2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
37 #include "rt2x00pci.h"
41 * Allow hardware encryption to be disabled.
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attampt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
58 #define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64 H2M_MAILBOX_CSR_OWNER, (__reg))
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
71 mutex_lock(&rt2x00dev->csr_mutex);
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
77 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
79 rt2x00_set_field32(®, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0);
84 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
87 mutex_unlock(&rt2x00dev->csr_mutex);
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
95 mutex_lock(&rt2x00dev->csr_mutex);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
107 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1);
111 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113 WAIT_FOR_BBP(rt2x00dev, ®);
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118 mutex_unlock(&rt2x00dev->csr_mutex);
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
129 mutex_lock(&rt2x00dev->csr_mutex);
132 * Wait until the RF becomes available, afterwards we
133 * can safely write the new data into the register.
135 if (WAIT_FOR_RF(rt2x00dev, ®)) {
137 rt2x00_set_field32(®, PHY_CSR4_VALUE, value);
138 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21);
139 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0);
140 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1);
142 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
143 rt2x00_rf_write(rt2x00dev, word, value);
146 mutex_unlock(&rt2x00dev->csr_mutex);
149 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
150 const u8 command, const u8 token,
151 const u8 arg0, const u8 arg1)
155 mutex_lock(&rt2x00dev->csr_mutex);
158 * Wait until the MCU becomes available, afterwards we
159 * can safely write the new data into the register.
161 if (WAIT_FOR_MCU(rt2x00dev, ®)) {
162 rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1);
163 rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token);
164 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0);
165 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1);
166 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
168 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, ®);
169 rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command);
170 rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1);
171 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
174 mutex_unlock(&rt2x00dev->csr_mutex);
178 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
180 struct rt2x00_dev *rt2x00dev = eeprom->data;
183 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
185 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
186 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
187 eeprom->reg_data_clock =
188 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
189 eeprom->reg_chip_select =
190 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
193 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
195 struct rt2x00_dev *rt2x00dev = eeprom->data;
198 rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
199 rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
200 rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK,
201 !!eeprom->reg_data_clock);
202 rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT,
203 !!eeprom->reg_chip_select);
205 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
208 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
209 static const struct rt2x00debug rt61pci_rt2x00debug = {
210 .owner = THIS_MODULE,
212 .read = rt2x00pci_register_read,
213 .write = rt2x00pci_register_write,
214 .flags = RT2X00DEBUGFS_OFFSET,
215 .word_base = CSR_REG_BASE,
216 .word_size = sizeof(u32),
217 .word_count = CSR_REG_SIZE / sizeof(u32),
220 .read = rt2x00_eeprom_read,
221 .write = rt2x00_eeprom_write,
222 .word_base = EEPROM_BASE,
223 .word_size = sizeof(u16),
224 .word_count = EEPROM_SIZE / sizeof(u16),
227 .read = rt61pci_bbp_read,
228 .write = rt61pci_bbp_write,
229 .word_base = BBP_BASE,
230 .word_size = sizeof(u8),
231 .word_count = BBP_SIZE / sizeof(u8),
234 .read = rt2x00_rf_read,
235 .write = rt61pci_rf_write,
236 .word_base = RF_BASE,
237 .word_size = sizeof(u32),
238 .word_count = RF_SIZE / sizeof(u32),
241 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
243 #ifdef CONFIG_RT2X00_LIB_RFKILL
244 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
248 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
249 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
252 #define rt61pci_rfkill_poll NULL
253 #endif /* CONFIG_RT2X00_LIB_RFKILL */
255 #ifdef CONFIG_RT2X00_LIB_LEDS
256 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
257 enum led_brightness brightness)
259 struct rt2x00_led *led =
260 container_of(led_cdev, struct rt2x00_led, led_dev);
261 unsigned int enabled = brightness != LED_OFF;
262 unsigned int a_mode =
263 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
264 unsigned int bg_mode =
265 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
267 if (led->type == LED_TYPE_RADIO) {
268 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
269 MCU_LEDCS_RADIO_STATUS, enabled);
271 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
272 (led->rt2x00dev->led_mcu_reg & 0xff),
273 ((led->rt2x00dev->led_mcu_reg >> 8)));
274 } else if (led->type == LED_TYPE_ASSOC) {
275 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
276 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
277 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
278 MCU_LEDCS_LINK_A_STATUS, a_mode);
280 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
281 (led->rt2x00dev->led_mcu_reg & 0xff),
282 ((led->rt2x00dev->led_mcu_reg >> 8)));
283 } else if (led->type == LED_TYPE_QUALITY) {
285 * The brightness is divided into 6 levels (0 - 5),
286 * this means we need to convert the brightness
287 * argument into the matching level within that range.
289 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
290 brightness / (LED_FULL / 6), 0);
294 static int rt61pci_blink_set(struct led_classdev *led_cdev,
295 unsigned long *delay_on,
296 unsigned long *delay_off)
298 struct rt2x00_led *led =
299 container_of(led_cdev, struct rt2x00_led, led_dev);
302 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, ®);
303 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on);
304 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off);
305 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
310 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
311 struct rt2x00_led *led,
314 led->rt2x00dev = rt2x00dev;
316 led->led_dev.brightness_set = rt61pci_brightness_set;
317 led->led_dev.blink_set = rt61pci_blink_set;
318 led->flags = LED_INITIALIZED;
320 #endif /* CONFIG_RT2X00_LIB_LEDS */
323 * Configuration handlers.
325 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
326 struct rt2x00lib_crypto *crypto,
327 struct ieee80211_key_conf *key)
329 struct hw_key_entry key_entry;
330 struct rt2x00_field32 field;
334 if (crypto->cmd == SET_KEY) {
336 * rt2x00lib can't determine the correct free
337 * key_idx for shared keys. We have 1 register
338 * with key valid bits. The goal is simple, read
339 * the register, if that is full we have no slots
341 * Note that each BSS is allowed to have up to 4
342 * shared keys, so put a mask over the allowed
345 mask = (0xf << crypto->bssidx);
347 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, ®);
350 if (reg && reg == mask)
353 key->hw_key_idx += reg ? ffz(reg) : 0;
356 * Upload key to hardware
358 memcpy(key_entry.key, crypto->key,
359 sizeof(key_entry.key));
360 memcpy(key_entry.tx_mic, crypto->tx_mic,
361 sizeof(key_entry.tx_mic));
362 memcpy(key_entry.rx_mic, crypto->rx_mic,
363 sizeof(key_entry.rx_mic));
365 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
366 rt2x00pci_register_multiwrite(rt2x00dev, reg,
367 &key_entry, sizeof(key_entry));
370 * The cipher types are stored over 2 registers.
