2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
55 * Array of node states.
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 [N_CPU] = { { [0] = 1UL } },
68 EXPORT_SYMBOL(node_states);
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
73 int percpu_pagelist_fraction;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
79 static void __free_pages_ok(struct page *page, unsigned int order);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
96 #ifdef CONFIG_ZONE_DMA32
105 EXPORT_SYMBOL(totalram_pages);
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
111 #ifdef CONFIG_ZONE_DMA32
115 #ifdef CONFIG_HIGHMEM
121 int min_free_kbytes = 1024;
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
170 int page_group_by_mobility_disabled __read_mostly;
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
183 unsigned long pfn = page_to_pfn(page);
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 else if (pfn < zone->zone_start_pfn)
191 } while (zone_span_seqretry(zone, seq));
196 static int page_is_consistent(struct zone *zone, struct page *page)
198 if (!pfn_valid_within(page_to_pfn(page)))
200 if (zone != page_zone(page))
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone *zone, struct page *page)
210 if (page_outside_zone_boundaries(zone, page))
212 if (!page_is_consistent(zone, page))
218 static inline int bad_range(struct zone *zone, struct page *page)
224 static void bad_page(struct page *page)
226 void *pc = page_get_page_cgroup(page);
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page *page)
264 __free_pages_ok(page, compound_order(page));
267 void prep_compound_page(struct page *page, unsigned long order)
270 int nr_pages = 1 << order;
272 set_compound_page_dtor(page, free_compound_page);
273 set_compound_order(page, order);
275 for (i = 1; i < nr_pages; i++) {
276 struct page *p = page + i;
279 p->first_page = page;
283 static void destroy_compound_page(struct page *page, unsigned long order)
286 int nr_pages = 1 << order;
288 if (unlikely(compound_order(page) != order))
291 if (unlikely(!PageHead(page)))
293 __ClearPageHead(page);
294 for (i = 1; i < nr_pages; i++) {
295 struct page *p = page + i;
297 if (unlikely(!PageTail(p) |
298 (p->first_page != page)))
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 for (i = 0; i < (1 << order); i++)
314 clear_highpage(page + i);
317 static inline void set_page_order(struct page *page, int order)
319 set_page_private(page, order);
320 __SetPageBuddy(page);
323 static inline void rmv_page_order(struct page *page)
325 __ClearPageBuddy(page);
326 set_page_private(page, 0);
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
336 * For example, if the starting buddy (buddy2) is #8 its order
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
349 unsigned long buddy_idx = page_idx ^ (1 << order);
351 return page + (buddy_idx - page_idx);
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
357 return (page_idx & ~(1 << order));
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
371 * For recording page's order, we use page_private(page).
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
376 if (!pfn_valid_within(page_to_pfn(buddy)))
379 if (page_zone_id(page) != page_zone_id(buddy))
382 if (PageBuddy(buddy) && page_order(buddy) == order) {
383 BUG_ON(page_count(buddy) != 0);
390 * Freeing function for a buddy system allocator.
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
413 static inline void __free_one_page(struct page *page,
414 struct zone *zone, unsigned int order)
416 unsigned long page_idx;
417 int order_size = 1 << order;
418 int migratetype = get_pageblock_migratetype(page);
420 if (unlikely(PageCompound(page)))
421 destroy_compound_page(page, order);
423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
425 VM_BUG_ON(page_idx & (order_size - 1));
426 VM_BUG_ON(bad_range(zone, page));
428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 while (order < MAX_ORDER-1) {
430 unsigned long combined_idx;
433 buddy = __page_find_buddy(page, page_idx, order);
434 if (!page_is_buddy(page, buddy, order))
437 /* Our buddy is free, merge with it and move up one order. */
438 list_del(&buddy->lru);
439 zone->free_area[order].nr_free--;
440 rmv_page_order(buddy);
441 combined_idx = __find_combined_index(page_idx, order);
442 page = page + (combined_idx - page_idx);
443 page_idx = combined_idx;
446 set_page_order(page, order);
448 &zone->free_area[order].free_list[migratetype]);
449 zone->free_area[order].nr_free++;
452 static inline int free_pages_check(struct page *page)
454 if (unlikely(page_mapcount(page) |
455 (page->mapping != NULL) |
456 (page_get_page_cgroup(page) != NULL) |
457 (page_count(page) != 0) |
458 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
461 __ClearPageDirty(page);
463 * For now, we report if PG_reserved was found set, but do not
464 * clear it, and do not free the page. But we shall soon need
465 * to do more, for when the ZERO_PAGE count wraps negative.
467 return PageReserved(page);
471 * Frees a list of pages.
472 * Assumes all pages on list are in same zone, and of same order.
473 * count is the number of pages to free.
475 * If the zone was previously in an "all pages pinned" state then look to
476 * see if this freeing clears that state.
478 * And clear the zone's pages_scanned counter, to hold off the "all pages are
479 * pinned" detection logic.
481 static void free_pages_bulk(struct zone *zone, int count,
482 struct list_head *list, int order)
484 spin_lock(&zone->lock);
485 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
486 zone->pages_scanned = 0;
490 VM_BUG_ON(list_empty(list));
491 page = list_entry(list->prev, struct page, lru);
492 /* have to delete it as __free_one_page list manipulates */
493 list_del(&page->lru);
494 __free_one_page(page, zone, order);
496 spin_unlock(&zone->lock);
499 static void free_one_page(struct zone *zone, struct page *page, int order)
501 spin_lock(&zone->lock);
502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
503 zone->pages_scanned = 0;
504 __free_one_page(page, zone, order);
505 spin_unlock(&zone->lock);
508 static void __free_pages_ok(struct page *page, unsigned int order)
514 for (i = 0 ; i < (1 << order) ; ++i)
515 reserved += free_pages_check(page + i);
519 if (!PageHighMem(page)) {
520 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
521 debug_check_no_obj_freed(page_address(page),
524 arch_free_page(page, order);
525 kernel_map_pages(page, 1 << order, 0);
527 local_irq_save(flags);
528 __count_vm_events(PGFREE, 1 << order);
529 free_one_page(page_zone(page), page, order);
530 local_irq_restore(flags);
534 * permit the bootmem allocator to evade page validation on high-order frees
536 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
539 __ClearPageReserved(page);
540 set_page_count(page, 0);
541 set_page_refcounted(page);
547 for (loop = 0; loop < BITS_PER_LONG; loop++) {
548 struct page *p = &page[loop];
550 if (loop + 1 < BITS_PER_LONG)
552 __ClearPageReserved(p);
553 set_page_count(p, 0);
556 set_page_refcounted(page);
557 __free_pages(page, order);
563 * The order of subdivision here is critical for the IO subsystem.
564 * Please do not alter this order without good reasons and regression
565 * testing. Specifically, as large blocks of memory are subdivided,
566 * the order in which smaller blocks are delivered depends on the order
567 * they're subdivided in this function. This is the primary factor
568 * influencing the order in which pages are delivered to the IO
569 * subsystem according to empirical testing, and this is also justified
570 * by considering the behavior of a buddy system containing a single
571 * large block of memory acted on by a series of small allocations.
572 * This behavior is a critical factor in sglist merging's success.
576 static inline void expand(struct zone *zone, struct page *page,
577 int low, int high, struct free_area *area,
580 unsigned long size = 1 << high;
586 VM_BUG_ON(bad_range(zone, &page[size]));
587 list_add(&page[size].lru, &area->free_list[migratetype]);
589 set_page_order(&page[size], high);
594 * This page is about to be returned from the page allocator
596 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
598 if (unlikely(page_mapcount(page) |
599 (page->mapping != NULL) |
600 (page_get_page_cgroup(page) != NULL) |
601 (page_count(page) != 0) |
602 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
606 * For now, we report if PG_reserved was found set, but do not
607 * clear it, and do not allocate the page: as a safety net.
609 if (PageReserved(page))
612 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
613 1 << PG_referenced | 1 << PG_arch_1 |
614 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
615 set_page_private(page, 0);
616 set_page_refcounted(page);
618 arch_alloc_page(page, order);
619 kernel_map_pages(page, 1 << order, 1);
621 if (gfp_flags & __GFP_ZERO)
622 prep_zero_page(page, order, gfp_flags);
624 if (order && (gfp_flags & __GFP_COMP))
625 prep_compound_page(page, order);
631 * Go through the free lists for the given migratetype and remove
632 * the smallest available page from the freelists
634 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
637 unsigned int current_order;
638 struct free_area * area;
641 /* Find a page of the appropriate size in the preferred list */
642 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
643 area = &(zone->free_area[current_order]);
644 if (list_empty(&area->free_list[migratetype]))
647 page = list_entry(area->free_list[migratetype].next,
649 list_del(&page->lru);
650 rmv_page_order(page);
652 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
653 expand(zone, page, order, current_order, area, migratetype);
662 * This array describes the order lists are fallen back to when
663 * the free lists for the desirable migrate type are depleted
665 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
666 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
667 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
668 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
669 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
673 * Move the free pages in a range to the free lists of the requested type.
674 * Note that start_page and end_pages are not aligned on a pageblock
675 * boundary. If alignment is required, use move_freepages_block()
677 static int move_freepages(struct zone *zone,
678 struct page *start_page, struct page *end_page,
685 #ifndef CONFIG_HOLES_IN_ZONE
687 * page_zone is not safe to call in this context when
688 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
689 * anyway as we check zone boundaries in move_freepages_block().
690 * Remove at a later date when no bug reports exist related to
691 * grouping pages by mobility
693 BUG_ON(page_zone(start_page) != page_zone(end_page));
696 for (page = start_page; page <= end_page;) {
697 /* Make sure we are not inadvertently changing nodes */
698 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
700 if (!pfn_valid_within(page_to_pfn(page))) {
705 if (!PageBuddy(page)) {
710 order = page_order(page);
711 list_del(&page->lru);
713 &zone->free_area[order].free_list[migratetype]);
715 pages_moved += 1 << order;
721 static int move_freepages_block(struct zone *zone, struct page *page,
724 unsigned long start_pfn, end_pfn;
725 struct page *start_page, *end_page;
727 start_pfn = page_to_pfn(page);
728 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
729 start_page = pfn_to_page(start_pfn);
730 end_page = start_page + pageblock_nr_pages - 1;
731 end_pfn = start_pfn + pageblock_nr_pages - 1;
733 /* Do not cross zone boundaries */
734 if (start_pfn < zone->zone_start_pfn)
736 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
739 return move_freepages(zone, start_page, end_page, migratetype);
742 /* Remove an element from the buddy allocator from the fallback list */
743 static struct page *__rmqueue_fallback(struct zone *zone, int order,
744 int start_migratetype)
746 struct free_area * area;
751 /* Find the largest possible block of pages in the other list */
752 for (current_order = MAX_ORDER-1; current_order >= order;
754 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
755 migratetype = fallbacks[start_migratetype][i];
757 /* MIGRATE_RESERVE handled later if necessary */
758 if (migratetype == MIGRATE_RESERVE)
761 area = &(zone->free_area[current_order]);
762 if (list_empty(&area->free_list[migratetype]))
765 page = list_entry(area->free_list[migratetype].next,
770 * If breaking a large block of pages, move all free
771 * pages to the preferred allocation list. If falling
772 * back for a reclaimable kernel allocation, be more
773 * agressive about taking ownership of free pages
775 if (unlikely(current_order >= (pageblock_order >> 1)) ||
776 start_migratetype == MIGRATE_RECLAIMABLE) {
778 pages = move_freepages_block(zone, page,
781 /* Claim the whole block if over half of it is free */
782 if (pages >= (1 << (pageblock_order-1)))
783 set_pageblock_migratetype(page,
786 migratetype = start_migratetype;
789 /* Remove the page from the freelists */
790 list_del(&page->lru);
791 rmv_page_order(page);
792 __mod_zone_page_state(zone, NR_FREE_PAGES,
795 if (current_order == pageblock_order)
796 set_pageblock_migratetype(page,
799 expand(zone, page, order, current_order, area, migratetype);
804 /* Use MIGRATE_RESERVE rather than fail an allocation */
805 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
809 * Do the hard work of removing an element from the buddy allocator.
810 * Call me with the zone->lock already held.
812 static struct page *__rmqueue(struct zone *zone, unsigned int order,
817 page = __rmqueue_smallest(zone, order, migratetype);
820 page = __rmqueue_fallback(zone, order, migratetype);
826 * Obtain a specified number of elements from the buddy allocator, all under
827 * a single hold of the lock, for efficiency. Add them to the supplied list.
828 * Returns the number of new pages which were placed at *list.
830 static int rmqueue_bulk(struct zone *zone, unsigned int order,
831 unsigned long count, struct list_head *list,
836 spin_lock(&zone->lock);
837 for (i = 0; i < count; ++i) {
838 struct page *page = __rmqueue(zone, order, migratetype);
839 if (unlikely(page == NULL))
843 * Split buddy pages returned by expand() are received here
844 * in physical page order. The page is added to the callers and
845 * list and the list head then moves forward. From the callers
846 * perspective, the linked list is ordered by page number in
847 * some conditions. This is useful for IO devices that can
848 * merge IO requests if the physical pages are ordered
851 list_add(&page->lru, list);
852 set_page_private(page, migratetype);
855 spin_unlock(&zone->lock);
861 * Called from the vmstat counter updater to drain pagesets of this
862 * currently executing processor on remote nodes after they have
865 * Note that this function must be called with the thread pinned to
866 * a single processor.
