2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 # define CHECK_DEVLOCK()
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
101 static inline int raid6_next_disk(int disk, int raid_disks)
104 return (disk < raid_disks) ? disk : 0;
107 static void return_io(struct bio *return_bi)
109 struct bio *bi = return_bi;
111 int bytes = bi->bi_size;
113 return_bi = bi->bi_next;
116 bi->bi_end_io(bi, bytes,
117 test_bit(BIO_UPTODATE, &bi->bi_flags)
123 static void print_raid5_conf (raid5_conf_t *conf);
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
127 if (atomic_dec_and_test(&sh->count)) {
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
132 list_add_tail(&sh->lru, &conf->delayed_list);
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135 sh->bm_seq - conf->seq_write > 0) {
136 list_add_tail(&sh->lru, &conf->bitmap_list);
137 blk_plug_device(conf->mddev->queue);
139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140 list_add_tail(&sh->lru, &conf->handle_list);
142 md_wakeup_thread(conf->mddev->thread);
144 BUG_ON(sh->ops.pending);
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
150 atomic_dec(&conf->active_stripes);
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
153 wake_up(&conf->wait_for_stripe);
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
160 static void release_stripe(struct stripe_head *sh)
162 raid5_conf_t *conf = sh->raid_conf;
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
170 static inline void remove_hash(struct stripe_head *sh)
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
175 hlist_del_init(&sh->hash);
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
186 hlist_add_head(&sh->hash, hp);
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
197 if (list_empty(&conf->inactive_list))
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
203 atomic_inc(&conf->active_stripes);
208 static void shrink_buffers(struct stripe_head *sh, int num)
213 for (i=0; i<num ; i++) {
217 sh->dev[i].page = NULL;
222 static int grow_buffers(struct stripe_head *sh, int num)
226 for (i=0; i<num; i++) {
229 if (!(page = alloc_page(GFP_KERNEL))) {
232 sh->dev[i].page = page;
237 static void raid5_build_block (struct stripe_head *sh, int i);
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
241 raid5_conf_t *conf = sh->raid_conf;
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
249 pr_debug("init_stripe called, stripe %llu\n",
250 (unsigned long long)sh->sector);
260 for (i = sh->disks; i--; ) {
261 struct r5dev *dev = &sh->dev[i];
263 if (dev->toread || dev->read || dev->towrite || dev->written ||
264 test_bit(R5_LOCKED, &dev->flags)) {
265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266 (unsigned long long)sh->sector, i, dev->toread,
267 dev->read, dev->towrite, dev->written,
268 test_bit(R5_LOCKED, &dev->flags));
272 raid5_build_block(sh, i);
274 insert_hash(conf, sh);
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
279 struct stripe_head *sh;
280 struct hlist_node *hn;
283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285 if (sh->sector == sector && sh->disks == disks)
287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
297 struct stripe_head *sh;
299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
301 spin_lock_irq(&conf->device_lock);
304 wait_event_lock_irq(conf->wait_for_stripe,
306 conf->device_lock, /* nothing */);
307 sh = __find_stripe(conf, sector, disks);
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
319 || !conf->inactive_blocked),
321 raid5_unplug_device(conf->mddev->queue)
323 conf->inactive_blocked = 0;
325 init_stripe(sh, sector, pd_idx, disks);
327 if (atomic_read(&sh->count)) {
328 BUG_ON(!list_empty(&sh->lru));
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
335 list_del_init(&sh->lru);
338 } while (sh == NULL);
341 atomic_inc(&sh->count);
343 spin_unlock_irq(&conf->device_lock);
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
357 clear_bit(op, &pend); \
360 /* find new work to run, do not resubmit work that is already
363 static unsigned long get_stripe_work(struct stripe_head *sh)
365 unsigned long pending;
368 pending = sh->ops.pending;
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
376 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
379 sh->ops.count -= ack;
380 BUG_ON(sh->ops.count < 0);
386 raid5_end_read_request(struct bio *bi, unsigned int bytes_done, int error);
388 raid5_end_write_request (struct bio *bi, unsigned int bytes_done, int error);
390 static void ops_run_io(struct stripe_head *sh)
392 raid5_conf_t *conf = sh->raid_conf;
393 int i, disks = sh->disks;
397 for (i = disks; i--; ) {
401 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
403 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
408 bi = &sh->dev[i].req;
412 bi->bi_end_io = raid5_end_write_request;
414 bi->bi_end_io = raid5_end_read_request;
417 rdev = rcu_dereference(conf->disks[i].rdev);
418 if (rdev && test_bit(Faulty, &rdev->flags))
421 atomic_inc(&rdev->nr_pending);
425 if (test_bit(STRIPE_SYNCING, &sh->state) ||
426 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
427 test_bit(STRIPE_EXPAND_READY, &sh->state))
428 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
430 bi->bi_bdev = rdev->bdev;
431 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
432 __FUNCTION__, (unsigned long long)sh->sector,
434 atomic_inc(&sh->count);
435 bi->bi_sector = sh->sector + rdev->data_offset;
436 bi->bi_flags = 1 << BIO_UPTODATE;
440 bi->bi_io_vec = &sh->dev[i].vec;
441 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
442 bi->bi_io_vec[0].bv_offset = 0;
443 bi->bi_size = STRIPE_SIZE;
446 test_bit(R5_ReWrite, &sh->dev[i].flags))
447 atomic_add(STRIPE_SECTORS,
448 &rdev->corrected_errors);
449 generic_make_request(bi);
452 set_bit(STRIPE_DEGRADED, &sh->state);
453 pr_debug("skip op %ld on disc %d for sector %llu\n",
454 bi->bi_rw, i, (unsigned long long)sh->sector);
455 clear_bit(R5_LOCKED, &sh->dev[i].flags);
456 set_bit(STRIPE_HANDLE, &sh->state);
461 static struct dma_async_tx_descriptor *
462 async_copy_data(int frombio, struct bio *bio, struct page *page,
463 sector_t sector, struct dma_async_tx_descriptor *tx)
466 struct page *bio_page;
470 if (bio->bi_sector >= sector)
471 page_offset = (signed)(bio->bi_sector - sector) * 512;
473 page_offset = (signed)(sector - bio->bi_sector) * -512;
474 bio_for_each_segment(bvl, bio, i) {
475 int len = bio_iovec_idx(bio, i)->bv_len;
479 if (page_offset < 0) {
480 b_offset = -page_offset;
481 page_offset += b_offset;
485 if (len > 0 && page_offset + len > STRIPE_SIZE)
486 clen = STRIPE_SIZE - page_offset;
491 b_offset += bio_iovec_idx(bio, i)->bv_offset;
492 bio_page = bio_iovec_idx(bio, i)->bv_page;
494 tx = async_memcpy(page, bio_page, page_offset,
499 tx = async_memcpy(bio_page, page, b_offset,
504 if (clen < len) /* hit end of page */
512 static void ops_complete_biofill(void *stripe_head_ref)
514 struct stripe_head *sh = stripe_head_ref;
515 struct bio *return_bi = NULL;
516 raid5_conf_t *conf = sh->raid_conf;
517 int i, more_to_read = 0;
519 pr_debug("%s: stripe %llu\n", __FUNCTION__,
520 (unsigned long long)sh->sector);
522 /* clear completed biofills */
523 for (i = sh->disks; i--; ) {
524 struct r5dev *dev = &sh->dev[i];
525 /* check if this stripe has new incoming reads */
529 /* acknowledge completion of a biofill operation */
530 /* and check if we need to reply to a read request
532 if (test_bit(R5_Wantfill, &dev->flags) && !dev->toread) {
533 struct bio *rbi, *rbi2;
534 clear_bit(R5_Wantfill, &dev->flags);
536 /* The access to dev->read is outside of the
537 * spin_lock_irq(&conf->device_lock), but is protected
538 * by the STRIPE_OP_BIOFILL pending bit
543 while (rbi && rbi->bi_sector <
544 dev->sector + STRIPE_SECTORS) {
545 rbi2 = r5_next_bio(rbi, dev->sector);
546 spin_lock_irq(&conf->device_lock);
547 if (--rbi->bi_phys_segments == 0) {
548 rbi->bi_next = return_bi;
551 spin_unlock_irq(&conf->device_lock);
556 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
557 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
559 return_io(return_bi);
562 set_bit(STRIPE_HANDLE, &sh->state);
566 static void ops_run_biofill(struct stripe_head *sh)
568 struct dma_async_tx_descriptor *tx = NULL;
569 raid5_conf_t *conf = sh->raid_conf;
572 pr_debug("%s: stripe %llu\n", __FUNCTION__,
573 (unsigned long long)sh->sector);
575 for (i = sh->disks; i--; ) {
576 struct r5dev *dev = &sh->dev[i];
577 if (test_bit(R5_Wantfill, &dev->flags)) {
579 spin_lock_irq(&conf->device_lock);
580 dev->read = rbi = dev->toread;
582 spin_unlock_irq(&conf->device_lock);
583 while (rbi && rbi->bi_sector <
584 dev->sector + STRIPE_SECTORS) {
585 tx = async_copy_data(0, rbi, dev->page,
587 rbi = r5_next_bio(rbi, dev->sector);
592 atomic_inc(&sh->count);
593 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
594 ops_complete_biofill, sh);
597 static void ops_complete_compute5(void *stripe_head_ref)
599 struct stripe_head *sh = stripe_head_ref;
600 int target = sh->ops.target;
601 struct r5dev *tgt = &sh->dev[target];
603 pr_debug("%s: stripe %llu\n", __FUNCTION__,
604 (unsigned long long)sh->sector);
606 set_bit(R5_UPTODATE, &tgt->flags);
607 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
608 clear_bit(R5_Wantcompute, &tgt->flags);
609 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
610 set_bit(STRIPE_HANDLE, &sh->state);
614 static struct dma_async_tx_descriptor *
615 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
617 /* kernel stack size limits the total number of disks */
618 int disks = sh->disks;
619 struct page *xor_srcs[disks];
620 int target = sh->ops.target;
621 struct r5dev *tgt = &sh->dev[target];
622 struct page *xor_dest = tgt->page;
624 struct dma_async_tx_descriptor *tx;
627 pr_debug("%s: stripe %llu block: %d\n",
628 __FUNCTION__, (unsigned long long)sh->sector, target);
629 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
631 for (i = disks; i--; )
633 xor_srcs[count++] = sh->dev[i].page;
635 atomic_inc(&sh->count);
637 if (unlikely(count == 1))
638 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
639 0, NULL, ops_complete_compute5, sh);
641 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
642 ASYNC_TX_XOR_ZERO_DST, NULL,
643 ops_complete_compute5, sh);
645 /* ack now if postxor is not set to be run */
646 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
652 static void ops_complete_prexor(void *stripe_head_ref)
654 struct stripe_head *sh = stripe_head_ref;
656 pr_debug("%s: stripe %llu\n", __FUNCTION__,
657 (unsigned long long)sh->sector);
659 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
662 static struct dma_async_tx_descriptor *
663 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
665 /* kernel stack size limits the total number of disks */
666 int disks = sh->disks;
667 struct page *xor_srcs[disks];
668 int count = 0, pd_idx = sh->pd_idx, i;
670 /* existing parity data subtracted */
671 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
673 pr_debug("%s: stripe %llu\n", __FUNCTION__,
674 (unsigned long long)sh->sector);
676 for (i = disks; i--; ) {
677 struct r5dev *dev = &sh->dev[i];
678 /* Only process blocks that are known to be uptodate */
679 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
680 xor_srcs[count++] = dev->page;
683 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
684 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
685 ops_complete_prexor, sh);
690 static struct dma_async_tx_descriptor *
691 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
693 int disks = sh->disks;
694 int pd_idx = sh->pd_idx, i;
696 /* check if prexor is active which means only process blocks
697 * that are part of a read-modify-write (Wantprexor)
699 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
701 pr_debug("%s: stripe %llu\n", __FUNCTION__,
702 (unsigned long long)sh->sector);
704 for (i = disks; i--; ) {
705 struct r5dev *dev = &sh->dev[i];
710 if (prexor) { /* rmw */
712 test_bit(R5_Wantprexor, &dev->flags))
715 if (i != pd_idx && dev->towrite &&
716 test_bit(R5_LOCKED, &dev->flags))
723 spin_lock(&sh->lock);
724 chosen = dev->towrite;
726 BUG_ON(dev->written);
727 wbi = dev->written = chosen;
728 spin_unlock(&sh->lock);
730 while (wbi && wbi->bi_sector <
731 dev->sector + STRIPE_SECTORS) {
732 tx = async_copy_data(1, wbi, dev->page,
734 wbi = r5_next_bio(wbi, dev->sector);
742 static void ops_complete_postxor(void *stripe_head_ref)
744 struct stripe_head *sh = stripe_head_ref;
746 pr_debug("%s: stripe %llu\n", __FUNCTION__,
747 (unsigned long long)sh->sector);
749 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750 set_bit(STRIPE_HANDLE, &sh->state);
754 static void ops_complete_write(void *stripe_head_ref)
756 struct stripe_head *sh = stripe_head_ref;
757 int disks = sh->disks, i, pd_idx = sh->pd_idx;
759 pr_debug("%s: stripe %llu\n", __FUNCTION__,
760 (unsigned long long)sh->sector);
762 for (i = disks; i--; ) {
763 struct r5dev *dev = &sh->dev[i];
764 if (dev->written || i == pd_idx)
765 set_bit(R5_UPTODATE, &dev->flags);
768 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
771 set_bit(STRIPE_HANDLE, &sh->state);
776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
778 /* kernel stack size limits the total number of disks */
779 int disks = sh->disks;
780 struct page *xor_srcs[disks];
782 int count = 0, pd_idx = sh->pd_idx, i;
783 struct page *xor_dest;
784 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
786 dma_async_tx_callback callback;
788 pr_debug("%s: stripe %llu\n", __FUNCTION__,
789 (unsigned long long)sh->sector);
791 /* check if prexor is active which means only process blocks
792 * that are part of a read-modify-write (written)
795 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
796 for (i = disks; i--; ) {
797 struct r5dev *dev = &sh->dev[i];
799 xor_srcs[count++] = dev->page;
802 xor_dest = sh->dev[pd_idx].page;
803 for (i = disks; i--; ) {
804 struct r5dev *dev = &sh->dev[i];
806 xor_srcs[count++] = dev->page;
810 /* check whether this postxor is part of a write */
811 callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
812 ops_complete_write : ops_complete_postxor;
814 /* 1/ if we prexor'd then the dest is reused as a source
815 * 2/ if we did not prexor then we are redoing the parity
816 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
817 * for the synchronous xor case
819 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
820 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
822 atomic_inc(&sh->count);
824 if (unlikely(count == 1)) {
825 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
826 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
827 flags, tx, callback, sh);
829 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
830 flags, tx, callback, sh);
833 static void ops_complete_check(void *stripe_head_ref)
835 struct stripe_head *sh = stripe_head_ref;
836 int pd_idx = sh->pd_idx;
838 pr_debug("%s: stripe %llu\n", __FUNCTION__,
839 (unsigned long long)sh->sector);
841 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
842 sh->ops.zero_sum_result == 0)
843 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
845 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
846 set_bit(STRIPE_HANDLE, &sh->state);
850 static void ops_run_check(struct stripe_head *sh)
852 /* kernel stack size limits the total number of disks */
853 int disks = sh->disks;
854 struct page *xor_srcs[disks];
855 struct dma_async_tx_descriptor *tx;
857 int count = 0, pd_idx = sh->pd_idx, i;
858 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
860 pr_debug("%s: stripe %llu\n", __FUNCTION__,
861 (unsigned long long)sh->sector);
863 for (i = disks; i--; ) {
864 struct r5dev *dev = &sh->dev[i];
866 xor_srcs[count++] = dev->page;
869 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
870 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
873 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
875 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
877 atomic_inc(&sh->count);
878 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
879 ops_complete_check, sh);
882 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
884 int overlap_clear = 0, i, disks = sh->disks;
885 struct dma_async_tx_descriptor *tx = NULL;
887 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
892 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
893 tx = ops_run_compute5(sh, pending);
895 if (test_bit(STRIPE_OP_PREXOR, &pending))
896 tx = ops_run_prexor(sh, tx);
898 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
899 tx = ops_run_biodrain(sh, tx);
903 if (test_bit(STRIPE_OP_POSTXOR, &pending))
904 ops_run_postxor(sh, tx);
906 if (test_bit(STRIPE_OP_CHECK, &pending))
909 if (test_bit(STRIPE_OP_IO, &pending))
913 for (i = disks; i--; ) {
914 struct r5dev *dev = &sh->dev[i];
915 if (test_and_clear_bit(R5_Overlap, &dev->flags))
916 wake_up(&sh->raid_conf->wait_for_overlap);
920 static int grow_one_stripe(raid5_conf_t *conf)
922 struct stripe_head *sh;
923 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
926 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
927 sh->raid_conf = conf;
928 spin_lock_init(&sh->lock);
930 if (grow_buffers(sh, conf->raid_disks)) {
931 shrink_buffers(sh, conf->raid_disks);
932 kmem_cache_free(conf->slab_cache, sh);
935 sh->disks = conf->raid_disks;
936 /* we just created an active stripe so... */
937 atomic_set(&sh->count, 1);
938 atomic_inc(&conf->active_stripes);
939 INIT_LIST_HEAD(&sh->lru);
944 static int grow_stripes(raid5_conf_t *conf, int num)
946 struct kmem_cache *sc;
947 int devs = conf->raid_disks;
949 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
950 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
951 conf->active_name = 0;
952 sc = kmem_cache_create(conf->cache_name[conf->active_name],
953 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
957 conf->slab_cache = sc;
958 conf->pool_size = devs;
960 if (!grow_one_stripe(conf))
965 #ifdef CONFIG_MD_RAID5_RESHAPE
966 static int resize_stripes(raid5_conf_t *conf, int newsize)
968 /* Make all the stripes able to hold 'newsize' devices.