371 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
372 * bssidx 1 and 2 keys are stored in SEC_CSR5.
373 * Using the correct defines correctly will cause overhead,
374 * so just calculate the correct offset.
376 if (key->hw_key_idx < 8) {
377 field.bit_offset = (3 * key->hw_key_idx);
378 field.bit_mask = 0x7 << field.bit_offset;
380 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, ®);
381 rt2x00_set_field32(®, field, crypto->cipher);
382 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
384 field.bit_offset = (3 * (key->hw_key_idx - 8));
385 field.bit_mask = 0x7 << field.bit_offset;
387 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, ®);
388 rt2x00_set_field32(®, field, crypto->cipher);
389 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
393 * The driver does not support the IV/EIV generation
394 * in hardware. However it doesn't support the IV/EIV
395 * inside the ieee80211 frame either, but requires it
396 * to be provided seperately for the descriptor.
397 * rt2x00lib will cut the IV/EIV data out of all frames
398 * given to us by mac80211, but we must tell mac80211
399 * to generate the IV/EIV data.
401 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
405 * SEC_CSR0 contains only single-bit fields to indicate
406 * a particular key is valid. Because using the FIELD32()
407 * defines directly will cause a lot of overhead we use
408 * a calculation to determine the correct bit directly.
410 mask = 1 << key->hw_key_idx;
412 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, ®);
413 if (crypto->cmd == SET_KEY)
415 else if (crypto->cmd == DISABLE_KEY)
417 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
422 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
423 struct rt2x00lib_crypto *crypto,
424 struct ieee80211_key_conf *key)
426 struct hw_pairwise_ta_entry addr_entry;
427 struct hw_key_entry key_entry;
431 if (crypto->cmd == SET_KEY) {
433 * rt2x00lib can't determine the correct free
434 * key_idx for pairwise keys. We have 2 registers
435 * with key valid bits. The goal is simple, read
436 * the first register, if that is full move to
438 * When both registers are full, we drop the key,
439 * otherwise we use the first invalid entry.
441 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, ®);
442 if (reg && reg == ~0) {
443 key->hw_key_idx = 32;
444 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, ®);
445 if (reg && reg == ~0)
449 key->hw_key_idx += reg ? ffz(reg) : 0;
452 * Upload key to hardware
454 memcpy(key_entry.key, crypto->key,
455 sizeof(key_entry.key));
456 memcpy(key_entry.tx_mic, crypto->tx_mic,
457 sizeof(key_entry.tx_mic));
458 memcpy(key_entry.rx_mic, crypto->rx_mic,
459 sizeof(key_entry.rx_mic));
461 memset(&addr_entry, 0, sizeof(addr_entry));
462 memcpy(&addr_entry, crypto->address, ETH_ALEN);
463 addr_entry.cipher = crypto->cipher;
465 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
466 rt2x00pci_register_multiwrite(rt2x00dev, reg,
467 &key_entry, sizeof(key_entry));
469 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
470 rt2x00pci_register_multiwrite(rt2x00dev, reg,
471 &addr_entry, sizeof(addr_entry));
474 * Enable pairwise lookup table for given BSS idx,
475 * without this received frames will not be decrypted
478 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, ®);
479 reg |= (1 << crypto->bssidx);
480 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
483 * The driver does not support the IV/EIV generation
484 * in hardware. However it doesn't support the IV/EIV
485 * inside the ieee80211 frame either, but requires it
486 * to be provided seperately for the descriptor.
487 * rt2x00lib will cut the IV/EIV data out of all frames
488 * given to us by mac80211, but we must tell mac80211
489 * to generate the IV/EIV data.
491 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
495 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
496 * a particular key is valid. Because using the FIELD32()
497 * defines directly will cause a lot of overhead we use
498 * a calculation to determine the correct bit directly.
500 if (key->hw_key_idx < 32) {
501 mask = 1 << key->hw_key_idx;
503 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, ®);
504 if (crypto->cmd == SET_KEY)
506 else if (crypto->cmd == DISABLE_KEY)
508 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
510 mask = 1 << (key->hw_key_idx - 32);
512 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, ®);
513 if (crypto->cmd == SET_KEY)
515 else if (crypto->cmd == DISABLE_KEY)
517 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
523 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
524 const unsigned int filter_flags)
529 * Start configuration steps.
530 * Note that the version error will always be dropped
531 * and broadcast frames will always be accepted since
532 * there is no filter for it at this time.
534 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
535 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC,
536 !(filter_flags & FIF_FCSFAIL));
537 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL,
538 !(filter_flags & FIF_PLCPFAIL));
539 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL,
540 !(filter_flags & FIF_CONTROL));
541 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME,
542 !(filter_flags & FIF_PROMISC_IN_BSS));
543 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS,
544 !(filter_flags & FIF_PROMISC_IN_BSS) &&
545 !rt2x00dev->intf_ap_count);
546 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1);
547 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST,
548 !(filter_flags & FIF_ALLMULTI));
549 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0);
550 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS,
551 !(filter_flags & FIF_CONTROL));
552 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
555 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
556 struct rt2x00_intf *intf,
557 struct rt2x00intf_conf *conf,
558 const unsigned int flags)
560 unsigned int beacon_base;
563 if (flags & CONFIG_UPDATE_TYPE) {
565 * Clear current synchronisation setup.
566 * For the Beacon base registers we only need to clear
567 * the first byte since that byte contains the VALID and OWNER
568 * bits which (when set to 0) will invalidate the entire beacon.
570 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
571 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
574 * Enable synchronisation.
576 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
577 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
578 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync);
579 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
580 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
583 if (flags & CONFIG_UPDATE_MAC) {
584 reg = le32_to_cpu(conf->mac[1]);
585 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
586 conf->mac[1] = cpu_to_le32(reg);
588 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
589 conf->mac, sizeof(conf->mac));
592 if (flags & CONFIG_UPDATE_BSSID) {
593 reg = le32_to_cpu(conf->bssid[1]);
594 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3);
595 conf->bssid[1] = cpu_to_le32(reg);
597 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
598 conf->bssid, sizeof(conf->bssid));
602 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
603 struct rt2x00lib_erp *erp)
607 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
608 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
609 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
611 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
612 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE,
613 !!erp->short_preamble);
614 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
616 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
618 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
619 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time);
620 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
622 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, ®);
623 rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs);
624 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
625 rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs);
626 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
630 struct antenna_setup *ant)
636 rt61pci_bbp_read(rt2x00dev, 3, &r3);
637 rt61pci_bbp_read(rt2x00dev, 4, &r4);
638 rt61pci_bbp_read(rt2x00dev, 77, &r77);
640 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
641 rt2x00_rf(&rt2x00dev->chip, RF5325));
644 * Configure the RX antenna.
