2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, ®);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
61 udelay(REGISTER_BUSY_DELAY);
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
73 * Wait until the BBP becomes ready.
75 reg = rt2500pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
82 * Write the data into the BBP.
85 rt2x00_set_field32(®, BBPCSR_VALUE, value);
86 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1);
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
99 * Wait until the BBP becomes ready.
101 reg = rt2500pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
108 * Write the request into the BBP.
111 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0);
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
118 * Wait until the BBP becomes ready.
120 reg = rt2500pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, ®);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
143 udelay(REGISTER_BUSY_DELAY);
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
151 rt2x00_set_field32(®, RFCSR_VALUE, value);
152 rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(®, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(®, RFCSR_BUSY, 1);
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
165 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
180 rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206 .owner = THIS_MODULE,
208 .read = rt2500pci_read_csr,
209 .write = rt2500pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
220 .read = rt2500pci_bbp_read,
221 .write = rt2500pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
226 .read = rt2x00_rf_read,
227 .write = rt2500pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, ®);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
243 #define rt2500pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
248 enum led_brightness brightness)
250 struct rt2x00_led *led =
251 container_of(led_cdev, struct rt2x00_led, led_dev);
252 unsigned int enabled = brightness != LED_OFF;
255 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, ®);
257 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
258 rt2x00_set_field32(®, LEDCSR_LINK, enabled);
259 else if (led->type == LED_TYPE_ACTIVITY)
260 rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled);
262 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
265 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
266 unsigned long *delay_on,
267 unsigned long *delay_off)
269 struct rt2x00_led *led =
270 container_of(led_cdev, struct rt2x00_led, led_dev);
273 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, ®);
274 rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on);
275 rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off);
276 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
281 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
282 struct rt2x00_led *led,
285 led->rt2x00dev = rt2x00dev;
287 led->led_dev.brightness_set = rt2500pci_brightness_set;
288 led->led_dev.blink_set = rt2500pci_blink_set;
289 led->flags = LED_INITIALIZED;
291 #endif /* CONFIG_RT2500PCI_LEDS */
294 * Configuration handlers.
296 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
297 const unsigned int filter_flags)
302 * Start configuration steps.
303 * Note that the version error will always be dropped
304 * and broadcast frames will always be accepted since
305 * there is no filter for it at this time.
307 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
308 rt2x00_set_field32(®, RXCSR0_DROP_CRC,
309 !(filter_flags & FIF_FCSFAIL));
310 rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL,
311 !(filter_flags & FIF_PLCPFAIL));
312 rt2x00_set_field32(®, RXCSR0_DROP_CONTROL,
313 !(filter_flags & FIF_CONTROL));
314 rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME,
315 !(filter_flags & FIF_PROMISC_IN_BSS));
316 rt2x00_set_field32(®, RXCSR0_DROP_TODS,
317 !(filter_flags & FIF_PROMISC_IN_BSS) &&
318 !rt2x00dev->intf_ap_count);
319 rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1);
320 rt2x00_set_field32(®, RXCSR0_DROP_MCAST,
321 !(filter_flags & FIF_ALLMULTI));
322 rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0);
323 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
326 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
327 struct rt2x00_intf *intf,
328 struct rt2x00intf_conf *conf,
329 const unsigned int flags)
331 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
332 unsigned int bcn_preload;
335 if (flags & CONFIG_UPDATE_TYPE) {
337 * Enable beacon config
339 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
340 rt2x00pci_register_read(rt2x00dev, BCNCSR1, ®);
341 rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload);
342 rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min);
343 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
346 * Enable synchronisation.
348 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
349 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
350 rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync);
351 rt2x00_set_field32(®, CSR14_TBCN, 1);
352 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
355 if (flags & CONFIG_UPDATE_MAC)
356 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
357 conf->mac, sizeof(conf->mac));
359 if (flags & CONFIG_UPDATE_BSSID)
360 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
361 conf->bssid, sizeof(conf->bssid));
364 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
365 struct rt2x00lib_erp *erp)
371 * When short preamble is enabled, we should set bit 0x08
373 preamble_mask = erp->short_preamble << 3;
375 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
376 rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT,
378 rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME,
379 erp->ack_consume_time);
380 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
382 rt2x00pci_register_read(rt2x00dev, ARCSR2, ®);
383 rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00);
384 rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04);
385 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
386 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
388 rt2x00pci_register_read(rt2x00dev, ARCSR3, ®);
389 rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask);
390 rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04);
391 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
392 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
394 rt2x00pci_register_read(rt2x00dev, ARCSR4, ®);
395 rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask);
396 rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04);
397 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
398 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
400 rt2x00pci_register_read(rt2x00dev, ARCSR5, ®);
401 rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask);
402 rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84);
403 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
404 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
407 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
408 const int basic_rate_mask)
410 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
413 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
414 struct rf_channel *rf, const int txpower)
421 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
424 * Switch on tuning bits.