969 * New slots in each stripe get 'page' set to a new page.
971 * This happens in stages:
972 * 1/ create a new kmem_cache and allocate the required number of
974 * 2/ gather all the old stripe_heads and tranfer the pages across
975 * to the new stripe_heads. This will have the side effect of
976 * freezing the array as once all stripe_heads have been collected,
977 * no IO will be possible. Old stripe heads are freed once their
978 * pages have been transferred over, and the old kmem_cache is
979 * freed when all stripes are done.
980 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
981 * we simple return a failre status - no need to clean anything up.
982 * 4/ allocate new pages for the new slots in the new stripe_heads.
983 * If this fails, we don't bother trying the shrink the
984 * stripe_heads down again, we just leave them as they are.
985 * As each stripe_head is processed the new one is released into
988 * Once step2 is started, we cannot afford to wait for a write,
989 * so we use GFP_NOIO allocations.
991 struct stripe_head *osh, *nsh;
992 LIST_HEAD(newstripes);
993 struct disk_info *ndisks;
995 struct kmem_cache *sc;
998 if (newsize <= conf->pool_size)
999 return 0; /* never bother to shrink */
1001 md_allow_write(conf->mddev);
1004 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1005 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1010 for (i = conf->max_nr_stripes; i; i--) {
1011 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1015 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1017 nsh->raid_conf = conf;
1018 spin_lock_init(&nsh->lock);
1020 list_add(&nsh->lru, &newstripes);
1023 /* didn't get enough, give up */
1024 while (!list_empty(&newstripes)) {
1025 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1026 list_del(&nsh->lru);
1027 kmem_cache_free(sc, nsh);
1029 kmem_cache_destroy(sc);
1032 /* Step 2 - Must use GFP_NOIO now.
1033 * OK, we have enough stripes, start collecting inactive
1034 * stripes and copying them over
1036 list_for_each_entry(nsh, &newstripes, lru) {
1037 spin_lock_irq(&conf->device_lock);
1038 wait_event_lock_irq(conf->wait_for_stripe,
1039 !list_empty(&conf->inactive_list),
1041 unplug_slaves(conf->mddev)
1043 osh = get_free_stripe(conf);
1044 spin_unlock_irq(&conf->device_lock);
1045 atomic_set(&nsh->count, 1);
1046 for(i=0; i<conf->pool_size; i++)
1047 nsh->dev[i].page = osh->dev[i].page;
1048 for( ; i<newsize; i++)
1049 nsh->dev[i].page = NULL;
1050 kmem_cache_free(conf->slab_cache, osh);
1052 kmem_cache_destroy(conf->slab_cache);
1055 * At this point, we are holding all the stripes so the array
1056 * is completely stalled, so now is a good time to resize
1059 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1061 for (i=0; i<conf->raid_disks; i++)
1062 ndisks[i] = conf->disks[i];
1064 conf->disks = ndisks;
1068 /* Step 4, return new stripes to service */
1069 while(!list_empty(&newstripes)) {
1070 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1071 list_del_init(&nsh->lru);
1072 for (i=conf->raid_disks; i < newsize; i++)
1073 if (nsh->dev[i].page == NULL) {
1074 struct page *p = alloc_page(GFP_NOIO);
1075 nsh->dev[i].page = p;
1079 release_stripe(nsh);
1081 /* critical section pass, GFP_NOIO no longer needed */
1083 conf->slab_cache = sc;
1084 conf->active_name = 1-conf->active_name;
1085 conf->pool_size = newsize;
1090 static int drop_one_stripe(raid5_conf_t *conf)
1092 struct stripe_head *sh;
1094 spin_lock_irq(&conf->device_lock);
1095 sh = get_free_stripe(conf);
1096 spin_unlock_irq(&conf->device_lock);
1099 BUG_ON(atomic_read(&sh->count));
1100 shrink_buffers(sh, conf->pool_size);
1101 kmem_cache_free(conf->slab_cache, sh);
1102 atomic_dec(&conf->active_stripes);
1106 static void shrink_stripes(raid5_conf_t *conf)
1108 while (drop_one_stripe(conf))
1111 if (conf->slab_cache)
1112 kmem_cache_destroy(conf->slab_cache);
1113 conf->slab_cache = NULL;
1116 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1119 struct stripe_head *sh = bi->bi_private;
1120 raid5_conf_t *conf = sh->raid_conf;
1121 int disks = sh->disks, i;
1122 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1123 char b[BDEVNAME_SIZE];
1129 for (i=0 ; i<disks; i++)
1130 if (bi == &sh->dev[i].req)
1133 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1134 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1142 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1143 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1144 rdev = conf->disks[i].rdev;
1145 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1146 mdname(conf->mddev), STRIPE_SECTORS,
1147 (unsigned long long)sh->sector + rdev->data_offset,
1148 bdevname(rdev->bdev, b));
1149 clear_bit(R5_ReadError, &sh->dev[i].flags);
1150 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1152 if (atomic_read(&conf->disks[i].rdev->read_errors))
1153 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1155 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1157 rdev = conf->disks[i].rdev;
1159 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1160 atomic_inc(&rdev->read_errors);
1161 if (conf->mddev->degraded)
1162 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1163 mdname(conf->mddev),
1164 (unsigned long long)sh->sector + rdev->data_offset,
1166 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1168 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1169 mdname(conf->mddev),
1170 (unsigned long long)sh->sector + rdev->data_offset,
1172 else if (atomic_read(&rdev->read_errors)
1173 > conf->max_nr_stripes)
1175 "raid5:%s: Too many read errors, failing device %s.\n",
1176 mdname(conf->mddev), bdn);
1180 set_bit(R5_ReadError, &sh->dev[i].flags);
1182 clear_bit(R5_ReadError, &sh->dev[i].flags);
1183 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1184 md_error(conf->mddev, rdev);
1187 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1188 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1189 set_bit(STRIPE_HANDLE, &sh->state);
1194 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
1197 struct stripe_head *sh = bi->bi_private;
1198 raid5_conf_t *conf = sh->raid_conf;
1199 int disks = sh->disks, i;
1200 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1205 for (i=0 ; i<disks; i++)
1206 if (bi == &sh->dev[i].req)
1209 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1210 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1218 md_error(conf->mddev, conf->disks[i].rdev);
1220 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1222 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1223 set_bit(STRIPE_HANDLE, &sh->state);
1229 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1231 static void raid5_build_block (struct stripe_head *sh, int i)
1233 struct r5dev *dev = &sh->dev[i];
1235 bio_init(&dev->req);
1236 dev->req.bi_io_vec = &dev->vec;
1238 dev->req.bi_max_vecs++;
1239 dev->vec.bv_page = dev->page;
1240 dev->vec.bv_len = STRIPE_SIZE;
1241 dev->vec.bv_offset = 0;
1243 dev->req.bi_sector = sh->sector;
1244 dev->req.bi_private = sh;
1247 dev->sector = compute_blocknr(sh, i);
1250 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1252 char b[BDEVNAME_SIZE];
1253 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1254 pr_debug("raid5: error called\n");
1256 if (!test_bit(Faulty, &rdev->flags)) {
1257 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1258 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1259 unsigned long flags;
1260 spin_lock_irqsave(&conf->device_lock, flags);
1262 spin_unlock_irqrestore(&conf->device_lock, flags);
1264 * if recovery was running, make sure it aborts.
1266 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1268 set_bit(Faulty, &rdev->flags);
1270 "raid5: Disk failure on %s, disabling device."
1271 " Operation continuing on %d devices\n",
1272 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1277 * Input: a 'big' sector number,
1278 * Output: index of the data and parity disk, and the sector # in them.
1280 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1281 unsigned int data_disks, unsigned int * dd_idx,
1282 unsigned int * pd_idx, raid5_conf_t *conf)
1285 unsigned long chunk_number;
1286 unsigned int chunk_offset;
1287 sector_t new_sector;
1288 int sectors_per_chunk = conf->chunk_size >> 9;
1290 /* First compute the information on this sector */
1293 * Compute the chunk number and the sector offset inside the chunk
1295 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1296 chunk_number = r_sector;
1297 BUG_ON(r_sector != chunk_number);
1300 * Compute the stripe number
1302 stripe = chunk_number / data_disks;
1305 * Compute the data disk and parity disk indexes inside the stripe
1307 *dd_idx = chunk_number % data_disks;
1310 * Select the parity disk based on the user selected algorithm.
1312 switch(conf->level) {
1314 *pd_idx = data_disks;
1317 switch (conf->algorithm) {
1318 case ALGORITHM_LEFT_ASYMMETRIC:
1319 *pd_idx = data_disks - stripe % raid_disks;
1320 if (*dd_idx >= *pd_idx)
1323 case ALGORITHM_RIGHT_ASYMMETRIC:
1324 *pd_idx = stripe % raid_disks;
1325 if (*dd_idx >= *pd_idx)
1328 case ALGORITHM_LEFT_SYMMETRIC:
1329 *pd_idx = data_disks - stripe % raid_disks;
1330 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1332 case ALGORITHM_RIGHT_SYMMETRIC:
1333 *pd_idx = stripe % raid_disks;
1334 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1337 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1343 /**** FIX THIS ****/
1344 switch (conf->algorithm) {
1345 case ALGORITHM_LEFT_ASYMMETRIC:
1346 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1347 if (*pd_idx == raid_disks-1)
1348 (*dd_idx)++; /* Q D D D P */
1349 else if (*dd_idx >= *pd_idx)
1350 (*dd_idx) += 2; /* D D P Q D */
1352 case ALGORITHM_RIGHT_ASYMMETRIC:
1353 *pd_idx = stripe % raid_disks;
1354 if (*pd_idx == raid_disks-1)
1355 (*dd_idx)++; /* Q D D D P */
1356 else if (*dd_idx >= *pd_idx)
1357 (*dd_idx) += 2; /* D D P Q D */
1359 case ALGORITHM_LEFT_SYMMETRIC:
1360 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1361 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1363 case ALGORITHM_RIGHT_SYMMETRIC:
1364 *pd_idx = stripe % raid_disks;
1365 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1368 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1375 * Finally, compute the new sector number
1377 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1382 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1384 raid5_conf_t *conf = sh->raid_conf;
1385 int raid_disks = sh->disks;
1386 int data_disks = raid_disks - conf->max_degraded;
1387 sector_t new_sector = sh->sector, check;
1388 int sectors_per_chunk = conf->chunk_size >> 9;
1391 int chunk_number, dummy1, dummy2, dd_idx = i;
1395 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1396 stripe = new_sector;
1397 BUG_ON(new_sector != stripe);
1399 if (i == sh->pd_idx)
1401 switch(conf->level) {
1404 switch (conf->algorithm) {
1405 case ALGORITHM_LEFT_ASYMMETRIC:
1406 case ALGORITHM_RIGHT_ASYMMETRIC:
1410 case ALGORITHM_LEFT_SYMMETRIC:
1411 case ALGORITHM_RIGHT_SYMMETRIC:
1414 i -= (sh->pd_idx + 1);
1417 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1422 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1423 return 0; /* It is the Q disk */
1424 switch (conf->algorithm) {
1425 case ALGORITHM_LEFT_ASYMMETRIC:
1426 case ALGORITHM_RIGHT_ASYMMETRIC:
1427 if (sh->pd_idx == raid_disks-1)
1428 i--; /* Q D D D P */
1429 else if (i > sh->pd_idx)
1430 i -= 2; /* D D P Q D */
1432 case ALGORITHM_LEFT_SYMMETRIC:
1433 case ALGORITHM_RIGHT_SYMMETRIC:
1434 if (sh->pd_idx == raid_disks-1)
1435 i--; /* Q D D D P */
1440 i -= (sh->pd_idx + 2);
1444 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1450 chunk_number = stripe * data_disks + i;
1451 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1453 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1454 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1455 printk(KERN_ERR "compute_blocknr: map not correct\n");
1464 * Copy data between a page in the stripe cache, and one or more bion
1465 * The page could align with the middle of the bio, or there could be
1466 * several bion, each with several bio_vecs, which cover part of the page
1467 * Multiple bion are linked together on bi_next. There may be extras
1468 * at the end of this list. We ignore them.