647 case ANTENNA_HW_DIVERSITY:
648 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
653 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
658 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
667 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
671 rt61pci_bbp_write(rt2x00dev, 77, r77);
672 rt61pci_bbp_write(rt2x00dev, 3, r3);
673 rt61pci_bbp_write(rt2x00dev, 4, r4);
676 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677 struct antenna_setup *ant)
683 rt61pci_bbp_read(rt2x00dev, 3, &r3);
684 rt61pci_bbp_read(rt2x00dev, 4, &r4);
685 rt61pci_bbp_read(rt2x00dev, 77, &r77);
687 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
688 rt2x00_rf(&rt2x00dev->chip, RF2529));
689 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
690 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
693 * Configure the RX antenna.
696 case ANTENNA_HW_DIVERSITY:
697 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
700 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
701 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
705 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
706 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
710 rt61pci_bbp_write(rt2x00dev, 77, r77);
711 rt61pci_bbp_write(rt2x00dev, 3, r3);
712 rt61pci_bbp_write(rt2x00dev, 4, r4);
715 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
716 const int p1, const int p2)
720 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
722 rt2x00_set_field32(®, MAC_CSR13_BIT4, p1);
723 rt2x00_set_field32(®, MAC_CSR13_BIT12, 0);
725 rt2x00_set_field32(®, MAC_CSR13_BIT3, !p2);
726 rt2x00_set_field32(®, MAC_CSR13_BIT11, 0);
728 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
731 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
732 struct antenna_setup *ant)
738 rt61pci_bbp_read(rt2x00dev, 3, &r3);
739 rt61pci_bbp_read(rt2x00dev, 4, &r4);
740 rt61pci_bbp_read(rt2x00dev, 77, &r77);
743 * Configure the RX antenna.
747 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
748 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
749 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
751 case ANTENNA_HW_DIVERSITY:
753 * FIXME: Antenna selection for the rf 2529 is very confusing
754 * in the legacy driver. Just default to antenna B until the
755 * legacy code can be properly translated into rt2x00 code.
759 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
760 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
761 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
765 rt61pci_bbp_write(rt2x00dev, 77, r77);
766 rt61pci_bbp_write(rt2x00dev, 3, r3);
767 rt61pci_bbp_write(rt2x00dev, 4, r4);
773 * value[0] -> non-LNA
779 static const struct antenna_sel antenna_sel_a[] = {
780 { 96, { 0x58, 0x78 } },
781 { 104, { 0x38, 0x48 } },
782 { 75, { 0xfe, 0x80 } },
783 { 86, { 0xfe, 0x80 } },
784 { 88, { 0xfe, 0x80 } },
785 { 35, { 0x60, 0x60 } },
786 { 97, { 0x58, 0x58 } },
787 { 98, { 0x58, 0x58 } },
790 static const struct antenna_sel antenna_sel_bg[] = {
791 { 96, { 0x48, 0x68 } },
792 { 104, { 0x2c, 0x3c } },
793 { 75, { 0xfe, 0x80 } },
794 { 86, { 0xfe, 0x80 } },
795 { 88, { 0xfe, 0x80 } },
796 { 35, { 0x50, 0x50 } },
797 { 97, { 0x48, 0x48 } },
798 { 98, { 0x48, 0x48 } },
801 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
802 struct antenna_setup *ant)
804 const struct antenna_sel *sel;
810 * We should never come here because rt2x00lib is supposed
811 * to catch this and send us the correct antenna explicitely.
813 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
814 ant->tx == ANTENNA_SW_DIVERSITY);
816 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
818 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
820 sel = antenna_sel_bg;
821 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
824 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
825 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
827 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, ®);
829 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG,
830 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
831 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A,
832 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
834 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
836 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
837 rt2x00_rf(&rt2x00dev->chip, RF5325))
838 rt61pci_config_antenna_5x(rt2x00dev, ant);
839 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
840 rt61pci_config_antenna_2x(rt2x00dev, ant);
841 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
842 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
843 rt61pci_config_antenna_2x(rt2x00dev, ant);
845 rt61pci_config_antenna_2529(rt2x00dev, ant);
849 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
850 struct rt2x00lib_conf *libconf)
855 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
856 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
859 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
860 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
862 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
865 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
866 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
869 rt2x00dev->lna_gain = lna_gain;
872 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
873 struct rf_channel *rf, const int txpower)
879 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
880 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
882 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
883 rt2x00_rf(&rt2x00dev->chip, RF2527));
885 rt61pci_bbp_read(rt2x00dev, 3, &r3);
886 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
887 rt61pci_bbp_write(rt2x00dev, 3, r3);
890 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
891 r94 += txpower - MAX_TXPOWER;
892 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
894 rt61pci_bbp_write(rt2x00dev, 94, r94);
896 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
897 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
898 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
899 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
903 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
906 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
910 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
911 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
912 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
913 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
918 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
921 struct rf_channel rf;
923 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
924 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
925 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
926 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
928 rt61pci_config_channel(rt2x00dev, &rf, txpower);
931 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
932 struct rt2x00lib_conf *libconf)
936 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
937 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT,
938 libconf->conf->long_frame_max_tx_count);
939 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT,
940 libconf->conf->short_frame_max_tx_count);
941 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
944 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
945 struct rt2x00lib_conf *libconf)
949 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
950 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
951 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
953 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
954 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
955 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
957 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
958 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL,
959 libconf->conf->beacon_int * 16);
960 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
963 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
964 struct rt2x00lib_conf *libconf)
966 enum dev_state state =
967 (libconf->conf->flags & IEEE80211_CONF_PS) ?