425 * For RT2523 devices we do not need to update the R1 register.
427 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
428 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
429 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
432 * For RT2525 we should first set the channel to half band higher.
434 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
435 static const u32 vals[] = {
436 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
437 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
438 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
439 0x00080d2e, 0x00080d3a
442 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
443 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
444 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
446 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
449 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
450 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
451 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
453 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
456 * Channel 14 requires the Japan filter bit to be set.
459 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
460 rt2500pci_bbp_write(rt2x00dev, 70, r70);
465 * Switch off tuning bits.
466 * For RT2523 devices we do not need to update the R1 register.
468 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
469 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
470 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
473 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
474 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
477 * Clear false CRC during channel switch.
479 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
482 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
487 rt2x00_rf_read(rt2x00dev, 3, &rf3);
488 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
489 rt2500pci_rf_write(rt2x00dev, 3, rf3);
492 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
493 struct antenna_setup *ant)
500 * We should never come here because rt2x00lib is supposed
501 * to catch this and send us the correct antenna explicitely.
503 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
504 ant->tx == ANTENNA_SW_DIVERSITY);
506 rt2x00pci_register_read(rt2x00dev, BBPCSR1, ®);
507 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
508 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
511 * Configure the TX antenna.
515 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
516 rt2x00_set_field32(®, BBPCSR1_CCK, 0);
517 rt2x00_set_field32(®, BBPCSR1_OFDM, 0);
521 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
522 rt2x00_set_field32(®, BBPCSR1_CCK, 2);
523 rt2x00_set_field32(®, BBPCSR1_OFDM, 2);
528 * Configure the RX antenna.
532 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
536 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
541 * RT2525E and RT5222 need to flip TX I/Q
543 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
544 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
545 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
546 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1);
547 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1);
550 * RT2525E does not need RX I/Q Flip.
552 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
553 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
555 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0);
556 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0);
559 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
560 rt2500pci_bbp_write(rt2x00dev, 14, r14);
561 rt2500pci_bbp_write(rt2x00dev, 2, r2);
564 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
565 struct rt2x00lib_conf *libconf)
569 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
570 rt2x00_set_field32(®, CSR11_SLOT_TIME, libconf->slot_time);
571 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
573 rt2x00pci_register_read(rt2x00dev, CSR18, ®);
574 rt2x00_set_field32(®, CSR18_SIFS, libconf->sifs);
575 rt2x00_set_field32(®, CSR18_PIFS, libconf->pifs);
576 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
578 rt2x00pci_register_read(rt2x00dev, CSR19, ®);
579 rt2x00_set_field32(®, CSR19_DIFS, libconf->difs);
580 rt2x00_set_field32(®, CSR19_EIFS, libconf->eifs);
581 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
583 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
584 rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
585 rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1);
586 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
588 rt2x00pci_register_read(rt2x00dev, CSR12, ®);
589 rt2x00_set_field32(®, CSR12_BEACON_INTERVAL,
590 libconf->conf->beacon_int * 16);
591 rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION,
592 libconf->conf->beacon_int * 16);
593 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
596 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
597 struct rt2x00lib_conf *libconf,
598 const unsigned int flags)
600 if (flags & CONFIG_UPDATE_PHYMODE)
601 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
602 if (flags & CONFIG_UPDATE_CHANNEL)
603 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
604 libconf->conf->power_level);
605 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
606 rt2500pci_config_txpower(rt2x00dev,
607 libconf->conf->power_level);
608 if (flags & CONFIG_UPDATE_ANTENNA)
609 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
610 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
611 rt2500pci_config_duration(rt2x00dev, libconf);
617 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
618 struct link_qual *qual)
623 * Update FCS error count from register.
625 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
626 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
629 * Update False CCA count from register.
631 rt2x00pci_register_read(rt2x00dev, CNT3, ®);
632 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
635 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
637 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
638 rt2x00dev->link.vgc_level = 0x48;
641 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
643 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
647 * To prevent collisions with MAC ASIC on chipsets
648 * up to version C the link tuning should halt after 20
649 * seconds while being associated.
