diff < 0 ) {
349 tick_diff = -tick_diff;
353 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
354 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
355 new_tb_ticks_per_jiffy, sign, tick_diff );
356 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
357 tb_ticks_per_sec = new_tb_ticks_per_sec;
358 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
359 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
360 tb_to_xs = divres.result_low;
361 do_gtod.varp->tb_to_xs = tb_to_xs;
362 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
363 systemcfg->tb_to_xs = tb_to_xs;
366 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
367 " new tb_ticks_per_jiffy = %lu\n"
368 " old tb_ticks_per_jiffy = %lu\n",
369 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
373 iSeries_recal_titan = titan;
374 iSeries_recal_tb = tb;
379 * For iSeries shared processors, we have to let the hypervisor
380 * set the hardware decrementer. We set a virtual decrementer
381 * in the lppaca and call the hypervisor if the virtual
382 * decrementer is less than the current value in the hardware
383 * decrementer. (almost always the new decrementer value will
384 * be greater than the current hardware decementer so the hypervisor
385 * call will not be needed)
389 * timer_interrupt - gets called when the decrementer overflows,
390 * with interrupts disabled.
392 void timer_interrupt(struct pt_regs * regs)
395 int cpu = smp_processor_id();
399 if (atomic_read(&ppc_n_lost_interrupts) != 0)
405 profile_tick(CPU_PROFILING, regs);
407 #ifdef CONFIG_PPC_ISERIES
408 get_paca()->lppaca.int_dword.fields.decr_int = 0;
411 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
412 >= tb_ticks_per_jiffy) {
413 /* Update last_jiffy */
414 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
415 /* Handle RTCL overflow on 601 */
416 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
417 per_cpu(last_jiffy, cpu) -= 1000000000;
420 * We cannot disable the decrementer, so in the period
421 * between this cpu's being marked offline in cpu_online_map
422 * and calling stop-self, it is taking timer interrupts.
423 * Avoid calling into the scheduler rebalancing code if this
426 if (!cpu_is_offline(cpu))
427 update_process_times(user_mode(regs));
430 * No need to check whether cpu is offline here; boot_cpuid
431 * should have been fixed up by now.
433 if (cpu != boot_cpuid)
436 write_seqlock(&xtime_lock);
437 tb_last_jiffy += tb_ticks_per_jiffy;
438 tb_last_stamp = per_cpu(last_jiffy, cpu);
439 timer_recalc_offset(tb_last_jiffy);
441 timer_sync_xtime(tb_last_jiffy);
443 write_sequnlock(&xtime_lock);
444 if (adjusting_time && (time_adjust == 0))
448 next_dec = tb_ticks_per_jiffy - ticks;
451 #ifdef CONFIG_PPC_ISERIES
452 if (hvlpevent_is_pending())
453 process_hvlpevents(regs);
457 /* collect purr register values often, for accurate calculations */
458 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
459 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
460 cu->current_tb = mfspr(SPRN_PURR);
467 void wakeup_decrementer(void)
471 set_dec(tb_ticks_per_jiffy);
473 * We don't expect this to be called on a machine with a 601,
474 * so using get_tbl is fine.
476 tb_last_stamp = tb_last_jiffy = get_tb();
478 per_cpu(last_jiffy, i) = tb_last_stamp;
482 void __init smp_space_timers(unsigned int max_cpus)
485 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
486 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
489 if (i != boot_cpuid) {
490 previous_tb += offset;
491 per_cpu(last_jiffy, i) = previous_tb;
498 * Scheduler clock - returns current time in nanosec units.
500 * Note: mulhdu(a, b) (multiply high double unsigned) returns
501 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
502 * are 64-bit unsigned numbers.