968 STATE_SLEEP : STATE_AWAKE;
971 if (state == STATE_SLEEP) {
972 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, ®);
973 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN,
974 libconf->conf->beacon_int - 10);
975 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP,
976 libconf->conf->listen_interval - 1);
977 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5);
979 /* We must first disable autowake before it can be enabled */
980 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
981 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
983 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1);
984 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
986 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
987 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
988 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
990 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
992 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, ®);
993 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0);
994 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
995 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
996 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0);
997 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
999 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
1000 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
1001 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
1003 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
1007 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
1008 struct rt2x00lib_conf *libconf,
1009 const unsigned int flags)
1011 /* Always recalculate LNA gain before changing configuration */
1012 rt61pci_config_lna_gain(rt2x00dev, libconf);
1014 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1015 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1016 libconf->conf->power_level);
1017 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1018 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1019 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1020 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1021 rt61pci_config_retry_limit(rt2x00dev, libconf);
1022 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
1023 rt61pci_config_duration(rt2x00dev, libconf);
1024 if (flags & IEEE80211_CONF_CHANGE_PS)
1025 rt61pci_config_ps(rt2x00dev, libconf);
1031 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1032 struct link_qual *qual)
1037 * Update FCS error count from register.
1039 rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
1040 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1043 * Update False CCA count from register.
1045 rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
1046 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1049 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1050 struct link_qual *qual, u8 vgc_level)
1052 if (qual->vgc_level != vgc_level) {
1053 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1054 qual->vgc_level = vgc_level;
1055 qual->vgc_level_reg = vgc_level;
1059 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1060 struct link_qual *qual)
1062 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1065 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1066 struct link_qual *qual, const u32 count)
1072 * Determine r17 bounds.
1074 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1077 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1084 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1091 * If we are not associated, we should go straight to the
1092 * dynamic CCA tuning.
1094 if (!rt2x00dev->intf_associated)
1095 goto dynamic_cca_tune;
1098 * Special big-R17 for very short distance
1100 if (qual->rssi >= -35) {
1101 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1106 * Special big-R17 for short distance
1108 if (qual->rssi >= -58) {
1109 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1114 * Special big-R17 for middle-short distance
1116 if (qual->rssi >= -66) {
1117 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1122 * Special mid-R17 for middle distance
1124 if (qual->rssi >= -74) {
1125 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1130 * Special case: Change up_bound based on the rssi.
1131 * Lower up_bound when rssi is weaker then -74 dBm.
1133 up_bound -= 2 * (-74 - qual->rssi);
1134 if (low_bound > up_bound)
1135 up_bound = low_bound;
1137 if (qual->vgc_level > up_bound) {
1138 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1145 * r17 does not yet exceed upper limit, continue and base
1146 * the r17 tuning on the false CCA count.
1148 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1149 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1150 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1151 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1155 * Firmware functions
1157 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1161 switch (rt2x00dev->chip.rt) {
1163 fw_name = FIRMWARE_RT2561;
1166 fw_name = FIRMWARE_RT2561s;
1169 fw_name = FIRMWARE_RT2661;
1179 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
1184 * Use the crc itu-t algorithm.
1185 * The last 2 bytes in the firmware array are the crc checksum itself,
1186 * this means that we should never pass those 2 bytes to the crc
1189 crc = crc_itu_t(0, data, len - 2);
1190 crc = crc_itu_t_byte(crc, 0);
1191 crc = crc_itu_t_byte(crc, 0);
1196 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1203 ERROR(rt2x00dev, "Invalid firmware file length (len=%zu)\n", len);
1208 * Wait for stable hardware.
1210 for (i = 0; i < 100; i++) {
1211 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
1218 ERROR(rt2x00dev, "Unstable hardware.\n");
1223 * Prepare MCU and mailbox for firmware loading.
1226 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
1227 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1228 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1229 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1230 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1233 * Write firmware to device.
1236 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
1237 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1);
1238 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1240 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1243 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0);
1244 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1246 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0);
1247 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1249 for (i = 0; i < 100; i++) {
1250 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, ®);
1251 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1257 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1262 * Hardware needs another millisecond before it is ready.
1267 * Reset MAC and BBP registers.
1270 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
1271 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
1272 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1274 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1275 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
1276 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
1277 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1279 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1280 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
1281 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1287 * Initialization functions.
1289 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1291 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1294 if (entry->queue->qid == QID_RX) {
1295 rt2x00_desc_read(entry_priv->desc, 0, &word);
1297 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1299 rt2x00_desc_read(entry_priv->desc, 0, &word);
1301 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1302 rt2x00_get_field32(word, TXD_W0_VALID));
1306 static void rt61pci_clear_entry(struct queue_entry *entry)
1308 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1309 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1312 if (entry->queue->qid == QID_RX) {
1313 rt2x00_desc_read(entry_priv->desc, 5, &word);
1314 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1316 rt2x00_desc_write(entry_priv->desc, 5, word);
1318 rt2x00_desc_read(entry_priv->desc, 0, &word);
1319 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1320 rt2x00_desc_write(entry_priv->desc, 0, word);
1322 rt2x00_desc_read(entry_priv->desc, 0, &word);
1323 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1324 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1325 rt2x00_desc_write(entry_priv->desc, 0, word);
1329 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1331 struct queue_entry_priv_pci *entry_priv;
1335 * Initialize registers.
1337 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, ®);
1338 rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE,
1339 rt2x00dev->tx[0].limit);
1340 rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE,
1341 rt2x00dev->tx[1].limit);
1342 rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE,
1343 rt2x00dev->tx[2].limit);
1344 rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE,
1345 rt2x00dev->tx[3].limit);
1346 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1348 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, ®);
1349 rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE,
1350 rt2x00dev->tx[0].desc_size / 4);
1351 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1353 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1354 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, ®);
1355 rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER,
1356 entry_priv->desc_dma);
1357 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1359 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1360 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, ®);
1361 rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER,
1362 entry_priv->desc_dma);
1363 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1365 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1366 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, ®);
1367 rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER,
1368 entry_priv->desc_dma);
1369 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1371 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1372 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, ®);
1373 rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER,
1374 entry_priv->desc_dma);
1375 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1377 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, ®);
1378 rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1379 rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE,
1380 rt2x00dev->rx->desc_size / 4);
1381 rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1382 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1384 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1385 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, ®);
1386 rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER,
1387 entry_priv->desc_dma);
1388 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1390 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, ®);
1391 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2);
1392 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2);
1393 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2);
1394 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2);
1395 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1397 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®);
1398 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1399 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1400 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1401 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1402 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1404 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
1405 rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1);
1406 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1411 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1415 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
1416 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1);
1417 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
1418 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1419 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1421 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, ®);
1422 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1423 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1);
1424 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1425 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1);
1426 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1427 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1);
1428 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1429 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1);
1430 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1433 * CCK TXD BBP registers
1435 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, ®);
1436 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13);
1437 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1);
1438 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12);
1439 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1);
1440 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11);
1441 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1);
1442 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10);
1443 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1);
1444 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1447 * OFDM TXD BBP registers
1449 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, ®);
1450 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7);
1451 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1);
1452 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6);
1453 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1);
1454 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5);
1455 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1);
1456 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1458 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, ®);
1459 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59);
1460 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53);
1461 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49);
1462 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46);
1463 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1465 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, ®);
1466 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44);
1467 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42);
1468 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42);
1469 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42);
1470 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1472 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
1473 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0);
1474 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1475 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0);
1476 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1477 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1478 rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1479 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1481 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1483 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1485 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
1486 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0);
1487 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1489 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1491 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1494 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1497 * Invalidate all Shared Keys (SEC_CSR0),
1498 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1500 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1501 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1502 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1504 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1505 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1506 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1507 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1509 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1511 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1513 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1517 * For the Beacon base registers we only need to clear
1518 * the first byte since that byte contains the VALID and OWNER
1519 * bits which (when set to 0) will invalidate the entire beacon.