651 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
652 rt2x00dev->intf_associated &&
653 rt2x00dev->link.count > 20)
656 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
659 * Chipset versions C and lower should directly continue
660 * to the dynamic CCA tuning. Chipset version D and higher
661 * should go straight to dynamic CCA tuning when they
662 * are not associated.
664 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
665 !rt2x00dev->intf_associated)
666 goto dynamic_cca_tune;
669 * A too low RSSI will cause too much false CCA which will
670 * then corrupt the R17 tuning. To remidy this the tuning should
671 * be stopped (While making sure the R17 value will not exceed limits)
673 if (rssi < -80 && rt2x00dev->link.count > 20) {
675 r17 = rt2x00dev->link.vgc_level;
676 rt2500pci_bbp_write(rt2x00dev, 17, r17);
682 * Special big-R17 for short distance
686 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
691 * Special mid-R17 for middle distance
695 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
700 * Leave short or middle distance condition, restore r17
701 * to the dynamic tuning range.
704 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
711 * R17 is inside the dynamic tuning range,
712 * start tuning the link based on the false cca counter.
714 if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
715 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
716 rt2x00dev->link.vgc_level = r17;
717 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
718 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
719 rt2x00dev->link.vgc_level = r17;
724 * Initialization functions.
726 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
727 struct queue_entry *entry)
729 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
730 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
733 rt2x00_desc_read(entry_priv->desc, 1, &word);
734 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
735 rt2x00_desc_write(entry_priv->desc, 1, word);
737 rt2x00_desc_read(entry_priv->desc, 0, &word);
738 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
739 rt2x00_desc_write(entry_priv->desc, 0, word);
742 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
743 struct queue_entry *entry)
745 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
748 rt2x00_desc_read(entry_priv->desc, 0, &word);
749 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
750 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
751 rt2x00_desc_write(entry_priv->desc, 0, word);
754 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
756 struct queue_entry_priv_pci *entry_priv;
760 * Initialize registers.
762 rt2x00pci_register_read(rt2x00dev, TXCSR2, ®);
763 rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
764 rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
765 rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
766 rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
767 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
769 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
770 rt2x00pci_register_read(rt2x00dev, TXCSR3, ®);
771 rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER,
772 entry_priv->desc_dma);
773 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
775 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
776 rt2x00pci_register_read(rt2x00dev, TXCSR5, ®);
777 rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER,
778 entry_priv->desc_dma);
779 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
781 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
782 rt2x00pci_register_read(rt2x00dev, TXCSR4, ®);
783 rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER,
784 entry_priv->desc_dma);
785 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
787 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
788 rt2x00pci_register_read(rt2x00dev, TXCSR6, ®);
789 rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER,
790 entry_priv->desc_dma);
791 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
793 rt2x00pci_register_read(rt2x00dev, RXCSR1, ®);
794 rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
795 rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
796 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
798 entry_priv = rt2x00dev->rx->entries[0].priv_data;
799 rt2x00pci_register_read(rt2x00dev, RXCSR2, ®);
800 rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER,
801 entry_priv->desc_dma);
802 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
807 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
811 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
812 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
813 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
814 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
816 rt2x00pci_register_read(rt2x00dev, TIMECSR, ®);
817 rt2x00_set_field32(®, TIMECSR_US_COUNT, 33);
818 rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63);
819 rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0);
820 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
822 rt2x00pci_register_read(rt2x00dev, CSR9, ®);
823 rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT,
824 rt2x00dev->rx->data_size / 128);
825 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
828 * Always use CWmin and CWmax set in descriptor.
