iwl3945: Remove DRV_NAME dependenies
[linux-2.6] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define IPW2100_RX_DEBUG        /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 0;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __func__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct work_struct *work);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_delayed_work(priv->workqueue, &priv->reset_work,
684                                            0);
685
686                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
687                         priv->reset_backoff++;
688
689                 wake_up_interruptible(&priv->wait_command_queue);
690         } else
691                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
692                                priv->net_dev->name);
693
694 }
695
696 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
697 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
698                                    struct host_command *cmd)
699 {
700         struct list_head *element;
701         struct ipw2100_tx_packet *packet;
702         unsigned long flags;
703         int err = 0;
704
705         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
706                      command_types[cmd->host_command], cmd->host_command,
707                      cmd->host_command_length);
708         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
709                    cmd->host_command_length);
710
711         spin_lock_irqsave(&priv->low_lock, flags);
712
713         if (priv->fatal_error) {
714                 IPW_DEBUG_INFO
715                     ("Attempt to send command while hardware in fatal error condition.\n");
716                 err = -EIO;
717                 goto fail_unlock;
718         }
719
720         if (!(priv->status & STATUS_RUNNING)) {
721                 IPW_DEBUG_INFO
722                     ("Attempt to send command while hardware is not running.\n");
723                 err = -EIO;
724                 goto fail_unlock;
725         }
726
727         if (priv->status & STATUS_CMD_ACTIVE) {
728                 IPW_DEBUG_INFO
729                     ("Attempt to send command while another command is pending.\n");
730                 err = -EBUSY;
731                 goto fail_unlock;
732         }
733
734         if (list_empty(&priv->msg_free_list)) {
735                 IPW_DEBUG_INFO("no available msg buffers\n");
736                 goto fail_unlock;
737         }
738
739         priv->status |= STATUS_CMD_ACTIVE;
740         priv->messages_sent++;
741
742         element = priv->msg_free_list.next;
743
744         packet = list_entry(element, struct ipw2100_tx_packet, list);
745         packet->jiffy_start = jiffies;
746
747         /* initialize the firmware command packet */
748         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
749         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
750         packet->info.c_struct.cmd->host_command_len_reg =
751             cmd->host_command_length;
752         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753
754         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
755                cmd->host_command_parameters,
756                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
757
758         list_del(element);
759         DEC_STAT(&priv->msg_free_stat);
760
761         list_add_tail(element, &priv->msg_pend_list);
762         INC_STAT(&priv->msg_pend_stat);
763
764         ipw2100_tx_send_commands(priv);
765         ipw2100_tx_send_data(priv);
766
767         spin_unlock_irqrestore(&priv->low_lock, flags);
768
769         /*
770          * We must wait for this command to complete before another
771          * command can be sent...  but if we wait more than 3 seconds
772          * then there is a problem.
773          */
774
775         err =
776             wait_event_interruptible_timeout(priv->wait_command_queue,
777                                              !(priv->
778                                                status & STATUS_CMD_ACTIVE),
779                                              HOST_COMPLETE_TIMEOUT);
780
781         if (err == 0) {
782                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
783                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
784                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
785                 priv->status &= ~STATUS_CMD_ACTIVE;
786                 schedule_reset(priv);
787                 return -EIO;
788         }
789
790         if (priv->fatal_error) {
791                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
792                        priv->net_dev->name);
793                 return -EIO;
794         }
795
796         /* !!!!! HACK TEST !!!!!
797          * When lots of debug trace statements are enabled, the driver
798          * doesn't seem to have as many firmware restart cycles...
799          *
800          * As a test, we're sticking in a 1/100s delay here */
801         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
802
803         return 0;
804
805       fail_unlock:
806         spin_unlock_irqrestore(&priv->low_lock, flags);
807
808         return err;
809 }
810
811 /*
812  * Verify the values and data access of the hardware
813  * No locks needed or used.  No functions called.
814  */
815 static int ipw2100_verify(struct ipw2100_priv *priv)
816 {
817         u32 data1, data2;
818         u32 address;
819
820         u32 val1 = 0x76543210;
821         u32 val2 = 0xFEDCBA98;
822
823         /* Domain 0 check - all values should be DOA_DEBUG */
824         for (address = IPW_REG_DOA_DEBUG_AREA_START;
825              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
826                 read_register(priv->net_dev, address, &data1);
827                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
828                         return -EIO;
829         }
830
831         /* Domain 1 check - use arbitrary read/write compare  */
832         for (address = 0; address < 5; address++) {
833                 /* The memory area is not used now */
834                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835                                val1);
836                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837                                val2);
838                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839                               &data1);
840                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841                               &data2);
842                 if (val1 == data1 && val2 == data2)
843                         return 0;
844         }
845
846         return -EIO;
847 }
848
849 /*
850  *
851  * Loop until the CARD_DISABLED bit is the same value as the
852  * supplied parameter
853  *
854  * TODO: See if it would be more efficient to do a wait/wake
855  *       cycle and have the completion event trigger the wakeup
856  *
857  */
858 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
859 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
860 {
861         int i;
862         u32 card_state;
863         u32 len = sizeof(card_state);
864         int err;
865
866         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
867                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
868                                           &card_state, &len);
869                 if (err) {
870                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
871                                        "failed.\n");
872                         return 0;
873                 }
874
875                 /* We'll break out if either the HW state says it is
876                  * in the state we want, or if HOST_COMPLETE command
877                  * finishes */
878                 if ((card_state == state) ||
879                     ((priv->status & STATUS_ENABLED) ?
880                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
881                         if (state == IPW_HW_STATE_ENABLED)
882                                 priv->status |= STATUS_ENABLED;
883                         else
884                                 priv->status &= ~STATUS_ENABLED;
885
886                         return 0;
887                 }
888
889                 udelay(50);
890         }
891
892         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
893                        state ? "DISABLED" : "ENABLED");
894         return -EIO;
895 }
896
897 /*********************************************************************
898     Procedure   :   sw_reset_and_clock
899     Purpose     :   Asserts s/w reset, asserts clock initialization
900                     and waits for clock stabilization
901  ********************************************************************/
902 static int sw_reset_and_clock(struct ipw2100_priv *priv)
903 {
904         int i;
905         u32 r;
906
907         // assert s/w reset
908         write_register(priv->net_dev, IPW_REG_RESET_REG,
909                        IPW_AUX_HOST_RESET_REG_SW_RESET);
910
911         // wait for clock stabilization
912         for (i = 0; i < 1000; i++) {
913                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914
915                 // check clock ready bit
916                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
917                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
918                         break;
919         }
920
921         if (i == 1000)
922                 return -EIO;    // TODO: better error value
923
924         /* set "initialization complete" bit to move adapter to
925          * D0 state */
926         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
927                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928
929         /* wait for clock stabilization */
930         for (i = 0; i < 10000; i++) {
931                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932
933                 /* check clock ready bit */
934                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
935                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
936                         break;
937         }
938
939         if (i == 10000)
940                 return -EIO;    /* TODO: better error value */
941
942         /* set D0 standby bit */
943         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
944         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
945                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
946
947         return 0;
948 }
949
950 /*********************************************************************
951     Procedure   :   ipw2100_download_firmware
952     Purpose     :   Initiaze adapter after power on.
953                     The sequence is:
954                     1. assert s/w reset first!
955                     2. awake clocks & wait for clock stabilization
956                     3. hold ARC (don't ask me why...)