1470 static void copy_data(int frombio, struct bio *bio,
1474 char *pa = page_address(page);
1475 struct bio_vec *bvl;
1479 if (bio->bi_sector >= sector)
1480 page_offset = (signed)(bio->bi_sector - sector) * 512;
1482 page_offset = (signed)(sector - bio->bi_sector) * -512;
1483 bio_for_each_segment(bvl, bio, i) {
1484 int len = bio_iovec_idx(bio,i)->bv_len;
1488 if (page_offset < 0) {
1489 b_offset = -page_offset;
1490 page_offset += b_offset;
1494 if (len > 0 && page_offset + len > STRIPE_SIZE)
1495 clen = STRIPE_SIZE - page_offset;
1499 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1501 memcpy(pa+page_offset, ba+b_offset, clen);
1503 memcpy(ba+b_offset, pa+page_offset, clen);
1504 __bio_kunmap_atomic(ba, KM_USER0);
1506 if (clen < len) /* hit end of page */
1512 #define check_xor() do { \
1513 if (count == MAX_XOR_BLOCKS) { \
1514 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1519 static void compute_parity6(struct stripe_head *sh, int method)
1521 raid6_conf_t *conf = sh->raid_conf;
1522 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1524 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1527 qd_idx = raid6_next_disk(pd_idx, disks);
1528 d0_idx = raid6_next_disk(qd_idx, disks);
1530 pr_debug("compute_parity, stripe %llu, method %d\n",
1531 (unsigned long long)sh->sector, method);
1534 case READ_MODIFY_WRITE:
1535 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1536 case RECONSTRUCT_WRITE:
1537 for (i= disks; i-- ;)
1538 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1539 chosen = sh->dev[i].towrite;
1540 sh->dev[i].towrite = NULL;
1542 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1543 wake_up(&conf->wait_for_overlap);
1545 BUG_ON(sh->dev[i].written);
1546 sh->dev[i].written = chosen;
1550 BUG(); /* Not implemented yet */
1553 for (i = disks; i--;)
1554 if (sh->dev[i].written) {
1555 sector_t sector = sh->dev[i].sector;
1556 struct bio *wbi = sh->dev[i].written;
1557 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1558 copy_data(1, wbi, sh->dev[i].page, sector);
1559 wbi = r5_next_bio(wbi, sector);
1562 set_bit(R5_LOCKED, &sh->dev[i].flags);
1563 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1567 // case RECONSTRUCT_WRITE:
1568 // case CHECK_PARITY:
1569 // case UPDATE_PARITY:
1570 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1571 /* FIX: Is this ordering of drives even remotely optimal? */
1575 ptrs[count++] = page_address(sh->dev[i].page);
1576 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1577 printk("block %d/%d not uptodate on parity calc\n", i,count);
1578 i = raid6_next_disk(i, disks);
1579 } while ( i != d0_idx );
1583 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1586 case RECONSTRUCT_WRITE:
1587 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1588 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1589 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1590 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1593 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1594 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1600 /* Compute one missing block */
1601 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1603 int i, count, disks = sh->disks;
1604 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1605 int pd_idx = sh->pd_idx;
1606 int qd_idx = raid6_next_disk(pd_idx, disks);
1608 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1609 (unsigned long long)sh->sector, dd_idx);
1611 if ( dd_idx == qd_idx ) {
1612 /* We're actually computing the Q drive */
1613 compute_parity6(sh, UPDATE_PARITY);
1615 dest = page_address(sh->dev[dd_idx].page);
1616 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1618 for (i = disks ; i--; ) {
1619 if (i == dd_idx || i == qd_idx)
1621 p = page_address(sh->dev[i].page);
1622 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1625 printk("compute_block() %d, stripe %llu, %d"
1626 " not present\n", dd_idx,
1627 (unsigned long long)sh->sector, i);
1632 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1633 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1634 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1638 /* Compute two missing blocks */
1639 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1641 int i, count, disks = sh->disks;
1642 int pd_idx = sh->pd_idx;
1643 int qd_idx = raid6_next_disk(pd_idx, disks);
1644 int d0_idx = raid6_next_disk(qd_idx, disks);
1647 /* faila and failb are disk numbers relative to d0_idx */
1648 /* pd_idx become disks-2 and qd_idx become disks-1 */
1649 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1650 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1652 BUG_ON(faila == failb);
1653 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1655 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1656 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1658 if ( failb == disks-1 ) {
1659 /* Q disk is one of the missing disks */
1660 if ( faila == disks-2 ) {
1661 /* Missing P+Q, just recompute */
1662 compute_parity6(sh, UPDATE_PARITY);
1665 /* We're missing D+Q; recompute D from P */
1666 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1667 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1672 /* We're missing D+P or D+D; build pointer table */
1674 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1680 ptrs[count++] = page_address(sh->dev[i].page);
1681 i = raid6_next_disk(i, disks);
1682 if (i != dd_idx1 && i != dd_idx2 &&
1683 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1684 printk("compute_2 with missing block %d/%d\n", count, i);
1685 } while ( i != d0_idx );
1687 if ( failb == disks-2 ) {
1688 /* We're missing D+P. */
1689 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1691 /* We're missing D+D. */
1692 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1695 /* Both the above update both missing blocks */
1696 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1697 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1702 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1704 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1708 /* if we are not expanding this is a proper write request, and
1709 * there will be bios with new data to be drained into the
1713 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1717 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1720 for (i = disks; i--; ) {
1721 struct r5dev *dev = &sh->dev[i];
1724 set_bit(R5_LOCKED, &dev->flags);
1726 clear_bit(R5_UPTODATE, &dev->flags);
1731 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1732 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1734 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1735 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1736 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1740 for (i = disks; i--; ) {
1741 struct r5dev *dev = &sh->dev[i];
1745 /* For a read-modify write there may be blocks that are
1746 * locked for reading while others are ready to be
1747 * written so we distinguish these blocks by the
1751 (test_bit(R5_UPTODATE, &dev->flags) ||
1752 test_bit(R5_Wantcompute, &dev->flags))) {
1753 set_bit(R5_Wantprexor, &dev->flags);
1754 set_bit(R5_LOCKED, &dev->flags);
1755 clear_bit(R5_UPTODATE, &dev->flags);
1761 /* keep the parity disk locked while asynchronous operations
1764 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1765 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1768 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1769 __FUNCTION__, (unsigned long long)sh->sector,
1770 locked, sh->ops.pending);
1776 * Each stripe/dev can have one or more bion attached.
1777 * toread/towrite point to the first in a chain.
1778 * The bi_next chain must be in order.
1780 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1783 raid5_conf_t *conf = sh->raid_conf;
1786 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1787 (unsigned long long)bi->bi_sector,
1788 (unsigned long long)sh->sector);
1791 spin_lock(&sh->lock);
1792 spin_lock_irq(&conf->device_lock);
1794 bip = &sh->dev[dd_idx].towrite;
1795 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1798 bip = &sh->dev[dd_idx].toread;
1799 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1800 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1802 bip = & (*bip)->bi_next;
1804 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1807 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1811 bi->bi_phys_segments ++;
1812 spin_unlock_irq(&conf->device_lock);
1813 spin_unlock(&sh->lock);
1815 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1816 (unsigned long long)bi->bi_sector,
1817 (unsigned long long)sh->sector, dd_idx);
1819 if (conf->mddev->bitmap && firstwrite) {
1820 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1822 sh->bm_seq = conf->seq_flush+1;
1823 set_bit(STRIPE_BIT_DELAY, &sh->state);
1827 /* check if page is covered */
1828 sector_t sector = sh->dev[dd_idx].sector;
1829 for (bi=sh->dev[dd_idx].towrite;
1830 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1831 bi && bi->bi_sector <= sector;
1832 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1833 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1834 sector = bi->bi_sector + (bi->bi_size>>9);
1836 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1837 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1842 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1843 spin_unlock_irq(&conf->device_lock);
1844 spin_unlock(&sh->lock);
1848 static void end_reshape(raid5_conf_t *conf);
1850 static int page_is_zero(struct page *p)
1852 char *a = page_address(p);
1853 return ((*(u32*)a) == 0 &&
1854 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1857 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1859 int sectors_per_chunk = conf->chunk_size >> 9;
1861 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1863 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1864 *sectors_per_chunk + chunk_offset,
1865 disks, disks - conf->max_degraded,
1866 &dd_idx, &pd_idx, conf);
1871 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1872 struct stripe_head_state *s, int disks,
1873 struct bio **return_bi)
1876 for (i = disks; i--; ) {
1880 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1883 rdev = rcu_dereference(conf->disks[i].rdev);
1884 if (rdev && test_bit(In_sync, &rdev->flags))
1885 /* multiple read failures in one stripe */
1886 md_error(conf->mddev, rdev);
1889 spin_lock_irq(&conf->device_lock);
1890 /* fail all writes first */
1891 bi = sh->dev[i].towrite;
1892 sh->dev[i].towrite = NULL;
1898 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1899 wake_up(&conf->wait_for_overlap);
1901 while (bi && bi->bi_sector <
1902 sh->dev[i].sector + STRIPE_SECTORS) {
1903 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1904 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1905 if (--bi->bi_phys_segments == 0) {
1906 md_write_end(conf->mddev);
1907 bi->bi_next = *return_bi;
1912 /* and fail all 'written' */
1913 bi = sh->dev[i].written;
1914 sh->dev[i].written = NULL;
1915 if (bi) bitmap_end = 1;
1916 while (bi && bi->bi_sector <
1917 sh->dev[i].sector + STRIPE_SECTORS) {
1918 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1919 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1920 if (--bi->bi_phys_segments == 0) {
1921 md_write_end(conf->mddev);
1922 bi->bi_next = *return_bi;
1928 /* fail any reads if this device is non-operational and
1929 * the data has not reached the cache yet.
1931 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1932 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1933 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1934 bi = sh->dev[i].toread;
1935 sh->dev[i].toread = NULL;
1936 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1937 wake_up(&conf->wait_for_overlap);
1938 if (bi) s->to_read--;
1939 while (bi && bi->bi_sector <
1940 sh->dev[i].sector + STRIPE_SECTORS) {
1941 struct bio *nextbi =
1942 r5_next_bio(bi, sh->dev[i].sector);
1943 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1944 if (--bi->bi_phys_segments == 0) {
1945 bi->bi_next = *return_bi;
1951 spin_unlock_irq(&conf->device_lock);
1953 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1954 STRIPE_SECTORS, 0, 0);
1959 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1962 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1963 struct stripe_head_state *s, int disk_idx, int disks)
1965 struct r5dev *dev = &sh->dev[disk_idx];
1966 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1968 /* don't schedule compute operations or reads on the parity block while
1969 * a check is in flight
1971 if ((disk_idx == sh->pd_idx) &&
1972 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1975 /* is the data in this block needed, and can we get it? */
1976 if (!test_bit(R5_LOCKED, &dev->flags) &&
1977 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1978 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1979 s->syncing || s->expanding || (s->failed &&
1980 (failed_dev->toread || (failed_dev->towrite &&
1981 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1983 /* 1/ We would like to get this block, possibly by computing it,
1984 * but we might not be able to.
1986 * 2/ Since parity check operations potentially make the parity
1987 * block !uptodate it will need to be refreshed before any
1988 * compute operations on data disks are scheduled.
1990 * 3/ We hold off parity block re-reads until check operations
1993 if ((s->uptodate == disks - 1) &&
1994 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1995 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1996 set_bit(R5_Wantcompute, &dev->flags);
1997 sh->ops.target = disk_idx;
2000 /* Careful: from this point on 'uptodate' is in the eye
2001 * of raid5_run_ops which services 'compute' operations
2002 * before writes. R5_Wantcompute flags a block that will
2003 * be R5_UPTODATE by the time it is needed for a
2004 * subsequent operation.