830 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
831 rt2x00_set_field32(®, CSR11_CW_SELECT, 0);
832 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
834 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
835 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
836 rt2x00_set_field32(®, CSR14_TSF_SYNC, 0);
837 rt2x00_set_field32(®, CSR14_TBCN, 0);
838 rt2x00_set_field32(®, CSR14_TCFP, 0);
839 rt2x00_set_field32(®, CSR14_TATIMW, 0);
840 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
841 rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0);
842 rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0);
843 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
845 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
847 rt2x00pci_register_read(rt2x00dev, TXCSR8, ®);
848 rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10);
849 rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1);
850 rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11);
851 rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1);
852 rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13);
853 rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1);
854 rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12);
855 rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1);
856 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
858 rt2x00pci_register_read(rt2x00dev, ARTCSR0, ®);
859 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112);
860 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56);
861 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20);
862 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10);
863 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
865 rt2x00pci_register_read(rt2x00dev, ARTCSR1, ®);
866 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45);
867 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37);
868 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33);
869 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29);
870 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
872 rt2x00pci_register_read(rt2x00dev, ARTCSR2, ®);
873 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29);
874 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25);
875 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25);
876 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25);
877 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
879 rt2x00pci_register_read(rt2x00dev, RXCSR3, ®);
880 rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */
881 rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1);
882 rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */
883 rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1);
884 rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
885 rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1);
886 rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */
887 rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1);
888 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
890 rt2x00pci_register_read(rt2x00dev, PCICSR, ®);
891 rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0);
892 rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0);
893 rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3);
894 rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1);
895 rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1);
896 rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1);
897 rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1);
898 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
900 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
902 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
903 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
905 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
908 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
909 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
911 rt2x00pci_register_read(rt2x00dev, MACCSR2, ®);
912 rt2x00_set_field32(®, MACCSR2_DELAY, 64);
913 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
915 rt2x00pci_register_read(rt2x00dev, RALINKCSR, ®);
916 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17);
917 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26);
918 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1);
919 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0);
920 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26);
921 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1);
922 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
924 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
926 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
928 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
929 rt2x00_set_field32(®, CSR1_SOFT_RESET, 1);
930 rt2x00_set_field32(®, CSR1_BBP_RESET, 0);
931 rt2x00_set_field32(®, CSR1_HOST_READY, 0);
932 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
934 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
935 rt2x00_set_field32(®, CSR1_SOFT_RESET, 0);
936 rt2x00_set_field32(®, CSR1_HOST_READY, 1);
937 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
940 * We must clear the FCS and FIFO error count.
941 * These registers are cleared on read,
942 * so we may pass a useless variable to store the value.
944 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
945 rt2x00pci_register_read(rt2x00dev, CNT4, ®);
950 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
955 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
956 rt2500pci_bbp_read(rt2x00dev, 0, &value);
957 if ((value != 0xff) && (value != 0x00))
959 udelay(REGISTER_BUSY_DELAY);
962 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
966 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
973 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
976 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
977 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
978 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
979 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
980 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
981 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
982 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
983 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
984 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
985 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
986 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
987 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
988 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
989 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
990 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
991 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
992 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
993 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
994 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
995 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
996 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
997 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
998 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
999 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1000 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1001 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1002 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1003 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1004 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1005 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1007 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1008 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1010 if (eeprom != 0xffff && eeprom != 0x0000) {
1011 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1012 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1013 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1021 * Device state switch handlers.
1023 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1024 enum dev_state state)
1028 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
1029 rt2x00_set_field32(®, RXCSR0_DISABLE_RX,
1030 (state == STATE_RADIO_RX_OFF) ||
1031 (state == STATE_RADIO_RX_OFF_LINK));
1032 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1035 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1036 enum dev_state state)
1038 int mask = (state == STATE_RADIO_IRQ_OFF);
1042 * When interrupts are being enabled, the interrupt registers
1043 * should clear the register to assure a clean state.
1045 if (state == STATE_RADIO_IRQ_ON) {
1046 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
1047 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1051 * Only toggle the interrupts bits we are going to use.
1052 * Non-checked interrupt bits are disabled by default.
1054 rt2x00pci_register_read(rt2x00dev, CSR8, ®);
1055 rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask);
1056 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask);
1057 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask);
1058 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask);
1059 rt2x00_set_field32(®, CSR8_RXDONE, mask);
1060 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1063 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1066 * Initialize all registers.
1068 if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1069 rt2500pci_init_registers(rt2x00dev) ||
1070 rt2500pci_init_bbp(rt2x00dev)))
1076 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1080 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1083 * Disable synchronisation.
1085 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1090 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
1091 rt2x00_set_field32(®, TXCSR0_ABORT, 1);
1092 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1095 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1096 enum dev_state state)
1104 put_to_sleep = (state != STATE_AWAKE);
1106 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
1107 rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1);
1108 rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state);
1109 rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state);
1110 rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1111 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1114 * Device is not guaranteed to be in the requested state yet.
1115 * We must wait until the register indicates that the
1116 * device has entered the correct state.