504 unsigned long long sched_clock(void)
508 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
511 int do_settimeofday(struct timespec *tv)
513 time_t wtm_sec, new_sec = tv->tv_sec;
514 long wtm_nsec, new_nsec = tv->tv_nsec;
517 u64 new_xsec, tb_delta_xs;
519 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
522 write_seqlock_irqsave(&xtime_lock, flags);
525 * Updating the RTC is not the job of this code. If the time is
526 * stepped under NTP, the RTC will be updated after STA_UNSYNC
527 * is cleared. Tools like clock/hwclock either copy the RTC
528 * to the system time, in which case there is no point in writing
529 * to the RTC again, or write to the RTC but then they don't call
530 * settimeofday to perform this operation.
532 #ifdef CONFIG_PPC_ISERIES
533 if (first_settimeofday) {
535 first_settimeofday = 0;
538 tb_delta = tb_ticks_since(tb_last_stamp);
539 tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
540 tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs);
542 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
543 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
545 set_normalized_timespec(&xtime, new_sec, new_nsec);
546 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
548 /* In case of a large backwards jump in time with NTP, we want the
549 * clock to be updated as soon as the PLL is again in lock.
551 last_rtc_update = new_sec - 658;
557 new_xsec = (u64)new_nsec * XSEC_PER_SEC;
558 do_div(new_xsec, NSEC_PER_SEC);
560 new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs;
561 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
564 systemcfg->tz_minuteswest = sys_tz.tz_minuteswest;
565 systemcfg->tz_dsttime = sys_tz.tz_dsttime;
568 write_sequnlock_irqrestore(&xtime_lock, flags);
573 EXPORT_SYMBOL(do_settimeofday);
575 void __init generic_calibrate_decr(void)
577 struct device_node *cpu;
582 * The cpu node should have a timebase-frequency property
583 * to tell us the rate at which the decrementer counts.
585 cpu = of_find_node_by_type(NULL, "cpu");
587 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
590 fp = (unsigned int *)get_property(cpu, "timebase-frequency",
598 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
601 ppc_proc_freq = DEFAULT_PROC_FREQ;
604 fp = (unsigned int *)get_property(cpu, "clock-frequency",
612 /* Set the time base to zero */
616 /* Clear any pending timer interrupts */
617 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
619 /* Enable decrementer interrupt */
620 mtspr(SPRN_TCR, TCR_DIE);
623 printk(KERN_ERR "WARNING: Estimating processor frequency "
629 unsigned long get_boot_time(void)
633 if (ppc_md.get_boot_time)
634 return ppc_md.get_boot_time();
635 if (!ppc_md.get_rtc_time)
637 ppc_md.get_rtc_time(&tm);
638 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
639 tm.tm_hour, tm.tm_min, tm.tm_sec);
642 /* This function is only called on the boot processor */
643 void __init time_init(void)
646 unsigned long tm = 0;
647 struct div_result res;
651 if (ppc_md.time_init != NULL)
652 timezone_offset = ppc_md.time_init();
655 /* 601 processor: dec counts down by 128 every 128ns */
656 ppc_tb_freq = 1000000000;
657 tb_last_stamp = get_rtcl();
658 tb_last_jiffy = tb_last_stamp;
660 /* Normal PowerPC with timebase register */
661 ppc_md.calibrate_decr();
662 printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
663 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
664 printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
665 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
666 tb_last_stamp = tb_last_jiffy = get_tb();
669 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
670 tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
671 tb_ticks_per_usec = ppc_tb_freq / 1000000;
672 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
673 div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
674 tb_to_xs = res.result_low;
677 get_paca()->default_decr = tb_ticks_per_jiffy;
681 * Compute scale factor for sched_clock.
682 * The calibrate_decr() function has set tb_ticks_per_sec,
683 * which is the timebase frequency.
684 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
685 * the 128-bit result as a 64.64 fixed-point number.