868 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
873 local_irq_save(flags);
874 if (pcp->count >= pcp->batch)
875 to_drain = pcp->batch;
877 to_drain = pcp->count;
878 free_pages_bulk(zone, to_drain, &pcp->list, 0);
879 pcp->count -= to_drain;
880 local_irq_restore(flags);
885 * Drain pages of the indicated processor.
887 * The processor must either be the current processor and the
888 * thread pinned to the current processor or a processor that
891 static void drain_pages(unsigned int cpu)
896 for_each_zone(zone) {
897 struct per_cpu_pageset *pset;
898 struct per_cpu_pages *pcp;
900 if (!populated_zone(zone))
903 pset = zone_pcp(zone, cpu);
906 local_irq_save(flags);
907 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
909 local_irq_restore(flags);
914 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
916 void drain_local_pages(void *arg)
918 drain_pages(smp_processor_id());
922 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
924 void drain_all_pages(void)
926 on_each_cpu(drain_local_pages, NULL, 1);
929 #ifdef CONFIG_HIBERNATION
931 void mark_free_pages(struct zone *zone)
933 unsigned long pfn, max_zone_pfn;
936 struct list_head *curr;
938 if (!zone->spanned_pages)
941 spin_lock_irqsave(&zone->lock, flags);
943 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
944 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
945 if (pfn_valid(pfn)) {
946 struct page *page = pfn_to_page(pfn);
948 if (!swsusp_page_is_forbidden(page))
949 swsusp_unset_page_free(page);
952 for_each_migratetype_order(order, t) {
953 list_for_each(curr, &zone->free_area[order].free_list[t]) {
956 pfn = page_to_pfn(list_entry(curr, struct page, lru));
957 for (i = 0; i < (1UL << order); i++)
958 swsusp_set_page_free(pfn_to_page(pfn + i));
961 spin_unlock_irqrestore(&zone->lock, flags);
963 #endif /* CONFIG_PM */
966 * Free a 0-order page
968 static void free_hot_cold_page(struct page *page, int cold)
970 struct zone *zone = page_zone(page);
971 struct per_cpu_pages *pcp;
975 page->mapping = NULL;
976 if (free_pages_check(page))
979 if (!PageHighMem(page)) {
980 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
981 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
983 arch_free_page(page, 0);
984 kernel_map_pages(page, 1, 0);
986 pcp = &zone_pcp(zone, get_cpu())->pcp;
987 local_irq_save(flags);
988 __count_vm_event(PGFREE);
990 list_add_tail(&page->lru, &pcp->list);
992 list_add(&page->lru, &pcp->list);
993 set_page_private(page, get_pageblock_migratetype(page));
995 if (pcp->count >= pcp->high) {
996 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
997 pcp->count -= pcp->batch;
999 local_irq_restore(flags);
1003 void free_hot_page(struct page *page)
1005 free_hot_cold_page(page, 0);
1008 void free_cold_page(struct page *page)
1010 free_hot_cold_page(page, 1);
1014 * split_page takes a non-compound higher-order page, and splits it into
1015 * n (1<<order) sub-pages: page[0..n]
1016 * Each sub-page must be freed individually.
1018 * Note: this is probably too low level an operation for use in drivers.
1019 * Please consult with lkml before using this in your driver.
1021 void split_page(struct page *page, unsigned int order)
1025 VM_BUG_ON(PageCompound(page));
1026 VM_BUG_ON(!page_count(page));
1027 for (i = 1; i < (1 << order); i++)
1028 set_page_refcounted(page + i);
1032 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1033 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1036 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1037 struct zone *zone, int order, gfp_t gfp_flags)
1039 unsigned long flags;
1041 int cold = !!(gfp_flags & __GFP_COLD);
1043 int migratetype = allocflags_to_migratetype(gfp_flags);
1047 if (likely(order == 0)) {
1048 struct per_cpu_pages *pcp;
1050 pcp = &zone_pcp(zone, cpu)->pcp;
1051 local_irq_save(flags);
1053 pcp->count = rmqueue_bulk(zone, 0,
1054 pcp->batch, &pcp->list, migratetype);
1055 if (unlikely(!pcp->count))
1059 /* Find a page of the appropriate migrate type */
1061 list_for_each_entry_reverse(page, &pcp->list, lru)
1062 if (page_private(page) == migratetype)
1065 list_for_each_entry(page, &pcp->list, lru)
1066 if (page_private(page) == migratetype)
1070 /* Allocate more to the pcp list if necessary */
1071 if (unlikely(&page->lru == &pcp->list)) {
1072 pcp->count += rmqueue_bulk(zone, 0,
1073 pcp->batch, &pcp->list, migratetype);
1074 page = list_entry(pcp->list.next, struct page, lru);
1077 list_del(&page->lru);
1080 spin_lock_irqsave(&zone->lock, flags);
1081 page = __rmqueue(zone, order, migratetype);
1082 spin_unlock(&zone->lock);
1087 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1088 zone_statistics(preferred_zone, zone);
1089 local_irq_restore(flags);
1092 VM_BUG_ON(bad_range(zone, page));
1093 if (prep_new_page(page, order, gfp_flags))
1098 local_irq_restore(flags);
1103 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1104 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1105 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1106 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1107 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1108 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1109 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1111 #ifdef CONFIG_FAIL_PAGE_ALLOC
1113 static struct fail_page_alloc_attr {
1114 struct fault_attr attr;
1116 u32 ignore_gfp_highmem;
1117 u32 ignore_gfp_wait;
1120 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1122 struct dentry *ignore_gfp_highmem_file;
1123 struct dentry *ignore_gfp_wait_file;
1124 struct dentry *min_order_file;
1126 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1128 } fail_page_alloc = {
1129 .attr = FAULT_ATTR_INITIALIZER,
1130 .ignore_gfp_wait = 1,
1131 .ignore_gfp_highmem = 1,
1135 static int __init setup_fail_page_alloc(char *str)
1137 return setup_fault_attr(&fail_page_alloc.attr, str);
1139 __setup("fail_page_alloc=", setup_fail_page_alloc);
1141 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1143 if (order < fail_page_alloc.min_order)
1145 if (gfp_mask & __GFP_NOFAIL)
1147 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1149 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1152 return should_fail(&fail_page_alloc.attr, 1 << order);
1155 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1157 static int __init fail_page_alloc_debugfs(void)
1159 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1163 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1167 dir = fail_page_alloc.attr.dentries.dir;
1169 fail_page_alloc.ignore_gfp_wait_file =
1170 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1171 &fail_page_alloc.ignore_gfp_wait);
1173 fail_page_alloc.ignore_gfp_highmem_file =
1174 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1175 &fail_page_alloc.ignore_gfp_highmem);
1176 fail_page_alloc.min_order_file =
1177 debugfs_create_u32("min-order", mode, dir,
1178 &fail_page_alloc.min_order);
1180 if (!fail_page_alloc.ignore_gfp_wait_file ||
1181 !fail_page_alloc.ignore_gfp_highmem_file ||
1182 !fail_page_alloc.min_order_file) {
1184 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1185 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1186 debugfs_remove(fail_page_alloc.min_order_file);
1187 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1193 late_initcall(fail_page_alloc_debugfs);
1195 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1197 #else /* CONFIG_FAIL_PAGE_ALLOC */
1199 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1204 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1207 * Return 1 if free pages are above 'mark'. This takes into account the order
1208 * of the allocation.
1210 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1211 int classzone_idx, int alloc_flags)
1213 /* free_pages my go negative - that's OK */
1215 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1218 if (alloc_flags & ALLOC_HIGH)
1220 if (alloc_flags & ALLOC_HARDER)
1223 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1225 for (o = 0; o < order; o++) {
1226 /* At the next order, this order's pages become unavailable */
1227 free_pages -= z->free_area[o].nr_free << o;
1229 /* Require fewer higher order pages to be free */
1232 if (free_pages <= min)
1240 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1241 * skip over zones that are not allowed by the cpuset, or that have
1242 * been recently (in last second) found to be nearly full. See further
1243 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1244 * that have to skip over a lot of full or unallowed zones.
1246 * If the zonelist cache is present in the passed in zonelist, then
1247 * returns a pointer to the allowed node mask (either the current
1248 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1250 * If the zonelist cache is not available for this zonelist, does
1251 * nothing and returns NULL.
1253 * If the fullzones BITMAP in the zonelist cache is stale (more than
1254 * a second since last zap'd) then we zap it out (clear its bits.)
1256 * We hold off even calling zlc_setup, until after we've checked the
1257 * first zone in the zonelist, on the theory that most allocations will
1258 * be satisfied from that first zone, so best to examine that zone as
1259 * quickly as we can.
1261 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1263 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1264 nodemask_t *allowednodes; /* zonelist_cache approximation */
1266 zlc = zonelist->zlcache_ptr;
1270 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1271 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1272 zlc->last_full_zap = jiffies;
1275 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1276 &cpuset_current_mems_allowed :
1277 &node_states[N_HIGH_MEMORY];
1278 return allowednodes;
1282 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1283 * if it is worth looking at further for free memory:
1284 * 1) Check that the zone isn't thought to be full (doesn't have its
1285 * bit set in the zonelist_cache fullzones BITMAP).
1286 * 2) Check that the zones node (obtained from the zonelist_cache
1287 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1288 * Return true (non-zero) if zone is worth looking at further, or
1289 * else return false (zero) if it is not.
1291 * This check -ignores- the distinction between various watermarks,
1292 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1293 * found to be full for any variation of these watermarks, it will
1294 * be considered full for up to one second by all requests, unless
1295 * we are so low on memory on all allowed nodes that we are forced
1296 * into the second scan of the zonelist.
1298 * In the second scan we ignore this zonelist cache and exactly
1299 * apply the watermarks to all zones, even it is slower to do so.
1300 * We are low on memory in the second scan, and should leave no stone
1301 * unturned looking for a free page.
1303 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1304 nodemask_t *allowednodes)
1306 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1307 int i; /* index of *z in zonelist zones */
1308 int n; /* node that zone *z is on */
1310 zlc = zonelist->zlcache_ptr;
1314 i = z - zonelist->_zonerefs;
1317 /* This zone is worth trying if it is allowed but not full */
1318 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1322 * Given 'z' scanning a zonelist, set the corresponding bit in
1323 * zlc->fullzones, so that subsequent attempts to allocate a page
1324 * from that zone don't waste time re-examining it.
1326 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1328 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1329 int i; /* index of *z in zonelist zones */
1331 zlc = zonelist->zlcache_ptr;
1335 i = z - zonelist->_zonerefs;
1337 set_bit(i, zlc->fullzones);
1340 #else /* CONFIG_NUMA */
1342 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1347 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1348 nodemask_t *allowednodes)
1353 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1356 #endif /* CONFIG_NUMA */
1359 * get_page_from_freelist goes through the zonelist trying to allocate
1362 static struct page *
1363 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1364 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1367 struct page *page = NULL;
1369 struct zone *zone, *preferred_zone;
1370 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1371 int zlc_active = 0; /* set if using zonelist_cache */
1372 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1374 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1376 if (!preferred_zone)
1379 classzone_idx = zone_idx(preferred_zone);
1383 * Scan zonelist, looking for a zone with enough free.
1384 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1386 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1387 high_zoneidx, nodemask) {
1388 if (NUMA_BUILD && zlc_active &&
1389 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1391 if ((alloc_flags & ALLOC_CPUSET) &&
1392 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1395 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1397 if (alloc_flags & ALLOC_WMARK_MIN)
1398 mark = zone->pages_min;
1399 else if (alloc_flags & ALLOC_WMARK_LOW)
1400 mark = zone->pages_low;
1402 mark = zone->pages_high;
1403 if (!zone_watermark_ok(zone, order, mark,
1404 classzone_idx, alloc_flags)) {
1405 if (!zone_reclaim_mode ||
1406 !zone_reclaim(zone, gfp_mask, order))
1407 goto this_zone_full;
1411 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1416 zlc_mark_zone_full(zonelist, z);
1418 if (NUMA_BUILD && !did_zlc_setup) {
1419 /* we do zlc_setup after the first zone is tried */
1420 allowednodes = zlc_setup(zonelist, alloc_flags);
1426 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1427 /* Disable zlc cache for second zonelist scan */
1435 * This is the 'heart' of the zoned buddy allocator.
1438 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1439 struct zonelist *zonelist, nodemask_t *nodemask)
1441 const gfp_t wait = gfp_mask & __GFP_WAIT;
1442 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1446 struct reclaim_state reclaim_state;
1447 struct task_struct *p = current;
1450 unsigned long did_some_progress;
1451 unsigned long pages_reclaimed = 0;
1453 might_sleep_if(wait);
1455 if (should_fail_alloc_page(gfp_mask, order))
1459 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1461 if (unlikely(!z->zone)) {
1463 * Happens if we have an empty zonelist as a result of
1464 * GFP_THISNODE being used on a memoryless node
1469 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1470 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1475 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1476 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1477 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1478 * using a larger set of nodes after it has established that the
1479 * allowed per node queues are empty and that nodes are
1482 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1485 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1486 wakeup_kswapd(zone, order);
1489 * OK, we're below the kswapd watermark and have kicked background
1490 * reclaim. Now things get more complex, so set up alloc_flags according
1491 * to how we want to proceed.