1118 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1119 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
1120 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1121 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1122 if (bbp_state == state && rf_state == state)
1130 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1131 enum dev_state state)
1136 case STATE_RADIO_ON:
1137 retval = rt2500pci_enable_radio(rt2x00dev);
1139 case STATE_RADIO_OFF:
1140 rt2500pci_disable_radio(rt2x00dev);
1142 case STATE_RADIO_RX_ON:
1143 case STATE_RADIO_RX_ON_LINK:
1144 case STATE_RADIO_RX_OFF:
1145 case STATE_RADIO_RX_OFF_LINK:
1146 rt2500pci_toggle_rx(rt2x00dev, state);
1148 case STATE_RADIO_IRQ_ON:
1149 case STATE_RADIO_IRQ_OFF:
1150 rt2500pci_toggle_irq(rt2x00dev, state);
1152 case STATE_DEEP_SLEEP:
1156 retval = rt2500pci_set_state(rt2x00dev, state);
1163 if (unlikely(retval))
1164 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1171 * TX descriptor initialization
1173 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1174 struct sk_buff *skb,
1175 struct txentry_desc *txdesc)
1177 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1178 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1179 __le32 *txd = skbdesc->desc;
1183 * Start writing the descriptor words.
1185 rt2x00_desc_read(entry_priv->desc, 1, &word);
1186 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1187 rt2x00_desc_write(entry_priv->desc, 1, word);
1189 rt2x00_desc_read(txd, 2, &word);
1190 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1191 rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1192 rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1193 rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1194 rt2x00_desc_write(txd, 2, word);
1196 rt2x00_desc_read(txd, 3, &word);
1197 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1198 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1199 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1200 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1201 rt2x00_desc_write(txd, 3, word);
1203 rt2x00_desc_read(txd, 10, &word);
1204 rt2x00_set_field32(&word, TXD_W10_RTS,
1205 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1206 rt2x00_desc_write(txd, 10, word);
1208 rt2x00_desc_read(txd, 0, &word);
1209 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1210 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1211 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1212 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1213 rt2x00_set_field32(&word, TXD_W0_ACK,
1214 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1215 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1216 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1217 rt2x00_set_field32(&word, TXD_W0_OFDM,
1218 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1219 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1220 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1221 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1222 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1223 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1224 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1225 rt2x00_desc_write(txd, 0, word);
1229 * TX data initialization
1231 static void rt2500pci_write_beacon(struct queue_entry *entry)
1233 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1234 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1235 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1240 * Disable beaconing while we are reloading the beacon data,
1241 * otherwise we might be sending out invalid data.
1243 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
1244 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
1245 rt2x00_set_field32(®, CSR14_TBCN, 0);
1246 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
1247 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1250 * Replace rt2x00lib allocated descriptor with the
1251 * pointer to the _real_ hardware descriptor.
1252 * After that, map the beacon to DMA and update the
1255 memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1256 skbdesc->desc = entry_priv->desc;
1258 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1260 rt2x00_desc_read(entry_priv->desc, 1, &word);
1261 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1262 rt2x00_desc_write(entry_priv->desc, 1, word);
1265 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1266 const enum data_queue_qid queue)
1270 if (queue == QID_BEACON) {
1271 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
1272 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1273 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
1274 rt2x00_set_field32(®, CSR14_TBCN, 1);
1275 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
1276 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1281 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
1282 rt2x00_set_field32(®, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1283 rt2x00_set_field32(®, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1284 rt2x00_set_field32(®, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1285 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1289 * RX control handlers
1291 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1292 struct rxdone_entry_desc *rxdesc)
1294 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1298 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1299 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1301 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1302 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1303 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1304 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1307 * Obtain the status about this packet.
1308 * When frame was received with an OFDM bitrate,
1309 * the signal is the PLCP value. If it was received with
1310 * a CCK bitrate the signal is the rate in 100kbit/s.
1312 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1313 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1314 entry->queue->rt2x00dev->rssi_offset;
1315 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1317 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1318 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1319 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1320 rxdesc->dev_flags |= RXDONE_MY_BSS;
1324 * Interrupt functions.
1326 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1327 const enum data_queue_qid queue_idx)
1329 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1330 struct queue_entry_priv_pci *entry_priv;
1331 struct queue_entry *entry;
1332 struct txdone_entry_desc txdesc;
1335 while (!rt2x00queue_empty(queue)) {
1336 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1337 entry_priv = entry->priv_data;
1338 rt2x00_desc_read(entry_priv->desc, 0, &word);
1340 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1341 !rt2x00_get_field32(word, TXD_W0_VALID))
1345 * Obtain the status about this packet.