2007 return 0; /* uptodate + compute == disks */
2008 } else if ((s->uptodate < disks - 1) &&
2009 test_bit(R5_Insync, &dev->flags)) {
2010 /* Note: we hold off compute operations while checks are
2011 * in flight, but we still prefer 'compute' over 'read'
2012 * hence we only read if (uptodate < * disks-1)
2014 set_bit(R5_LOCKED, &dev->flags);
2015 set_bit(R5_Wantread, &dev->flags);
2016 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2019 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2027 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2028 struct stripe_head_state *s, int disks)
2032 /* Clear completed compute operations. Parity recovery
2033 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2034 * later on in this routine
2036 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2037 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2038 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2039 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2040 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2043 /* look for blocks to read/compute, skip this if a compute
2044 * is already in flight, or if the stripe contents are in the
2045 * midst of changing due to a write
2047 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2048 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2049 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2050 for (i = disks; i--; )
2051 if (__handle_issuing_new_read_requests5(
2052 sh, s, i, disks) == 0)
2055 set_bit(STRIPE_HANDLE, &sh->state);
2058 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2059 struct stripe_head_state *s, struct r6_state *r6s,
2063 for (i = disks; i--; ) {
2064 struct r5dev *dev = &sh->dev[i];
2065 if (!test_bit(R5_LOCKED, &dev->flags) &&
2066 !test_bit(R5_UPTODATE, &dev->flags) &&
2067 (dev->toread || (dev->towrite &&
2068 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2069 s->syncing || s->expanding ||
2071 (sh->dev[r6s->failed_num[0]].toread ||
2074 (sh->dev[r6s->failed_num[1]].toread ||
2076 /* we would like to get this block, possibly
2077 * by computing it, but we might not be able to
2079 if (s->uptodate == disks-1) {
2080 pr_debug("Computing stripe %llu block %d\n",
2081 (unsigned long long)sh->sector, i);
2082 compute_block_1(sh, i, 0);
2084 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2085 /* Computing 2-failure is *very* expensive; only
2086 * do it if failed >= 2
2089 for (other = disks; other--; ) {
2092 if (!test_bit(R5_UPTODATE,
2093 &sh->dev[other].flags))
2097 pr_debug("Computing stripe %llu blocks %d,%d\n",
2098 (unsigned long long)sh->sector,
2100 compute_block_2(sh, i, other);
2102 } else if (test_bit(R5_Insync, &dev->flags)) {
2103 set_bit(R5_LOCKED, &dev->flags);
2104 set_bit(R5_Wantread, &dev->flags);
2106 pr_debug("Reading block %d (sync=%d)\n",
2111 set_bit(STRIPE_HANDLE, &sh->state);
2115 /* handle_completed_write_requests
2116 * any written block on an uptodate or failed drive can be returned.
2117 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2118 * never LOCKED, so we don't need to test 'failed' directly.
2120 static void handle_completed_write_requests(raid5_conf_t *conf,
2121 struct stripe_head *sh, int disks, struct bio **return_bi)
2126 for (i = disks; i--; )
2127 if (sh->dev[i].written) {
2129 if (!test_bit(R5_LOCKED, &dev->flags) &&
2130 test_bit(R5_UPTODATE, &dev->flags)) {
2131 /* We can return any write requests */
2132 struct bio *wbi, *wbi2;
2134 pr_debug("Return write for disc %d\n", i);
2135 spin_lock_irq(&conf->device_lock);
2137 dev->written = NULL;
2138 while (wbi && wbi->bi_sector <
2139 dev->sector + STRIPE_SECTORS) {
2140 wbi2 = r5_next_bio(wbi, dev->sector);
2141 if (--wbi->bi_phys_segments == 0) {
2142 md_write_end(conf->mddev);
2143 wbi->bi_next = *return_bi;
2148 if (dev->towrite == NULL)
2150 spin_unlock_irq(&conf->device_lock);
2152 bitmap_endwrite(conf->mddev->bitmap,
2155 !test_bit(STRIPE_DEGRADED, &sh->state),
2161 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2162 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2164 int rmw = 0, rcw = 0, i;
2165 for (i = disks; i--; ) {
2166 /* would I have to read this buffer for read_modify_write */
2167 struct r5dev *dev = &sh->dev[i];
2168 if ((dev->towrite || i == sh->pd_idx) &&
2169 !test_bit(R5_LOCKED, &dev->flags) &&
2170 !(test_bit(R5_UPTODATE, &dev->flags) ||
2171 test_bit(R5_Wantcompute, &dev->flags))) {
2172 if (test_bit(R5_Insync, &dev->flags))
2175 rmw += 2*disks; /* cannot read it */
2177 /* Would I have to read this buffer for reconstruct_write */
2178 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2179 !test_bit(R5_LOCKED, &dev->flags) &&
2180 !(test_bit(R5_UPTODATE, &dev->flags) ||
2181 test_bit(R5_Wantcompute, &dev->flags))) {
2182 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2187 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2188 (unsigned long long)sh->sector, rmw, rcw);
2189 set_bit(STRIPE_HANDLE, &sh->state);
2190 if (rmw < rcw && rmw > 0)
2191 /* prefer read-modify-write, but need to get some data */
2192 for (i = disks; i--; ) {
2193 struct r5dev *dev = &sh->dev[i];
2194 if ((dev->towrite || i == sh->pd_idx) &&
2195 !test_bit(R5_LOCKED, &dev->flags) &&
2196 !(test_bit(R5_UPTODATE, &dev->flags) ||
2197 test_bit(R5_Wantcompute, &dev->flags)) &&
2198 test_bit(R5_Insync, &dev->flags)) {
2200 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2201 pr_debug("Read_old block "
2202 "%d for r-m-w\n", i);
2203 set_bit(R5_LOCKED, &dev->flags);
2204 set_bit(R5_Wantread, &dev->flags);
2205 if (!test_and_set_bit(
2206 STRIPE_OP_IO, &sh->ops.pending))
2210 set_bit(STRIPE_DELAYED, &sh->state);
2211 set_bit(STRIPE_HANDLE, &sh->state);
2215 if (rcw <= rmw && rcw > 0)
2216 /* want reconstruct write, but need to get some data */
2217 for (i = disks; i--; ) {
2218 struct r5dev *dev = &sh->dev[i];
2219 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2221 !test_bit(R5_LOCKED, &dev->flags) &&
2222 !(test_bit(R5_UPTODATE, &dev->flags) ||
2223 test_bit(R5_Wantcompute, &dev->flags)) &&
2224 test_bit(R5_Insync, &dev->flags)) {
2226 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2227 pr_debug("Read_old block "
2228 "%d for Reconstruct\n", i);
2229 set_bit(R5_LOCKED, &dev->flags);
2230 set_bit(R5_Wantread, &dev->flags);
2231 if (!test_and_set_bit(
2232 STRIPE_OP_IO, &sh->ops.pending))
2236 set_bit(STRIPE_DELAYED, &sh->state);
2237 set_bit(STRIPE_HANDLE, &sh->state);
2241 /* now if nothing is locked, and if we have enough data,
2242 * we can start a write request
2244 /* since handle_stripe can be called at any time we need to handle the
2245 * case where a compute block operation has been submitted and then a
2246 * subsequent call wants to start a write request. raid5_run_ops only
2247 * handles the case where compute block and postxor are requested
2248 * simultaneously. If this is not the case then new writes need to be
2249 * held off until the compute completes.
2251 if ((s->req_compute ||
2252 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2253 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2254 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2255 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2258 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2259 struct stripe_head *sh, struct stripe_head_state *s,
2260 struct r6_state *r6s, int disks)
2262 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2263 int qd_idx = r6s->qd_idx;
2264 for (i = disks; i--; ) {
2265 struct r5dev *dev = &sh->dev[i];
2266 /* Would I have to read this buffer for reconstruct_write */
2267 if (!test_bit(R5_OVERWRITE, &dev->flags)
2268 && i != pd_idx && i != qd_idx
2269 && (!test_bit(R5_LOCKED, &dev->flags)
2271 !test_bit(R5_UPTODATE, &dev->flags)) {
2272 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2274 pr_debug("raid6: must_compute: "
2275 "disk %d flags=%#lx\n", i, dev->flags);
2280 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2281 (unsigned long long)sh->sector, rcw, must_compute);
2282 set_bit(STRIPE_HANDLE, &sh->state);
2285 /* want reconstruct write, but need to get some data */
2286 for (i = disks; i--; ) {
2287 struct r5dev *dev = &sh->dev[i];
2288 if (!test_bit(R5_OVERWRITE, &dev->flags)
2289 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2290 && !test_bit(R5_LOCKED, &dev->flags) &&
2291 !test_bit(R5_UPTODATE, &dev->flags) &&
2292 test_bit(R5_Insync, &dev->flags)) {
2294 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2295 pr_debug("Read_old stripe %llu "
2296 "block %d for Reconstruct\n",
2297 (unsigned long long)sh->sector, i);
2298 set_bit(R5_LOCKED, &dev->flags);
2299 set_bit(R5_Wantread, &dev->flags);
2302 pr_debug("Request delayed stripe %llu "
2303 "block %d for Reconstruct\n",
2304 (unsigned long long)sh->sector, i);
2305 set_bit(STRIPE_DELAYED, &sh->state);
2306 set_bit(STRIPE_HANDLE, &sh->state);
2310 /* now if nothing is locked, and if we have enough data, we can start a
2313 if (s->locked == 0 && rcw == 0 &&
2314 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2315 if (must_compute > 0) {
2316 /* We have failed blocks and need to compute them */
2317 switch (s->failed) {
2321 compute_block_1(sh, r6s->failed_num[0], 0);
2324 compute_block_2(sh, r6s->failed_num[0],
2325 r6s->failed_num[1]);
2327 default: /* This request should have been failed? */
2332 pr_debug("Computing parity for stripe %llu\n",
2333 (unsigned long long)sh->sector);
2334 compute_parity6(sh, RECONSTRUCT_WRITE);
2335 /* now every locked buffer is ready to be written */
2336 for (i = disks; i--; )
2337 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2338 pr_debug("Writing stripe %llu block %d\n",
2339 (unsigned long long)sh->sector, i);
2341 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2343 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2344 set_bit(STRIPE_INSYNC, &sh->state);
2346 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2347 atomic_dec(&conf->preread_active_stripes);
2348 if (atomic_read(&conf->preread_active_stripes) <
2350 md_wakeup_thread(conf->mddev->thread);
2355 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2356 struct stripe_head_state *s, int disks)
2358 set_bit(STRIPE_HANDLE, &sh->state);
2359 /* Take one of the following actions:
2360 * 1/ start a check parity operation if (uptodate == disks)
2361 * 2/ finish a check parity operation and act on the result
2362 * 3/ skip to the writeback section if we previously
2363 * initiated a recovery operation
2365 if (s->failed == 0 &&
2366 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2367 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2368 BUG_ON(s->uptodate != disks);
2369 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2373 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2374 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2375 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2377 if (sh->ops.zero_sum_result == 0)
2378 /* parity is correct (on disc,
2379 * not in buffer any more)
2381 set_bit(STRIPE_INSYNC, &sh->state);
2383 conf->mddev->resync_mismatches +=
2386 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2387 /* don't try to repair!! */
2388 set_bit(STRIPE_INSYNC, &sh->state);
2390 set_bit(STRIPE_OP_COMPUTE_BLK,
2392 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2394 set_bit(R5_Wantcompute,
2395 &sh->dev[sh->pd_idx].flags);
2396 sh->ops.target = sh->pd_idx;
2404 /* check if we can clear a parity disk reconstruct */
2405 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2406 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2408 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2409 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2410 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2411 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2414 /* Wait for check parity and compute block operations to complete
2417 if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2418 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2419 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2421 /* either failed parity check, or recovery is happening */
2423 s->failed_num = sh->pd_idx;
2424 dev = &sh->dev[s->failed_num];
2425 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2426 BUG_ON(s->uptodate != disks);
2428 set_bit(R5_LOCKED, &dev->flags);
2429 set_bit(R5_Wantwrite, &dev->flags);
2430 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2433 clear_bit(STRIPE_DEGRADED, &sh->state);
2435 set_bit(STRIPE_INSYNC, &sh->state);
2440 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2441 struct stripe_head_state *s,
2442 struct r6_state *r6s, struct page *tmp_page,
2445 int update_p = 0, update_q = 0;
2447 int pd_idx = sh->pd_idx;
2448 int qd_idx = r6s->qd_idx;
2450 set_bit(STRIPE_HANDLE, &sh->state);
2452 BUG_ON(s->failed > 2);
2453 BUG_ON(s->uptodate < disks);
2454 /* Want to check and possibly repair P and Q.
2455 * However there could be one 'failed' device, in which
2456 * case we can only check one of them, possibly using the
2457 * other to generate missing data
2460 /* If !tmp_page, we cannot do the calculations,
2461 * but as we have set STRIPE_HANDLE, we will soon be called
2462 * by stripe_handle with a tmp_page - just wait until then.
2465 if (s->failed == r6s->q_failed) {
2466 /* The only possible failed device holds 'Q', so it
2467 * makes sense to check P (If anything else were failed,
2468 * we would have used P to recreate it).
2470 compute_block_1(sh, pd_idx, 1);
2471 if (!page_is_zero(sh->dev[pd_idx].page)) {
2472 compute_block_1(sh, pd_idx, 0);
2476 if (!r6s->q_failed && s->failed < 2) {
2477 /* q is not failed, and we didn't use it to generate
2478 * anything, so it makes sense to check it
2480 memcpy(page_address(tmp_page),
2481 page_address(sh->dev[qd_idx].page),
2483 compute_parity6(sh, UPDATE_PARITY);
2484 if (memcmp(page_address(tmp_page),
2485 page_address(sh->dev[qd_idx].page),
2486 STRIPE_SIZE) != 0) {
2487 clear_bit(STRIPE_INSYNC, &sh->state);
2491 if (update_p || update_q) {
2492 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2493 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2494 /* don't try to repair!! */
2495 update_p = update_q = 0;
2498 /* now write out any block on a failed drive,
2499 * or P or Q if they need it
2502 if (s->failed == 2) {
2503 dev = &sh->dev[r6s->failed_num[1]];
2505 set_bit(R5_LOCKED, &dev->flags);
2506 set_bit(R5_Wantwrite, &dev->flags);
2508 if (s->failed >= 1) {
2509 dev = &sh->dev[r6s->failed_num[0]];
2511 set_bit(R5_LOCKED, &dev->flags);
2512 set_bit(R5_Wantwrite, &dev->flags);
2516 dev = &sh->dev[pd_idx];
2518 set_bit(R5_LOCKED, &dev->flags);
2519 set_bit(R5_Wantwrite, &dev->flags);
2522 dev = &sh->dev[qd_idx];
2524 set_bit(R5_LOCKED, &dev->flags);
2525 set_bit(R5_Wantwrite, &dev->flags);
2527 clear_bit(STRIPE_DEGRADED, &sh->state);
2529 set_bit(STRIPE_INSYNC, &sh->state);
2533 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2534 struct r6_state *r6s)
2538 /* We have read all the blocks in this stripe and now we need to
2539 * copy some of them into a target stripe for expand.