957                     4. load Dino ucode and reset/clock init again
958                     5. zero-out shared mem
959                     6. download f/w
960  *******************************************************************/
961 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
962 {
963         u32 address;
964         int err;
965
966 #ifndef CONFIG_PM
967         /* Fetch the firmware and microcode */
968         struct ipw2100_fw ipw2100_firmware;
969 #endif
970
971         if (priv->fatal_error) {
972                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
973                                 "fatal error %d.  Interface must be brought down.\n",
974                                 priv->net_dev->name, priv->fatal_error);
975                 return -EINVAL;
976         }
977 #ifdef CONFIG_PM
978         if (!ipw2100_firmware.version) {
979                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980                 if (err) {
981                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
982                                         priv->net_dev->name, err);
983                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
984                         goto fail;
985                 }
986         }
987 #else
988         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989         if (err) {
990                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
991                                 priv->net_dev->name, err);
992                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
993                 goto fail;
994         }
995 #endif
996         priv->firmware_version = ipw2100_firmware.version;
997
998         /* s/w reset and clock stabilization */
999         err = sw_reset_and_clock(priv);
1000         if (err) {
1001                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1002                                 priv->net_dev->name, err);
1003                 goto fail;
1004         }
1005
1006         err = ipw2100_verify(priv);
1007         if (err) {
1008                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1009                                 priv->net_dev->name, err);
1010                 goto fail;
1011         }
1012
1013         /* Hold ARC */
1014         write_nic_dword(priv->net_dev,
1015                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016
1017         /* allow ARC to run */
1018         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019
1020         /* load microcode */
1021         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022         if (err) {
1023                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1024                        priv->net_dev->name, err);
1025                 goto fail;
1026         }
1027
1028         /* release ARC */
1029         write_nic_dword(priv->net_dev,
1030                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031
1032         /* s/w reset and clock stabilization (again!!!) */
1033         err = sw_reset_and_clock(priv);
1034         if (err) {
1035                 printk(KERN_ERR DRV_NAME
1036                        ": %s: sw_reset_and_clock failed: %d\n",
1037                        priv->net_dev->name, err);
1038                 goto fail;
1039         }
1040
1041         /* load f/w */
1042         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043         if (err) {
1044                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1045                                 priv->net_dev->name, err);
1046                 goto fail;
1047         }
1048 #ifndef CONFIG_PM
1049         /*
1050          * When the .resume method of the driver is called, the other
1051          * part of the system, i.e. the ide driver could still stay in
1052          * the suspend stage. This prevents us from loading the firmware
1053          * from the disk.  --YZ
1054          */
1055
1056         /* free any storage allocated for firmware image */
1057         ipw2100_release_firmware(priv, &ipw2100_firmware);
1058 #endif
1059
1060         /* zero out Domain 1 area indirectly (Si requirement) */
1061         for (address = IPW_HOST_FW_SHARED_AREA0;
1062              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1063                 write_nic_dword(priv->net_dev, address, 0);
1064         for (address = IPW_HOST_FW_SHARED_AREA1;
1065              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1066                 write_nic_dword(priv->net_dev, address, 0);
1067         for (address = IPW_HOST_FW_SHARED_AREA2;
1068              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1069                 write_nic_dword(priv->net_dev, address, 0);
1070         for (address = IPW_HOST_FW_SHARED_AREA3;
1071              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1072                 write_nic_dword(priv->net_dev, address, 0);
1073         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1074              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1075                 write_nic_dword(priv->net_dev, address, 0);
1076
1077         return 0;
1078
1079       fail:
1080         ipw2100_release_firmware(priv, &ipw2100_firmware);
1081         return err;
1082 }
1083
1084 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 {
1086         if (priv->status & STATUS_INT_ENABLED)
1087                 return;
1088         priv->status |= STATUS_INT_ENABLED;
1089         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1090 }
1091
1092 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 {
1094         if (!(priv->status & STATUS_INT_ENABLED))
1095                 return;
1096         priv->status &= ~STATUS_INT_ENABLED;
1097         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1098 }
1099
1100 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 {
1102         struct ipw2100_ordinals *ord = &priv->ordinals;
1103
1104         IPW_DEBUG_INFO("enter\n");
1105
1106         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1107                       &ord->table1_addr);
1108
1109         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1110                       &ord->table2_addr);
1111
1112         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1113         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114
1115         ord->table2_size &= 0x0000FFFF;
1116
1117         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1118         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1119         IPW_DEBUG_INFO("exit\n");
1120 }
1121
1122 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1123 {
1124         u32 reg = 0;
1125         /*
1126          * Set GPIO 3 writable by FW; GPIO 1 writable
1127          * by driver and enable clock
1128          */
1129         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1130                IPW_BIT_GPIO_LED_OFF);
1131         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1132 }
1133
1134 static int rf_kill_active(struct ipw2100_priv *priv)
1135 {
1136 #define MAX_RF_KILL_CHECKS 5
1137 #define RF_KILL_CHECK_DELAY 40
1138
1139         unsigned short value = 0;
1140         u32 reg = 0;
1141         int i;
1142
1143         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1144                 priv->status &= ~STATUS_RF_KILL_HW;
1145                 return 0;
1146         }
1147
1148         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1149                 udelay(RF_KILL_CHECK_DELAY);
1150                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1151                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1152         }
1153
1154         if (value == 0)
1155                 priv->status |= STATUS_RF_KILL_HW;
1156         else
1157                 priv->status &= ~STATUS_RF_KILL_HW;
1158
1159         return (value == 0);
1160 }
1161
1162 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1163 {
1164         u32 addr, len;
1165         u32 val;
1166
1167         /*
1168          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1169          */
1170         len = sizeof(addr);
1171         if (ipw2100_get_ordinal
1172             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1173                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1174                                __LINE__);
1175                 return -EIO;
1176         }
1177
1178         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1179
1180         /*
1181          * EEPROM version is the byte at offset 0xfd in firmware
1182          * We read 4 bytes, then shift out the byte we actually want */
1183         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1184         priv->eeprom_version = (val >> 24) & 0xFF;
1185         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1186
1187         /*
1188          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189          *
1190          *  notice that the EEPROM bit is reverse polarity, i.e.
1191          *     bit = 0  signifies HW RF kill switch is supported
1192          *     bit = 1  signifies HW RF kill switch is NOT supported
1193          */
1194         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1195         if (!((val >> 24) & 0x01))
1196                 priv->hw_features |= HW_FEATURE_RFKILL;
1197
1198         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1199                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1200
1201         return 0;
1202 }
1203
1204 /*
1205  * Start firmware execution after power on and intialization
1206  * The sequence is:
1207  *  1. Release ARC
1208  *  2. Wait for f/w initialization completes;
1209  */
1210 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1211 {
1212         int i;
1213         u32 inta, inta_mask, gpio;
1214
1215         IPW_DEBUG_INFO("enter\n");
1216
1217         if (priv->status & STATUS_RUNNING)
1218                 return 0;
1219
1220         /*
1221          * Initialize the hw - drive adapter to DO state by setting
1222          * init_done bit. Wait for clk_ready bit and Download
1223          * fw & dino ucode
1224          */
1225         if (ipw2100_download_firmware(priv)) {
1226                 printk(KERN_ERR DRV_NAME
1227                        ": %s: Failed to power on the adapter.\n",
1228                        priv->net_dev->name);
1229                 return -EIO;
1230         }
1231
1232         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1233          * in the firmware RBD and TBD ring queue */
1234         ipw2100_queues_initialize(priv);
1235
1236         ipw2100_hw_set_gpio(priv);
1237
1238         /* TODO -- Look at disabling interrupts here to make sure none
1239          * get fired during FW initialization */
1240
1241         /* Release ARC - clear reset bit */
1242         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243
1244         /* wait for f/w intialization complete */
1245         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1246         i = 5000;
1247         do {
1248                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1249                 /* Todo... wait for sync command ... */
1250
1251                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252
1253                 /* check "init done" bit */
1254                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1255                         /* reset "init done" bit */
1256                         write_register(priv->net_dev, IPW_REG_INTA,
1257                                        IPW2100_INTA_FW_INIT_DONE);
1258                         break;
1259                 }
1260
1261                 /* check error conditions : we check these after the firmware
1262                  * check so that if there is an error, the interrupt handler
1263                  * will see it and the adapter will be reset */
1264                 if (inta &
1265                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1266                         /* clear error conditions */
1267                         write_register(priv->net_dev, IPW_REG_INTA,
1268                                        IPW2100_INTA_FATAL_ERROR |
1269                                        IPW2100_INTA_PARITY_ERROR);
1270                 }
1271         } while (--i);
1272
1273         /* Clear out any pending INTAs since we aren't supposed to have
1274          * interrupts enabled at this point... */
1275         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1276         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1277         inta &= IPW_INTERRUPT_MASK;
1278         /* Clear out any pending interrupts */
1279         if (inta & inta_mask)
1280                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281
1282         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1283                      i ? "SUCCESS" : "FAILED");
1284
1285         if (!i) {
1286                 printk(KERN_WARNING DRV_NAME
1287                        ": %s: Firmware did not initialize.\n",
1288                        priv->net_dev->name);
1289                 return -EIO;
1290         }
1291
1292         /* allow firmware to write to GPIO1 & GPIO3 */
1293         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294
1295         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296
1297         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298
1299         /* Ready to receive commands */
1300         priv->status |= STATUS_RUNNING;
1301
1302         /* The adapter has been reset; we are not associated */
1303         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304
1305         IPW_DEBUG_INFO("exit\n");
1306
1307         return 0;
1308 }
1309
1310 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 {
1312         if (!priv->fatal_error)
1313                 return;
1314
1315         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1316         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1317         priv->fatal_error = 0;
1318 }
1319
1320 /* NOTE: Our interrupt is disabled when this method is called */
1321 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1322 {
1323         u32 reg;
1324         int i;
1325
1326         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327
1328         ipw2100_hw_set_gpio(priv);
1329
1330         /* Step 1. Stop Master Assert */
1331         write_register(priv->net_dev, IPW_REG_RESET_REG,
1332                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333
1334         /* Step 2. Wait for stop Master Assert
1335          *         (not more than 50us, otherwise ret error */
1336         i = 5;
1337         do {
1338                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1339                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1340
1341                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1342                         break;
1343         } while (--i);
1344
1345         priv->status &= ~STATUS_RESET_PENDING;
1346
1347         if (!i) {
1348                 IPW_DEBUG_INFO
1349                     ("exit - waited too long for master assert stop\n");
1350                 return -EIO;
1351         }
1352
1353         write_register(priv->net_dev, IPW_REG_RESET_REG,
1354                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1355
1356         /* Reset any fatal_error conditions */
1357         ipw2100_reset_fatalerror(priv);
1358
1359         /* At this point, the adapter is now stopped and disabled */
1360         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1361                           STATUS_ASSOCIATED | STATUS_ENABLED);
1362
1363         return 0;
1364 }
1365
1366 /*
1367  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368  *
1369  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370  *
1371  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1372  * if STATUS_ASSN_LOST is sent.