686 * We then shift that number right until it is less than 1.0,
687 * giving us the scale factor and shift count to use in
690 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
691 scale = res.result_low;
692 for (shift = 0; res.result_high != 0; ++shift) {
693 scale = (scale >> 1) | (res.result_high << 63);
694 res.result_high >>= 1;
696 tb_to_ns_scale = scale;
697 tb_to_ns_shift = shift;
699 #ifdef CONFIG_PPC_ISERIES
700 if (!piranha_simulator)
702 tm = get_boot_time();
704 write_seqlock_irqsave(&xtime_lock, flags);
707 do_gtod.varp = &do_gtod.vars[0];
709 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
710 __get_cpu_var(last_jiffy) = tb_last_stamp;
711 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
712 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
713 do_gtod.varp->tb_to_xs = tb_to_xs;
714 do_gtod.tb_to_us = tb_to_us;
716 systemcfg->tb_orig_stamp = tb_last_jiffy;
717 systemcfg->tb_update_count = 0;
718 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
719 systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
720 systemcfg->tb_to_xs = tb_to_xs;
725 /* If platform provided a timezone (pmac), we correct the time */
726 if (timezone_offset) {
727 sys_tz.tz_minuteswest = -timezone_offset / 60;
728 sys_tz.tz_dsttime = 0;
729 xtime.tv_sec -= timezone_offset;
732 last_rtc_update = xtime.tv_sec;
733 set_normalized_timespec(&wall_to_monotonic,
734 -xtime.tv_sec, -xtime.tv_nsec);
735 write_sequnlock_irqrestore(&xtime_lock, flags);
737 /* Not exact, but the timer interrupt takes care of this */
738 set_dec(tb_ticks_per_jiffy);
742 * After adjtimex is called, adjust the conversion of tb ticks
743 * to microseconds to keep do_gettimeofday synchronized
746 * Use the time_adjust, time_freq and time_offset computed by adjtimex to
747 * adjust the frequency.
750 /* #define DEBUG_PPC_ADJTIMEX 1 */
752 void ppc_adjtimex(void)
755 unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
756 new_tb_to_xs, new_xsec, new_stamp_xsec;
757 unsigned long tb_ticks_per_sec_delta;
758 long delta_freq, ltemp;
759 struct div_result divres;
761 long singleshot_ppm = 0;
764 * Compute parts per million frequency adjustment to
765 * accomplish the time adjustment implied by time_offset to be
766 * applied over the elapsed time indicated by time_constant.
767 * Use SHIFT_USEC to get it into the same units as
770 if ( time_offset < 0 ) {
771 ltemp = -time_offset;
772 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
773 ltemp >>= SHIFT_KG + time_constant;
777 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
778 ltemp >>= SHIFT_KG + time_constant;
781 /* If there is a single shot time adjustment in progress */
783 #ifdef DEBUG_PPC_ADJTIMEX
784 printk("ppc_adjtimex: ");
785 if ( adjusting_time == 0 )
787 printk("single shot time_adjust = %ld\n", time_adjust);
793 * Compute parts per million frequency adjustment
794 * to match time_adjust
796 singleshot_ppm = tickadj * HZ;
798 * The adjustment should be tickadj*HZ to match the code in
799 * linux/kernel/timer.c, but experiments show that this is too
800 * large. 3/4 of tickadj*HZ seems about right
802 singleshot_ppm -= singleshot_ppm / 4;
803 /* Use SHIFT_USEC to get it into the same units as time_freq */
804 singleshot_ppm <<= SHIFT_USEC;
805 if ( time_adjust < 0 )
806 singleshot_ppm = -singleshot_ppm;
809 #ifdef DEBUG_PPC_ADJTIMEX
810 if ( adjusting_time )
811 printk("ppc_adjtimex: ending single shot time_adjust\n");
816 /* Add up all of the frequency adjustments */
817 delta_freq = time_freq + ltemp + singleshot_ppm;
820 * Compute a new value for tb_ticks_per_sec based on
821 * the frequency adjustment
823 den = 1000000 * (1 << (SHIFT_USEC - 8));
824 if ( delta_freq < 0 ) {
825 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
826 new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
829 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
830 new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
833 #ifdef DEBUG_PPC_ADJTIMEX
834 printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
835 printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
839 * Compute a new value of tb_to_xs (used to convert tb to
840 * microseconds) and a new value of stamp_xsec which is the
841 * time (in 1/2^20 second units) corresponding to
842 * tb_orig_stamp. This new value of stamp_xsec compensates
843 * for the change in frequency (implied by the new tb_to_xs)
844 * which guarantees that the current time remains the same.