2541 struct dma_async_tx_descriptor *tx = NULL;
2542 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2543 for (i = 0; i < sh->disks; i++)
2544 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2545 int dd_idx, pd_idx, j;
2546 struct stripe_head *sh2;
2548 sector_t bn = compute_blocknr(sh, i);
2549 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2551 conf->max_degraded, &dd_idx,
2553 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2556 /* so far only the early blocks of this stripe
2557 * have been requested. When later blocks
2558 * get requested, we will try again
2561 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2562 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2563 /* must have already done this block */
2564 release_stripe(sh2);
2568 /* place all the copies on one channel */
2569 tx = async_memcpy(sh2->dev[dd_idx].page,
2570 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2571 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2573 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2574 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2575 for (j = 0; j < conf->raid_disks; j++)
2576 if (j != sh2->pd_idx &&
2577 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2579 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2581 if (j == conf->raid_disks) {
2582 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2583 set_bit(STRIPE_HANDLE, &sh2->state);
2585 release_stripe(sh2);
2588 /* done submitting copies, wait for them to complete */
2591 dma_wait_for_async_tx(tx);
2596 * handle_stripe - do things to a stripe.
2598 * We lock the stripe and then examine the state of various bits
2599 * to see what needs to be done.
2601 * return some read request which now have data
2602 * return some write requests which are safely on disc
2603 * schedule a read on some buffers
2604 * schedule a write of some buffers
2605 * return confirmation of parity correctness
2607 * buffers are taken off read_list or write_list, and bh_cache buffers
2608 * get BH_Lock set before the stripe lock is released.
2612 static void handle_stripe5(struct stripe_head *sh)
2614 raid5_conf_t *conf = sh->raid_conf;
2615 int disks = sh->disks, i;
2616 struct bio *return_bi = NULL;
2617 struct stripe_head_state s;
2619 unsigned long pending = 0;
2621 memset(&s, 0, sizeof(s));
2622 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2623 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2624 atomic_read(&sh->count), sh->pd_idx,
2625 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2627 spin_lock(&sh->lock);
2628 clear_bit(STRIPE_HANDLE, &sh->state);
2629 clear_bit(STRIPE_DELAYED, &sh->state);
2631 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2632 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2633 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2634 /* Now to look around and see what can be done */
2637 for (i=disks; i--; ) {
2639 struct r5dev *dev = &sh->dev[i];
2640 clear_bit(R5_Insync, &dev->flags);
2642 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2643 "written %p\n", i, dev->flags, dev->toread, dev->read,
2644 dev->towrite, dev->written);
2646 /* maybe we can request a biofill operation
2648 * new wantfill requests are only permitted while
2649 * STRIPE_OP_BIOFILL is clear
2651 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2652 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2653 set_bit(R5_Wantfill, &dev->flags);
2655 /* now count some things */
2656 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2657 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2658 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2660 if (test_bit(R5_Wantfill, &dev->flags))
2662 else if (dev->toread)
2666 if (!test_bit(R5_OVERWRITE, &dev->flags))
2671 rdev = rcu_dereference(conf->disks[i].rdev);
2672 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2673 /* The ReadError flag will just be confusing now */
2674 clear_bit(R5_ReadError, &dev->flags);
2675 clear_bit(R5_ReWrite, &dev->flags);
2677 if (!rdev || !test_bit(In_sync, &rdev->flags)
2678 || test_bit(R5_ReadError, &dev->flags)) {
2682 set_bit(R5_Insync, &dev->flags);
2686 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2689 pr_debug("locked=%d uptodate=%d to_read=%d"
2690 " to_write=%d failed=%d failed_num=%d\n",
2691 s.locked, s.uptodate, s.to_read, s.to_write,
2692 s.failed, s.failed_num);
2693 /* check if the array has lost two devices and, if so, some requests might
2696 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2697 handle_requests_to_failed_array(conf, sh, &s, disks,
2699 if (s.failed > 1 && s.syncing) {
2700 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2701 clear_bit(STRIPE_SYNCING, &sh->state);
2705 /* might be able to return some write requests if the parity block
2706 * is safe, or on a failed drive
2708 dev = &sh->dev[sh->pd_idx];
2710 ((test_bit(R5_Insync, &dev->flags) &&
2711 !test_bit(R5_LOCKED, &dev->flags) &&
2712 test_bit(R5_UPTODATE, &dev->flags)) ||
2713 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2714 handle_completed_write_requests(conf, sh, disks, &return_bi);
2716 /* Now we might consider reading some blocks, either to check/generate
2717 * parity, or to satisfy requests
2718 * or to load a block that is being partially written.
2720 if (s.to_read || s.non_overwrite ||
2721 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2722 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2723 handle_issuing_new_read_requests5(sh, &s, disks);
2725 /* Now we check to see if any write operations have recently
2729 /* leave prexor set until postxor is done, allows us to distinguish
2730 * a rmw from a rcw during biodrain
2732 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2733 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2735 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2736 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2737 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2739 for (i = disks; i--; )
2740 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2743 /* if only POSTXOR is set then this is an 'expand' postxor */
2744 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2745 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2747 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2748 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2749 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2751 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2752 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2753 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2755 /* All the 'written' buffers and the parity block are ready to
2756 * be written back to disk
2758 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2759 for (i = disks; i--; ) {
2761 if (test_bit(R5_LOCKED, &dev->flags) &&
2762 (i == sh->pd_idx || dev->written)) {
2763 pr_debug("Writing block %d\n", i);
2764 set_bit(R5_Wantwrite, &dev->flags);
2765 if (!test_and_set_bit(
2766 STRIPE_OP_IO, &sh->ops.pending))
2768 if (!test_bit(R5_Insync, &dev->flags) ||
2769 (i == sh->pd_idx && s.failed == 0))
2770 set_bit(STRIPE_INSYNC, &sh->state);
2773 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2774 atomic_dec(&conf->preread_active_stripes);
2775 if (atomic_read(&conf->preread_active_stripes) <
2777 md_wakeup_thread(conf->mddev->thread);
2781 /* Now to consider new write requests and what else, if anything
2782 * should be read. We do not handle new writes when:
2783 * 1/ A 'write' operation (copy+xor) is already in flight.
2784 * 2/ A 'check' operation is in flight, as it may clobber the parity
2787 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2788 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2789 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2791 /* maybe we need to check and possibly fix the parity for this stripe
2792 * Any reads will already have been scheduled, so we just see if enough
2793 * data is available. The parity check is held off while parity
2794 * dependent operations are in flight.
2796 if ((s.syncing && s.locked == 0 &&
2797 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2798 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2799 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2800 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2801 handle_parity_checks5(conf, sh, &s, disks);
2803 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2804 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2805 clear_bit(STRIPE_SYNCING, &sh->state);
2808 /* If the failed drive is just a ReadError, then we might need to progress
2809 * the repair/check process
2811 if (s.failed == 1 && !conf->mddev->ro &&
2812 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2813 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2814 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2816 dev = &sh->dev[s.failed_num];
2817 if (!test_bit(R5_ReWrite, &dev->flags)) {
2818 set_bit(R5_Wantwrite, &dev->flags);
2819 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2821 set_bit(R5_ReWrite, &dev->flags);
2822 set_bit(R5_LOCKED, &dev->flags);
2825 /* let's read it back */
2826 set_bit(R5_Wantread, &dev->flags);
2827 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2829 set_bit(R5_LOCKED, &dev->flags);
2834 /* Finish postxor operations initiated by the expansion
2837 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2838 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2840 clear_bit(STRIPE_EXPANDING, &sh->state);
2842 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2843 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2844 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2846 for (i = conf->raid_disks; i--; ) {
2847 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2848 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2853 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2854 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2855 /* Need to write out all blocks after computing parity */
2856 sh->disks = conf->raid_disks;
2857 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2859 s.locked += handle_write_operations5(sh, 1, 1);
2860 } else if (s.expanded &&
2861 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2862 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2863 atomic_dec(&conf->reshape_stripes);
2864 wake_up(&conf->wait_for_overlap);
2865 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2868 if (s.expanding && s.locked == 0)
2869 handle_stripe_expansion(conf, sh, NULL);
2872 pending = get_stripe_work(sh);
2874 spin_unlock(&sh->lock);
2877 raid5_run_ops(sh, pending);
2879 return_io(return_bi);
2883 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2885 raid6_conf_t *conf = sh->raid_conf;
2886 int disks = sh->disks;
2887 struct bio *return_bi = NULL;
2888 int i, pd_idx = sh->pd_idx;
2889 struct stripe_head_state s;
2890 struct r6_state r6s;
2891 struct r5dev *dev, *pdev, *qdev;
2893 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2894 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2895 "pd_idx=%d, qd_idx=%d\n",
2896 (unsigned long long)sh->sector, sh->state,
2897 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2898 memset(&s, 0, sizeof(s));
2900 spin_lock(&sh->lock);
2901 clear_bit(STRIPE_HANDLE, &sh->state);
2902 clear_bit(STRIPE_DELAYED, &sh->state);
2904 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2905 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2906 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2907 /* Now to look around and see what can be done */
2910 for (i=disks; i--; ) {
2913 clear_bit(R5_Insync, &dev->flags);
2915 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2916 i, dev->flags, dev->toread, dev->towrite, dev->written);
2917 /* maybe we can reply to a read */
2918 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2919 struct bio *rbi, *rbi2;
2920 pr_debug("Return read for disc %d\n", i);
2921 spin_lock_irq(&conf->device_lock);
2924 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2925 wake_up(&conf->wait_for_overlap);
2926 spin_unlock_irq(&conf->device_lock);
2927 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2928 copy_data(0, rbi, dev->page, dev->sector);
2929 rbi2 = r5_next_bio(rbi, dev->sector);
2930 spin_lock_irq(&conf->device_lock);
2931 if (--rbi->bi_phys_segments == 0) {
2932 rbi->bi_next = return_bi;
2935 spin_unlock_irq(&conf->device_lock);
2940 /* now count some things */
2941 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2942 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2949 if (!test_bit(R5_OVERWRITE, &dev->flags))
2954 rdev = rcu_dereference(conf->disks[i].rdev);
2955 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2956 /* The ReadError flag will just be confusing now */
2957 clear_bit(R5_ReadError, &dev->flags);
2958 clear_bit(R5_ReWrite, &dev->flags);
2960 if (!rdev || !test_bit(In_sync, &rdev->flags)
2961 || test_bit(R5_ReadError, &dev->flags)) {
2963 r6s.failed_num[s.failed] = i;
2966 set_bit(R5_Insync, &dev->flags);
2969 pr_debug("locked=%d uptodate=%d to_read=%d"
2970 " to_write=%d failed=%d failed_num=%d,%d\n",
2971 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2972 r6s.failed_num[0], r6s.failed_num[1]);
2973 /* check if the array has lost >2 devices and, if so, some requests
2974 * might need to be failed
2976 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2977 handle_requests_to_failed_array(conf, sh, &s, disks,
2979 if (s.failed > 2 && s.syncing) {
2980 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2981 clear_bit(STRIPE_SYNCING, &sh->state);
2986 * might be able to return some write requests if the parity blocks
2987 * are safe, or on a failed drive
2989 pdev = &sh->dev[pd_idx];
2990 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2991 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2992 qdev = &sh->dev[r6s.qd_idx];
2993 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2994 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2997 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2998 && !test_bit(R5_LOCKED, &pdev->flags)
2999 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3000 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3001 && !test_bit(R5_LOCKED, &qdev->flags)
3002 && test_bit(R5_UPTODATE, &qdev->flags)))))
3003 handle_completed_write_requests(conf, sh, disks, &return_bi);
3005 /* Now we might consider reading some blocks, either to check/generate
3006 * parity, or to satisfy requests
3007 * or to load a block that is being partially written.