1521 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1522 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1523 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1524 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1527 * We must clear the error counters.
1528 * These registers are cleared on read,
1529 * so we may pass a useless variable to store the value.
1531 rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
1532 rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
1533 rt2x00pci_register_read(rt2x00dev, STA_CSR2, ®);
1536 * Reset MAC and BBP registers.
1538 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1539 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
1540 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
1541 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1543 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1544 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
1545 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
1546 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1548 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1549 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
1550 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1555 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1560 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1561 rt61pci_bbp_read(rt2x00dev, 0, &value);
1562 if ((value != 0xff) && (value != 0x00))
1564 udelay(REGISTER_BUSY_DELAY);
1567 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1571 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1578 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1581 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1582 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1583 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1584 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1585 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1586 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1587 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1588 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1589 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1590 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1591 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1592 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1593 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1594 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1595 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1596 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1597 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1598 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1599 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1600 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1601 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1602 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1603 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1604 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1606 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1607 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1609 if (eeprom != 0xffff && eeprom != 0x0000) {
1610 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1611 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1612 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1620 * Device state switch handlers.
1622 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1623 enum dev_state state)
1627 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
1628 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX,
1629 (state == STATE_RADIO_RX_OFF) ||
1630 (state == STATE_RADIO_RX_OFF_LINK));
1631 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1634 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1635 enum dev_state state)
1637 int mask = (state == STATE_RADIO_IRQ_OFF);
1641 * When interrupts are being enabled, the interrupt registers
1642 * should clear the register to assure a clean state.
1644 if (state == STATE_RADIO_IRQ_ON) {
1645 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
1646 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1648 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®);
1649 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1653 * Only toggle the interrupts bits we are going to use.
1654 * Non-checked interrupt bits are disabled by default.
1656 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®);
1657 rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask);
1658 rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask);
1659 rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1660 rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1661 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1663 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®);
1664 rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask);
1665 rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask);
1666 rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask);
1667 rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask);
1668 rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask);
1669 rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask);
1670 rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask);
1671 rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask);
1672 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1675 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1680 * Initialize all registers.
1682 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1683 rt61pci_init_registers(rt2x00dev) ||
1684 rt61pci_init_bbp(rt2x00dev)))
1690 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
1691 rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1692 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1697 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1702 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1705 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1711 put_to_sleep = (state != STATE_AWAKE);
1713 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
1714 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1715 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1716 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1719 * Device is not guaranteed to be in the requested state yet.
1720 * We must wait until the register indicates that the
1721 * device has entered the correct state.
1723 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1724 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
1725 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1726 if (state == !put_to_sleep)
1734 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1735 enum dev_state state)
1740 case STATE_RADIO_ON:
1741 retval = rt61pci_enable_radio(rt2x00dev);
1743 case STATE_RADIO_OFF:
1744 rt61pci_disable_radio(rt2x00dev);
1746 case STATE_RADIO_RX_ON:
1747 case STATE_RADIO_RX_ON_LINK:
1748 case STATE_RADIO_RX_OFF:
1749 case STATE_RADIO_RX_OFF_LINK:
1750 rt61pci_toggle_rx(rt2x00dev, state);
1752 case STATE_RADIO_IRQ_ON:
1753 case STATE_RADIO_IRQ_OFF:
1754 rt61pci_toggle_irq(rt2x00dev, state);
1756 case STATE_DEEP_SLEEP:
1760 retval = rt61pci_set_state(rt2x00dev, state);
1767 if (unlikely(retval))
1768 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1775 * TX descriptor initialization
1777 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1778 struct sk_buff *skb,
1779 struct txentry_desc *txdesc)
1781 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1782 __le32 *txd = skbdesc->desc;
1786 * Start writing the descriptor words.
1788 rt2x00_desc_read(txd, 1, &word);
1789 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1790 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1791 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1792 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1793 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1794 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1795 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1796 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1797 rt2x00_desc_write(txd, 1, word);
1799 rt2x00_desc_read(txd, 2, &word);
1800 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1801 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1802 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1803 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1804 rt2x00_desc_write(txd, 2, word);
1806 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1807 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1808 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1811 rt2x00_desc_read(txd, 5, &word);
1812 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1813 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1814 skbdesc->entry->entry_idx);
1815 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1816 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1817 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1818 rt2x00_desc_write(txd, 5, word);
1820 rt2x00_desc_read(txd, 6, &word);
1821 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1823 rt2x00_desc_write(txd, 6, word);
1825 if (skbdesc->desc_len > TXINFO_SIZE) {
1826 rt2x00_desc_read(txd, 11, &word);
1827 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1828 rt2x00_desc_write(txd, 11, word);
1831 rt2x00_desc_read(txd, 0, &word);
1832 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1833 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1834 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1835 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1836 rt2x00_set_field32(&word, TXD_W0_ACK,
1837 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1838 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1839 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1840 rt2x00_set_field32(&word, TXD_W0_OFDM,
1841 (txdesc->rate_mode == RATE_MODE_OFDM));
1842 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1843 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1844 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1845 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1846 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1847 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1848 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1849 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1850 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1851 rt2x00_set_field32(&word, TXD_W0_BURST,
1852 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1853 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1854 rt2x00_desc_write(txd, 0, word);
1858 * TX data initialization
1860 static void rt61pci_write_beacon(struct queue_entry *entry)
1862 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1863 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1864 unsigned int beacon_base;
1868 * Disable beaconing while we are reloading the beacon data,
1869 * otherwise we might be sending out invalid data.