1373  */
1374 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1375 {
1376
1377 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378
1379         struct host_command cmd = {
1380                 .host_command = CARD_DISABLE_PHY_OFF,
1381                 .host_command_sequence = 0,
1382                 .host_command_length = 0,
1383         };
1384         int err, i;
1385         u32 val1, val2;
1386
1387         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388
1389         /* Turn off the radio */
1390         err = ipw2100_hw_send_command(priv, &cmd);
1391         if (err)
1392                 return err;
1393
1394         for (i = 0; i < 2500; i++) {
1395                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1396                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397
1398                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1399                     (val2 & IPW2100_COMMAND_PHY_OFF))
1400                         return 0;
1401
1402                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1403         }
1404
1405         return -EIO;
1406 }
1407
1408 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 {
1410         struct host_command cmd = {
1411                 .host_command = HOST_COMPLETE,
1412                 .host_command_sequence = 0,
1413                 .host_command_length = 0
1414         };
1415         int err = 0;
1416
1417         IPW_DEBUG_HC("HOST_COMPLETE\n");
1418
1419         if (priv->status & STATUS_ENABLED)
1420                 return 0;
1421
1422         mutex_lock(&priv->adapter_mutex);
1423
1424         if (rf_kill_active(priv)) {
1425                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1426                 goto fail_up;
1427         }
1428
1429         err = ipw2100_hw_send_command(priv, &cmd);
1430         if (err) {
1431                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1432                 goto fail_up;
1433         }
1434
1435         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436         if (err) {
1437                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1438                                priv->net_dev->name);
1439                 goto fail_up;
1440         }
1441
1442         if (priv->stop_hang_check) {
1443                 priv->stop_hang_check = 0;
1444                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1445         }
1446
1447       fail_up:
1448         mutex_unlock(&priv->adapter_mutex);
1449         return err;
1450 }
1451
1452 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 {
1454 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455
1456         struct host_command cmd = {
1457                 .host_command = HOST_PRE_POWER_DOWN,
1458                 .host_command_sequence = 0,
1459                 .host_command_length = 0,
1460         };
1461         int err, i;
1462         u32 reg;
1463
1464         if (!(priv->status & STATUS_RUNNING))
1465                 return 0;
1466
1467         priv->status |= STATUS_STOPPING;
1468
1469         /* We can only shut down the card if the firmware is operational.  So,
1470          * if we haven't reset since a fatal_error, then we can not send the
1471          * shutdown commands. */
1472         if (!priv->fatal_error) {
1473                 /* First, make sure the adapter is enabled so that the PHY_OFF
1474                  * command can shut it down */
1475                 ipw2100_enable_adapter(priv);
1476
1477                 err = ipw2100_hw_phy_off(priv);
1478                 if (err)
1479                         printk(KERN_WARNING DRV_NAME
1480                                ": Error disabling radio %d\n", err);
1481
1482                 /*
1483                  * If in D0-standby mode going directly to D3 may cause a
1484                  * PCI bus violation.  Therefore we must change out of the D0
1485                  * state.
1486                  *
1487                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1488                  * hardware from going into standby mode and will transition
1489                  * out of D0-standby if it is already in that state.
1490                  *
1491                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1492                  * driver upon completion.  Once received, the driver can
1493                  * proceed to the D3 state.
1494                  *
1495                  * Prepare for power down command to fw.  This command would
1496                  * take HW out of D0-standby and prepare it for D3 state.
1497                  *
1498                  * Currently FW does not support event notification for this
1499                  * event. Therefore, skip waiting for it.  Just wait a fixed
1500                  * 100ms
1501                  */
1502                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503
1504                 err = ipw2100_hw_send_command(priv, &cmd);
1505                 if (err)
1506                         printk(KERN_WARNING DRV_NAME ": "
1507                                "%s: Power down command failed: Error %d\n",
1508                                priv->net_dev->name, err);
1509                 else
1510                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1511         }
1512
1513         priv->status &= ~STATUS_ENABLED;
1514
1515         /*
1516          * Set GPIO 3 writable by FW; GPIO 1 writable
1517          * by driver and enable clock
1518          */
1519         ipw2100_hw_set_gpio(priv);
1520
1521         /*
1522          * Power down adapter.  Sequence:
1523          * 1. Stop master assert (RESET_REG[9]=1)
1524          * 2. Wait for stop master (RESET_REG[8]==1)
1525          * 3. S/w reset assert (RESET_REG[7] = 1)
1526          */
1527
1528         /* Stop master assert */
1529         write_register(priv->net_dev, IPW_REG_RESET_REG,
1530                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531
1532         /* wait stop master not more than 50 usec.
1533          * Otherwise return error. */
1534         for (i = 5; i > 0; i--) {
1535                 udelay(10);
1536
1537                 /* Check master stop bit */
1538                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1539
1540                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1541                         break;
1542         }
1543
1544         if (i == 0)
1545                 printk(KERN_WARNING DRV_NAME
1546                        ": %s: Could now power down adapter.\n",
1547                        priv->net_dev->name);
1548
1549         /* assert s/w reset */
1550         write_register(priv->net_dev, IPW_REG_RESET_REG,
1551                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1552
1553         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1554
1555         return 0;
1556 }
1557
1558 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 {
1560         struct host_command cmd = {
1561                 .host_command = CARD_DISABLE,
1562                 .host_command_sequence = 0,
1563                 .host_command_length = 0
1564         };
1565         int err = 0;
1566
1567         IPW_DEBUG_HC("CARD_DISABLE\n");
1568
1569         if (!(priv->status & STATUS_ENABLED))
1570                 return 0;
1571
1572         /* Make sure we clear the associated state */
1573         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574
1575         if (!priv->stop_hang_check) {
1576                 priv->stop_hang_check = 1;
1577                 cancel_delayed_work(&priv->hang_check);
1578         }
1579
1580         mutex_lock(&priv->adapter_mutex);
1581
1582         err = ipw2100_hw_send_command(priv, &cmd);
1583         if (err) {
1584                 printk(KERN_WARNING DRV_NAME
1585                        ": exit - failed to send CARD_DISABLE command\n");
1586                 goto fail_up;
1587         }
1588
1589         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590         if (err) {
1591                 printk(KERN_WARNING DRV_NAME
1592                        ": exit - card failed to change to DISABLED\n");
1593                 goto fail_up;
1594         }
1595
1596         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1597
1598       fail_up:
1599         mutex_unlock(&priv->adapter_mutex);
1600         return err;
1601 }
1602
1603 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 {
1605         struct host_command cmd = {
1606                 .host_command = SET_SCAN_OPTIONS,
1607                 .host_command_sequence = 0,
1608                 .host_command_length = 8
1609         };
1610         int err;
1611
1612         IPW_DEBUG_INFO("enter\n");
1613
1614         IPW_DEBUG_SCAN("setting scan options\n");
1615
1616         cmd.host_command_parameters[0] = 0;
1617
1618         if (!(priv->config & CFG_ASSOCIATE))
1619                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1620         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1621                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1622         if (priv->config & CFG_PASSIVE_SCAN)
1623                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624
1625         cmd.host_command_parameters[1] = priv->channel_mask;
1626
1627         err = ipw2100_hw_send_command(priv, &cmd);
1628
1629         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1630                      cmd.host_command_parameters[0]);
1631
1632         return err;
1633 }
1634
1635 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 {
1637         struct host_command cmd = {
1638                 .host_command = BROADCAST_SCAN,
1639                 .host_command_sequence = 0,
1640                 .host_command_length = 4
1641         };
1642         int err;
1643
1644         IPW_DEBUG_HC("START_SCAN\n");
1645
1646         cmd.host_command_parameters[0] = 0;
1647
1648         /* No scanning if in monitor mode */
1649         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1650                 return 1;
1651
1652         if (priv->status & STATUS_SCANNING) {
1653                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1654                 return 0;
1655         }
1656
1657         IPW_DEBUG_INFO("enter\n");
1658
1659         /* Not clearing here; doing so makes iwlist always return nothing...