1493 * The caller may dip into page reserves a bit more if the caller
1494 * cannot run direct reclaim, or if the caller has realtime scheduling
1495 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1496 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1498 alloc_flags = ALLOC_WMARK_MIN;
1499 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1500 alloc_flags |= ALLOC_HARDER;
1501 if (gfp_mask & __GFP_HIGH)
1502 alloc_flags |= ALLOC_HIGH;
1504 alloc_flags |= ALLOC_CPUSET;
1507 * Go through the zonelist again. Let __GFP_HIGH and allocations
1508 * coming from realtime tasks go deeper into reserves.
1510 * This is the last chance, in general, before the goto nopage.
1511 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1512 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1514 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1515 high_zoneidx, alloc_flags);
1519 /* This allocation should allow future memory freeing. */
1522 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1523 && !in_interrupt()) {
1524 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1526 /* go through the zonelist yet again, ignoring mins */
1527 page = get_page_from_freelist(gfp_mask, nodemask, order,
1528 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1531 if (gfp_mask & __GFP_NOFAIL) {
1532 congestion_wait(WRITE, HZ/50);
1539 /* Atomic allocations - we can't balance anything */
1545 /* We now go into synchronous reclaim */
1546 cpuset_memory_pressure_bump();
1547 p->flags |= PF_MEMALLOC;
1548 reclaim_state.reclaimed_slab = 0;
1549 p->reclaim_state = &reclaim_state;
1551 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1553 p->reclaim_state = NULL;
1554 p->flags &= ~PF_MEMALLOC;
1561 if (likely(did_some_progress)) {
1562 page = get_page_from_freelist(gfp_mask, nodemask, order,
1563 zonelist, high_zoneidx, alloc_flags);
1566 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1567 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1568 schedule_timeout_uninterruptible(1);
1573 * Go through the zonelist yet one more time, keep
1574 * very high watermark here, this is only to catch
1575 * a parallel oom killing, we must fail if we're still
1576 * under heavy pressure.
1578 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1579 order, zonelist, high_zoneidx,
1580 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1582 clear_zonelist_oom(zonelist, gfp_mask);
1586 /* The OOM killer will not help higher order allocs so fail */
1587 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1588 clear_zonelist_oom(zonelist, gfp_mask);
1592 out_of_memory(zonelist, gfp_mask, order);
1593 clear_zonelist_oom(zonelist, gfp_mask);
1598 * Don't let big-order allocations loop unless the caller explicitly
1599 * requests that. Wait for some write requests to complete then retry.
1601 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1602 * means __GFP_NOFAIL, but that may not be true in other
1605 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1606 * specified, then we retry until we no longer reclaim any pages
1607 * (above), or we've reclaimed an order of pages at least as
1608 * large as the allocation's order. In both cases, if the
1609 * allocation still fails, we stop retrying.
1611 pages_reclaimed += did_some_progress;
1613 if (!(gfp_mask & __GFP_NORETRY)) {
1614 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1617 if (gfp_mask & __GFP_REPEAT &&
1618 pages_reclaimed < (1 << order))
1621 if (gfp_mask & __GFP_NOFAIL)
1625 congestion_wait(WRITE, HZ/50);
1630 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1631 printk(KERN_WARNING "%s: page allocation failure."
1632 " order:%d, mode:0x%x\n",
1633 p->comm, order, gfp_mask);
1640 EXPORT_SYMBOL(__alloc_pages_internal);
1643 * Common helper functions.
1645 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1648 page = alloc_pages(gfp_mask, order);
1651 return (unsigned long) page_address(page);
1654 EXPORT_SYMBOL(__get_free_pages);
1656 unsigned long get_zeroed_page(gfp_t gfp_mask)
1661 * get_zeroed_page() returns a 32-bit address, which cannot represent
1664 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1666 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1668 return (unsigned long) page_address(page);
1672 EXPORT_SYMBOL(get_zeroed_page);
1674 void __pagevec_free(struct pagevec *pvec)
1676 int i = pagevec_count(pvec);
1679 free_hot_cold_page(pvec->pages[i], pvec->cold);
1682 void __free_pages(struct page *page, unsigned int order)
1684 if (put_page_testzero(page)) {
1686 free_hot_page(page);
1688 __free_pages_ok(page, order);
1692 EXPORT_SYMBOL(__free_pages);
1694 void free_pages(unsigned long addr, unsigned int order)
1697 VM_BUG_ON(!virt_addr_valid((void *)addr));
1698 __free_pages(virt_to_page((void *)addr), order);
1702 EXPORT_SYMBOL(free_pages);
1705 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1706 * @size: the number of bytes to allocate
1707 * @gfp_mask: GFP flags for the allocation
1709 * This function is similar to alloc_pages(), except that it allocates the
1710 * minimum number of pages to satisfy the request. alloc_pages() can only
1711 * allocate memory in power-of-two pages.
1713 * This function is also limited by MAX_ORDER.
1715 * Memory allocated by this function must be released by free_pages_exact().
1717 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1719 unsigned int order = get_order(size);
1722 addr = __get_free_pages(gfp_mask, order);
1724 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1725 unsigned long used = addr + PAGE_ALIGN(size);
1727 split_page(virt_to_page(addr), order);
1728 while (used < alloc_end) {
1734 return (void *)addr;
1736 EXPORT_SYMBOL(alloc_pages_exact);
1739 * free_pages_exact - release memory allocated via alloc_pages_exact()
1740 * @virt: the value returned by alloc_pages_exact.
1741 * @size: size of allocation, same value as passed to alloc_pages_exact().
1743 * Release the memory allocated by a previous call to alloc_pages_exact.
1745 void free_pages_exact(void *virt, size_t size)
1747 unsigned long addr = (unsigned long)virt;
1748 unsigned long end = addr + PAGE_ALIGN(size);
1750 while (addr < end) {
1755 EXPORT_SYMBOL(free_pages_exact);
1757 static unsigned int nr_free_zone_pages(int offset)
1762 /* Just pick one node, since fallback list is circular */
1763 unsigned int sum = 0;
1765 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1767 for_each_zone_zonelist(zone, z, zonelist, offset) {
1768 unsigned long size = zone->present_pages;
1769 unsigned long high = zone->pages_high;
1778 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1780 unsigned int nr_free_buffer_pages(void)
1782 return nr_free_zone_pages(gfp_zone(GFP_USER));
1784 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1787 * Amount of free RAM allocatable within all zones
1789 unsigned int nr_free_pagecache_pages(void)
1791 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1794 static inline void show_node(struct zone *zone)
1797 printk("Node %d ", zone_to_nid(zone));
1800 void si_meminfo(struct sysinfo *val)
1802 val->totalram = totalram_pages;
1804 val->freeram = global_page_state(NR_FREE_PAGES);
1805 val->bufferram = nr_blockdev_pages();
1806 val->totalhigh = totalhigh_pages;
1807 val->freehigh = nr_free_highpages();
1808 val->mem_unit = PAGE_SIZE;
1811 EXPORT_SYMBOL(si_meminfo);
1814 void si_meminfo_node(struct sysinfo *val, int nid)
1816 pg_data_t *pgdat = NODE_DATA(nid);
1818 val->totalram = pgdat->node_present_pages;
1819 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1820 #ifdef CONFIG_HIGHMEM
1821 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1822 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1828 val->mem_unit = PAGE_SIZE;
1832 #define K(x) ((x) << (PAGE_SHIFT-10))
1835 * Show free area list (used inside shift_scroll-lock stuff)
1836 * We also calculate the percentage fragmentation. We do this by counting the
1837 * memory on each free list with the exception of the first item on the list.
1839 void show_free_areas(void)
1844 for_each_zone(zone) {
1845 if (!populated_zone(zone))
1849 printk("%s per-cpu:\n", zone->name);
1851 for_each_online_cpu(cpu) {
1852 struct per_cpu_pageset *pageset;
1854 pageset = zone_pcp(zone, cpu);
1856 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1857 cpu, pageset->pcp.high,
1858 pageset->pcp.batch, pageset->pcp.count);
1862 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1863 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1864 global_page_state(NR_ACTIVE),
1865 global_page_state(NR_INACTIVE),
1866 global_page_state(NR_FILE_DIRTY),
1867 global_page_state(NR_WRITEBACK),
1868 global_page_state(NR_UNSTABLE_NFS),
1869 global_page_state(NR_FREE_PAGES),
1870 global_page_state(NR_SLAB_RECLAIMABLE) +
1871 global_page_state(NR_SLAB_UNRECLAIMABLE),
1872 global_page_state(NR_FILE_MAPPED),
1873 global_page_state(NR_PAGETABLE),
1874 global_page_state(NR_BOUNCE));
1876 for_each_zone(zone) {
1879 if (!populated_zone(zone))
1891 " pages_scanned:%lu"
1892 " all_unreclaimable? %s"
1895 K(zone_page_state(zone, NR_FREE_PAGES)),
1898 K(zone->pages_high),
1899 K(zone_page_state(zone, NR_ACTIVE)),
1900 K(zone_page_state(zone, NR_INACTIVE)),
1901 K(zone->present_pages),
1902 zone->pages_scanned,
1903 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1905 printk("lowmem_reserve[]:");
1906 for (i = 0; i < MAX_NR_ZONES; i++)
1907 printk(" %lu", zone->lowmem_reserve[i]);
1911 for_each_zone(zone) {
1912 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1914 if (!populated_zone(zone))
1918 printk("%s: ", zone->name);
1920 spin_lock_irqsave(&zone->lock, flags);
1921 for (order = 0; order < MAX_ORDER; order++) {
1922 nr[order] = zone->free_area[order].nr_free;
1923 total += nr[order] << order;
1925 spin_unlock_irqrestore(&zone->lock, flags);
1926 for (order = 0; order < MAX_ORDER; order++)
1927 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1928 printk("= %lukB\n", K(total));
1931 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1933 show_swap_cache_info();
1936 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1938 zoneref->zone = zone;
1939 zoneref->zone_idx = zone_idx(zone);
1943 * Builds allocation fallback zone lists.
1945 * Add all populated zones of a node to the zonelist.
1947 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1948 int nr_zones, enum zone_type zone_type)
1952 BUG_ON(zone_type >= MAX_NR_ZONES);
1957 zone = pgdat->node_zones + zone_type;
1958 if (populated_zone(zone)) {
1959 zoneref_set_zone(zone,
1960 &zonelist->_zonerefs[nr_zones++]);
1961 check_highest_zone(zone_type);
1964 } while (zone_type);
1971 * 0 = automatic detection of better ordering.
1972 * 1 = order by ([node] distance, -zonetype)
1973 * 2 = order by (-zonetype, [node] distance)
1975 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1976 * the same zonelist. So only NUMA can configure this param.
1978 #define ZONELIST_ORDER_DEFAULT 0
1979 #define ZONELIST_ORDER_NODE 1
1980 #define ZONELIST_ORDER_ZONE 2
1982 /* zonelist order in the kernel.
1983 * set_zonelist_order() will set this to NODE or ZONE.
1985 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1986 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1990 /* The value user specified ....changed by config */
1991 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1992 /* string for sysctl */
1993 #define NUMA_ZONELIST_ORDER_LEN 16
1994 char numa_zonelist_order[16] = "default";
1997 * interface for configure zonelist ordering.
1998 * command line option "numa_zonelist_order"
1999 * = "[dD]efault - default, automatic configuration.
2000 * = "[nN]ode - order by node locality, then by zone within node
2001 * = "[zZ]one - order by zone, then by locality within zone
2004 static int __parse_numa_zonelist_order(char *s)
2006 if (*s == 'd' || *s == 'D') {
2007 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2008 } else if (*s == 'n' || *s == 'N') {
2009 user_zonelist_order = ZONELIST_ORDER_NODE;
2010 } else if (*s == 'z' || *s == 'Z') {
2011 user_zonelist_order = ZONELIST_ORDER_ZONE;
2014 "Ignoring invalid numa_zonelist_order value: "
2021 static __init int setup_numa_zonelist_order(char *s)
2024 return __parse_numa_zonelist_order(s);
2027 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2030 * sysctl handler for numa_zonelist_order
2032 int numa_zonelist_order_handler(ctl_table *table, int write,
2033 struct file *file, void __user *buffer, size_t *length,
2036 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2040 strncpy(saved_string, (char*)table->data,
2041 NUMA_ZONELIST_ORDER_LEN);
2042 ret = proc_dostring(table, write, file, buffer, length, ppos);
2046 int oldval = user_zonelist_order;
2047 if (__parse_numa_zonelist_order((char*)table->data)) {
2049 * bogus value. restore saved string
2051 strncpy((char*)table->data, saved_string,
2052 NUMA_ZONELIST_ORDER_LEN);
2053 user_zonelist_order = oldval;
2054 } else if (oldval != user_zonelist_order)
2055 build_all_zonelists();
2061 #define MAX_NODE_LOAD (num_online_nodes())
2062 static int node_load[MAX_NUMNODES];
2065 * find_next_best_node - find the next node that should appear in a given node's fallback list
2066 * @node: node whose fallback list we're appending
2067 * @used_node_mask: nodemask_t of already used nodes
2069 * We use a number of factors to determine which is the next node that should
2070 * appear on a given node's fallback list. The node should not have appeared
2071 * already in @node's fallback list, and it should be the next closest node
2072 * according to the distance array (which contains arbitrary distance values
2073 * from each node to each node in the system), and should also prefer nodes
2074 * with no CPUs, since presumably they'll have very little allocation pressure
2075 * on them otherwise.