1871 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
1872 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1873 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1874 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1875 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1878 * Write entire beacon with descriptor to register.
1880 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1881 rt2x00pci_register_multiwrite(rt2x00dev,
1883 skbdesc->desc, skbdesc->desc_len);
1884 rt2x00pci_register_multiwrite(rt2x00dev,
1885 beacon_base + skbdesc->desc_len,
1886 entry->skb->data, entry->skb->len);
1889 * Clean up beacon skb.
1891 dev_kfree_skb_any(entry->skb);
1895 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1896 const enum data_queue_qid queue)
1900 if (queue == QID_BEACON) {
1902 * For Wi-Fi faily generated beacons between participating
1903 * stations. Set TBTT phase adaptive adjustment step to 8us.
1905 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1907 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
1908 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1909 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
1910 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
1911 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1912 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1917 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
1918 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1919 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1920 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1921 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1922 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1925 static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1926 const enum data_queue_qid qid)
1930 if (qid == QID_BEACON) {
1931 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1935 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
1936 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1937 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1938 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1939 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1940 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1944 * RX control handlers
1946 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1948 u8 offset = rt2x00dev->lna_gain;
1951 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1966 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1967 if (lna == 3 || lna == 2)
1971 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1974 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1975 struct rxdone_entry_desc *rxdesc)
1977 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1978 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1982 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1983 rt2x00_desc_read(entry_priv->desc, 1, &word1);
1985 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1986 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1988 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1990 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1991 rxdesc->cipher_status =
1992 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1995 if (rxdesc->cipher != CIPHER_NONE) {
1996 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1997 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1998 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2000 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2001 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2004 * Hardware has stripped IV/EIV data from 802.11 frame during
2005 * decryption. It has provided the data seperately but rt2x00lib
2006 * should decide if it should be reinserted.
2008 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2011 * FIXME: Legacy driver indicates that the frame does
2012 * contain the Michael Mic. Unfortunately, in rt2x00
2013 * the MIC seems to be missing completely...
2015 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2017 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2018 rxdesc->flags |= RX_FLAG_DECRYPTED;
2019 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2020 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2024 * Obtain the status about this packet.
2025 * When frame was received with an OFDM bitrate,
2026 * the signal is the PLCP value. If it was received with
2027 * a CCK bitrate the signal is the rate in 100kbit/s.
2029 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2030 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2031 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2033 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2034 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2036 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2037 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2038 rxdesc->dev_flags |= RXDONE_MY_BSS;
2042 * Interrupt functions.
2044 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2046 struct data_queue *queue;
2047 struct queue_entry *entry;
2048 struct queue_entry *entry_done;
2049 struct queue_entry_priv_pci *entry_priv;
2050 struct txdone_entry_desc txdesc;
2058 * During each loop we will compare the freshly read
2059 * STA_CSR4 register value with the value read from
2060 * the previous loop. If the 2 values are equal then
2061 * we should stop processing because the chance it
2062 * quite big that the device has been unplugged and
2063 * we risk going into an endless loop.
2068 rt2x00pci_register_read(rt2x00dev, STA_CSR4, ®);
2069 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2077 * Skip this entry when it contains an invalid
2078 * queue identication number.
2080 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2081 queue = rt2x00queue_get_queue(rt2x00dev, type);
2082 if (unlikely(!queue))
2086 * Skip this entry when it contains an invalid
2089 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2090 if (unlikely(index >= queue->limit))
2093 entry = &queue->entries[index];
2094 entry_priv = entry->priv_data;
2095 rt2x00_desc_read(entry_priv->desc, 0, &word);
2097 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2098 !rt2x00_get_field32(word, TXD_W0_VALID))
2101 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2102 while (entry != entry_done) {
2104 * Just report any entries we missed as failed.
2107 "TX status report missed for entry %d\n",
2108 entry_done->entry_idx);
2111 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2114 rt2x00lib_txdone(entry_done, &txdesc);
2115 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2119 * Obtain the status about this packet.
2122 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2123 case 0: /* Success, maybe with retry */
2124 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2126 case 6: /* Failure, excessive retries */
2127 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2128 /* Don't break, this is a failed frame! */
2129 default: /* Failure */
2130 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2132 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2134 rt2x00lib_txdone(entry, &txdesc);
2138 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2140 struct rt2x00_dev *rt2x00dev = dev_instance;
2145 * Get the interrupt sources & saved to local variable.
2146 * Write register value back to clear pending interrupts.
2148 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu);
2149 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2151 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
2152 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2154 if (!reg && !reg_mcu)
2157 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2161 * Handle interrupts, walk through all bits
2162 * and run the tasks, the bits are checked in order of
2167 * 1 - Rx ring done interrupt.
2169 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2170 rt2x00pci_rxdone(rt2x00dev);
2173 * 2 - Tx ring done interrupt.
2175 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2176 rt61pci_txdone(rt2x00dev);
2179 * 3 - Handle MCU command done.
2182 rt2x00pci_register_write(rt2x00dev,
2183 M2H_CMD_DONE_CSR, 0xffffffff);
2189 * Device probe functions.
2191 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2193 struct eeprom_93cx6 eeprom;
2199 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
2201 eeprom.data = rt2x00dev;
2202 eeprom.register_read = rt61pci_eepromregister_read;
2203 eeprom.register_write = rt61pci_eepromregister_write;
2204 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2205 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2206 eeprom.reg_data_in = 0;
2207 eeprom.reg_data_out = 0;
2208 eeprom.reg_data_clock = 0;
2209 eeprom.reg_chip_select = 0;
2211 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2212 EEPROM_SIZE / sizeof(u16));
2215 * Start validation of the data that has been read.