1660          *
1661          * We should modify the table logic to use aging tables vs. clearing
1662          * the table on each scan start.
1663          */
1664         IPW_DEBUG_SCAN("starting scan\n");
1665
1666         priv->status |= STATUS_SCANNING;
1667         err = ipw2100_hw_send_command(priv, &cmd);
1668         if (err)
1669                 priv->status &= ~STATUS_SCANNING;
1670
1671         IPW_DEBUG_INFO("exit\n");
1672
1673         return err;
1674 }
1675
1676 static const struct ieee80211_geo ipw_geos[] = {
1677         {                       /* Restricted */
1678          "---",
1679          .bg_channels = 14,
1680          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1681                 {2427, 4}, {2432, 5}, {2437, 6},
1682                 {2442, 7}, {2447, 8}, {2452, 9},
1683                 {2457, 10}, {2462, 11}, {2467, 12},
1684                 {2472, 13}, {2484, 14}},
1685          },
1686 };
1687
1688 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 {
1690         unsigned long flags;
1691         int rc = 0;
1692         u32 lock;
1693         u32 ord_len = sizeof(lock);
1694
1695         /* Quite if manually disabled. */
1696         if (priv->status & STATUS_RF_KILL_SW) {
1697                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1698                                "switch\n", priv->net_dev->name);
1699                 return 0;
1700         }
1701
1702         /* the ipw2100 hardware really doesn't want power management delays
1703          * longer than 175usec
1704          */
1705         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175);
1706
1707         /* If the interrupt is enabled, turn it off... */
1708         spin_lock_irqsave(&priv->low_lock, flags);
1709         ipw2100_disable_interrupts(priv);
1710
1711         /* Reset any fatal_error conditions */
1712         ipw2100_reset_fatalerror(priv);
1713         spin_unlock_irqrestore(&priv->low_lock, flags);
1714
1715         if (priv->status & STATUS_POWERED ||
1716             (priv->status & STATUS_RESET_PENDING)) {
1717                 /* Power cycle the card ... */
1718                 if (ipw2100_power_cycle_adapter(priv)) {
1719                         printk(KERN_WARNING DRV_NAME
1720                                ": %s: Could not cycle adapter.\n",
1721                                priv->net_dev->name);
1722                         rc = 1;
1723                         goto exit;
1724                 }
1725         } else
1726                 priv->status |= STATUS_POWERED;
1727
1728         /* Load the firmware, start the clocks, etc. */
1729         if (ipw2100_start_adapter(priv)) {
1730                 printk(KERN_ERR DRV_NAME
1731                        ": %s: Failed to start the firmware.\n",
1732                        priv->net_dev->name);
1733                 rc = 1;
1734                 goto exit;
1735         }
1736
1737         ipw2100_initialize_ordinals(priv);
1738
1739         /* Determine capabilities of this particular HW configuration */
1740         if (ipw2100_get_hw_features(priv)) {
1741                 printk(KERN_ERR DRV_NAME
1742                        ": %s: Failed to determine HW features.\n",
1743                        priv->net_dev->name);
1744                 rc = 1;
1745                 goto exit;
1746         }
1747
1748         /* Initialize the geo */
1749         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1750                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1751                 return 0;
1752         }
1753         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1754
1755         lock = LOCK_NONE;
1756         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1757                 printk(KERN_ERR DRV_NAME
1758                        ": %s: Failed to clear ordinal lock.\n",
1759                        priv->net_dev->name);
1760                 rc = 1;
1761                 goto exit;
1762         }
1763
1764         priv->status &= ~STATUS_SCANNING;
1765
1766         if (rf_kill_active(priv)) {
1767                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1768                        priv->net_dev->name);
1769
1770                 if (priv->stop_rf_kill) {
1771                         priv->stop_rf_kill = 0;
1772                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1773                                            round_jiffies_relative(HZ));
1774                 }
1775
1776                 deferred = 1;
1777         }
1778
1779         /* Turn on the interrupt so that commands can be processed */
1780         ipw2100_enable_interrupts(priv);
1781
1782         /* Send all of the commands that must be sent prior to
1783          * HOST_COMPLETE */
1784         if (ipw2100_adapter_setup(priv)) {
1785                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1786                        priv->net_dev->name);
1787                 rc = 1;
1788                 goto exit;
1789         }
1790
1791         if (!deferred) {
1792                 /* Enable the adapter - sends HOST_COMPLETE */
1793                 if (ipw2100_enable_adapter(priv)) {
1794                         printk(KERN_ERR DRV_NAME ": "
1795                                "%s: failed in call to enable adapter.\n",
1796                                priv->net_dev->name);
1797                         ipw2100_hw_stop_adapter(priv);
1798                         rc = 1;
1799                         goto exit;
1800                 }
1801
1802                 /* Start a scan . . . */
1803                 ipw2100_set_scan_options(priv);
1804                 ipw2100_start_scan(priv);
1805         }
1806
1807       exit:
1808         return rc;
1809 }
1810
1811 /* Called by register_netdev() */
1812 static int ipw2100_net_init(struct net_device *dev)
1813 {
1814         struct ipw2100_priv *priv = ieee80211_priv(dev);
1815         return ipw2100_up(priv, 1);
1816 }
1817
1818 static void ipw2100_down(struct ipw2100_priv *priv)
1819 {
1820         unsigned long flags;
1821         union iwreq_data wrqu = {
1822                 .ap_addr = {
1823                             .sa_family = ARPHRD_ETHER}
1824         };
1825         int associated = priv->status & STATUS_ASSOCIATED;
1826
1827         /* Kill the RF switch timer */
1828         if (!priv->stop_rf_kill) {
1829                 priv->stop_rf_kill = 1;
1830                 cancel_delayed_work(&priv->rf_kill);
1831         }
1832
1833         /* Kill the firmware hang check timer */
1834         if (!priv->stop_hang_check) {
1835                 priv->stop_hang_check = 1;
1836                 cancel_delayed_work(&priv->hang_check);
1837         }
1838
1839         /* Kill any pending resets */
1840         if (priv->status & STATUS_RESET_PENDING)
1841                 cancel_delayed_work(&priv->reset_work);
1842
1843         /* Make sure the interrupt is on so that FW commands will be
1844          * processed correctly */
1845         spin_lock_irqsave(&priv->low_lock, flags);
1846         ipw2100_enable_interrupts(priv);
1847         spin_unlock_irqrestore(&priv->low_lock, flags);
1848
1849         if (ipw2100_hw_stop_adapter(priv))
1850                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1851                        priv->net_dev->name);
1852
1853         /* Do not disable the interrupt until _after_ we disable
1854          * the adaptor.  Otherwise the CARD_DISABLE command will never
1855          * be ack'd by the firmware */
1856         spin_lock_irqsave(&priv->low_lock, flags);
1857         ipw2100_disable_interrupts(priv);
1858         spin_unlock_irqrestore(&priv->low_lock, flags);
1859
1860         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
1861                         PM_QOS_DEFAULT_VALUE);
1862
1863         /* We have to signal any supplicant if we are disassociating */
1864         if (associated)
1865                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1866
1867         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1868         netif_carrier_off(priv->net_dev);
1869         netif_stop_queue(priv->net_dev);
1870 }
1871
1872 static void ipw2100_reset_adapter(struct work_struct *work)
1873 {
1874         struct ipw2100_priv *priv =
1875                 container_of(work, struct ipw2100_priv, reset_work.work);
1876         unsigned long flags;
1877         union iwreq_data wrqu = {
1878                 .ap_addr = {
1879                             .sa_family = ARPHRD_ETHER}
1880         };
1881         int associated = priv->status & STATUS_ASSOCIATED;
1882
1883         spin_lock_irqsave(&priv->low_lock, flags);
1884         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1885         priv->resets++;
1886         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1887         priv->status |= STATUS_SECURITY_UPDATED;
1888
1889         /* Force a power cycle even if interface hasn't been opened
1890          * yet */
1891         cancel_delayed_work(&priv->reset_work);
1892         priv->status |= STATUS_RESET_PENDING;
1893         spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895         mutex_lock(&priv->action_mutex);
1896         /* stop timed checks so that they don't interfere with reset */
1897         priv->stop_hang_check = 1;
1898         cancel_delayed_work(&priv->hang_check);
1899
1900         /* We have to signal any supplicant if we are disassociating */
1901         if (associated)
1902                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1903
1904         ipw2100_up(priv, 0);
1905         mutex_unlock(&priv->action_mutex);
1906
1907 }
1908
1909 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1910 {
1911
1912 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1913         int ret, len, essid_len;
1914         char essid[IW_ESSID_MAX_SIZE];
1915         u32 txrate;
1916         u32 chan;
1917         char *txratename;
1918         u8 bssid[ETH_ALEN];
1919         DECLARE_SSID_BUF(ssid);
1920
1921         /*
1922          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1923          *      an actual MAC of the AP. Seems like FW sets this
1924          *      address too late. Read it later and expose through
1925          *      /proc or schedule a later task to query and update
1926          */
1927
1928         essid_len = IW_ESSID_MAX_SIZE;
1929         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1930                                   essid, &essid_len);
1931         if (ret) {
1932                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1933                                __LINE__);
1934                 return;
1935         }
1936
1937         len = sizeof(u32);
1938         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1939         if (ret) {