2076 * It returns -1 if no node is found.
2078 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2081 int min_val = INT_MAX;
2083 node_to_cpumask_ptr(tmp, 0);
2085 /* Use the local node if we haven't already */
2086 if (!node_isset(node, *used_node_mask)) {
2087 node_set(node, *used_node_mask);
2091 for_each_node_state(n, N_HIGH_MEMORY) {
2093 /* Don't want a node to appear more than once */
2094 if (node_isset(n, *used_node_mask))
2097 /* Use the distance array to find the distance */
2098 val = node_distance(node, n);
2100 /* Penalize nodes under us ("prefer the next node") */
2103 /* Give preference to headless and unused nodes */
2104 node_to_cpumask_ptr_next(tmp, n);
2105 if (!cpus_empty(*tmp))
2106 val += PENALTY_FOR_NODE_WITH_CPUS;
2108 /* Slight preference for less loaded node */
2109 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2110 val += node_load[n];
2112 if (val < min_val) {
2119 node_set(best_node, *used_node_mask);
2126 * Build zonelists ordered by node and zones within node.
2127 * This results in maximum locality--normal zone overflows into local
2128 * DMA zone, if any--but risks exhausting DMA zone.
2130 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2133 struct zonelist *zonelist;
2135 zonelist = &pgdat->node_zonelists[0];
2136 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2138 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2140 zonelist->_zonerefs[j].zone = NULL;
2141 zonelist->_zonerefs[j].zone_idx = 0;
2145 * Build gfp_thisnode zonelists
2147 static void build_thisnode_zonelists(pg_data_t *pgdat)
2150 struct zonelist *zonelist;
2152 zonelist = &pgdat->node_zonelists[1];
2153 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2154 zonelist->_zonerefs[j].zone = NULL;
2155 zonelist->_zonerefs[j].zone_idx = 0;
2159 * Build zonelists ordered by zone and nodes within zones.
2160 * This results in conserving DMA zone[s] until all Normal memory is
2161 * exhausted, but results in overflowing to remote node while memory
2162 * may still exist in local DMA zone.
2164 static int node_order[MAX_NUMNODES];
2166 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2169 int zone_type; /* needs to be signed */
2171 struct zonelist *zonelist;
2173 zonelist = &pgdat->node_zonelists[0];
2175 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2176 for (j = 0; j < nr_nodes; j++) {
2177 node = node_order[j];
2178 z = &NODE_DATA(node)->node_zones[zone_type];
2179 if (populated_zone(z)) {
2181 &zonelist->_zonerefs[pos++]);
2182 check_highest_zone(zone_type);
2186 zonelist->_zonerefs[pos].zone = NULL;
2187 zonelist->_zonerefs[pos].zone_idx = 0;
2190 static int default_zonelist_order(void)
2193 unsigned long low_kmem_size,total_size;
2197 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2198 * If they are really small and used heavily, the system can fall
2199 * into OOM very easily.
2200 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2202 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2205 for_each_online_node(nid) {
2206 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2207 z = &NODE_DATA(nid)->node_zones[zone_type];
2208 if (populated_zone(z)) {
2209 if (zone_type < ZONE_NORMAL)
2210 low_kmem_size += z->present_pages;
2211 total_size += z->present_pages;
2215 if (!low_kmem_size || /* there are no DMA area. */
2216 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2217 return ZONELIST_ORDER_NODE;
2219 * look into each node's config.
2220 * If there is a node whose DMA/DMA32 memory is very big area on
2221 * local memory, NODE_ORDER may be suitable.
2223 average_size = total_size /
2224 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2225 for_each_online_node(nid) {
2228 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2229 z = &NODE_DATA(nid)->node_zones[zone_type];
2230 if (populated_zone(z)) {
2231 if (zone_type < ZONE_NORMAL)
2232 low_kmem_size += z->present_pages;
2233 total_size += z->present_pages;
2236 if (low_kmem_size &&
2237 total_size > average_size && /* ignore small node */
2238 low_kmem_size > total_size * 70/100)
2239 return ZONELIST_ORDER_NODE;
2241 return ZONELIST_ORDER_ZONE;
2244 static void set_zonelist_order(void)
2246 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2247 current_zonelist_order = default_zonelist_order();
2249 current_zonelist_order = user_zonelist_order;
2252 static void build_zonelists(pg_data_t *pgdat)
2256 nodemask_t used_mask;
2257 int local_node, prev_node;
2258 struct zonelist *zonelist;
2259 int order = current_zonelist_order;
2261 /* initialize zonelists */
2262 for (i = 0; i < MAX_ZONELISTS; i++) {
2263 zonelist = pgdat->node_zonelists + i;
2264 zonelist->_zonerefs[0].zone = NULL;
2265 zonelist->_zonerefs[0].zone_idx = 0;
2268 /* NUMA-aware ordering of nodes */
2269 local_node = pgdat->node_id;
2270 load = num_online_nodes();
2271 prev_node = local_node;
2272 nodes_clear(used_mask);
2274 memset(node_load, 0, sizeof(node_load));
2275 memset(node_order, 0, sizeof(node_order));
2278 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2279 int distance = node_distance(local_node, node);
2282 * If another node is sufficiently far away then it is better
2283 * to reclaim pages in a zone before going off node.
2285 if (distance > RECLAIM_DISTANCE)
2286 zone_reclaim_mode = 1;
2289 * We don't want to pressure a particular node.
2290 * So adding penalty to the first node in same
2291 * distance group to make it round-robin.
2293 if (distance != node_distance(local_node, prev_node))
2294 node_load[node] = load;
2298 if (order == ZONELIST_ORDER_NODE)
2299 build_zonelists_in_node_order(pgdat, node);
2301 node_order[j++] = node; /* remember order */
2304 if (order == ZONELIST_ORDER_ZONE) {
2305 /* calculate node order -- i.e., DMA last! */
2306 build_zonelists_in_zone_order(pgdat, j);
2309 build_thisnode_zonelists(pgdat);
2312 /* Construct the zonelist performance cache - see further mmzone.h */
2313 static void build_zonelist_cache(pg_data_t *pgdat)
2315 struct zonelist *zonelist;
2316 struct zonelist_cache *zlc;
2319 zonelist = &pgdat->node_zonelists[0];
2320 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2321 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2322 for (z = zonelist->_zonerefs; z->zone; z++)
2323 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2327 #else /* CONFIG_NUMA */
2329 static void set_zonelist_order(void)
2331 current_zonelist_order = ZONELIST_ORDER_ZONE;
2334 static void build_zonelists(pg_data_t *pgdat)
2336 int node, local_node;
2338 struct zonelist *zonelist;
2340 local_node = pgdat->node_id;
2342 zonelist = &pgdat->node_zonelists[0];
2343 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2346 * Now we build the zonelist so that it contains the zones
2347 * of all the other nodes.
2348 * We don't want to pressure a particular node, so when
2349 * building the zones for node N, we make sure that the
2350 * zones coming right after the local ones are those from
2351 * node N+1 (modulo N)
2353 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2354 if (!node_online(node))
2356 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2359 for (node = 0; node < local_node; node++) {
2360 if (!node_online(node))
2362 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2366 zonelist->_zonerefs[j].zone = NULL;
2367 zonelist->_zonerefs[j].zone_idx = 0;
2370 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2371 static void build_zonelist_cache(pg_data_t *pgdat)
2373 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2376 #endif /* CONFIG_NUMA */
2378 /* return values int ....just for stop_machine() */
2379 static int __build_all_zonelists(void *dummy)
2383 for_each_online_node(nid) {
2384 pg_data_t *pgdat = NODE_DATA(nid);
2386 build_zonelists(pgdat);
2387 build_zonelist_cache(pgdat);
2392 void build_all_zonelists(void)
2394 set_zonelist_order();
2396 if (system_state == SYSTEM_BOOTING) {
2397 __build_all_zonelists(NULL);
2398 mminit_verify_zonelist();
2399 cpuset_init_current_mems_allowed();
2401 /* we have to stop all cpus to guarantee there is no user
2403 stop_machine(__build_all_zonelists, NULL, NULL);
2404 /* cpuset refresh routine should be here */
2406 vm_total_pages = nr_free_pagecache_pages();
2408 * Disable grouping by mobility if the number of pages in the
2409 * system is too low to allow the mechanism to work. It would be
2410 * more accurate, but expensive to check per-zone. This check is
2411 * made on memory-hotadd so a system can start with mobility
2412 * disabled and enable it later
2414 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2415 page_group_by_mobility_disabled = 1;
2417 page_group_by_mobility_disabled = 0;
2419 printk("Built %i zonelists in %s order, mobility grouping %s. "
2420 "Total pages: %ld\n",
2422 zonelist_order_name[current_zonelist_order],
2423 page_group_by_mobility_disabled ? "off" : "on",
2426 printk("Policy zone: %s\n", zone_names[policy_zone]);
2431 * Helper functions to size the waitqueue hash table.
2432 * Essentially these want to choose hash table sizes sufficiently
2433 * large so that collisions trying to wait on pages are rare.
2434 * But in fact, the number of active page waitqueues on typical
2435 * systems is ridiculously low, less than 200. So this is even
2436 * conservative, even though it seems large.
2438 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2439 * waitqueues, i.e. the size of the waitq table given the number of pages.
2441 #define PAGES_PER_WAITQUEUE 256
2443 #ifndef CONFIG_MEMORY_HOTPLUG
2444 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2446 unsigned long size = 1;
2448 pages /= PAGES_PER_WAITQUEUE;
2450 while (size < pages)
2454 * Once we have dozens or even hundreds of threads sleeping
2455 * on IO we've got bigger problems than wait queue collision.
2456 * Limit the size of the wait table to a reasonable size.
2458 size = min(size, 4096UL);
2460 return max(size, 4UL);
2464 * A zone's size might be changed by hot-add, so it is not possible to determine
2465 * a suitable size for its wait_table. So we use the maximum size now.
2467 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2469 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2470 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2471 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2473 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2474 * or more by the traditional way. (See above). It equals:
2476 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2477 * ia64(16K page size) : = ( 8G + 4M)byte.
2478 * powerpc (64K page size) : = (32G +16M)byte.
2480 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2487 * This is an integer logarithm so that shifts can be used later
2488 * to extract the more random high bits from the multiplicative
2489 * hash function before the remainder is taken.
2491 static inline unsigned long wait_table_bits(unsigned long size)
2496 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2499 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2500 * of blocks reserved is based on zone->pages_min. The memory within the
2501 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2502 * higher will lead to a bigger reserve which will get freed as contiguous
2503 * blocks as reclaim kicks in
2505 static void setup_zone_migrate_reserve(struct zone *zone)
2507 unsigned long start_pfn, pfn, end_pfn;
2509 unsigned long reserve, block_migratetype;
2511 /* Get the start pfn, end pfn and the number of blocks to reserve */
2512 start_pfn = zone->zone_start_pfn;
2513 end_pfn = start_pfn + zone->spanned_pages;
2514 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2517 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2518 if (!pfn_valid(pfn))
2520 page = pfn_to_page(pfn);
2522 /* Watch out for overlapping nodes */
2523 if (page_to_nid(page) != zone_to_nid(zone))
2526 /* Blocks with reserved pages will never free, skip them. */
2527 if (PageReserved(page))
2530 block_migratetype = get_pageblock_migratetype(page);
2532 /* If this block is reserved, account for it */
2533 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2538 /* Suitable for reserving if this block is movable */
2539 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2540 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2541 move_freepages_block(zone, page, MIGRATE_RESERVE);
2547 * If the reserve is met and this is a previous reserved block,
2550 if (block_migratetype == MIGRATE_RESERVE) {
2551 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2552 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2558 * Initially all pages are reserved - free ones are freed
2559 * up by free_all_bootmem() once the early boot process is
2560 * done. Non-atomic initialization, single-pass.
2562 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2563 unsigned long start_pfn, enum memmap_context context)
2566 unsigned long end_pfn = start_pfn + size;
2570 z = &NODE_DATA(nid)->node_zones[zone];
2571 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2573 * There can be holes in boot-time mem_map[]s
2574 * handed to this function. They do not
2575 * exist on hotplugged memory.