2217 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2218 if (!is_valid_ether_addr(mac)) {
2219 random_ether_addr(mac);
2220 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2223 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2224 if (word == 0xffff) {
2225 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2226 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2228 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2230 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2231 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2232 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2233 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2234 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2235 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2238 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2239 if (word == 0xffff) {
2240 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2241 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2242 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2243 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2244 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2245 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2246 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2247 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2248 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2251 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2252 if (word == 0xffff) {
2253 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2255 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2256 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2259 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2260 if (word == 0xffff) {
2261 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2262 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2263 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2264 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2267 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2268 if (word == 0xffff) {
2269 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2270 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2271 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2272 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2274 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2275 if (value < -10 || value > 10)
2276 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2277 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2278 if (value < -10 || value > 10)
2279 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2280 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2283 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2284 if (word == 0xffff) {
2285 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2286 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2287 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2288 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2290 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2291 if (value < -10 || value > 10)
2292 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2293 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2294 if (value < -10 || value > 10)
2295 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2296 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2302 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2310 * Read EEPROM word for configuration.
2312 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2315 * Identify RF chipset.
2316 * To determine the RT chip we have to read the
2317 * PCI header of the device.
2319 pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2320 PCI_CONFIG_HEADER_DEVICE, &device);
2321 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2322 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
2323 rt2x00_set_chip(rt2x00dev, device, value, reg);
2325 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2326 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2327 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2328 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2329 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2334 * Determine number of antenna's.
2336 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2337 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2340 * Identify default antenna configuration.
2342 rt2x00dev->default_ant.tx =
2343 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2344 rt2x00dev->default_ant.rx =
2345 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2348 * Read the Frame type.
2350 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2351 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2354 * Detect if this device has an hardware controlled radio.
2356 #ifdef CONFIG_RT2X00_LIB_RFKILL
2357 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2358 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2359 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2362 * Read frequency offset and RF programming sequence.
2364 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2365 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2366 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2368 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2371 * Read external LNA informations.
2373 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2375 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2376 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2377 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2378 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2381 * When working with a RF2529 chip without double antenna
2382 * the antenna settings should be gathered from the NIC
2385 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2386 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2387 rt2x00dev->default_ant.rx =
2388 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2389 rt2x00dev->default_ant.tx =
2390 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2392 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2393 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2394 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2395 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2399 * Store led settings, for correct led behaviour.
2400 * If the eeprom value is invalid,
2401 * switch to default led mode.
2403 #ifdef CONFIG_RT2X00_LIB_LEDS
2404 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2405 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2407 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2408 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2409 if (value == LED_MODE_SIGNAL_STRENGTH)
2410 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2413 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2414 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2415 rt2x00_get_field16(eeprom,
2416 EEPROM_LED_POLARITY_GPIO_0));
2417 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2418 rt2x00_get_field16(eeprom,
2419 EEPROM_LED_POLARITY_GPIO_1));
2420 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2421 rt2x00_get_field16(eeprom,
2422 EEPROM_LED_POLARITY_GPIO_2));
2423 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2424 rt2x00_get_field16(eeprom,
2425 EEPROM_LED_POLARITY_GPIO_3));
2426 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2427 rt2x00_get_field16(eeprom,
2428 EEPROM_LED_POLARITY_GPIO_4));
2429 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2430 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2431 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2432 rt2x00_get_field16(eeprom,
2433 EEPROM_LED_POLARITY_RDY_G));
2434 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2435 rt2x00_get_field16(eeprom,
2436 EEPROM_LED_POLARITY_RDY_A));
2437 #endif /* CONFIG_RT2X00_LIB_LEDS */
2443 * RF value list for RF5225 & RF5325
2444 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2446 static const struct rf_channel rf_vals_noseq[] = {
2447 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2448 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2449 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2450 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2451 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2452 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2453 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2454 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2455 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2456 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2457 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2458 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2459 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2460 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2462 /* 802.11 UNI / HyperLan 2 */
2463 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2464 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2465 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2466 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2467 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2468 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2469 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2470 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2472 /* 802.11 HyperLan 2 */
2473 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2474 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2475 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2476 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2477 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2478 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2479 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2480 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2481 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2482 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2485 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2486 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2487 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2488 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2489 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2490 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2492 /* MMAC(Japan)J52 ch 34,38,42,46 */
2493 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2494 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2495 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2496 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2500 * RF value list for RF5225 & RF5325
2501 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2503 static const struct rf_channel rf_vals_seq[] = {
2504 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2505 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2506 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2507 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2508 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2509 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2510 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2511 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2512 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2513 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2514 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2515 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2516 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2517 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2519 /* 802.11 UNI / HyperLan 2 */
2520 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2521 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2522 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2523 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2524 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2525 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2526 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2527 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2529 /* 802.11 HyperLan 2 */
2530 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2531 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2532 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2533 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2534 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2535 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2536 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2537 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2538 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2539 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2542 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2543 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2544 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2545 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2546 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2547 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2549 /* MMAC(Japan)J52 ch 34,38,42,46 */
2550 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2551 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2552 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2553 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2556 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2558 struct hw_mode_spec *spec = &rt2x00dev->spec;
2559 struct channel_info *info;
2564 * Initialize all hw fields.
2566 rt2x00dev->hw->flags =
2567 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2568 IEEE80211_HW_SIGNAL_DBM |
2569 IEEE80211_HW_SUPPORTS_PS |
2570 IEEE80211_HW_PS_NULLFUNC_STACK;
2571 rt2x00dev->hw->extra_tx_headroom = 0;
2573 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2574 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2575 rt2x00_eeprom_addr(rt2x00dev,
2576 EEPROM_MAC_ADDR_0));
2579 * Initialize hw_mode information.
2581 spec->supported_bands = SUPPORT_BAND_2GHZ;
2582 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2584 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2585 spec->num_channels = 14;
2586 spec->channels = rf_vals_noseq;
2588 spec->num_channels = 14;
2589 spec->channels = rf_vals_seq;
2592 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2593 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2594 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2595 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2599 * Create channel information array
2601 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2605 spec->channels_info = info;
2607 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2608 for (i = 0; i < 14; i++)
2609 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2611 if (spec->num_channels > 14) {
2612 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2613 for (i = 14; i < spec->num_channels; i++)
2614 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2620 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2625 * Allocate eeprom data.
2627 retval = rt61pci_validate_eeprom(rt2x00dev);
2631 retval = rt61pci_init_eeprom(rt2x00dev);
2636 * Initialize hw specifications.
2638 retval = rt61pci_probe_hw_mode(rt2x00dev);
2643 * This device requires firmware and DMA mapped skbs.
2645 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2646 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2647 if (!modparam_nohwcrypt)
2648 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2651 * Set the rssi offset.
2653 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2659 * IEEE80211 stack callback functions.