1940                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1941                                __LINE__);
1942                 return;
1943         }
1944
1945         len = sizeof(u32);
1946         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1947         if (ret) {
1948                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1949                                __LINE__);
1950                 return;
1951         }
1952         len = ETH_ALEN;
1953         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1954         if (ret) {
1955                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1956                                __LINE__);
1957                 return;
1958         }
1959         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1960
1961         switch (txrate) {
1962         case TX_RATE_1_MBIT:
1963                 txratename = "1Mbps";
1964                 break;
1965         case TX_RATE_2_MBIT:
1966                 txratename = "2Mbsp";
1967                 break;
1968         case TX_RATE_5_5_MBIT:
1969                 txratename = "5.5Mbps";
1970                 break;
1971         case TX_RATE_11_MBIT:
1972                 txratename = "11Mbps";
1973                 break;
1974         default:
1975                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1976                 txratename = "unknown rate";
1977                 break;
1978         }
1979
1980         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
1981                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
1982                        txratename, chan, bssid);
1983
1984         /* now we copy read ssid into dev */
1985         if (!(priv->config & CFG_STATIC_ESSID)) {
1986                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1987                 memcpy(priv->essid, essid, priv->essid_len);
1988         }
1989         priv->channel = chan;
1990         memcpy(priv->bssid, bssid, ETH_ALEN);
1991
1992         priv->status |= STATUS_ASSOCIATING;
1993         priv->connect_start = get_seconds();
1994
1995         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1996 }
1997
1998 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1999                              int length, int batch_mode)
2000 {
2001         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2002         struct host_command cmd = {
2003                 .host_command = SSID,
2004                 .host_command_sequence = 0,
2005                 .host_command_length = ssid_len
2006         };
2007         int err;
2008         DECLARE_SSID_BUF(ssid);
2009
2010         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2011
2012         if (ssid_len)
2013                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2014
2015         if (!batch_mode) {
2016                 err = ipw2100_disable_adapter(priv);
2017                 if (err)
2018                         return err;
2019         }
2020
2021         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2022          * disable auto association -- so we cheat by setting a bogus SSID */
2023         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2024                 int i;
2025                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2026                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2027                         bogus[i] = 0x18 + i;
2028                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2029         }
2030
2031         /* NOTE:  We always send the SSID command even if the provided ESSID is
2032          * the same as what we currently think is set. */
2033
2034         err = ipw2100_hw_send_command(priv, &cmd);
2035         if (!err) {
2036                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2037                 memcpy(priv->essid, essid, ssid_len);
2038                 priv->essid_len = ssid_len;
2039         }
2040
2041         if (!batch_mode) {
2042                 if (ipw2100_enable_adapter(priv))
2043                         err = -EIO;
2044         }
2045
2046         return err;
2047 }
2048
2049 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2050 {
2051         DECLARE_SSID_BUF(ssid);
2052
2053         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2054                   "disassociated: '%s' %pM \n",
2055                   print_ssid(ssid, priv->essid, priv->essid_len),
2056                   priv->bssid);
2057
2058         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2059
2060         if (priv->status & STATUS_STOPPING) {
2061                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2062                 return;
2063         }
2064
2065         memset(priv->bssid, 0, ETH_ALEN);
2066         memset(priv->ieee->bssid, 0, ETH_ALEN);
2067
2068         netif_carrier_off(priv->net_dev);
2069         netif_stop_queue(priv->net_dev);
2070
2071         if (!(priv->status & STATUS_RUNNING))
2072                 return;
2073
2074         if (priv->status & STATUS_SECURITY_UPDATED)
2075                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2076
2077         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2078 }
2079
2080 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2081 {
2082         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2083                        priv->net_dev->name);
2084
2085         /* RF_KILL is now enabled (else we wouldn't be here) */
2086         priv->status |= STATUS_RF_KILL_HW;
2087
2088         /* Make sure the RF Kill check timer is running */
2089         priv->stop_rf_kill = 0;
2090         cancel_delayed_work(&priv->rf_kill);
2091         queue_delayed_work(priv->workqueue, &priv->rf_kill,
2092                            round_jiffies_relative(HZ));
2093 }
2094
2095 static void send_scan_event(void *data)
2096 {
2097         struct ipw2100_priv *priv = data;
2098         union iwreq_data wrqu;
2099
2100         wrqu.data.length = 0;
2101         wrqu.data.flags = 0;
2102         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2103 }
2104
2105 static void ipw2100_scan_event_later(struct work_struct *work)
2106 {
2107         send_scan_event(container_of(work, struct ipw2100_priv,
2108                                         scan_event_later.work));
2109 }
2110
2111 static void ipw2100_scan_event_now(struct work_struct *work)
2112 {
2113         send_scan_event(container_of(work, struct ipw2100_priv,
2114                                         scan_event_now));
2115 }
2116
2117 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2118 {
2119         IPW_DEBUG_SCAN("scan complete\n");
2120         /* Age the scan results... */
2121         priv->ieee->scans++;
2122         priv->status &= ~STATUS_SCANNING;
2123
2124         /* Only userspace-requested scan completion events go out immediately */
2125         if (!priv->user_requested_scan) {
2126                 if (!delayed_work_pending(&priv->scan_event_later))
2127                         queue_delayed_work(priv->workqueue,
2128                                         &priv->scan_event_later,
2129                                         round_jiffies_relative(msecs_to_jiffies(4000)));
2130         } else {
2131                 priv->user_requested_scan = 0;
2132                 cancel_delayed_work(&priv->scan_event_later);
2133                 queue_work(priv->workqueue, &priv->scan_event_now);
2134         }
2135 }
2136
2137 #ifdef CONFIG_IPW2100_DEBUG
2138 #define IPW2100_HANDLER(v, f) { v, f, # v }
2139 struct ipw2100_status_indicator {
2140         int status;
2141         void (*cb) (struct ipw2100_priv * priv, u32 status);
2142         char *name;
2143 };
2144 #else
2145 #define IPW2100_HANDLER(v, f) { v, f }
2146 struct ipw2100_status_indicator {
2147         int status;
2148         void (*cb) (struct ipw2100_priv * priv, u32 status);
2149 };
2150 #endif                          /* CONFIG_IPW2100_DEBUG */
2151
2152 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2153 {
2154         IPW_DEBUG_SCAN("Scanning...\n");
2155         priv->status |= STATUS_SCANNING;
2156 }
2157
2158 static const struct ipw2100_status_indicator status_handlers[] = {
2159         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2160         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2161         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2162         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2163         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2164         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2165         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2166         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2167         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2168         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2169         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2170         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2171         IPW2100_HANDLER(-1, NULL)
2172 };
2173
2174 static void isr_status_change(struct ipw2100_priv *priv, int status)
2175 {
2176         int i;
2177
2178         if (status == IPW_STATE_SCANNING &&
2179             priv->status & STATUS_ASSOCIATED &&
2180             !(priv->status & STATUS_SCANNING)) {
2181                 IPW_DEBUG_INFO("Scan detected while associated, with "
2182                                "no scan request.  Restarting firmware.\n");
2183
2184                 /* Wake up any sleeping jobs */
2185                 schedule_reset(priv);
2186         }
2187
2188         for (i = 0; status_handlers[i].status != -1; i++) {
2189                 if (status == status_handlers[i].status) {
2190                         IPW_DEBUG_NOTIF("Status change: %s\n",
2191                                         status_handlers[i].name);
2192                         if (status_handlers[i].cb)
2193                                 status_handlers[i].cb(priv, status);
2194                         priv->wstats.status = status;
2195                         return;
2196                 }
2197         }
2198
2199         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2200 }
2201
2202 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2203                                     struct ipw2100_cmd_header *cmd)
2204 {
2205 #ifdef CONFIG_IPW2100_DEBUG
2206         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2207                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2208                              command_types[cmd->host_command_reg],
2209                              cmd->host_command_reg);
2210         }
2211 #endif
2212         if (cmd->host_command_reg == HOST_COMPLETE)
2213                 priv->status |= STATUS_ENABLED;
2214
2215         if (cmd->host_command_reg == CARD_DISABLE)
2216                 priv->status &= ~STATUS_ENABLED;