2577 if (context == MEMMAP_EARLY) {
2578 if (!early_pfn_valid(pfn))
2580 if (!early_pfn_in_nid(pfn, nid))
2583 page = pfn_to_page(pfn);
2584 set_page_links(page, zone, nid, pfn);
2585 mminit_verify_page_links(page, zone, nid, pfn);
2586 init_page_count(page);
2587 reset_page_mapcount(page);
2588 SetPageReserved(page);
2590 * Mark the block movable so that blocks are reserved for
2591 * movable at startup. This will force kernel allocations
2592 * to reserve their blocks rather than leaking throughout
2593 * the address space during boot when many long-lived
2594 * kernel allocations are made. Later some blocks near
2595 * the start are marked MIGRATE_RESERVE by
2596 * setup_zone_migrate_reserve()
2598 * bitmap is created for zone's valid pfn range. but memmap
2599 * can be created for invalid pages (for alignment)
2600 * check here not to call set_pageblock_migratetype() against
2603 if ((z->zone_start_pfn <= pfn)
2604 && (pfn < z->zone_start_pfn + z->spanned_pages)
2605 && !(pfn & (pageblock_nr_pages - 1)))
2606 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2608 INIT_LIST_HEAD(&page->lru);
2609 #ifdef WANT_PAGE_VIRTUAL
2610 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2611 if (!is_highmem_idx(zone))
2612 set_page_address(page, __va(pfn << PAGE_SHIFT));
2617 static void __meminit zone_init_free_lists(struct zone *zone)
2620 for_each_migratetype_order(order, t) {
2621 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2622 zone->free_area[order].nr_free = 0;
2626 #ifndef __HAVE_ARCH_MEMMAP_INIT
2627 #define memmap_init(size, nid, zone, start_pfn) \
2628 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2631 static int zone_batchsize(struct zone *zone)
2636 * The per-cpu-pages pools are set to around 1000th of the
2637 * size of the zone. But no more than 1/2 of a meg.
2639 * OK, so we don't know how big the cache is. So guess.
2641 batch = zone->present_pages / 1024;
2642 if (batch * PAGE_SIZE > 512 * 1024)
2643 batch = (512 * 1024) / PAGE_SIZE;
2644 batch /= 4; /* We effectively *= 4 below */
2649 * Clamp the batch to a 2^n - 1 value. Having a power
2650 * of 2 value was found to be more likely to have
2651 * suboptimal cache aliasing properties in some cases.
2653 * For example if 2 tasks are alternately allocating
2654 * batches of pages, one task can end up with a lot
2655 * of pages of one half of the possible page colors
2656 * and the other with pages of the other colors.
2658 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2663 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2665 struct per_cpu_pages *pcp;
2667 memset(p, 0, sizeof(*p));
2671 pcp->high = 6 * batch;
2672 pcp->batch = max(1UL, 1 * batch);
2673 INIT_LIST_HEAD(&pcp->list);
2677 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2678 * to the value high for the pageset p.
2681 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2684 struct per_cpu_pages *pcp;
2688 pcp->batch = max(1UL, high/4);
2689 if ((high/4) > (PAGE_SHIFT * 8))
2690 pcp->batch = PAGE_SHIFT * 8;
2696 * Boot pageset table. One per cpu which is going to be used for all
2697 * zones and all nodes. The parameters will be set in such a way
2698 * that an item put on a list will immediately be handed over to
2699 * the buddy list. This is safe since pageset manipulation is done
2700 * with interrupts disabled.
2702 * Some NUMA counter updates may also be caught by the boot pagesets.
2704 * The boot_pagesets must be kept even after bootup is complete for
2705 * unused processors and/or zones. They do play a role for bootstrapping
2706 * hotplugged processors.
2708 * zoneinfo_show() and maybe other functions do
2709 * not check if the processor is online before following the pageset pointer.
2710 * Other parts of the kernel may not check if the zone is available.
2712 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2715 * Dynamically allocate memory for the
2716 * per cpu pageset array in struct zone.
2718 static int __cpuinit process_zones(int cpu)
2720 struct zone *zone, *dzone;
2721 int node = cpu_to_node(cpu);
2723 node_set_state(node, N_CPU); /* this node has a cpu */
2725 for_each_zone(zone) {
2727 if (!populated_zone(zone))
2730 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2732 if (!zone_pcp(zone, cpu))
2735 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2737 if (percpu_pagelist_fraction)
2738 setup_pagelist_highmark(zone_pcp(zone, cpu),
2739 (zone->present_pages / percpu_pagelist_fraction));
2744 for_each_zone(dzone) {
2745 if (!populated_zone(dzone))
2749 kfree(zone_pcp(dzone, cpu));
2750 zone_pcp(dzone, cpu) = NULL;
2755 static inline void free_zone_pagesets(int cpu)
2759 for_each_zone(zone) {
2760 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2762 /* Free per_cpu_pageset if it is slab allocated */
2763 if (pset != &boot_pageset[cpu])
2765 zone_pcp(zone, cpu) = NULL;
2769 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2770 unsigned long action,
2773 int cpu = (long)hcpu;
2774 int ret = NOTIFY_OK;
2777 case CPU_UP_PREPARE:
2778 case CPU_UP_PREPARE_FROZEN:
2779 if (process_zones(cpu))
2782 case CPU_UP_CANCELED:
2783 case CPU_UP_CANCELED_FROZEN:
2785 case CPU_DEAD_FROZEN:
2786 free_zone_pagesets(cpu);
2794 static struct notifier_block __cpuinitdata pageset_notifier =
2795 { &pageset_cpuup_callback, NULL, 0 };
2797 void __init setup_per_cpu_pageset(void)
2801 /* Initialize per_cpu_pageset for cpu 0.
2802 * A cpuup callback will do this for every cpu
2803 * as it comes online
2805 err = process_zones(smp_processor_id());
2807 register_cpu_notifier(&pageset_notifier);
2812 static noinline __init_refok
2813 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2816 struct pglist_data *pgdat = zone->zone_pgdat;
2820 * The per-page waitqueue mechanism uses hashed waitqueues
2823 zone->wait_table_hash_nr_entries =
2824 wait_table_hash_nr_entries(zone_size_pages);
2825 zone->wait_table_bits =
2826 wait_table_bits(zone->wait_table_hash_nr_entries);
2827 alloc_size = zone->wait_table_hash_nr_entries
2828 * sizeof(wait_queue_head_t);
2830 if (!slab_is_available()) {
2831 zone->wait_table = (wait_queue_head_t *)
2832 alloc_bootmem_node(pgdat, alloc_size);
2835 * This case means that a zone whose size was 0 gets new memory
2836 * via memory hot-add.
2837 * But it may be the case that a new node was hot-added. In
2838 * this case vmalloc() will not be able to use this new node's
2839 * memory - this wait_table must be initialized to use this new
2840 * node itself as well.
2841 * To use this new node's memory, further consideration will be
2844 zone->wait_table = vmalloc(alloc_size);
2846 if (!zone->wait_table)
2849 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2850 init_waitqueue_head(zone->wait_table + i);
2855 static __meminit void zone_pcp_init(struct zone *zone)
2858 unsigned long batch = zone_batchsize(zone);
2860 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2862 /* Early boot. Slab allocator not functional yet */
2863 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2864 setup_pageset(&boot_pageset[cpu],0);
2866 setup_pageset(zone_pcp(zone,cpu), batch);
2869 if (zone->present_pages)
2870 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2871 zone->name, zone->present_pages, batch);
2874 __meminit int init_currently_empty_zone(struct zone *zone,
2875 unsigned long zone_start_pfn,
2877 enum memmap_context context)
2879 struct pglist_data *pgdat = zone->zone_pgdat;
2881 ret = zone_wait_table_init(zone, size);
2884 pgdat->nr_zones = zone_idx(zone) + 1;
2886 zone->zone_start_pfn = zone_start_pfn;
2888 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2889 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2891 (unsigned long)zone_idx(zone),
2892 zone_start_pfn, (zone_start_pfn + size));
2894 zone_init_free_lists(zone);
2899 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2901 * Basic iterator support. Return the first range of PFNs for a node
2902 * Note: nid == MAX_NUMNODES returns first region regardless of node
2904 static int __meminit first_active_region_index_in_nid(int nid)
2908 for (i = 0; i < nr_nodemap_entries; i++)
2909 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2916 * Basic iterator support. Return the next active range of PFNs for a node
2917 * Note: nid == MAX_NUMNODES returns next region regardless of node
2919 static int __meminit next_active_region_index_in_nid(int index, int nid)
2921 for (index = index + 1; index < nr_nodemap_entries; index++)
2922 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2928 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2930 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2931 * Architectures may implement their own version but if add_active_range()
2932 * was used and there are no special requirements, this is a convenient
2935 int __meminit early_pfn_to_nid(unsigned long pfn)
2939 for (i = 0; i < nr_nodemap_entries; i++) {
2940 unsigned long start_pfn = early_node_map[i].start_pfn;
2941 unsigned long end_pfn = early_node_map[i].end_pfn;
2943 if (start_pfn <= pfn && pfn < end_pfn)
2944 return early_node_map[i].nid;
2949 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2951 /* Basic iterator support to walk early_node_map[] */
2952 #define for_each_active_range_index_in_nid(i, nid) \
2953 for (i = first_active_region_index_in_nid(nid); i != -1; \
2954 i = next_active_region_index_in_nid(i, nid))
2957 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2958 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2959 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2961 * If an architecture guarantees that all ranges registered with
2962 * add_active_ranges() contain no holes and may be freed, this
2963 * this function may be used instead of calling free_bootmem() manually.
2965 void __init free_bootmem_with_active_regions(int nid,
2966 unsigned long max_low_pfn)
2970 for_each_active_range_index_in_nid(i, nid) {
2971 unsigned long size_pages = 0;
2972 unsigned long end_pfn = early_node_map[i].end_pfn;
2974 if (early_node_map[i].start_pfn >= max_low_pfn)
2977 if (end_pfn > max_low_pfn)
2978 end_pfn = max_low_pfn;
2980 size_pages = end_pfn - early_node_map[i].start_pfn;
2981 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2982 PFN_PHYS(early_node_map[i].start_pfn),
2983 size_pages << PAGE_SHIFT);
2987 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2992 for_each_active_range_index_in_nid(i, nid) {
2993 ret = work_fn(early_node_map[i].start_pfn,
2994 early_node_map[i].end_pfn, data);
3000 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3001 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3003 * If an architecture guarantees that all ranges registered with
3004 * add_active_ranges() contain no holes and may be freed, this
3005 * function may be used instead of calling memory_present() manually.
3007 void __init sparse_memory_present_with_active_regions(int nid)
3011 for_each_active_range_index_in_nid(i, nid)
3012 memory_present(early_node_map[i].nid,
3013 early_node_map[i].start_pfn,
3014 early_node_map[i].end_pfn);
3018 * push_node_boundaries - Push node boundaries to at least the requested boundary
3019 * @nid: The nid of the node to push the boundary for
3020 * @start_pfn: The start pfn of the node
3021 * @end_pfn: The end pfn of the node
3023 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3024 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3025 * be hotplugged even though no physical memory exists. This function allows
3026 * an arch to push out the node boundaries so mem_map is allocated that can
3029 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3030 void __init push_node_boundaries(unsigned int nid,
3031 unsigned long start_pfn, unsigned long end_pfn)
3033 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3034 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3035 nid, start_pfn, end_pfn);
3037 /* Initialise the boundary for this node if necessary */
3038 if (node_boundary_end_pfn[nid] == 0)
3039 node_boundary_start_pfn[nid] = -1UL;
3041 /* Update the boundaries */
3042 if (node_boundary_start_pfn[nid] > start_pfn)
3043 node_boundary_start_pfn[nid] = start_pfn;
3044 if (node_boundary_end_pfn[nid] < end_pfn)
3045 node_boundary_end_pfn[nid] = end_pfn;
3048 /* If necessary, push the node boundary out for reserve hotadd */
3049 static void __meminit account_node_boundary(unsigned int nid,
3050 unsigned long *start_pfn, unsigned long *end_pfn)
3052 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3053 "Entering account_node_boundary(%u, %lu, %lu)\n",
3054 nid, *start_pfn, *end_pfn);
3056 /* Return if boundary information has not been provided */
3057 if (node_boundary_end_pfn[nid] == 0)
3060 /* Check the boundaries and update if necessary */
3061 if (node_boundary_start_pfn[nid] < *start_pfn)
3062 *start_pfn = node_boundary_start_pfn[nid];
3063 if (node_boundary_end_pfn[nid] > *end_pfn)
3064 *end_pfn = node_boundary_end_pfn[nid];
3067 void __init push_node_boundaries(unsigned int nid,
3068 unsigned long start_pfn, unsigned long end_pfn) {}
3070 static void __meminit account_node_boundary(unsigned int nid,
3071 unsigned long *start_pfn, unsigned long *end_pfn) {}
3076 * get_pfn_range_for_nid - Return the start and end page frames for a node
3077 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3078 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3079 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3081 * It returns the start and end page frame of a node based on information
3082 * provided by an arch calling add_active_range(). If called for a node
3083 * with no available memory, a warning is printed and the start and end
3086 void __meminit get_pfn_range_for_nid(unsigned int nid,
3087 unsigned long *start_pfn, unsigned long *end_pfn)
3093 for_each_active_range_index_in_nid(i, nid) {
3094 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3095 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3098 if (*start_pfn == -1UL)
3101 /* Push the node boundaries out if requested */
3102 account_node_boundary(nid, start_pfn, end_pfn);
3106 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3107 * assumption is made that zones within a node are ordered in monotonic
3108 * increasing memory addresses so that the "highest" populated zone is used
3110 static void __init find_usable_zone_for_movable(void)
3113 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3114 if (zone_index == ZONE_MOVABLE)
3117 if (arch_zone_highest_possible_pfn[zone_index] >
3118 arch_zone_lowest_possible_pfn[zone_index])
3122 VM_BUG_ON(zone_index == -1);
3123 movable_zone = zone_index;
3127 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3128 * because it is sized independant of architecture. Unlike the other zones,
3129 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3130 * in each node depending on the size of each node and how evenly kernelcore
3131 * is distributed. This helper function adjusts the zone ranges
3132 * provided by the architecture for a given node by using the end of the
3133 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3134 * zones within a node are in order of monotonic increases memory addresses
3136 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3137 unsigned long zone_type,
3138 unsigned long node_start_pfn,
3139 unsigned long node_end_pfn,
3140 unsigned long *zone_start_pfn,
3141 unsigned long *zone_end_pfn)
3143 /* Only adjust if ZONE_MOVABLE is on this node */
3144 if (zone_movable_pfn[nid]) {
3145 /* Size ZONE_MOVABLE */
3146 if (zone_type == ZONE_MOVABLE) {
3147 *zone_start_pfn = zone_movable_pfn[nid];
3148 *zone_end_pfn = min(node_end_pfn,
3149 arch_zone_highest_possible_pfn[movable_zone]);
3151 /* Adjust for ZONE_MOVABLE starting within this range */
3152 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3153 *zone_end_pfn > zone_movable_pfn[nid]) {
3154 *zone_end_pfn = zone_movable_pfn[nid];
3156 /* Check if this whole range is within ZONE_MOVABLE */
3157 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3158 *zone_start_pfn = *zone_end_pfn;
3163 * Return the number of pages a zone spans in a node, including holes
3164 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3166 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3167 unsigned long zone_type,
3168 unsigned long *ignored)
3170 unsigned long node_start_pfn, node_end_pfn;
3171 unsigned long zone_start_pfn, zone_end_pfn;
3173 /* Get the start and end of the node and zone */
3174 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3175 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3176 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3177 adjust_zone_range_for_zone_movable(nid, zone_type,
3178 node_start_pfn, node_end_pfn,
3179 &zone_start_pfn, &zone_end_pfn);
3181 /* Check that this node has pages within the zone's required range */
3182 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3185 /* Move the zone boundaries inside the node if necessary */
3186 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3187 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3189 /* Return the spanned pages */
3190 return zone_end_pfn - zone_start_pfn;
3194 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3195 * then all holes in the requested range will be accounted for.