3009 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3010 (s.syncing && (s.uptodate < disks)) || s.expanding)
3011 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3013 /* now to consider writing and what else, if anything should be read */
3015 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3017 /* maybe we need to check and possibly fix the parity for this stripe
3018 * Any reads will already have been scheduled, so we just see if enough
3021 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3022 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3024 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3025 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3026 clear_bit(STRIPE_SYNCING, &sh->state);
3029 /* If the failed drives are just a ReadError, then we might need
3030 * to progress the repair/check process
3032 if (s.failed <= 2 && !conf->mddev->ro)
3033 for (i = 0; i < s.failed; i++) {
3034 dev = &sh->dev[r6s.failed_num[i]];
3035 if (test_bit(R5_ReadError, &dev->flags)
3036 && !test_bit(R5_LOCKED, &dev->flags)
3037 && test_bit(R5_UPTODATE, &dev->flags)
3039 if (!test_bit(R5_ReWrite, &dev->flags)) {
3040 set_bit(R5_Wantwrite, &dev->flags);
3041 set_bit(R5_ReWrite, &dev->flags);
3042 set_bit(R5_LOCKED, &dev->flags);
3044 /* let's read it back */
3045 set_bit(R5_Wantread, &dev->flags);
3046 set_bit(R5_LOCKED, &dev->flags);
3051 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3052 /* Need to write out all blocks after computing P&Q */
3053 sh->disks = conf->raid_disks;
3054 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3056 compute_parity6(sh, RECONSTRUCT_WRITE);
3057 for (i = conf->raid_disks ; i-- ; ) {
3058 set_bit(R5_LOCKED, &sh->dev[i].flags);
3060 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3062 clear_bit(STRIPE_EXPANDING, &sh->state);
3063 } else if (s.expanded) {
3064 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3065 atomic_dec(&conf->reshape_stripes);
3066 wake_up(&conf->wait_for_overlap);
3067 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3070 if (s.expanding && s.locked == 0)
3071 handle_stripe_expansion(conf, sh, &r6s);
3073 spin_unlock(&sh->lock);
3075 return_io(return_bi);
3077 for (i=disks; i-- ;) {
3081 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3083 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3088 bi = &sh->dev[i].req;
3092 bi->bi_end_io = raid5_end_write_request;
3094 bi->bi_end_io = raid5_end_read_request;
3097 rdev = rcu_dereference(conf->disks[i].rdev);
3098 if (rdev && test_bit(Faulty, &rdev->flags))
3101 atomic_inc(&rdev->nr_pending);
3105 if (s.syncing || s.expanding || s.expanded)
3106 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3108 bi->bi_bdev = rdev->bdev;
3109 pr_debug("for %llu schedule op %ld on disc %d\n",
3110 (unsigned long long)sh->sector, bi->bi_rw, i);
3111 atomic_inc(&sh->count);
3112 bi->bi_sector = sh->sector + rdev->data_offset;
3113 bi->bi_flags = 1 << BIO_UPTODATE;
3115 bi->bi_max_vecs = 1;
3117 bi->bi_io_vec = &sh->dev[i].vec;
3118 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3119 bi->bi_io_vec[0].bv_offset = 0;
3120 bi->bi_size = STRIPE_SIZE;
3123 test_bit(R5_ReWrite, &sh->dev[i].flags))
3124 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3125 generic_make_request(bi);
3128 set_bit(STRIPE_DEGRADED, &sh->state);
3129 pr_debug("skip op %ld on disc %d for sector %llu\n",
3130 bi->bi_rw, i, (unsigned long long)sh->sector);
3131 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3132 set_bit(STRIPE_HANDLE, &sh->state);
3137 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3139 if (sh->raid_conf->level == 6)
3140 handle_stripe6(sh, tmp_page);
3147 static void raid5_activate_delayed(raid5_conf_t *conf)
3149 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3150 while (!list_empty(&conf->delayed_list)) {
3151 struct list_head *l = conf->delayed_list.next;
3152 struct stripe_head *sh;
3153 sh = list_entry(l, struct stripe_head, lru);
3155 clear_bit(STRIPE_DELAYED, &sh->state);
3156 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3157 atomic_inc(&conf->preread_active_stripes);
3158 list_add_tail(&sh->lru, &conf->handle_list);
3163 static void activate_bit_delay(raid5_conf_t *conf)
3165 /* device_lock is held */
3166 struct list_head head;
3167 list_add(&head, &conf->bitmap_list);
3168 list_del_init(&conf->bitmap_list);
3169 while (!list_empty(&head)) {
3170 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3171 list_del_init(&sh->lru);
3172 atomic_inc(&sh->count);
3173 __release_stripe(conf, sh);
3177 static void unplug_slaves(mddev_t *mddev)
3179 raid5_conf_t *conf = mddev_to_conf(mddev);
3183 for (i=0; i<mddev->raid_disks; i++) {
3184 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3185 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3186 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3188 atomic_inc(&rdev->nr_pending);
3191 if (r_queue->unplug_fn)
3192 r_queue->unplug_fn(r_queue);
3194 rdev_dec_pending(rdev, mddev);
3201 static void raid5_unplug_device(struct request_queue *q)
3203 mddev_t *mddev = q->queuedata;
3204 raid5_conf_t *conf = mddev_to_conf(mddev);
3205 unsigned long flags;
3207 spin_lock_irqsave(&conf->device_lock, flags);
3209 if (blk_remove_plug(q)) {
3211 raid5_activate_delayed(conf);
3213 md_wakeup_thread(mddev->thread);
3215 spin_unlock_irqrestore(&conf->device_lock, flags);
3217 unplug_slaves(mddev);
3220 static int raid5_issue_flush(struct request_queue *q, struct gendisk *disk,
3221 sector_t *error_sector)
3223 mddev_t *mddev = q->queuedata;
3224 raid5_conf_t *conf = mddev_to_conf(mddev);
3228 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
3229 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3230 if (rdev && !test_bit(Faulty, &rdev->flags)) {
3231 struct block_device *bdev = rdev->bdev;
3232 struct request_queue *r_queue = bdev_get_queue(bdev);
3234 if (!r_queue->issue_flush_fn)
3237 atomic_inc(&rdev->nr_pending);
3239 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
3241 rdev_dec_pending(rdev, mddev);
3250 static int raid5_congested(void *data, int bits)
3252 mddev_t *mddev = data;
3253 raid5_conf_t *conf = mddev_to_conf(mddev);
3255 /* No difference between reads and writes. Just check
3256 * how busy the stripe_cache is
3258 if (conf->inactive_blocked)
3262 if (list_empty_careful(&conf->inactive_list))
3268 /* We want read requests to align with chunks where possible,
3269 * but write requests don't need to.
3271 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3273 mddev_t *mddev = q->queuedata;
3274 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3276 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3277 unsigned int bio_sectors = bio->bi_size >> 9;
3279 if (bio_data_dir(bio) == WRITE)
3280 return biovec->bv_len; /* always allow writes to be mergeable */
3282 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3283 if (max < 0) max = 0;
3284 if (max <= biovec->bv_len && bio_sectors == 0)
3285 return biovec->bv_len;
3291 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3293 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3294 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3295 unsigned int bio_sectors = bio->bi_size >> 9;
3297 return chunk_sectors >=
3298 ((sector & (chunk_sectors - 1)) + bio_sectors);
3302 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3303 * later sampled by raid5d.
3305 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3307 unsigned long flags;
3309 spin_lock_irqsave(&conf->device_lock, flags);
3311 bi->bi_next = conf->retry_read_aligned_list;
3312 conf->retry_read_aligned_list = bi;
3314 spin_unlock_irqrestore(&conf->device_lock, flags);
3315 md_wakeup_thread(conf->mddev->thread);
3319 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3323 bi = conf->retry_read_aligned;
3325 conf->retry_read_aligned = NULL;
3328 bi = conf->retry_read_aligned_list;
3330 conf->retry_read_aligned_list = bi->bi_next;
3332 bi->bi_phys_segments = 1; /* biased count of active stripes */
3333 bi->bi_hw_segments = 0; /* count of processed stripes */
3341 * The "raid5_align_endio" should check if the read succeeded and if it
3342 * did, call bio_endio on the original bio (having bio_put the new bio
3344 * If the read failed..
3346 static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error)
3348 struct bio* raid_bi = bi->bi_private;
3351 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3358 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3359 conf = mddev_to_conf(mddev);
3360 rdev = (void*)raid_bi->bi_next;
3361 raid_bi->bi_next = NULL;
3363 rdev_dec_pending(rdev, conf->mddev);
3365 if (!error && uptodate) {
3366 bio_endio(raid_bi, bytes, 0);
3367 if (atomic_dec_and_test(&conf->active_aligned_reads))
3368 wake_up(&conf->wait_for_stripe);
3373 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3375 add_bio_to_retry(raid_bi, conf);
3379 static int bio_fits_rdev(struct bio *bi)
3381 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3383 if ((bi->bi_size>>9) > q->max_sectors)
3385 blk_recount_segments(q, bi);
3386 if (bi->bi_phys_segments > q->max_phys_segments ||
3387 bi->bi_hw_segments > q->max_hw_segments)
3390 if (q->merge_bvec_fn)
3391 /* it's too hard to apply the merge_bvec_fn at this stage,
3400 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3402 mddev_t *mddev = q->queuedata;
3403 raid5_conf_t *conf = mddev_to_conf(mddev);
3404 const unsigned int raid_disks = conf->raid_disks;
3405 const unsigned int data_disks = raid_disks - conf->max_degraded;
3406 unsigned int dd_idx, pd_idx;
3407 struct bio* align_bi;
3410 if (!in_chunk_boundary(mddev, raid_bio)) {
3411 pr_debug("chunk_aligned_read : non aligned\n");
3415 * use bio_clone to make a copy of the bio
3417 align_bi = bio_clone(raid_bio, GFP_NOIO);
3421 * set bi_end_io to a new function, and set bi_private to the
3424 align_bi->bi_end_io = raid5_align_endio;
3425 align_bi->bi_private = raid_bio;
3429 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3437 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3438 if (rdev && test_bit(In_sync, &rdev->flags)) {
3439 atomic_inc(&rdev->nr_pending);
3441 raid_bio->bi_next = (void*)rdev;
3442 align_bi->bi_bdev = rdev->bdev;
3443 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3444 align_bi->bi_sector += rdev->data_offset;
3446 if (!bio_fits_rdev(align_bi)) {
3447 /* too big in some way */
3449 rdev_dec_pending(rdev, mddev);
3453 spin_lock_irq(&conf->device_lock);
3454 wait_event_lock_irq(conf->wait_for_stripe,
3456 conf->device_lock, /* nothing */);
3457 atomic_inc(&conf->active_aligned_reads);
3458 spin_unlock_irq(&conf->device_lock);
3460 generic_make_request(align_bi);
3470 static int make_request(struct request_queue *q, struct bio * bi)
3472 mddev_t *mddev = q->queuedata;
3473 raid5_conf_t *conf = mddev_to_conf(mddev);
3474 unsigned int dd_idx, pd_idx;
3475 sector_t new_sector;
3476 sector_t logical_sector, last_sector;
3477 struct stripe_head *sh;
3478 const int rw = bio_data_dir(bi);
3481 if (unlikely(bio_barrier(bi))) {
3482 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
3486 md_write_start(mddev, bi);
3488 disk_stat_inc(mddev->gendisk, ios[rw]);
3489 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3492 mddev->reshape_position == MaxSector &&
3493 chunk_aligned_read(q,bi))
3496 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3497 last_sector = bi->bi_sector + (bi->bi_size>>9);
3499 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3501 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3503 int disks, data_disks;
3506 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3507 if (likely(conf->expand_progress == MaxSector))
3508 disks = conf->raid_disks;
3510 /* spinlock is needed as expand_progress may be
3511 * 64bit on a 32bit platform, and so it might be
3512 * possible to see a half-updated value
3513 * Ofcourse expand_progress could change after
3514 * the lock is dropped, so once we get a reference
3515 * to the stripe that we think it is, we will have
3518 spin_lock_irq(&conf->device_lock);
3519 disks = conf->raid_disks;
3520 if (logical_sector >= conf->expand_progress)
3521 disks = conf->previous_raid_disks;
3523 if (logical_sector >= conf->expand_lo) {
3524 spin_unlock_irq(&conf->device_lock);
3529 spin_unlock_irq(&conf->device_lock);
3531 data_disks = disks - conf->max_degraded;
3533 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3534 &dd_idx, &pd_idx, conf);
3535 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3536 (unsigned long long)new_sector,
3537 (unsigned long long)logical_sector);
3539 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3541 if (unlikely(conf->expand_progress != MaxSector)) {
3542 /* expansion might have moved on while waiting for a
3543 * stripe, so we must do the range check again.
3544 * Expansion could still move past after this
3545 * test, but as we are holding a reference to
3546 * 'sh', we know that if that happens,
3547 * STRIPE_EXPANDING will get set and the expansion
3548 * won't proceed until we finish with the stripe.
3551 spin_lock_irq(&conf->device_lock);
3552 if (logical_sector < conf->expand_progress &&
3553 disks == conf->previous_raid_disks)
3554 /* mismatch, need to try again */
3556 spin_unlock_irq(&conf->device_lock);
3562 /* FIXME what if we get a false positive because these
3563 * are being updated.
3565 if (logical_sector >= mddev->suspend_lo &&
3566 logical_sector < mddev->suspend_hi) {
3572 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3573 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3574 /* Stripe is busy expanding or
3575 * add failed due to overlap. Flush everything
3578 raid5_unplug_device(mddev->queue);
3583 finish_wait(&conf->wait_for_overlap, &w);
3584 handle_stripe(sh, NULL);
3587 /* cannot get stripe for read-ahead, just give-up */
3588 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3589 finish_wait(&conf->wait_for_overlap, &w);
3594 spin_lock_irq(&conf->device_lock);
3595 remaining = --bi->bi_phys_segments;
3596 spin_unlock_irq(&conf->device_lock);
3597 if (remaining == 0) {
3598 int bytes = bi->bi_size;
3601 md_write_end(mddev);
3603 bi->bi_end_io(bi, bytes,
3604 test_bit(BIO_UPTODATE, &bi->bi_flags)
3610 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3612 /* reshaping is quite different to recovery/resync so it is
3613 * handled quite separately ... here.
3615 * On each call to sync_request, we gather one chunk worth of
3616 * destination stripes and flag them as expanding.
3617 * Then we find all the source stripes and request reads.
3618 * As the reads complete, handle_stripe will copy the data
3619 * into the destination stripe and release that stripe.
3621 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3622 struct stripe_head *sh;
3624 sector_t first_sector, last_sector;
3625 int raid_disks = conf->previous_raid_disks;
3626 int data_disks = raid_disks - conf->max_degraded;
3627 int new_data_disks = conf->raid_disks - conf->max_degraded;
3630 sector_t writepos, safepos, gap;
3632 if (sector_nr == 0 &&
3633 conf->expand_progress != 0) {
3634 /* restarting in the middle, skip the initial sectors */
3635 sector_nr = conf->expand_progress;
3636 sector_div(sector_nr, new_data_disks);
3641 /* we update the metadata when there is more than 3Meg
3642 * in the block range (that is rather arbitrary, should
3643 * probably be time based) or when the data about to be
3644 * copied would over-write the source of the data at
3645 * the front of the range.