1348 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1349 case 0: /* Success */
1350 case 1: /* Success with retry */
1351 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1353 case 2: /* Failure, excessive retries */
1354 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1355 /* Don't break, this is a failed frame! */
1356 default: /* Failure */
1357 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1359 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1361 rt2x00lib_txdone(entry, &txdesc);
1365 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1367 struct rt2x00_dev *rt2x00dev = dev_instance;
1371 * Get the interrupt sources & saved to local variable.
1372 * Write register value back to clear pending interrupts.
1374 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
1375 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1380 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1384 * Handle interrupts, walk through all bits
1385 * and run the tasks, the bits are checked in order of
1390 * 1 - Beacon timer expired interrupt.
1392 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1393 rt2x00lib_beacondone(rt2x00dev);
1396 * 2 - Rx ring done interrupt.
1398 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1399 rt2x00pci_rxdone(rt2x00dev);
1402 * 3 - Atim ring transmit done interrupt.
1404 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1405 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1408 * 4 - Priority ring transmit done interrupt.
1410 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1411 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1414 * 5 - Tx ring transmit done interrupt.
1416 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1417 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1423 * Device probe functions.
1425 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1427 struct eeprom_93cx6 eeprom;
1432 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
1434 eeprom.data = rt2x00dev;
1435 eeprom.register_read = rt2500pci_eepromregister_read;
1436 eeprom.register_write = rt2500pci_eepromregister_write;
1437 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1438 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1439 eeprom.reg_data_in = 0;
1440 eeprom.reg_data_out = 0;
1441 eeprom.reg_data_clock = 0;
1442 eeprom.reg_chip_select = 0;
1444 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1445 EEPROM_SIZE / sizeof(u16));
1448 * Start validation of the data that has been read.
1450 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1451 if (!is_valid_ether_addr(mac)) {
1452 DECLARE_MAC_BUF(macbuf);
1454 random_ether_addr(mac);
1455 EEPROM(rt2x00dev, "MAC: %s\n",
1456 print_mac(macbuf, mac));
1459 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1460 if (word == 0xffff) {
1461 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1462 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1463 ANTENNA_SW_DIVERSITY);
1464 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1465 ANTENNA_SW_DIVERSITY);
1466 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1468 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1469 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1470 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1471 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1472 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1475 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1476 if (word == 0xffff) {
1477 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1478 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1479 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1480 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1481 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1484 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1485 if (word == 0xffff) {
1486 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1487 DEFAULT_RSSI_OFFSET);
1488 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1489 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1495 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1502 * Read EEPROM word for configuration.
1504 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1507 * Identify RF chipset.
1509 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1510 rt2x00pci_register_read(rt2x00dev, CSR0, ®);
1511 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1513 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1514 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1515 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1516 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1517 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1518 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1519 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1524 * Identify default antenna configuration.
1526 rt2x00dev->default_ant.tx =
1527 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1528 rt2x00dev->default_ant.rx =
1529 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1532 * Store led mode, for correct led behaviour.
1534 #ifdef CONFIG_RT2500PCI_LEDS
1535 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1537 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1538 if (value == LED_MODE_TXRX_ACTIVITY)
1539 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1541 #endif /* CONFIG_RT2500PCI_LEDS */
1544 * Detect if this device has an hardware controlled radio.
1546 #ifdef CONFIG_RT2500PCI_RFKILL
1547 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1548 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1549 #endif /* CONFIG_RT2500PCI_RFKILL */
1552 * Check if the BBP tuning should be enabled.
1554 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1556 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1557 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1560 * Read the RSSI <-> dBm offset information.