3197 static unsigned long __meminit __absent_pages_in_range(int nid,
3198 unsigned long range_start_pfn,
3199 unsigned long range_end_pfn)
3202 unsigned long prev_end_pfn = 0, hole_pages = 0;
3203 unsigned long start_pfn;
3205 /* Find the end_pfn of the first active range of pfns in the node */
3206 i = first_active_region_index_in_nid(nid);
3210 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3212 /* Account for ranges before physical memory on this node */
3213 if (early_node_map[i].start_pfn > range_start_pfn)
3214 hole_pages = prev_end_pfn - range_start_pfn;
3216 /* Find all holes for the zone within the node */
3217 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3219 /* No need to continue if prev_end_pfn is outside the zone */
3220 if (prev_end_pfn >= range_end_pfn)
3223 /* Make sure the end of the zone is not within the hole */
3224 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3225 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3227 /* Update the hole size cound and move on */
3228 if (start_pfn > range_start_pfn) {
3229 BUG_ON(prev_end_pfn > start_pfn);
3230 hole_pages += start_pfn - prev_end_pfn;
3232 prev_end_pfn = early_node_map[i].end_pfn;
3235 /* Account for ranges past physical memory on this node */
3236 if (range_end_pfn > prev_end_pfn)
3237 hole_pages += range_end_pfn -
3238 max(range_start_pfn, prev_end_pfn);
3244 * absent_pages_in_range - Return number of page frames in holes within a range
3245 * @start_pfn: The start PFN to start searching for holes
3246 * @end_pfn: The end PFN to stop searching for holes
3248 * It returns the number of pages frames in memory holes within a range.
3250 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3251 unsigned long end_pfn)
3253 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3256 /* Return the number of page frames in holes in a zone on a node */
3257 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3258 unsigned long zone_type,
3259 unsigned long *ignored)
3261 unsigned long node_start_pfn, node_end_pfn;
3262 unsigned long zone_start_pfn, zone_end_pfn;
3264 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3265 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3267 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3270 adjust_zone_range_for_zone_movable(nid, zone_type,
3271 node_start_pfn, node_end_pfn,
3272 &zone_start_pfn, &zone_end_pfn);
3273 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3277 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3278 unsigned long zone_type,
3279 unsigned long *zones_size)
3281 return zones_size[zone_type];
3284 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3285 unsigned long zone_type,
3286 unsigned long *zholes_size)
3291 return zholes_size[zone_type];
3296 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3297 unsigned long *zones_size, unsigned long *zholes_size)
3299 unsigned long realtotalpages, totalpages = 0;
3302 for (i = 0; i < MAX_NR_ZONES; i++)
3303 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3305 pgdat->node_spanned_pages = totalpages;
3307 realtotalpages = totalpages;
3308 for (i = 0; i < MAX_NR_ZONES; i++)
3310 zone_absent_pages_in_node(pgdat->node_id, i,
3312 pgdat->node_present_pages = realtotalpages;
3313 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3317 #ifndef CONFIG_SPARSEMEM
3319 * Calculate the size of the zone->blockflags rounded to an unsigned long
3320 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3321 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3322 * round what is now in bits to nearest long in bits, then return it in
3325 static unsigned long __init usemap_size(unsigned long zonesize)
3327 unsigned long usemapsize;
3329 usemapsize = roundup(zonesize, pageblock_nr_pages);
3330 usemapsize = usemapsize >> pageblock_order;
3331 usemapsize *= NR_PAGEBLOCK_BITS;
3332 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3334 return usemapsize / 8;
3337 static void __init setup_usemap(struct pglist_data *pgdat,
3338 struct zone *zone, unsigned long zonesize)
3340 unsigned long usemapsize = usemap_size(zonesize);
3341 zone->pageblock_flags = NULL;
3343 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3344 memset(zone->pageblock_flags, 0, usemapsize);
3348 static void inline setup_usemap(struct pglist_data *pgdat,
3349 struct zone *zone, unsigned long zonesize) {}
3350 #endif /* CONFIG_SPARSEMEM */
3352 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3354 /* Return a sensible default order for the pageblock size. */
3355 static inline int pageblock_default_order(void)
3357 if (HPAGE_SHIFT > PAGE_SHIFT)
3358 return HUGETLB_PAGE_ORDER;
3363 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3364 static inline void __init set_pageblock_order(unsigned int order)
3366 /* Check that pageblock_nr_pages has not already been setup */
3367 if (pageblock_order)
3371 * Assume the largest contiguous order of interest is a huge page.
3372 * This value may be variable depending on boot parameters on IA64
3374 pageblock_order = order;
3376 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3379 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3380 * and pageblock_default_order() are unused as pageblock_order is set
3381 * at compile-time. See include/linux/pageblock-flags.h for the values of
3382 * pageblock_order based on the kernel config
3384 static inline int pageblock_default_order(unsigned int order)
3388 #define set_pageblock_order(x) do {} while (0)
3390 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3393 * Set up the zone data structures:
3394 * - mark all pages reserved
3395 * - mark all memory queues empty
3396 * - clear the memory bitmaps
3398 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3399 unsigned long *zones_size, unsigned long *zholes_size)
3402 int nid = pgdat->node_id;
3403 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3406 pgdat_resize_init(pgdat);
3407 pgdat->nr_zones = 0;
3408 init_waitqueue_head(&pgdat->kswapd_wait);
3409 pgdat->kswapd_max_order = 0;
3411 for (j = 0; j < MAX_NR_ZONES; j++) {
3412 struct zone *zone = pgdat->node_zones + j;
3413 unsigned long size, realsize, memmap_pages;
3415 size = zone_spanned_pages_in_node(nid, j, zones_size);
3416 realsize = size - zone_absent_pages_in_node(nid, j,
3420 * Adjust realsize so that it accounts for how much memory
3421 * is used by this zone for memmap. This affects the watermark
3422 * and per-cpu initialisations
3425 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3426 if (realsize >= memmap_pages) {
3427 realsize -= memmap_pages;
3428 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3429 "%s zone: %lu pages used for memmap\n",
3430 zone_names[j], memmap_pages);
3433 " %s zone: %lu pages exceeds realsize %lu\n",
3434 zone_names[j], memmap_pages, realsize);
3436 /* Account for reserved pages */
3437 if (j == 0 && realsize > dma_reserve) {
3438 realsize -= dma_reserve;
3439 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3440 "%s zone: %lu pages reserved\n",
3441 zone_names[0], dma_reserve);
3444 if (!is_highmem_idx(j))
3445 nr_kernel_pages += realsize;
3446 nr_all_pages += realsize;
3448 zone->spanned_pages = size;
3449 zone->present_pages = realsize;
3452 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3454 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3456 zone->name = zone_names[j];
3457 spin_lock_init(&zone->lock);
3458 spin_lock_init(&zone->lru_lock);
3459 zone_seqlock_init(zone);
3460 zone->zone_pgdat = pgdat;
3462 zone->prev_priority = DEF_PRIORITY;
3464 zone_pcp_init(zone);
3465 INIT_LIST_HEAD(&zone->active_list);
3466 INIT_LIST_HEAD(&zone->inactive_list);
3467 zone->nr_scan_active = 0;
3468 zone->nr_scan_inactive = 0;
3469 zap_zone_vm_stats(zone);
3474 set_pageblock_order(pageblock_default_order());
3475 setup_usemap(pgdat, zone, size);
3476 ret = init_currently_empty_zone(zone, zone_start_pfn,
3477 size, MEMMAP_EARLY);
3479 memmap_init(size, nid, j, zone_start_pfn);
3480 zone_start_pfn += size;
3484 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3486 /* Skip empty nodes */
3487 if (!pgdat->node_spanned_pages)
3490 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3491 /* ia64 gets its own node_mem_map, before this, without bootmem */
3492 if (!pgdat->node_mem_map) {
3493 unsigned long size, start, end;
3497 * The zone's endpoints aren't required to be MAX_ORDER
3498 * aligned but the node_mem_map endpoints must be in order
3499 * for the buddy allocator to function correctly.
3501 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3502 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3503 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3504 size = (end - start) * sizeof(struct page);
3505 map = alloc_remap(pgdat->node_id, size);
3507 map = alloc_bootmem_node(pgdat, size);
3508 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3510 #ifndef CONFIG_NEED_MULTIPLE_NODES
3512 * With no DISCONTIG, the global mem_map is just set as node 0's
3514 if (pgdat == NODE_DATA(0)) {
3515 mem_map = NODE_DATA(0)->node_mem_map;
3516 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3517 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3518 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3519 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3522 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3525 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3526 unsigned long node_start_pfn, unsigned long *zholes_size)
3528 pg_data_t *pgdat = NODE_DATA(nid);
3530 pgdat->node_id = nid;
3531 pgdat->node_start_pfn = node_start_pfn;
3532 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3534 alloc_node_mem_map(pgdat);
3535 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3536 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3537 nid, (unsigned long)pgdat,
3538 (unsigned long)pgdat->node_mem_map);
3541 free_area_init_core(pgdat, zones_size, zholes_size);
3544 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3546 #if MAX_NUMNODES > 1
3548 * Figure out the number of possible node ids.
3550 static void __init setup_nr_node_ids(void)
3553 unsigned int highest = 0;
3555 for_each_node_mask(node, node_possible_map)
3557 nr_node_ids = highest + 1;
3560 static inline void setup_nr_node_ids(void)
3566 * add_active_range - Register a range of PFNs backed by physical memory
3567 * @nid: The node ID the range resides on
3568 * @start_pfn: The start PFN of the available physical memory
3569 * @end_pfn: The end PFN of the available physical memory
3571 * These ranges are stored in an early_node_map[] and later used by
3572 * free_area_init_nodes() to calculate zone sizes and holes. If the
3573 * range spans a memory hole, it is up to the architecture to ensure
3574 * the memory is not freed by the bootmem allocator. If possible
3575 * the range being registered will be merged with existing ranges.