2661 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2662 const struct ieee80211_tx_queue_params *params)
2664 struct rt2x00_dev *rt2x00dev = hw->priv;
2665 struct data_queue *queue;
2666 struct rt2x00_field32 field;
2672 * First pass the configuration through rt2x00lib, that will
2673 * update the queue settings and validate the input. After that
2674 * we are free to update the registers based on the value
2675 * in the queue parameter.
2677 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2682 * We only need to perform additional register initialization
2688 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2690 /* Update WMM TXOP register */
2691 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2692 field.bit_offset = (queue_idx & 1) * 16;
2693 field.bit_mask = 0xffff << field.bit_offset;
2695 rt2x00pci_register_read(rt2x00dev, offset, ®);
2696 rt2x00_set_field32(®, field, queue->txop);
2697 rt2x00pci_register_write(rt2x00dev, offset, reg);
2699 /* Update WMM registers */
2700 field.bit_offset = queue_idx * 4;
2701 field.bit_mask = 0xf << field.bit_offset;
2703 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, ®);
2704 rt2x00_set_field32(®, field, queue->aifs);
2705 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2707 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, ®);
2708 rt2x00_set_field32(®, field, queue->cw_min);
2709 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2711 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, ®);
2712 rt2x00_set_field32(®, field, queue->cw_max);
2713 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2718 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2720 struct rt2x00_dev *rt2x00dev = hw->priv;
2724 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, ®);
2725 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2726 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, ®);
2727 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2732 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2734 .start = rt2x00mac_start,
2735 .stop = rt2x00mac_stop,
2736 .add_interface = rt2x00mac_add_interface,
2737 .remove_interface = rt2x00mac_remove_interface,
2738 .config = rt2x00mac_config,
2739 .config_interface = rt2x00mac_config_interface,
2740 .configure_filter = rt2x00mac_configure_filter,
2741 .set_key = rt2x00mac_set_key,
2742 .get_stats = rt2x00mac_get_stats,
2743 .bss_info_changed = rt2x00mac_bss_info_changed,
2744 .conf_tx = rt61pci_conf_tx,
2745 .get_tx_stats = rt2x00mac_get_tx_stats,
2746 .get_tsf = rt61pci_get_tsf,
2749 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2750 .irq_handler = rt61pci_interrupt,
2751 .probe_hw = rt61pci_probe_hw,
2752 .get_firmware_name = rt61pci_get_firmware_name,
2753 .get_firmware_crc = rt61pci_get_firmware_crc,
2754 .load_firmware = rt61pci_load_firmware,
2755 .initialize = rt2x00pci_initialize,
2756 .uninitialize = rt2x00pci_uninitialize,
2757 .get_entry_state = rt61pci_get_entry_state,
2758 .clear_entry = rt61pci_clear_entry,
2759 .set_device_state = rt61pci_set_device_state,
2760 .rfkill_poll = rt61pci_rfkill_poll,
2761 .link_stats = rt61pci_link_stats,
2762 .reset_tuner = rt61pci_reset_tuner,
2763 .link_tuner = rt61pci_link_tuner,
2764 .write_tx_desc = rt61pci_write_tx_desc,
2765 .write_tx_data = rt2x00pci_write_tx_data,
2766 .write_beacon = rt61pci_write_beacon,
2767 .kick_tx_queue = rt61pci_kick_tx_queue,
2768 .kill_tx_queue = rt61pci_kill_tx_queue,
2769 .fill_rxdone = rt61pci_fill_rxdone,
2770 .config_shared_key = rt61pci_config_shared_key,
2771 .config_pairwise_key = rt61pci_config_pairwise_key,
2772 .config_filter = rt61pci_config_filter,
2773 .config_intf = rt61pci_config_intf,
2774 .config_erp = rt61pci_config_erp,
2775 .config_ant = rt61pci_config_ant,
2776 .config = rt61pci_config,
2779 static const struct data_queue_desc rt61pci_queue_rx = {
2780 .entry_num = RX_ENTRIES,
2781 .data_size = DATA_FRAME_SIZE,
2782 .desc_size = RXD_DESC_SIZE,
2783 .priv_size = sizeof(struct queue_entry_priv_pci),
2786 static const struct data_queue_desc rt61pci_queue_tx = {
2787 .entry_num = TX_ENTRIES,
2788 .data_size = DATA_FRAME_SIZE,
2789 .desc_size = TXD_DESC_SIZE,
2790 .priv_size = sizeof(struct queue_entry_priv_pci),
2793 static const struct data_queue_desc rt61pci_queue_bcn = {
2794 .entry_num = 4 * BEACON_ENTRIES,
2795 .data_size = 0, /* No DMA required for beacons */
2796 .desc_size = TXINFO_SIZE,
2797 .priv_size = sizeof(struct queue_entry_priv_pci),
2800 static const struct rt2x00_ops rt61pci_ops = {
2801 .name = KBUILD_MODNAME,
2804 .eeprom_size = EEPROM_SIZE,
2806 .tx_queues = NUM_TX_QUEUES,
2807 .rx = &rt61pci_queue_rx,
2808 .tx = &rt61pci_queue_tx,
2809 .bcn = &rt61pci_queue_bcn,
2810 .lib = &rt61pci_rt2x00_ops,
2811 .hw = &rt61pci_mac80211_ops,
2812 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2813 .debugfs = &rt61pci_rt2x00debug,
2814 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2818 * RT61pci module information.
2820 static struct pci_device_id rt61pci_device_table[] = {
2822 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2824 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2826 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2830 MODULE_AUTHOR(DRV_PROJECT);
2831 MODULE_VERSION(DRV_VERSION);
2832 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2833 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2834 "PCI & PCMCIA chipset based cards");
2835 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2836 MODULE_FIRMWARE(FIRMWARE_RT2561);
2837 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2838 MODULE_FIRMWARE(FIRMWARE_RT2661);
2839 MODULE_LICENSE("GPL");
2841 static struct pci_driver rt61pci_driver = {
2842 .name = KBUILD_MODNAME,
2843 .id_table = rt61pci_device_table,
2844 .probe = rt2x00pci_probe,
2845 .remove = __devexit_p(rt2x00pci_remove),
2846 .suspend = rt2x00pci_suspend,
2847 .resume = rt2x00pci_resume,
2850 static int __init rt61pci_init(void)
2852 return pci_register_driver(&rt61pci_driver);
2855 static void __exit rt61pci_exit(void)
2857 pci_unregister_driver(&rt61pci_driver);
2860 module_init(rt61pci_init);
2861 module_exit(rt61pci_exit);