1562 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1563 rt2x00dev->rssi_offset =
1564 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1570 * RF value list for RF2522
1573 static const struct rf_channel rf_vals_bg_2522[] = {
1574 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1575 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1576 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1577 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1578 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1579 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1580 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1581 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1582 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1583 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1584 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1585 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1586 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1587 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1591 * RF value list for RF2523
1594 static const struct rf_channel rf_vals_bg_2523[] = {
1595 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1596 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1597 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1598 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1599 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1600 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1601 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1602 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1603 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1604 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1605 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1606 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1607 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1608 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1612 * RF value list for RF2524
1615 static const struct rf_channel rf_vals_bg_2524[] = {
1616 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1617 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1618 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1619 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1620 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1621 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1622 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1623 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1624 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1625 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1626 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1627 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1628 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1629 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1633 * RF value list for RF2525
1636 static const struct rf_channel rf_vals_bg_2525[] = {
1637 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1638 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1639 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1640 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1641 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1642 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1643 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1644 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1645 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1646 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1647 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1648 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1649 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1650 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1654 * RF value list for RF2525e
1657 static const struct rf_channel rf_vals_bg_2525e[] = {
1658 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1659 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1660 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1661 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1662 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1663 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1664 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1665 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1666 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1667 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1668 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1669 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1670 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1671 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1675 * RF value list for RF5222
1676 * Supports: 2.4 GHz & 5.2 GHz
1678 static const struct rf_channel rf_vals_5222[] = {
1679 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1680 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1681 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1682 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1683 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1684 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1685 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1686 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1687 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1688 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1689 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1690 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1691 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1692 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1694 /* 802.11 UNI / HyperLan 2 */
1695 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1696 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1697 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1698 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1699 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1700 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1701 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1702 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1704 /* 802.11 HyperLan 2 */
1705 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1706 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1707 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1708 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1709 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1710 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1711 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1712 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1713 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1714 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1717 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1718 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1719 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1720 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1721 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1724 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1726 struct hw_mode_spec *spec = &rt2x00dev->spec;
1731 * Initialize all hw fields.