3577 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3578 unsigned long end_pfn)
3582 mminit_dprintk(MMINIT_TRACE, "memory_register",
3583 "Entering add_active_range(%d, %#lx, %#lx) "
3584 "%d entries of %d used\n",
3585 nid, start_pfn, end_pfn,
3586 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3588 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3590 /* Merge with existing active regions if possible */
3591 for (i = 0; i < nr_nodemap_entries; i++) {
3592 if (early_node_map[i].nid != nid)
3595 /* Skip if an existing region covers this new one */
3596 if (start_pfn >= early_node_map[i].start_pfn &&
3597 end_pfn <= early_node_map[i].end_pfn)
3600 /* Merge forward if suitable */
3601 if (start_pfn <= early_node_map[i].end_pfn &&
3602 end_pfn > early_node_map[i].end_pfn) {
3603 early_node_map[i].end_pfn = end_pfn;
3607 /* Merge backward if suitable */
3608 if (start_pfn < early_node_map[i].end_pfn &&
3609 end_pfn >= early_node_map[i].start_pfn) {
3610 early_node_map[i].start_pfn = start_pfn;
3615 /* Check that early_node_map is large enough */
3616 if (i >= MAX_ACTIVE_REGIONS) {
3617 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3618 MAX_ACTIVE_REGIONS);
3622 early_node_map[i].nid = nid;
3623 early_node_map[i].start_pfn = start_pfn;
3624 early_node_map[i].end_pfn = end_pfn;
3625 nr_nodemap_entries = i + 1;
3629 * remove_active_range - Shrink an existing registered range of PFNs
3630 * @nid: The node id the range is on that should be shrunk
3631 * @start_pfn: The new PFN of the range
3632 * @end_pfn: The new PFN of the range
3634 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3635 * The map is kept near the end physical page range that has already been
3636 * registered. This function allows an arch to shrink an existing registered
3639 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3640 unsigned long end_pfn)
3645 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3646 nid, start_pfn, end_pfn);
3648 /* Find the old active region end and shrink */
3649 for_each_active_range_index_in_nid(i, nid) {
3650 if (early_node_map[i].start_pfn >= start_pfn &&
3651 early_node_map[i].end_pfn <= end_pfn) {
3653 early_node_map[i].start_pfn = 0;
3654 early_node_map[i].end_pfn = 0;
3658 if (early_node_map[i].start_pfn < start_pfn &&
3659 early_node_map[i].end_pfn > start_pfn) {
3660 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3661 early_node_map[i].end_pfn = start_pfn;
3662 if (temp_end_pfn > end_pfn)
3663 add_active_range(nid, end_pfn, temp_end_pfn);
3666 if (early_node_map[i].start_pfn >= start_pfn &&
3667 early_node_map[i].end_pfn > end_pfn &&
3668 early_node_map[i].start_pfn < end_pfn) {
3669 early_node_map[i].start_pfn = end_pfn;
3677 /* remove the blank ones */
3678 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3679 if (early_node_map[i].nid != nid)
3681 if (early_node_map[i].end_pfn)
3683 /* we found it, get rid of it */
3684 for (j = i; j < nr_nodemap_entries - 1; j++)
3685 memcpy(&early_node_map[j], &early_node_map[j+1],
3686 sizeof(early_node_map[j]));
3687 j = nr_nodemap_entries - 1;
3688 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3689 nr_nodemap_entries--;
3694 * remove_all_active_ranges - Remove all currently registered regions
3696 * During discovery, it may be found that a table like SRAT is invalid
3697 * and an alternative discovery method must be used. This function removes
3698 * all currently registered regions.
3700 void __init remove_all_active_ranges(void)
3702 memset(early_node_map, 0, sizeof(early_node_map));
3703 nr_nodemap_entries = 0;
3704 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3705 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3706 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3707 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3710 /* Compare two active node_active_regions */
3711 static int __init cmp_node_active_region(const void *a, const void *b)
3713 struct node_active_region *arange = (struct node_active_region *)a;
3714 struct node_active_region *brange = (struct node_active_region *)b;
3716 /* Done this way to avoid overflows */
3717 if (arange->start_pfn > brange->start_pfn)
3719 if (arange->start_pfn < brange->start_pfn)
3725 /* sort the node_map by start_pfn */
3726 static void __init sort_node_map(void)
3728 sort(early_node_map, (size_t)nr_nodemap_entries,
3729 sizeof(struct node_active_region),
3730 cmp_node_active_region, NULL);
3733 /* Find the lowest pfn for a node */
3734 static unsigned long __init find_min_pfn_for_node(int nid)
3737 unsigned long min_pfn = ULONG_MAX;
3739 /* Assuming a sorted map, the first range found has the starting pfn */
3740 for_each_active_range_index_in_nid(i, nid)
3741 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3743 if (min_pfn == ULONG_MAX) {
3745 "Could not find start_pfn for node %d\n", nid);
3753 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3755 * It returns the minimum PFN based on information provided via
3756 * add_active_range().
3758 unsigned long __init find_min_pfn_with_active_regions(void)
3760 return find_min_pfn_for_node(MAX_NUMNODES);
3764 * early_calculate_totalpages()
3765 * Sum pages in active regions for movable zone.
3766 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3768 static unsigned long __init early_calculate_totalpages(void)
3771 unsigned long totalpages = 0;
3773 for (i = 0; i < nr_nodemap_entries; i++) {
3774 unsigned long pages = early_node_map[i].end_pfn -
3775 early_node_map[i].start_pfn;
3776 totalpages += pages;
3778 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3784 * Find the PFN the Movable zone begins in each node. Kernel memory
3785 * is spread evenly between nodes as long as the nodes have enough
3786 * memory. When they don't, some nodes will have more kernelcore than
3789 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3792 unsigned long usable_startpfn;
3793 unsigned long kernelcore_node, kernelcore_remaining;
3794 unsigned long totalpages = early_calculate_totalpages();
3795 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3798 * If movablecore was specified, calculate what size of
3799 * kernelcore that corresponds so that memory usable for
3800 * any allocation type is evenly spread. If both kernelcore
3801 * and movablecore are specified, then the value of kernelcore
3802 * will be used for required_kernelcore if it's greater than
3803 * what movablecore would have allowed.
3805 if (required_movablecore) {
3806 unsigned long corepages;
3809 * Round-up so that ZONE_MOVABLE is at least as large as what
3810 * was requested by the user
3812 required_movablecore =
3813 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3814 corepages = totalpages - required_movablecore;
3816 required_kernelcore = max(required_kernelcore, corepages);
3819 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3820 if (!required_kernelcore)
3823 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3824 find_usable_zone_for_movable();
3825 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3828 /* Spread kernelcore memory as evenly as possible throughout nodes */
3829 kernelcore_node = required_kernelcore / usable_nodes;
3830 for_each_node_state(nid, N_HIGH_MEMORY) {
3832 * Recalculate kernelcore_node if the division per node
3833 * now exceeds what is necessary to satisfy the requested
3834 * amount of memory for the kernel
3836 if (required_kernelcore < kernelcore_node)
3837 kernelcore_node = required_kernelcore / usable_nodes;
3840 * As the map is walked, we track how much memory is usable
3841 * by the kernel using kernelcore_remaining. When it is
3842 * 0, the rest of the node is usable by ZONE_MOVABLE
3844 kernelcore_remaining = kernelcore_node;
3846 /* Go through each range of PFNs within this node */
3847 for_each_active_range_index_in_nid(i, nid) {
3848 unsigned long start_pfn, end_pfn;
3849 unsigned long size_pages;
3851 start_pfn = max(early_node_map[i].start_pfn,
3852 zone_movable_pfn[nid]);
3853 end_pfn = early_node_map[i].end_pfn;
3854 if (start_pfn >= end_pfn)
3857 /* Account for what is only usable for kernelcore */
3858 if (start_pfn < usable_startpfn) {
3859 unsigned long kernel_pages;
3860 kernel_pages = min(end_pfn, usable_startpfn)
3863 kernelcore_remaining -= min(kernel_pages,
3864 kernelcore_remaining);
3865 required_kernelcore -= min(kernel_pages,
3866 required_kernelcore);
3868 /* Continue if range is now fully accounted */
3869 if (end_pfn <= usable_startpfn) {
3872 * Push zone_movable_pfn to the end so
3873 * that if we have to rebalance
3874 * kernelcore across nodes, we will
3875 * not double account here
3877 zone_movable_pfn[nid] = end_pfn;
3880 start_pfn = usable_startpfn;
3884 * The usable PFN range for ZONE_MOVABLE is from
3885 * start_pfn->end_pfn. Calculate size_pages as the
3886 * number of pages used as kernelcore
3888 size_pages = end_pfn - start_pfn;
3889 if (size_pages > kernelcore_remaining)
3890 size_pages = kernelcore_remaining;
3891 zone_movable_pfn[nid] = start_pfn + size_pages;
3894 * Some kernelcore has been met, update counts and
3895 * break if the kernelcore for this node has been
3898 required_kernelcore -= min(required_kernelcore,
3900 kernelcore_remaining -= size_pages;
3901 if (!kernelcore_remaining)
3907 * If there is still required_kernelcore, we do another pass with one
3908 * less node in the count. This will push zone_movable_pfn[nid] further
3909 * along on the nodes that still have memory until kernelcore is
3913 if (usable_nodes && required_kernelcore > usable_nodes)
3916 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3917 for (nid = 0; nid < MAX_NUMNODES; nid++)
3918 zone_movable_pfn[nid] =
3919 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3922 /* Any regular memory on that node ? */
3923 static void check_for_regular_memory(pg_data_t *pgdat)
3925 #ifdef CONFIG_HIGHMEM
3926 enum zone_type zone_type;
3928 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3929 struct zone *zone = &pgdat->node_zones[zone_type];
3930 if (zone->present_pages)
3931 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3937 * free_area_init_nodes - Initialise all pg_data_t and zone data
3938 * @max_zone_pfn: an array of max PFNs for each zone
3940 * This will call free_area_init_node() for each active node in the system.
3941 * Using the page ranges provided by add_active_range(), the size of each
3942 * zone in each node and their holes is calculated. If the maximum PFN
3943 * between two adjacent zones match, it is assumed that the zone is empty.
3944 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3945 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3946 * starts where the previous one ended. For example, ZONE_DMA32 starts
3947 * at arch_max_dma_pfn.
3949 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3954 /* Sort early_node_map as initialisation assumes it is sorted */
3957 /* Record where the zone boundaries are */
3958 memset(arch_zone_lowest_possible_pfn, 0,
3959 sizeof(arch_zone_lowest_possible_pfn));
3960 memset(arch_zone_highest_possible_pfn, 0,
3961 sizeof(arch_zone_highest_possible_pfn));
3962 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3963 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3964 for (i = 1; i < MAX_NR_ZONES; i++) {
3965 if (i == ZONE_MOVABLE)
3967 arch_zone_lowest_possible_pfn[i] =
3968 arch_zone_highest_possible_pfn[i-1];
3969 arch_zone_highest_possible_pfn[i] =
3970 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3972 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3973 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3975 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3976 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3977 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3979 /* Print out the zone ranges */
3980 printk("Zone PFN ranges:\n");
3981 for (i = 0; i < MAX_NR_ZONES; i++) {
3982 if (i == ZONE_MOVABLE)
3984 printk(" %-8s %0#10lx -> %0#10lx\n",
3986 arch_zone_lowest_possible_pfn[i],
3987 arch_zone_highest_possible_pfn[i]);
3990 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3991 printk("Movable zone start PFN for each node\n");
3992 for (i = 0; i < MAX_NUMNODES; i++) {
3993 if (zone_movable_pfn[i])
3994 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3997 /* Print out the early_node_map[] */
3998 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3999 for (i = 0; i < nr_nodemap_entries; i++)
4000 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4001 early_node_map[i].start_pfn,
4002 early_node_map[i].end_pfn);
4004 /* Initialise every node */
4005 mminit_verify_pageflags_layout();
4006 setup_nr_node_ids();
4007 for_each_online_node(nid) {
4008 pg_data_t *pgdat = NODE_DATA(nid);
4009 free_area_init_node(nid, NULL,
4010 find_min_pfn_for_node(nid), NULL);
4012 /* Any memory on that node */
4013 if (pgdat->node_present_pages)
4014 node_set_state(nid, N_HIGH_MEMORY);
4015 check_for_regular_memory(pgdat);
4019 static int __init cmdline_parse_core(char *p, unsigned long *core)
4021 unsigned long long coremem;
4025 coremem = memparse(p, &p);
4026 *core = coremem >> PAGE_SHIFT;
4028 /* Paranoid check that UL is enough for the coremem value */
4029 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4035 * kernelcore=size sets the amount of memory for use for allocations that
4036 * cannot be reclaimed or migrated.
4038 static int __init cmdline_parse_kernelcore(char *p)
4040 return cmdline_parse_core(p, &required_kernelcore);
4044 * movablecore=size sets the amount of memory for use for allocations that
4045 * can be reclaimed or migrated.
4047 static int __init cmdline_parse_movablecore(char *p)
4049 return cmdline_parse_core(p, &required_movablecore);
4052 early_param("kernelcore", cmdline_parse_kernelcore);
4053 early_param("movablecore", cmdline_parse_movablecore);
4055 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4058 * set_dma_reserve - set the specified number of pages reserved in the first zone
4059 * @new_dma_reserve: The number of pages to mark reserved
4061 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4062 * In the DMA zone, a significant percentage may be consumed by kernel image
4063 * and other unfreeable allocations which can skew the watermarks badly. This
4064 * function may optionally be used to account for unfreeable pages in the
4065 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4066 * smaller per-cpu batchsize.