3646 * i.e. one new_stripe forward from expand_progress new_maps
3647 * to after where expand_lo old_maps to
3649 writepos = conf->expand_progress +
3650 conf->chunk_size/512*(new_data_disks);
3651 sector_div(writepos, new_data_disks);
3652 safepos = conf->expand_lo;
3653 sector_div(safepos, data_disks);
3654 gap = conf->expand_progress - conf->expand_lo;
3656 if (writepos >= safepos ||
3657 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3658 /* Cannot proceed until we've updated the superblock... */
3659 wait_event(conf->wait_for_overlap,
3660 atomic_read(&conf->reshape_stripes)==0);
3661 mddev->reshape_position = conf->expand_progress;
3662 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3663 md_wakeup_thread(mddev->thread);
3664 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3665 kthread_should_stop());
3666 spin_lock_irq(&conf->device_lock);
3667 conf->expand_lo = mddev->reshape_position;
3668 spin_unlock_irq(&conf->device_lock);
3669 wake_up(&conf->wait_for_overlap);
3672 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3675 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3676 sh = get_active_stripe(conf, sector_nr+i,
3677 conf->raid_disks, pd_idx, 0);
3678 set_bit(STRIPE_EXPANDING, &sh->state);
3679 atomic_inc(&conf->reshape_stripes);
3680 /* If any of this stripe is beyond the end of the old
3681 * array, then we need to zero those blocks
3683 for (j=sh->disks; j--;) {
3685 if (j == sh->pd_idx)
3687 if (conf->level == 6 &&
3688 j == raid6_next_disk(sh->pd_idx, sh->disks))
3690 s = compute_blocknr(sh, j);
3691 if (s < (mddev->array_size<<1)) {
3695 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3696 set_bit(R5_Expanded, &sh->dev[j].flags);
3697 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3700 set_bit(STRIPE_EXPAND_READY, &sh->state);
3701 set_bit(STRIPE_HANDLE, &sh->state);
3705 spin_lock_irq(&conf->device_lock);
3706 conf->expand_progress = (sector_nr + i) * new_data_disks;
3707 spin_unlock_irq(&conf->device_lock);
3708 /* Ok, those stripe are ready. We can start scheduling
3709 * reads on the source stripes.
3710 * The source stripes are determined by mapping the first and last
3711 * block on the destination stripes.
3714 raid5_compute_sector(sector_nr*(new_data_disks),
3715 raid_disks, data_disks,
3716 &dd_idx, &pd_idx, conf);
3718 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3719 *(new_data_disks) -1,
3720 raid_disks, data_disks,
3721 &dd_idx, &pd_idx, conf);
3722 if (last_sector >= (mddev->size<<1))
3723 last_sector = (mddev->size<<1)-1;
3724 while (first_sector <= last_sector) {
3725 pd_idx = stripe_to_pdidx(first_sector, conf,
3726 conf->previous_raid_disks);
3727 sh = get_active_stripe(conf, first_sector,
3728 conf->previous_raid_disks, pd_idx, 0);
3729 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3730 set_bit(STRIPE_HANDLE, &sh->state);
3732 first_sector += STRIPE_SECTORS;
3734 return conf->chunk_size>>9;
3737 /* FIXME go_faster isn't used */
3738 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3740 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3741 struct stripe_head *sh;
3743 int raid_disks = conf->raid_disks;
3744 sector_t max_sector = mddev->size << 1;
3746 int still_degraded = 0;
3749 if (sector_nr >= max_sector) {
3750 /* just being told to finish up .. nothing much to do */
3751 unplug_slaves(mddev);
3752 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3757 if (mddev->curr_resync < max_sector) /* aborted */
3758 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3760 else /* completed sync */
3762 bitmap_close_sync(mddev->bitmap);
3767 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3768 return reshape_request(mddev, sector_nr, skipped);
3770 /* if there is too many failed drives and we are trying
3771 * to resync, then assert that we are finished, because there is
3772 * nothing we can do.
3774 if (mddev->degraded >= conf->max_degraded &&
3775 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3776 sector_t rv = (mddev->size << 1) - sector_nr;
3780 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3781 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3782 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3783 /* we can skip this block, and probably more */
3784 sync_blocks /= STRIPE_SECTORS;
3786 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3789 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3790 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3792 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3793 /* make sure we don't swamp the stripe cache if someone else
3794 * is trying to get access
3796 schedule_timeout_uninterruptible(1);
3798 /* Need to check if array will still be degraded after recovery/resync
3799 * We don't need to check the 'failed' flag as when that gets set,
3802 for (i=0; i<mddev->raid_disks; i++)
3803 if (conf->disks[i].rdev == NULL)
3806 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3808 spin_lock(&sh->lock);
3809 set_bit(STRIPE_SYNCING, &sh->state);
3810 clear_bit(STRIPE_INSYNC, &sh->state);
3811 spin_unlock(&sh->lock);
3813 handle_stripe(sh, NULL);
3816 return STRIPE_SECTORS;
3819 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3821 /* We may not be able to submit a whole bio at once as there
3822 * may not be enough stripe_heads available.
3823 * We cannot pre-allocate enough stripe_heads as we may need
3824 * more than exist in the cache (if we allow ever large chunks).
3825 * So we do one stripe head at a time and record in
3826 * ->bi_hw_segments how many have been done.
3828 * We *know* that this entire raid_bio is in one chunk, so
3829 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3831 struct stripe_head *sh;
3833 sector_t sector, logical_sector, last_sector;
3838 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3839 sector = raid5_compute_sector( logical_sector,
3841 conf->raid_disks - conf->max_degraded,
3845 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3847 for (; logical_sector < last_sector;
3848 logical_sector += STRIPE_SECTORS,
3849 sector += STRIPE_SECTORS,
3852 if (scnt < raid_bio->bi_hw_segments)
3853 /* already done this stripe */
3856 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3859 /* failed to get a stripe - must wait */
3860 raid_bio->bi_hw_segments = scnt;
3861 conf->retry_read_aligned = raid_bio;
3865 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3866 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3868 raid_bio->bi_hw_segments = scnt;
3869 conf->retry_read_aligned = raid_bio;
3873 handle_stripe(sh, NULL);
3877 spin_lock_irq(&conf->device_lock);
3878 remaining = --raid_bio->bi_phys_segments;
3879 spin_unlock_irq(&conf->device_lock);
3880 if (remaining == 0) {
3881 int bytes = raid_bio->bi_size;
3883 raid_bio->bi_size = 0;
3884 raid_bio->bi_end_io(raid_bio, bytes,
3885 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3888 if (atomic_dec_and_test(&conf->active_aligned_reads))
3889 wake_up(&conf->wait_for_stripe);
3896 * This is our raid5 kernel thread.
3898 * We scan the hash table for stripes which can be handled now.
3899 * During the scan, completed stripes are saved for us by the interrupt
3900 * handler, so that they will not have to wait for our next wakeup.
3902 static void raid5d (mddev_t *mddev)
3904 struct stripe_head *sh;
3905 raid5_conf_t *conf = mddev_to_conf(mddev);
3908 pr_debug("+++ raid5d active\n");
3910 md_check_recovery(mddev);
3913 spin_lock_irq(&conf->device_lock);
3915 struct list_head *first;
3918 if (conf->seq_flush != conf->seq_write) {
3919 int seq = conf->seq_flush;
3920 spin_unlock_irq(&conf->device_lock);
3921 bitmap_unplug(mddev->bitmap);
3922 spin_lock_irq(&conf->device_lock);
3923 conf->seq_write = seq;
3924 activate_bit_delay(conf);
3927 if (list_empty(&conf->handle_list) &&
3928 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3929 !blk_queue_plugged(mddev->queue) &&
3930 !list_empty(&conf->delayed_list))
3931 raid5_activate_delayed(conf);
3933 while ((bio = remove_bio_from_retry(conf))) {
3935 spin_unlock_irq(&conf->device_lock);
3936 ok = retry_aligned_read(conf, bio);
3937 spin_lock_irq(&conf->device_lock);
3943 if (list_empty(&conf->handle_list)) {
3944 async_tx_issue_pending_all();
3948 first = conf->handle_list.next;
3949 sh = list_entry(first, struct stripe_head, lru);
3951 list_del_init(first);
3952 atomic_inc(&sh->count);
3953 BUG_ON(atomic_read(&sh->count)!= 1);
3954 spin_unlock_irq(&conf->device_lock);
3957 handle_stripe(sh, conf->spare_page);
3960 spin_lock_irq(&conf->device_lock);
3962 pr_debug("%d stripes handled\n", handled);
3964 spin_unlock_irq(&conf->device_lock);
3966 unplug_slaves(mddev);
3968 pr_debug("--- raid5d inactive\n");
3972 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3974 raid5_conf_t *conf = mddev_to_conf(mddev);
3976 return sprintf(page, "%d\n", conf->max_nr_stripes);
3982 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3984 raid5_conf_t *conf = mddev_to_conf(mddev);
3987 if (len >= PAGE_SIZE)
3992 new = simple_strtoul(page, &end, 10);
3993 if (!*page || (*end && *end != '\n') )
3995 if (new <= 16 || new > 32768)
3997 while (new < conf->max_nr_stripes) {
3998 if (drop_one_stripe(conf))
3999 conf->max_nr_stripes--;
4003 md_allow_write(mddev);
4004 while (new > conf->max_nr_stripes) {
4005 if (grow_one_stripe(conf))
4006 conf->max_nr_stripes++;
4012 static struct md_sysfs_entry
4013 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4014 raid5_show_stripe_cache_size,
4015 raid5_store_stripe_cache_size);
4018 stripe_cache_active_show(mddev_t *mddev, char *page)
4020 raid5_conf_t *conf = mddev_to_conf(mddev);
4022 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4027 static struct md_sysfs_entry
4028 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4030 static struct attribute *raid5_attrs[] = {
4031 &raid5_stripecache_size.attr,
4032 &raid5_stripecache_active.attr,
4035 static struct attribute_group raid5_attrs_group = {
4037 .attrs = raid5_attrs,
4040 static int run(mddev_t *mddev)
4043 int raid_disk, memory;
4045 struct disk_info *disk;
4046 struct list_head *tmp;
4047 int working_disks = 0;
4049 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4050 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4051 mdname(mddev), mddev->level);
4055 if (mddev->reshape_position != MaxSector) {
4056 /* Check that we can continue the reshape.
4057 * Currently only disks can change, it must
4058 * increase, and we must be past the point where
4059 * a stripe over-writes itself
4061 sector_t here_new, here_old;
4063 int max_degraded = (mddev->level == 5 ? 1 : 2);
4065 if (mddev->new_level != mddev->level ||
4066 mddev->new_layout != mddev->layout ||
4067 mddev->new_chunk != mddev->chunk_size) {
4068 printk(KERN_ERR "raid5: %s: unsupported reshape "
4069 "required - aborting.\n",
4073 if (mddev->delta_disks <= 0) {
4074 printk(KERN_ERR "raid5: %s: unsupported reshape "
4075 "(reduce disks) required - aborting.\n",
4079 old_disks = mddev->raid_disks - mddev->delta_disks;
4080 /* reshape_position must be on a new-stripe boundary, and one
4081 * further up in new geometry must map after here in old
4084 here_new = mddev->reshape_position;
4085 if (sector_div(here_new, (mddev->chunk_size>>9)*
4086 (mddev->raid_disks - max_degraded))) {
4087 printk(KERN_ERR "raid5: reshape_position not "
4088 "on a stripe boundary\n");
4091 /* here_new is the stripe we will write to */
4092 here_old = mddev->reshape_position;
4093 sector_div(here_old, (mddev->chunk_size>>9)*
4094 (old_disks-max_degraded));
4095 /* here_old is the first stripe that we might need to read
4097 if (here_new >= here_old) {
4098 /* Reading from the same stripe as writing to - bad */
4099 printk(KERN_ERR "raid5: reshape_position too early for "
4100 "auto-recovery - aborting.\n");
4103 printk(KERN_INFO "raid5: reshape will continue\n");
4104 /* OK, we should be able to continue; */
4108 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4109 if ((conf = mddev->private) == NULL)
4111 if (mddev->reshape_position == MaxSector) {
4112 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4114 conf->raid_disks = mddev->raid_disks;
4115 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4118 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4123 conf->mddev = mddev;
4125 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4128 if (mddev->level == 6) {
4129 conf->spare_page = alloc_page(GFP_KERNEL);
4130 if (!conf->spare_page)
4133 spin_lock_init(&conf->device_lock);
4134 init_waitqueue_head(&conf->wait_for_stripe);
4135 init_waitqueue_head(&conf->wait_for_overlap);
4136 INIT_LIST_HEAD(&conf->handle_list);
4137 INIT_LIST_HEAD(&conf->delayed_list);
4138 INIT_LIST_HEAD(&conf->bitmap_list);
4139 INIT_LIST_HEAD(&conf->inactive_list);
4140 atomic_set(&conf->active_stripes, 0);
4141 atomic_set(&conf->preread_active_stripes, 0);
4142 atomic_set(&conf->active_aligned_reads, 0);
4144 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4146 ITERATE_RDEV(mddev,rdev,tmp) {
4147 raid_disk = rdev->raid_disk;
4148 if (raid_disk >= conf->raid_disks
4151 disk = conf->disks + raid_disk;
4155 if (test_bit(In_sync, &rdev->flags)) {
4156 char b[BDEVNAME_SIZE];
4157 printk(KERN_INFO "raid5: device %s operational as raid"
4158 " disk %d\n", bdevname(rdev->bdev,b),
4165 * 0 for a fully functional array, 1 or 2 for a degraded array.