2217
2218         priv->status &= ~STATUS_CMD_ACTIVE;
2219
2220         wake_up_interruptible(&priv->wait_command_queue);
2221 }
2222
2223 #ifdef CONFIG_IPW2100_DEBUG
2224 static const char *frame_types[] = {
2225         "COMMAND_STATUS_VAL",
2226         "STATUS_CHANGE_VAL",
2227         "P80211_DATA_VAL",
2228         "P8023_DATA_VAL",
2229         "HOST_NOTIFICATION_VAL"
2230 };
2231 #endif
2232
2233 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2234                                     struct ipw2100_rx_packet *packet)
2235 {
2236         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2237         if (!packet->skb)
2238                 return -ENOMEM;
2239
2240         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2241         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2242                                           sizeof(struct ipw2100_rx),
2243                                           PCI_DMA_FROMDEVICE);
2244         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2245          *       dma_addr */
2246
2247         return 0;
2248 }
2249
2250 #define SEARCH_ERROR   0xffffffff
2251 #define SEARCH_FAIL    0xfffffffe
2252 #define SEARCH_SUCCESS 0xfffffff0
2253 #define SEARCH_DISCARD 0
2254 #define SEARCH_SNAPSHOT 1
2255
2256 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2257 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2258 {
2259         int i;
2260         if (!priv->snapshot[0])
2261                 return;
2262         for (i = 0; i < 0x30; i++)
2263                 kfree(priv->snapshot[i]);
2264         priv->snapshot[0] = NULL;
2265 }
2266
2267 #ifdef IPW2100_DEBUG_C3
2268 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2269 {
2270         int i;
2271         if (priv->snapshot[0])
2272                 return 1;
2273         for (i = 0; i < 0x30; i++) {
2274                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2275                 if (!priv->snapshot[i]) {
2276                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2277                                        "buffer %d\n", priv->net_dev->name, i);
2278                         while (i > 0)
2279                                 kfree(priv->snapshot[--i]);
2280                         priv->snapshot[0] = NULL;
2281                         return 0;
2282                 }
2283         }
2284
2285         return 1;
2286 }
2287
2288 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2289                                     size_t len, int mode)
2290 {
2291         u32 i, j;
2292         u32 tmp;
2293         u8 *s, *d;
2294         u32 ret;
2295
2296         s = in_buf;
2297         if (mode == SEARCH_SNAPSHOT) {
2298                 if (!ipw2100_snapshot_alloc(priv))
2299                         mode = SEARCH_DISCARD;
2300         }
2301
2302         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2303                 read_nic_dword(priv->net_dev, i, &tmp);
2304                 if (mode == SEARCH_SNAPSHOT)
2305                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2306                 if (ret == SEARCH_FAIL) {
2307                         d = (u8 *) & tmp;
2308                         for (j = 0; j < 4; j++) {
2309                                 if (*s != *d) {
2310                                         s = in_buf;
2311                                         continue;
2312                                 }
2313
2314                                 s++;
2315                                 d++;
2316
2317                                 if ((s - in_buf) == len)
2318                                         ret = (i + j) - len + 1;
2319                         }
2320                 } else if (mode == SEARCH_DISCARD)
2321                         return ret;
2322         }
2323
2324         return ret;
2325 }
2326 #endif
2327
2328 /*
2329  *
2330  * 0) Disconnect the SKB from the firmware (just unmap)
2331  * 1) Pack the ETH header into the SKB
2332  * 2) Pass the SKB to the network stack
2333  *
2334  * When packet is provided by the firmware, it contains the following:
2335  *
2336  * .  ieee80211_hdr
2337  * .  ieee80211_snap_hdr
2338  *
2339  * The size of the constructed ethernet
2340  *
2341  */
2342 #ifdef IPW2100_RX_DEBUG
2343 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2344 #endif
2345
2346 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2347 {
2348 #ifdef IPW2100_DEBUG_C3
2349         struct ipw2100_status *status = &priv->status_queue.drv[i];
2350         u32 match, reg;
2351         int j;
2352 #endif
2353
2354         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2355                        i * sizeof(struct ipw2100_status));
2356
2357 #ifdef IPW2100_DEBUG_C3
2358         /* Halt the fimrware so we can get a good image */
2359         write_register(priv->net_dev, IPW_REG_RESET_REG,
2360                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2361         j = 5;
2362         do {
2363                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2364                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2365
2366                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2367                         break;
2368         } while (j--);
2369
2370         match = ipw2100_match_buf(priv, (u8 *) status,
2371                                   sizeof(struct ipw2100_status),
2372                                   SEARCH_SNAPSHOT);
2373         if (match < SEARCH_SUCCESS)
2374                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2375                                "offset 0x%06X, length %d:\n",
2376                                priv->net_dev->name, match,
2377                                sizeof(struct ipw2100_status));
2378         else
2379                 IPW_DEBUG_INFO("%s: No DMA status match in "
2380                                "Firmware.\n", priv->net_dev->name);
2381
2382         printk_buf((u8 *) priv->status_queue.drv,
2383                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2384 #endif
2385
2386         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2387         priv->ieee->stats.rx_errors++;
2388         schedule_reset(priv);
2389 }
2390
2391 static void isr_rx(struct ipw2100_priv *priv, int i,
2392                           struct ieee80211_rx_stats *stats)
2393 {
2394         struct ipw2100_status *status = &priv->status_queue.drv[i];
2395         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2396
2397         IPW_DEBUG_RX("Handler...\n");
2398
2399         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2400                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2401                                "  Dropping.\n",
2402                                priv->net_dev->name,
2403                                status->frame_size, skb_tailroom(packet->skb));
2404                 priv->ieee->stats.rx_errors++;
2405                 return;
2406         }
2407
2408         if (unlikely(!netif_running(priv->net_dev))) {
2409                 priv->ieee->stats.rx_errors++;
2410                 priv->wstats.discard.misc++;
2411                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2412                 return;
2413         }
2414
2415         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2416                      !(priv->status & STATUS_ASSOCIATED))) {
2417                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2418                 priv->wstats.discard.misc++;
2419                 return;
2420         }
2421
2422         pci_unmap_single(priv->pci_dev,
2423                          packet->dma_addr,
2424                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2425
2426         skb_put(packet->skb, status->frame_size);
2427
2428 #ifdef IPW2100_RX_DEBUG
2429         /* Make a copy of the frame so we can dump it to the logs if
2430          * ieee80211_rx fails */
2431         skb_copy_from_linear_data(packet->skb, packet_data,
2432                                   min_t(u32, status->frame_size,
2433                                              IPW_RX_NIC_BUFFER_LENGTH));
2434 #endif
2435
2436         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2437 #ifdef IPW2100_RX_DEBUG
2438                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2439                                priv->net_dev->name);
2440                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2441 #endif
2442                 priv->ieee->stats.rx_errors++;
2443
2444                 /* ieee80211_rx failed, so it didn't free the SKB */
2445                 dev_kfree_skb_any(packet->skb);
2446                 packet->skb = NULL;
2447         }
2448
2449         /* We need to allocate a new SKB and attach it to the RDB. */
2450         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2451                 printk(KERN_WARNING DRV_NAME ": "
2452                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2453                        "adapter.\n", priv->net_dev->name);
2454                 /* TODO: schedule adapter shutdown */
2455                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2456         }
2457
2458         /* Update the RDB entry */
2459         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2460 }
2461
2462 #ifdef CONFIG_IPW2100_MONITOR
2463
2464 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2465                    struct ieee80211_rx_stats *stats)
2466 {
2467         struct ipw2100_status *status = &priv->status_queue.drv[i];
2468         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469
2470         /* Magic struct that slots into the radiotap header -- no reason
2471          * to build this manually element by element, we can write it much
2472          * more efficiently than we can parse it. ORDER MATTERS HERE */
2473         struct ipw_rt_hdr {
2474                 struct ieee80211_radiotap_header rt_hdr;
2475                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2476         } *ipw_rt;
2477
2478         IPW_DEBUG_RX("Handler...\n");
2479
2480         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2481                                 sizeof(struct ipw_rt_hdr))) {
2482                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2483                                "  Dropping.\n",
2484                                priv->net_dev->name,
2485                                status->frame_size,
2486                                skb_tailroom(packet->skb));
2487                 priv->ieee->stats.rx_errors++;
2488                 return;
2489         }
2490
2491         if (unlikely(!netif_running(priv->net_dev))) {
2492                 priv->ieee->stats.rx_errors++;
2493                 priv->wstats.discard.misc++;