4068 void __init set_dma_reserve(unsigned long new_dma_reserve)
4070 dma_reserve = new_dma_reserve;
4073 #ifndef CONFIG_NEED_MULTIPLE_NODES
4074 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4075 EXPORT_SYMBOL(contig_page_data);
4078 void __init free_area_init(unsigned long *zones_size)
4080 free_area_init_node(0, zones_size,
4081 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4084 static int page_alloc_cpu_notify(struct notifier_block *self,
4085 unsigned long action, void *hcpu)
4087 int cpu = (unsigned long)hcpu;
4089 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4093 * Spill the event counters of the dead processor
4094 * into the current processors event counters.
4095 * This artificially elevates the count of the current
4098 vm_events_fold_cpu(cpu);
4101 * Zero the differential counters of the dead processor
4102 * so that the vm statistics are consistent.
4104 * This is only okay since the processor is dead and cannot
4105 * race with what we are doing.
4107 refresh_cpu_vm_stats(cpu);
4112 void __init page_alloc_init(void)
4114 hotcpu_notifier(page_alloc_cpu_notify, 0);
4118 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4119 * or min_free_kbytes changes.
4121 static void calculate_totalreserve_pages(void)
4123 struct pglist_data *pgdat;
4124 unsigned long reserve_pages = 0;
4125 enum zone_type i, j;
4127 for_each_online_pgdat(pgdat) {
4128 for (i = 0; i < MAX_NR_ZONES; i++) {
4129 struct zone *zone = pgdat->node_zones + i;
4130 unsigned long max = 0;
4132 /* Find valid and maximum lowmem_reserve in the zone */
4133 for (j = i; j < MAX_NR_ZONES; j++) {
4134 if (zone->lowmem_reserve[j] > max)
4135 max = zone->lowmem_reserve[j];
4138 /* we treat pages_high as reserved pages. */
4139 max += zone->pages_high;
4141 if (max > zone->present_pages)
4142 max = zone->present_pages;
4143 reserve_pages += max;
4146 totalreserve_pages = reserve_pages;
4150 * setup_per_zone_lowmem_reserve - called whenever
4151 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4152 * has a correct pages reserved value, so an adequate number of
4153 * pages are left in the zone after a successful __alloc_pages().
4155 static void setup_per_zone_lowmem_reserve(void)
4157 struct pglist_data *pgdat;
4158 enum zone_type j, idx;
4160 for_each_online_pgdat(pgdat) {
4161 for (j = 0; j < MAX_NR_ZONES; j++) {
4162 struct zone *zone = pgdat->node_zones + j;
4163 unsigned long present_pages = zone->present_pages;
4165 zone->lowmem_reserve[j] = 0;
4169 struct zone *lower_zone;
4173 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4174 sysctl_lowmem_reserve_ratio[idx] = 1;
4176 lower_zone = pgdat->node_zones + idx;
4177 lower_zone->lowmem_reserve[j] = present_pages /
4178 sysctl_lowmem_reserve_ratio[idx];
4179 present_pages += lower_zone->present_pages;
4184 /* update totalreserve_pages */
4185 calculate_totalreserve_pages();
4189 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4191 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4192 * with respect to min_free_kbytes.
4194 void setup_per_zone_pages_min(void)
4196 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4197 unsigned long lowmem_pages = 0;
4199 unsigned long flags;
4201 /* Calculate total number of !ZONE_HIGHMEM pages */
4202 for_each_zone(zone) {
4203 if (!is_highmem(zone))
4204 lowmem_pages += zone->present_pages;
4207 for_each_zone(zone) {
4210 spin_lock_irqsave(&zone->lru_lock, flags);
4211 tmp = (u64)pages_min * zone->present_pages;
4212 do_div(tmp, lowmem_pages);
4213 if (is_highmem(zone)) {
4215 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4216 * need highmem pages, so cap pages_min to a small
4219 * The (pages_high-pages_low) and (pages_low-pages_min)
4220 * deltas controls asynch page reclaim, and so should
4221 * not be capped for highmem.
4225 min_pages = zone->present_pages / 1024;
4226 if (min_pages < SWAP_CLUSTER_MAX)
4227 min_pages = SWAP_CLUSTER_MAX;
4228 if (min_pages > 128)
4230 zone->pages_min = min_pages;
4233 * If it's a lowmem zone, reserve a number of pages
4234 * proportionate to the zone's size.
4236 zone->pages_min = tmp;
4239 zone->pages_low = zone->pages_min + (tmp >> 2);
4240 zone->pages_high = zone->pages_min + (tmp >> 1);
4241 setup_zone_migrate_reserve(zone);
4242 spin_unlock_irqrestore(&zone->lru_lock, flags);
4245 /* update totalreserve_pages */
4246 calculate_totalreserve_pages();
4250 * Initialise min_free_kbytes.
4252 * For small machines we want it small (128k min). For large machines
4253 * we want it large (64MB max). But it is not linear, because network
4254 * bandwidth does not increase linearly with machine size. We use
4256 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4257 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4273 static int __init init_per_zone_pages_min(void)
4275 unsigned long lowmem_kbytes;
4277 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4279 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4280 if (min_free_kbytes < 128)
4281 min_free_kbytes = 128;
4282 if (min_free_kbytes > 65536)
4283 min_free_kbytes = 65536;
4284 setup_per_zone_pages_min();
4285 setup_per_zone_lowmem_reserve();
4288 module_init(init_per_zone_pages_min)
4291 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4292 * that we can call two helper functions whenever min_free_kbytes
4295 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4296 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4298 proc_dointvec(table, write, file, buffer, length, ppos);
4300 setup_per_zone_pages_min();
4305 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4306 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4311 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4316 zone->min_unmapped_pages = (zone->present_pages *
4317 sysctl_min_unmapped_ratio) / 100;
4321 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4322 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4327 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4332 zone->min_slab_pages = (zone->present_pages *
4333 sysctl_min_slab_ratio) / 100;
4339 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4340 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4341 * whenever sysctl_lowmem_reserve_ratio changes.
4343 * The reserve ratio obviously has absolutely no relation with the
4344 * pages_min watermarks. The lowmem reserve ratio can only make sense
4345 * if in function of the boot time zone sizes.
4347 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4348 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4350 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4351 setup_per_zone_lowmem_reserve();
4356 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4357 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4358 * can have before it gets flushed back to buddy allocator.
4361 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4362 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4368 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4369 if (!write || (ret == -EINVAL))
4371 for_each_zone(zone) {
4372 for_each_online_cpu(cpu) {
4374 high = zone->present_pages / percpu_pagelist_fraction;
4375 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4381 int hashdist = HASHDIST_DEFAULT;
4384 static int __init set_hashdist(char *str)
4388 hashdist = simple_strtoul(str, &str, 0);
4391 __setup("hashdist=", set_hashdist);
4395 * allocate a large system hash table from bootmem
4396 * - it is assumed that the hash table must contain an exact power-of-2
4397 * quantity of entries
4398 * - limit is the number of hash buckets, not the total allocation size
4400 void *__init alloc_large_system_hash(const char *tablename,
4401 unsigned long bucketsize,
4402 unsigned long numentries,
4405 unsigned int *_hash_shift,
4406 unsigned int *_hash_mask,
4407 unsigned long limit)
4409 unsigned long long max = limit;
4410 unsigned long log2qty, size;
4413 /* allow the kernel cmdline to have a say */
4415 /* round applicable memory size up to nearest megabyte */
4416 numentries = nr_kernel_pages;
4417 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4418 numentries >>= 20 - PAGE_SHIFT;
4419 numentries <<= 20 - PAGE_SHIFT;
4421 /* limit to 1 bucket per 2^scale bytes of low memory */
4422 if (scale > PAGE_SHIFT)
4423 numentries >>= (scale - PAGE_SHIFT);
4425 numentries <<= (PAGE_SHIFT - scale);
4427 /* Make sure we've got at least a 0-order allocation.. */
4428 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4429 numentries = PAGE_SIZE / bucketsize;
4431 numentries = roundup_pow_of_two(numentries);
4433 /* limit allocation size to 1/16 total memory by default */
4435 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4436 do_div(max, bucketsize);
4439 if (numentries > max)
4442 log2qty = ilog2(numentries);
4445 size = bucketsize << log2qty;
4446 if (flags & HASH_EARLY)
4447 table = alloc_bootmem_nopanic(size);
4449 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4451 unsigned long order = get_order(size);
4452 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4454 * If bucketsize is not a power-of-two, we may free
4455 * some pages at the end of hash table.
4458 unsigned long alloc_end = (unsigned long)table +
4459 (PAGE_SIZE << order);
4460 unsigned long used = (unsigned long)table +
4462 split_page(virt_to_page(table), order);
4463 while (used < alloc_end) {
4469 } while (!table && size > PAGE_SIZE && --log2qty);
4472 panic("Failed to allocate %s hash table\n", tablename);
4474 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4477 ilog2(size) - PAGE_SHIFT,
4481 *_hash_shift = log2qty;
4483 *_hash_mask = (1 << log2qty) - 1;
4488 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4489 struct page *pfn_to_page(unsigned long pfn)
4491 return __pfn_to_page(pfn);
4493 unsigned long page_to_pfn(struct page *page)
4495 return __page_to_pfn(page);
4497 EXPORT_SYMBOL(pfn_to_page);
4498 EXPORT_SYMBOL(page_to_pfn);
4499 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4501 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4502 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4505 #ifdef CONFIG_SPARSEMEM
4506 return __pfn_to_section(pfn)->pageblock_flags;
4508 return zone->pageblock_flags;
4509 #endif /* CONFIG_SPARSEMEM */
4512 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4514 #ifdef CONFIG_SPARSEMEM
4515 pfn &= (PAGES_PER_SECTION-1);
4516 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4518 pfn = pfn - zone->zone_start_pfn;
4519 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4520 #endif /* CONFIG_SPARSEMEM */
4524 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4525 * @page: The page within the block of interest
4526 * @start_bitidx: The first bit of interest to retrieve
4527 * @end_bitidx: The last bit of interest
4528 * returns pageblock_bits flags
4530 unsigned long get_pageblock_flags_group(struct page *page,
4531 int start_bitidx, int end_bitidx)
4534 unsigned long *bitmap;
4535 unsigned long pfn, bitidx;
4536 unsigned long flags = 0;
4537 unsigned long value = 1;
4539 zone = page_zone(page);
4540 pfn = page_to_pfn(page);
4541 bitmap = get_pageblock_bitmap(zone, pfn);
4542 bitidx = pfn_to_bitidx(zone, pfn);
4544 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4545 if (test_bit(bitidx + start_bitidx, bitmap))
4552 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4553 * @page: The page within the block of interest
4554 * @start_bitidx: The first bit of interest
4555 * @end_bitidx: The last bit of interest
4556 * @flags: The flags to set
4558 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4559 int start_bitidx, int end_bitidx)
4562 unsigned long *bitmap;
4563 unsigned long pfn, bitidx;
4564 unsigned long value = 1;
4566 zone = page_zone(page);
4567 pfn = page_to_pfn(page);
4568 bitmap = get_pageblock_bitmap(zone, pfn);
4569 bitidx = pfn_to_bitidx(zone, pfn);
4570 VM_BUG_ON(pfn < zone->zone_start_pfn);
4571 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4573 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4575 __set_bit(bitidx + start_bitidx, bitmap);
4577 __clear_bit(bitidx + start_bitidx, bitmap);
4581 * This is designed as sub function...plz see page_isolation.c also.
4582 * set/clear page block's type to be ISOLATE.
4583 * page allocater never alloc memory from ISOLATE block.
4586 int set_migratetype_isolate(struct page *page)
4589 unsigned long flags;
4592 zone = page_zone(page);
4593 spin_lock_irqsave(&zone->lock, flags);
4595 * In future, more migrate types will be able to be isolation target.
4597 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4599 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4600 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4603 spin_unlock_irqrestore(&zone->lock, flags);
4609 void unset_migratetype_isolate(struct page *page)
4612 unsigned long flags;
4613 zone = page_zone(page);
4614 spin_lock_irqsave(&zone->lock, flags);
4615 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4617 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4618 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4620 spin_unlock_irqrestore(&zone->lock, flags);
4623 #ifdef CONFIG_MEMORY_HOTREMOVE
4625 * All pages in the range must be isolated before calling this.
4628 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4634 unsigned long flags;
4635 /* find the first valid pfn */
4636 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4641 zone = page_zone(pfn_to_page(pfn));
4642 spin_lock_irqsave(&zone->lock, flags);
4644 while (pfn < end_pfn) {
4645 if (!pfn_valid(pfn)) {
4649 page = pfn_to_page(pfn);
4650 BUG_ON(page_count(page));
4651 BUG_ON(!PageBuddy(page));
4652 order = page_order(page);
4653 #ifdef CONFIG_DEBUG_VM
4654 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4655 pfn, 1 << order, end_pfn);
4657 list_del(&page->lru);
4658 rmv_page_order(page);
4659 zone->free_area[order].nr_free--;
4660 __mod_zone_page_state(zone, NR_FREE_PAGES,
4662 for (i = 0; i < (1 << order); i++)
4663 SetPageReserved((page+i));
4664 pfn += (1 << order);
4666 spin_unlock_irqrestore(&zone->lock, flags);