4167 mddev->degraded = conf->raid_disks - working_disks;
4168 conf->mddev = mddev;
4169 conf->chunk_size = mddev->chunk_size;
4170 conf->level = mddev->level;
4171 if (conf->level == 6)
4172 conf->max_degraded = 2;
4174 conf->max_degraded = 1;
4175 conf->algorithm = mddev->layout;
4176 conf->max_nr_stripes = NR_STRIPES;
4177 conf->expand_progress = mddev->reshape_position;
4179 /* device size must be a multiple of chunk size */
4180 mddev->size &= ~(mddev->chunk_size/1024 -1);
4181 mddev->resync_max_sectors = mddev->size << 1;
4183 if (conf->level == 6 && conf->raid_disks < 4) {
4184 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4185 mdname(mddev), conf->raid_disks);
4188 if (!conf->chunk_size || conf->chunk_size % 4) {
4189 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4190 conf->chunk_size, mdname(mddev));
4193 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4195 "raid5: unsupported parity algorithm %d for %s\n",
4196 conf->algorithm, mdname(mddev));
4199 if (mddev->degraded > conf->max_degraded) {
4200 printk(KERN_ERR "raid5: not enough operational devices for %s"
4201 " (%d/%d failed)\n",
4202 mdname(mddev), mddev->degraded, conf->raid_disks);
4206 if (mddev->degraded > 0 &&
4207 mddev->recovery_cp != MaxSector) {
4208 if (mddev->ok_start_degraded)
4210 "raid5: starting dirty degraded array: %s"
4211 "- data corruption possible.\n",
4215 "raid5: cannot start dirty degraded array for %s\n",
4222 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4223 if (!mddev->thread) {
4225 "raid5: couldn't allocate thread for %s\n",
4230 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4231 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4232 if (grow_stripes(conf, conf->max_nr_stripes)) {
4234 "raid5: couldn't allocate %dkB for buffers\n", memory);
4235 shrink_stripes(conf);
4236 md_unregister_thread(mddev->thread);
4239 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4240 memory, mdname(mddev));
4242 if (mddev->degraded == 0)
4243 printk("raid5: raid level %d set %s active with %d out of %d"
4244 " devices, algorithm %d\n", conf->level, mdname(mddev),
4245 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4248 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4249 " out of %d devices, algorithm %d\n", conf->level,
4250 mdname(mddev), mddev->raid_disks - mddev->degraded,
4251 mddev->raid_disks, conf->algorithm);
4253 print_raid5_conf(conf);
4255 if (conf->expand_progress != MaxSector) {
4256 printk("...ok start reshape thread\n");
4257 conf->expand_lo = conf->expand_progress;
4258 atomic_set(&conf->reshape_stripes, 0);
4259 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4260 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4261 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4262 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4263 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4267 /* read-ahead size must cover two whole stripes, which is
4268 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4271 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4272 int stripe = data_disks *
4273 (mddev->chunk_size / PAGE_SIZE);
4274 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4275 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4278 /* Ok, everything is just fine now */
4279 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4281 "raid5: failed to create sysfs attributes for %s\n",
4284 mddev->queue->unplug_fn = raid5_unplug_device;
4285 mddev->queue->issue_flush_fn = raid5_issue_flush;
4286 mddev->queue->backing_dev_info.congested_data = mddev;
4287 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4289 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4290 conf->max_degraded);
4292 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4297 print_raid5_conf(conf);
4298 safe_put_page(conf->spare_page);
4300 kfree(conf->stripe_hashtbl);
4303 mddev->private = NULL;
4304 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4310 static int stop(mddev_t *mddev)
4312 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4314 md_unregister_thread(mddev->thread);
4315 mddev->thread = NULL;
4316 shrink_stripes(conf);
4317 kfree(conf->stripe_hashtbl);
4318 mddev->queue->backing_dev_info.congested_fn = NULL;
4319 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4320 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4323 mddev->private = NULL;
4328 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4332 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4333 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4334 seq_printf(seq, "sh %llu, count %d.\n",
4335 (unsigned long long)sh->sector, atomic_read(&sh->count));
4336 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4337 for (i = 0; i < sh->disks; i++) {
4338 seq_printf(seq, "(cache%d: %p %ld) ",
4339 i, sh->dev[i].page, sh->dev[i].flags);
4341 seq_printf(seq, "\n");
4344 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4346 struct stripe_head *sh;
4347 struct hlist_node *hn;
4350 spin_lock_irq(&conf->device_lock);
4351 for (i = 0; i < NR_HASH; i++) {
4352 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4353 if (sh->raid_conf != conf)
4358 spin_unlock_irq(&conf->device_lock);
4362 static void status (struct seq_file *seq, mddev_t *mddev)
4364 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4367 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4368 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4369 for (i = 0; i < conf->raid_disks; i++)
4370 seq_printf (seq, "%s",
4371 conf->disks[i].rdev &&
4372 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4373 seq_printf (seq, "]");
4375 seq_printf (seq, "\n");
4376 printall(seq, conf);
4380 static void print_raid5_conf (raid5_conf_t *conf)
4383 struct disk_info *tmp;
4385 printk("RAID5 conf printout:\n");
4387 printk("(conf==NULL)\n");
4390 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4391 conf->raid_disks - conf->mddev->degraded);
4393 for (i = 0; i < conf->raid_disks; i++) {
4394 char b[BDEVNAME_SIZE];
4395 tmp = conf->disks + i;
4397 printk(" disk %d, o:%d, dev:%s\n",
4398 i, !test_bit(Faulty, &tmp->rdev->flags),
4399 bdevname(tmp->rdev->bdev,b));
4403 static int raid5_spare_active(mddev_t *mddev)
4406 raid5_conf_t *conf = mddev->private;
4407 struct disk_info *tmp;
4409 for (i = 0; i < conf->raid_disks; i++) {
4410 tmp = conf->disks + i;
4412 && !test_bit(Faulty, &tmp->rdev->flags)
4413 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4414 unsigned long flags;
4415 spin_lock_irqsave(&conf->device_lock, flags);
4417 spin_unlock_irqrestore(&conf->device_lock, flags);
4420 print_raid5_conf(conf);
4424 static int raid5_remove_disk(mddev_t *mddev, int number)
4426 raid5_conf_t *conf = mddev->private;
4429 struct disk_info *p = conf->disks + number;
4431 print_raid5_conf(conf);
4434 if (test_bit(In_sync, &rdev->flags) ||
4435 atomic_read(&rdev->nr_pending)) {
4441 if (atomic_read(&rdev->nr_pending)) {
4442 /* lost the race, try later */
4449 print_raid5_conf(conf);
4453 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4455 raid5_conf_t *conf = mddev->private;
4458 struct disk_info *p;
4460 if (mddev->degraded > conf->max_degraded)
4461 /* no point adding a device */
4465 * find the disk ... but prefer rdev->saved_raid_disk
4468 if (rdev->saved_raid_disk >= 0 &&
4469 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4470 disk = rdev->saved_raid_disk;
4473 for ( ; disk < conf->raid_disks; disk++)
4474 if ((p=conf->disks + disk)->rdev == NULL) {
4475 clear_bit(In_sync, &rdev->flags);
4476 rdev->raid_disk = disk;
4478 if (rdev->saved_raid_disk != disk)
4480 rcu_assign_pointer(p->rdev, rdev);
4483 print_raid5_conf(conf);
4487 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4489 /* no resync is happening, and there is enough space
4490 * on all devices, so we can resize.
4491 * We need to make sure resync covers any new space.
4492 * If the array is shrinking we should possibly wait until
4493 * any io in the removed space completes, but it hardly seems
4496 raid5_conf_t *conf = mddev_to_conf(mddev);
4498 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4499 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4500 set_capacity(mddev->gendisk, mddev->array_size << 1);
4502 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4503 mddev->recovery_cp = mddev->size << 1;
4504 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4506 mddev->size = sectors /2;
4507 mddev->resync_max_sectors = sectors;
4511 #ifdef CONFIG_MD_RAID5_RESHAPE
4512 static int raid5_check_reshape(mddev_t *mddev)
4514 raid5_conf_t *conf = mddev_to_conf(mddev);
4517 if (mddev->delta_disks < 0 ||
4518 mddev->new_level != mddev->level)
4519 return -EINVAL; /* Cannot shrink array or change level yet */
4520 if (mddev->delta_disks == 0)
4521 return 0; /* nothing to do */
4523 /* Can only proceed if there are plenty of stripe_heads.
4524 * We need a minimum of one full stripe,, and for sensible progress
4525 * it is best to have about 4 times that.
4526 * If we require 4 times, then the default 256 4K stripe_heads will
4527 * allow for chunk sizes up to 256K, which is probably OK.
4528 * If the chunk size is greater, user-space should request more
4529 * stripe_heads first.
4531 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4532 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4533 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4534 (mddev->chunk_size / STRIPE_SIZE)*4);
4538 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4542 if (mddev->degraded > conf->max_degraded)
4544 /* looks like we might be able to manage this */
4548 static int raid5_start_reshape(mddev_t *mddev)
4550 raid5_conf_t *conf = mddev_to_conf(mddev);
4552 struct list_head *rtmp;
4554 int added_devices = 0;
4555 unsigned long flags;
4557 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4560 ITERATE_RDEV(mddev, rdev, rtmp)
4561 if (rdev->raid_disk < 0 &&
4562 !test_bit(Faulty, &rdev->flags))
4565 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4566 /* Not enough devices even to make a degraded array
4571 atomic_set(&conf->reshape_stripes, 0);
4572 spin_lock_irq(&conf->device_lock);
4573 conf->previous_raid_disks = conf->raid_disks;
4574 conf->raid_disks += mddev->delta_disks;
4575 conf->expand_progress = 0;
4576 conf->expand_lo = 0;
4577 spin_unlock_irq(&conf->device_lock);
4579 /* Add some new drives, as many as will fit.
4580 * We know there are enough to make the newly sized array work.
4582 ITERATE_RDEV(mddev, rdev, rtmp)
4583 if (rdev->raid_disk < 0 &&
4584 !test_bit(Faulty, &rdev->flags)) {
4585 if (raid5_add_disk(mddev, rdev)) {
4587 set_bit(In_sync, &rdev->flags);
4589 rdev->recovery_offset = 0;
4590 sprintf(nm, "rd%d", rdev->raid_disk);
4591 if (sysfs_create_link(&mddev->kobj,
4594 "raid5: failed to create "
4595 " link %s for %s\n",
4601 spin_lock_irqsave(&conf->device_lock, flags);
4602 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4603 spin_unlock_irqrestore(&conf->device_lock, flags);
4604 mddev->raid_disks = conf->raid_disks;
4605 mddev->reshape_position = 0;
4606 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4608 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4609 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4610 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4611 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4612 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4614 if (!mddev->sync_thread) {
4615 mddev->recovery = 0;
4616 spin_lock_irq(&conf->device_lock);
4617 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4618 conf->expand_progress = MaxSector;
4619 spin_unlock_irq(&conf->device_lock);
4622 md_wakeup_thread(mddev->sync_thread);
4623 md_new_event(mddev);
4628 static void end_reshape(raid5_conf_t *conf)
4630 struct block_device *bdev;
4632 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4633 conf->mddev->array_size = conf->mddev->size *
4634 (conf->raid_disks - conf->max_degraded);
4635 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4636 conf->mddev->changed = 1;
4638 bdev = bdget_disk(conf->mddev->gendisk, 0);
4640 mutex_lock(&bdev->bd_inode->i_mutex);
4641 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4642 mutex_unlock(&bdev->bd_inode->i_mutex);
4645 spin_lock_irq(&conf->device_lock);
4646 conf->expand_progress = MaxSector;
4647 spin_unlock_irq(&conf->device_lock);
4648 conf->mddev->reshape_position = MaxSector;
4650 /* read-ahead size must cover two whole stripes, which is
4651 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4654 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4655 int stripe = data_disks *
4656 (conf->mddev->chunk_size / PAGE_SIZE);
4657 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4658 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4663 static void raid5_quiesce(mddev_t *mddev, int state)
4665 raid5_conf_t *conf = mddev_to_conf(mddev);
4668 case 2: /* resume for a suspend */
4669 wake_up(&conf->wait_for_overlap);
4672 case 1: /* stop all writes */
4673 spin_lock_irq(&conf->device_lock);
4675 wait_event_lock_irq(conf->wait_for_stripe,
4676 atomic_read(&conf->active_stripes) == 0 &&
4677 atomic_read(&conf->active_aligned_reads) == 0,
4678 conf->device_lock, /* nothing */);
4679 spin_unlock_irq(&conf->device_lock);
4682 case 0: /* re-enable writes */
4683 spin_lock_irq(&conf->device_lock);
4685 wake_up(&conf->wait_for_stripe);
4686 wake_up(&conf->wait_for_overlap);
4687 spin_unlock_irq(&conf->device_lock);
4692 static struct mdk_personality raid6_personality =
4696 .owner = THIS_MODULE,
4697 .make_request = make_request,
4701 .error_handler = error,
4702 .hot_add_disk = raid5_add_disk,
4703 .hot_remove_disk= raid5_remove_disk,
4704 .spare_active = raid5_spare_active,
4705 .sync_request = sync_request,
4706 .resize = raid5_resize,
4707 #ifdef CONFIG_MD_RAID5_RESHAPE
4708 .check_reshape = raid5_check_reshape,
4709 .start_reshape = raid5_start_reshape,
4711 .quiesce = raid5_quiesce,
4713 static struct mdk_personality raid5_personality =
4717 .owner = THIS_MODULE,
4718 .make_request = make_request,
4722 .error_handler = error,
4723 .hot_add_disk = raid5_add_disk,
4724 .hot_remove_disk= raid5_remove_disk,
4725 .spare_active = raid5_spare_active,
4726 .sync_request = sync_request,
4727 .resize = raid5_resize,
4728 #ifdef CONFIG_MD_RAID5_RESHAPE
4729 .check_reshape = raid5_check_reshape,
4730 .start_reshape = raid5_start_reshape,
4732 .quiesce = raid5_quiesce,
4735 static struct mdk_personality raid4_personality =
4739 .owner = THIS_MODULE,
4740 .make_request = make_request,
4744 .error_handler = error,
4745 .hot_add_disk = raid5_add_disk,
4746 .hot_remove_disk= raid5_remove_disk,
4747 .spare_active = raid5_spare_active,
4748 .sync_request = sync_request,
4749 .resize = raid5_resize,
4750 #ifdef CONFIG_MD_RAID5_RESHAPE
4751 .check_reshape = raid5_check_reshape,
4752 .start_reshape = raid5_start_reshape,
4754 .quiesce = raid5_quiesce,
4757 static int __init raid5_init(void)
4761 e = raid6_select_algo();
4764 register_md_personality(&raid6_personality);
4765 register_md_personality(&raid5_personality);
4766 register_md_personality(&raid4_personality);
4770 static void raid5_exit(void)
4772 unregister_md_personality(&raid6_personality);
4773 unregister_md_personality(&raid5_personality);
4774 unregister_md_personality(&raid4_personality);
4777 module_init(raid5_init);
4778 module_exit(raid5_exit);
4779 MODULE_LICENSE("GPL");
4780 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4781 MODULE_ALIAS("md-raid5");
4782 MODULE_ALIAS("md-raid4");
4783 MODULE_ALIAS("md-level-5");
4784 MODULE_ALIAS("md-level-4");
4785 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4786 MODULE_ALIAS("md-raid6");
4787 MODULE_ALIAS("md-level-6");
4789 /* This used to be two separate modules, they were: */
4790 MODULE_ALIAS("raid5");
4791 MODULE_ALIAS("raid6");