1733 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1734 IEEE80211_HW_SIGNAL_DBM;
1736 rt2x00dev->hw->extra_tx_headroom = 0;
1738 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1739 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1740 rt2x00_eeprom_addr(rt2x00dev,
1741 EEPROM_MAC_ADDR_0));
1744 * Convert tx_power array in eeprom.
1746 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1747 for (i = 0; i < 14; i++)
1748 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1751 * Initialize hw_mode information.
1753 spec->supported_bands = SUPPORT_BAND_2GHZ;
1754 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1755 spec->tx_power_a = NULL;
1756 spec->tx_power_bg = txpower;
1757 spec->tx_power_default = DEFAULT_TXPOWER;
1759 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1760 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1761 spec->channels = rf_vals_bg_2522;
1762 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1763 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1764 spec->channels = rf_vals_bg_2523;
1765 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1766 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1767 spec->channels = rf_vals_bg_2524;
1768 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1769 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1770 spec->channels = rf_vals_bg_2525;
1771 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1772 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1773 spec->channels = rf_vals_bg_2525e;
1774 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1775 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1776 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1777 spec->channels = rf_vals_5222;
1781 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1786 * Allocate eeprom data.
1788 retval = rt2500pci_validate_eeprom(rt2x00dev);
1792 retval = rt2500pci_init_eeprom(rt2x00dev);
1797 * Initialize hw specifications.
1799 rt2500pci_probe_hw_mode(rt2x00dev);
1802 * This device requires the atim queue and DMA-mapped skbs.
1804 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1805 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1808 * Set the rssi offset.
1810 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1816 * IEEE80211 stack callback functions.
1818 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1819 u32 short_retry, u32 long_retry)
1821 struct rt2x00_dev *rt2x00dev = hw->priv;
1824 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
1825 rt2x00_set_field32(®, CSR11_LONG_RETRY, long_retry);
1826 rt2x00_set_field32(®, CSR11_SHORT_RETRY, short_retry);
1827 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1832 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1834 struct rt2x00_dev *rt2x00dev = hw->priv;
1838 rt2x00pci_register_read(rt2x00dev, CSR17, ®);
1839 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1840 rt2x00pci_register_read(rt2x00dev, CSR16, ®);
1841 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1846 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1848 struct rt2x00_dev *rt2x00dev = hw->priv;
1851 rt2x00pci_register_read(rt2x00dev, CSR15, ®);
1852 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1855 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1857 .start = rt2x00mac_start,
1858 .stop = rt2x00mac_stop,
1859 .add_interface = rt2x00mac_add_interface,
1860 .remove_interface = rt2x00mac_remove_interface,
1861 .config = rt2x00mac_config,
1862 .config_interface = rt2x00mac_config_interface,
1863 .configure_filter = rt2x00mac_configure_filter,
1864 .get_stats = rt2x00mac_get_stats,
1865 .set_retry_limit = rt2500pci_set_retry_limit,
1866 .bss_info_changed = rt2x00mac_bss_info_changed,
1867 .conf_tx = rt2x00mac_conf_tx,
1868 .get_tx_stats = rt2x00mac_get_tx_stats,
1869 .get_tsf = rt2500pci_get_tsf,
1870 .tx_last_beacon = rt2500pci_tx_last_beacon,
1873 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1874 .irq_handler = rt2500pci_interrupt,
1875 .probe_hw = rt2500pci_probe_hw,
1876 .initialize = rt2x00pci_initialize,
1877 .uninitialize = rt2x00pci_uninitialize,
1878 .init_rxentry = rt2500pci_init_rxentry,
1879 .init_txentry = rt2500pci_init_txentry,
1880 .set_device_state = rt2500pci_set_device_state,
1881 .rfkill_poll = rt2500pci_rfkill_poll,
1882 .link_stats = rt2500pci_link_stats,
1883 .reset_tuner = rt2500pci_reset_tuner,
1884 .link_tuner = rt2500pci_link_tuner,
1885 .write_tx_desc = rt2500pci_write_tx_desc,
1886 .write_tx_data = rt2x00pci_write_tx_data,
1887 .write_beacon = rt2500pci_write_beacon,
1888 .kick_tx_queue = rt2500pci_kick_tx_queue,
1889 .fill_rxdone = rt2500pci_fill_rxdone,
1890 .config_filter = rt2500pci_config_filter,
1891 .config_intf = rt2500pci_config_intf,
1892 .config_erp = rt2500pci_config_erp,
1893 .config = rt2500pci_config,
1896 static const struct data_queue_desc rt2500pci_queue_rx = {
1897 .entry_num = RX_ENTRIES,
1898 .data_size = DATA_FRAME_SIZE,
1899 .desc_size = RXD_DESC_SIZE,
1900 .priv_size = sizeof(struct queue_entry_priv_pci),
1903 static const struct data_queue_desc rt2500pci_queue_tx = {
1904 .entry_num = TX_ENTRIES,
1905 .data_size = DATA_FRAME_SIZE,
1906 .desc_size = TXD_DESC_SIZE,
1907 .priv_size = sizeof(struct queue_entry_priv_pci),
1910 static const struct data_queue_desc rt2500pci_queue_bcn = {
1911 .entry_num = BEACON_ENTRIES,
1912 .data_size = MGMT_FRAME_SIZE,
1913 .desc_size = TXD_DESC_SIZE,
1914 .priv_size = sizeof(struct queue_entry_priv_pci),
1917 static const struct data_queue_desc rt2500pci_queue_atim = {
1918 .entry_num = ATIM_ENTRIES,
1919 .data_size = DATA_FRAME_SIZE,
1920 .desc_size = TXD_DESC_SIZE,
1921 .priv_size = sizeof(struct queue_entry_priv_pci),
1924 static const struct rt2x00_ops rt2500pci_ops = {
1925 .name = KBUILD_MODNAME,
1928 .eeprom_size = EEPROM_SIZE,
1930 .tx_queues = NUM_TX_QUEUES,
1931 .rx = &rt2500pci_queue_rx,
1932 .tx = &rt2500pci_queue_tx,
1933 .bcn = &rt2500pci_queue_bcn,
1934 .atim = &rt2500pci_queue_atim,
1935 .lib = &rt2500pci_rt2x00_ops,
1936 .hw = &rt2500pci_mac80211_ops,
1937 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1938 .debugfs = &rt2500pci_rt2x00debug,
1939 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1943 * RT2500pci module information.
1945 static struct pci_device_id rt2500pci_device_table[] = {
1946 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1950 MODULE_AUTHOR(DRV_PROJECT);
1951 MODULE_VERSION(DRV_VERSION);
1952 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1953 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1954 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1955 MODULE_LICENSE("GPL");
1957 static struct pci_driver rt2500pci_driver = {
1958 .name = KBUILD_MODNAME,
1959 .id_table = rt2500pci_device_table,
1960 .probe = rt2x00pci_probe,
1961 .remove = __devexit_p(rt2x00pci_remove),
1962 .suspend = rt2x00pci_suspend,
1963 .resume = rt2x00pci_resume,
1966 static int __init rt2500pci_init(void)
1968 return pci_register_driver(&rt2500pci_driver);
1971 static void __exit rt2500pci_exit(void)
1973 pci_unregister_driver(&rt2500pci_driver);
1976 module_init(rt2500pci_init);
1977 module_exit(rt2500pci_exit);