2494                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2495                 return;
2496         }
2497
2498         if (unlikely(priv->config & CFG_CRC_CHECK &&
2499                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2500                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2501                 priv->ieee->stats.rx_errors++;
2502                 return;
2503         }
2504
2505         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2506                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2507         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2508                 packet->skb->data, status->frame_size);
2509
2510         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2511
2512         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2513         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2514         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2515
2516         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2517
2518         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2519
2520         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2521
2522         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2523                 priv->ieee->stats.rx_errors++;
2524
2525                 /* ieee80211_rx failed, so it didn't free the SKB */
2526                 dev_kfree_skb_any(packet->skb);
2527                 packet->skb = NULL;
2528         }
2529
2530         /* We need to allocate a new SKB and attach it to the RDB. */
2531         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2532                 IPW_DEBUG_WARNING(
2533                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2534                         "adapter.\n", priv->net_dev->name);
2535                 /* TODO: schedule adapter shutdown */
2536                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2537         }
2538
2539         /* Update the RDB entry */
2540         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2541 }
2542
2543 #endif
2544
2545 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2546 {
2547         struct ipw2100_status *status = &priv->status_queue.drv[i];
2548         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2549         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2550
2551         switch (frame_type) {
2552         case COMMAND_STATUS_VAL:
2553                 return (status->frame_size != sizeof(u->rx_data.command));
2554         case STATUS_CHANGE_VAL:
2555                 return (status->frame_size != sizeof(u->rx_data.status));
2556         case HOST_NOTIFICATION_VAL:
2557                 return (status->frame_size < sizeof(u->rx_data.notification));
2558         case P80211_DATA_VAL:
2559         case P8023_DATA_VAL:
2560 #ifdef CONFIG_IPW2100_MONITOR
2561                 return 0;
2562 #else
2563                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2564                 case IEEE80211_FTYPE_MGMT:
2565                 case IEEE80211_FTYPE_CTL:
2566                         return 0;
2567                 case IEEE80211_FTYPE_DATA:
2568                         return (status->frame_size >
2569                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2570                 }
2571 #endif
2572         }
2573
2574         return 1;
2575 }
2576
2577 /*
2578  * ipw2100 interrupts are disabled at this point, and the ISR
2579  * is the only code that calls this method.  So, we do not need
2580  * to play with any locks.
2581  *
2582  * RX Queue works as follows:
2583  *
2584  * Read index - firmware places packet in entry identified by the
2585  *              Read index and advances Read index.  In this manner,
2586  *              Read index will always point to the next packet to
2587  *              be filled--but not yet valid.
2588  *
2589  * Write index - driver fills this entry with an unused RBD entry.
2590  *               This entry has not filled by the firmware yet.
2591  *
2592  * In between the W and R indexes are the RBDs that have been received
2593  * but not yet processed.
2594  *
2595  * The process of handling packets will start at WRITE + 1 and advance
2596  * until it reaches the READ index.
2597  *
2598  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2599  *
2600  */
2601 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2602 {
2603         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2604         struct ipw2100_status_queue *sq = &priv->status_queue;
2605         struct ipw2100_rx_packet *packet;
2606         u16 frame_type;
2607         u32 r, w, i, s;
2608         struct ipw2100_rx *u;
2609         struct ieee80211_rx_stats stats = {
2610                 .mac_time = jiffies,
2611         };
2612
2613         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2614         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2615
2616         if (r >= rxq->entries) {
2617                 IPW_DEBUG_RX("exit - bad read index\n");
2618                 return;
2619         }
2620
2621         i = (rxq->next + 1) % rxq->entries;
2622         s = i;
2623         while (i != r) {
2624                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2625                    r, rxq->next, i); */
2626
2627                 packet = &priv->rx_buffers[i];
2628
2629                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2630                  * the correct values */
2631                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2632                                             sq->nic +
2633                                             sizeof(struct ipw2100_status) * i,
2634                                             sizeof(struct ipw2100_status),
2635                                             PCI_DMA_FROMDEVICE);
2636
2637                 /* Sync the DMA for the RX buffer so CPU is sure to get
2638                  * the correct values */
2639                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2640                                             sizeof(struct ipw2100_rx),
2641                                             PCI_DMA_FROMDEVICE);
2642
2643                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2644                         ipw2100_corruption_detected(priv, i);
2645                         goto increment;
2646                 }
2647
2648                 u = packet->rxp;
2649                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2650                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2651                 stats.len = sq->drv[i].frame_size;
2652
2653                 stats.mask = 0;
2654                 if (stats.rssi != 0)
2655                         stats.mask |= IEEE80211_STATMASK_RSSI;
2656                 stats.freq = IEEE80211_24GHZ_BAND;
2657
2658                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2659                              priv->net_dev->name, frame_types[frame_type],
2660                              stats.len);
2661
2662                 switch (frame_type) {
2663                 case COMMAND_STATUS_VAL:
2664                         /* Reset Rx watchdog */
2665                         isr_rx_complete_command(priv, &u->rx_data.command);
2666                         break;
2667
2668                 case STATUS_CHANGE_VAL:
2669                         isr_status_change(priv, u->rx_data.status);
2670                         break;
2671
2672                 case P80211_DATA_VAL:
2673                 case P8023_DATA_VAL:
2674 #ifdef CONFIG_IPW2100_MONITOR
2675                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2676                                 isr_rx_monitor(priv, i, &stats);
2677                                 break;
2678                         }
2679 #endif
2680                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2681                                 break;
2682                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2683                         case IEEE80211_FTYPE_MGMT:
2684                                 ieee80211_rx_mgt(priv->ieee,
2685                                                  &u->rx_data.header, &stats);
2686                                 break;
2687
2688                         case IEEE80211_FTYPE_CTL:
2689                                 break;
2690
2691                         case IEEE80211_FTYPE_DATA:
2692                                 isr_rx(priv, i, &stats);
2693                                 break;
2694
2695                         }
2696                         break;
2697                 }
2698
2699               increment:
2700                 /* clear status field associated with this RBD */
2701                 rxq->drv[i].status.info.field = 0;
2702
2703                 i = (i + 1) % rxq->entries;
2704         }
2705
2706         if (i != s) {
2707                 /* backtrack one entry, wrapping to end if at 0 */
2708                 rxq->next = (i ? i : rxq->entries) - 1;
2709
2710                 write_register(priv->net_dev,
2711                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2712         }
2713 }
2714
2715 /*
2716  * __ipw2100_tx_process
2717  *
2718  * This routine will determine whether the next packet on
2719  * the fw_pend_list has been processed by the firmware yet.
2720  *
2721  * If not, then it does nothing and returns.
2722  *
2723  * If so, then it removes the item from the fw_pend_list, frees
2724  * any associated storage, and places the item back on the
2725  * free list of its source (either msg_free_list or tx_free_list)
2726  *
2727  * TX Queue works as follows:
2728  *
2729  * Read index - points to the next TBD that the firmware will
2730  *              process.  The firmware will read the data, and once
2731  *              done processing, it will advance the Read index.
2732  *
2733  * Write index - driver fills this entry with an constructed TBD
2734  *               entry.  The Write index is not advanced until the
2735  *               packet has been configured.
2736  *
2737  * In between the W and R indexes are the TBDs that have NOT been
2738  * processed.  Lagging behind the R index are packets that have
2739  * been processed but have not been freed by the driver.
2740  *
2741  * In order to free old storage, an internal index will be maintained
2742  * that points to the next packet to be freed.  When all used
2743  * packets have been freed, the oldest index will be the same as the
2744  * firmware's read index.
2745  *
2746  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2747  *
2748  * Because the TBD structure can not contain arbitrary data, the
2749  * driver must keep an internal queue of cached allocations such that
2750  * it can put that data back into the tx_free_list and msg_free_list
2751  * for use by future command and data packets.