846 write_seqlock_irqsave( &xtime_lock, flags );
847 tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
848 div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
849 new_tb_to_xs = divres.result_low;
850 new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
852 old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
853 new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
855 update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
857 write_sequnlock_irqrestore( &xtime_lock, flags );
858 #endif /* CONFIG_PPC64 */
863 #define STARTOFTIME 1970
864 #define SECDAY 86400L
865 #define SECYR (SECDAY * 365)
866 #define leapyear(year) ((year) % 4 == 0 && \
867 ((year) % 100 != 0 || (year) % 400 == 0))
868 #define days_in_year(a) (leapyear(a) ? 366 : 365)
869 #define days_in_month(a) (month_days[(a) - 1])
871 static int month_days[12] = {
872 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
876 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
878 void GregorianDay(struct rtc_time * tm)
883 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
885 lastYear = tm->tm_year - 1;
888 * Number of leap corrections to apply up to end of last year
890 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
893 * This year is a leap year if it is divisible by 4 except when it is
894 * divisible by 100 unless it is divisible by 400
896 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
898 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
900 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
903 tm->tm_wday = day % 7;
906 void to_tm(int tim, struct rtc_time * tm)
909 register long hms, day;
914 /* Hours, minutes, seconds are easy */
915 tm->tm_hour = hms / 3600;
916 tm->tm_min = (hms % 3600) / 60;
917 tm->tm_sec = (hms % 3600) % 60;
919 /* Number of years in days */
920 for (i = STARTOFTIME; day >= days_in_year(i); i++)
921 day -= days_in_year(i);
924 /* Number of months in days left */
925 if (leapyear(tm->tm_year))
926 days_in_month(FEBRUARY) = 29;
927 for (i = 1; day >= days_in_month(i); i++)
928 day -= days_in_month(i);
929 days_in_month(FEBRUARY) = 28;
932 /* Days are what is left over (+1) from all that. */
933 tm->tm_mday = day + 1;
936 * Determine the day of week
941 /* Auxiliary function to compute scaling factors */
942 /* Actually the choice of a timebase running at 1/4 the of the bus
943 * frequency giving resolution of a few tens of nanoseconds is quite nice.
944 * It makes this computation very precise (27-28 bits typically) which
945 * is optimistic considering the stability of most processor clock
946 * oscillators and the precision with which the timebase frequency
947 * is measured but does not harm.
949 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
951 unsigned mlt=0, tmp, err;
952 /* No concern for performance, it's done once: use a stupid
953 * but safe and compact method to find the multiplier.
956 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
957 if (mulhwu(inscale, mlt|tmp) < outscale)
961 /* We might still be off by 1 for the best approximation.
962 * A side effect of this is that if outscale is too large
963 * the returned value will be zero.
964 * Many corner cases have been checked and seem to work,
965 * some might have been forgotten in the test however.
968 err = inscale * (mlt+1);
969 if (err <= inscale/2)
975 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
978 void div128_by_32(u64 dividend_high, u64 dividend_low,
979 unsigned divisor, struct div_result *dr)
981 unsigned long a, b, c, d;
982 unsigned long w, x, y, z;
985 a = dividend_high >> 32;
986 b = dividend_high & 0xffffffff;
987 c = dividend_low >> 32;
988 d = dividend_low & 0xffffffff;
991 ra = ((u64)(a - (w * divisor)) << 32) + b;
993 rb = ((u64) do_div(ra, divisor) << 32) + c;
996 rc = ((u64) do_div(rb, divisor) << 32) + d;
1002 dr->result_high = ((u64)w << 32) + x;
1003 dr->result_low = ((u64)y << 32) + z;