2752  *
2753  */
2754 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2755 {
2756         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2757         struct ipw2100_bd *tbd;
2758         struct list_head *element;
2759         struct ipw2100_tx_packet *packet;
2760         int descriptors_used;
2761         int e, i;
2762         u32 r, w, frag_num = 0;
2763
2764         if (list_empty(&priv->fw_pend_list))
2765                 return 0;
2766
2767         element = priv->fw_pend_list.next;
2768
2769         packet = list_entry(element, struct ipw2100_tx_packet, list);
2770         tbd = &txq->drv[packet->index];
2771
2772         /* Determine how many TBD entries must be finished... */
2773         switch (packet->type) {
2774         case COMMAND:
2775                 /* COMMAND uses only one slot; don't advance */
2776                 descriptors_used = 1;
2777                 e = txq->oldest;
2778                 break;
2779
2780         case DATA:
2781                 /* DATA uses two slots; advance and loop position. */
2782                 descriptors_used = tbd->num_fragments;
2783                 frag_num = tbd->num_fragments - 1;
2784                 e = txq->oldest + frag_num;
2785                 e %= txq->entries;
2786                 break;
2787
2788         default:
2789                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2790                        priv->net_dev->name);
2791                 return 0;
2792         }
2793
2794         /* if the last TBD is not done by NIC yet, then packet is
2795          * not ready to be released.
2796          *
2797          */
2798         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2799                       &r);
2800         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2801                       &w);
2802         if (w != txq->next)
2803                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2804                        priv->net_dev->name);
2805
2806         /*
2807          * txq->next is the index of the last packet written txq->oldest is
2808          * the index of the r is the index of the next packet to be read by
2809          * firmware
2810          */
2811
2812         /*
2813          * Quick graphic to help you visualize the following
2814          * if / else statement
2815          *
2816          * ===>|                     s---->|===============
2817          *                               e>|
2818          * | a | b | c | d | e | f | g | h | i | j | k | l
2819          *       r---->|
2820          *               w
2821          *
2822          * w - updated by driver
2823          * r - updated by firmware
2824          * s - start of oldest BD entry (txq->oldest)
2825          * e - end of oldest BD entry
2826          *
2827          */
2828         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2829                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2830                 return 0;
2831         }
2832
2833         list_del(element);
2834         DEC_STAT(&priv->fw_pend_stat);
2835
2836 #ifdef CONFIG_IPW2100_DEBUG
2837         {
2838                 int i = txq->oldest;
2839                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2840                              &txq->drv[i],
2841                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2842                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2843
2844                 if (packet->type == DATA) {
2845                         i = (i + 1) % txq->entries;
2846
2847                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2848                                      &txq->drv[i],
2849                                      (u32) (txq->nic + i *
2850                                             sizeof(struct ipw2100_bd)),
2851                                      (u32) txq->drv[i].host_addr,
2852                                      txq->drv[i].buf_length);
2853                 }
2854         }
2855 #endif
2856
2857         switch (packet->type) {
2858         case DATA:
2859                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2860                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2861                                "Expecting DATA TBD but pulled "
2862                                "something else: ids %d=%d.\n",
2863                                priv->net_dev->name, txq->oldest, packet->index);
2864
2865                 /* DATA packet; we have to unmap and free the SKB */
2866                 for (i = 0; i < frag_num; i++) {
2867                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2868
2869                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2870                                      (packet->index + 1 + i) % txq->entries,
2871                                      tbd->host_addr, tbd->buf_length);
2872
2873                         pci_unmap_single(priv->pci_dev,
2874                                          tbd->host_addr,
2875                                          tbd->buf_length, PCI_DMA_TODEVICE);
2876                 }
2877
2878                 ieee80211_txb_free(packet->info.d_struct.txb);
2879                 packet->info.d_struct.txb = NULL;
2880
2881                 list_add_tail(element, &priv->tx_free_list);
2882                 INC_STAT(&priv->tx_free_stat);
2883
2884                 /* We have a free slot in the Tx queue, so wake up the
2885                  * transmit layer if it is stopped. */
2886                 if (priv->status & STATUS_ASSOCIATED)
2887                         netif_wake_queue(priv->net_dev);
2888
2889                 /* A packet was processed by the hardware, so update the
2890                  * watchdog */
2891                 priv->net_dev->trans_start = jiffies;
2892
2893                 break;
2894
2895         case COMMAND:
2896                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2897                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2898                                "Expecting COMMAND TBD but pulled "
2899                                "something else: ids %d=%d.\n",
2900                                priv->net_dev->name, txq->oldest, packet->index);
2901
2902 #ifdef CONFIG_IPW2100_DEBUG
2903                 if (packet->info.c_struct.cmd->host_command_reg <
2904                     ARRAY_SIZE(command_types))
2905                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2906                                      command_types[packet->info.c_struct.cmd->
2907                                                    host_command_reg],
2908                                      packet->info.c_struct.cmd->
2909                                      host_command_reg,
2910                                      packet->info.c_struct.cmd->cmd_status_reg);
2911 #endif
2912
2913                 list_add_tail(element, &priv->msg_free_list);
2914                 INC_STAT(&priv->msg_free_stat);
2915                 break;
2916         }
2917
2918         /* advance oldest used TBD pointer to start of next entry */
2919         txq->oldest = (e + 1) % txq->entries;
2920         /* increase available TBDs number */
2921         txq->available += descriptors_used;
2922         SET_STAT(&priv->txq_stat, txq->available);
2923
2924         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2925                      jiffies - packet->jiffy_start);
2926
2927         return (!list_empty(&priv->fw_pend_list));
2928 }
2929
2930 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2931 {
2932         int i = 0;
2933
2934         while (__ipw2100_tx_process(priv) && i < 200)
2935                 i++;
2936
2937         if (i == 200) {
2938                 printk(KERN_WARNING DRV_NAME ": "
2939                        "%s: Driver is running slow (%d iters).\n",
2940                        priv->net_dev->name, i);
2941         }
2942 }
2943
2944 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2945 {
2946         struct list_head *element;
2947         struct ipw2100_tx_packet *packet;
2948         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2949         struct ipw2100_bd *tbd;
2950         int next = txq->next;
2951
2952         while (!list_empty(&priv->msg_pend_list)) {
2953                 /* if there isn't enough space in TBD queue, then
2954                  * don't stuff a new one in.
2955                  * NOTE: 3 are needed as a command will take one,
2956                  *       and there is a minimum of 2 that must be
2957                  *       maintained between the r and w indexes
2958                  */
2959                 if (txq->available <= 3) {
2960                         IPW_DEBUG_TX("no room in tx_queue\n");
2961                         break;
2962                 }
2963
2964                 element = priv->msg_pend_list.next;
2965                 list_del(element);
2966                 DEC_STAT(&priv->msg_pend_stat);
2967
2968                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2969
2970                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2971                              &txq->drv[txq->next],
2972                              (void *)(txq->nic + txq->next *
2973                                       sizeof(struct ipw2100_bd)));
2974
2975                 packet->index = txq->next;
2976
2977                 tbd = &txq->drv[txq->next];
2978
2979                 /* initialize TBD */
2980                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2981                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2982                 /* not marking number of fragments causes problems
2983                  * with f/w debug version */
2984                 tbd->num_fragments = 1;
2985                 tbd->status.info.field =
2986                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2987                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2988
2989                 /* update TBD queue counters */
2990                 txq->next++;
2991                 txq->next %= txq->entries;
2992                 txq->available--;
2993                 DEC_STAT(&priv->txq_stat);
2994
2995                 list_add_tail(element, &priv->fw_pend_list);
2996                 INC_STAT(&priv->fw_pend_stat);
2997         }
2998
2999         if (txq->next != next) {
3000                 /* kick off the DMA by notifying firmware the
3001                  * write index has moved; make sure TBD stores are sync'd */
3002                 wmb();
3003                 write_register(priv->net_dev,
3004                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3005                                txq->next);
3006         }
3007 }
3008
3009 /*
3010  * ipw2100_tx_send_data
3011  *
3012  */
3013 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3014 {
3015         struct list_head *element;
3016         struct ipw2100_tx_packet *packet;
3017         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3018         struct ipw2100_bd *tbd;
3019         int next = txq->next;
3020         int i = 0;
3021         struct ipw2100_data_header *ipw_hdr;
3022         struct ieee80211_hdr_3addr *hdr;
3023
3024         while (!list_empty(&priv->tx_pend_list)) {
3025                 /* if there isn't enough space in TBD queue, then
3026                  * don't stuff a new one in.
3027                  * NOTE: 4 are needed as a data will take two,
3028                  *       and there is a minimum of 2 that must be
3029                  *       maintained between the r and w indexes
3030                  */
3031                 element = priv->tx_pend_list.next;
3032                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3033
3034                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3035                              IPW_MAX_BDS)) {
3036                         /* TODO: Support merging buffers if more than
3037                          * IPW_MAX_BDS are used */
3038                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3039                                        "Increase fragmentation level.\n",
3040                                        priv->net_dev->name);
3041                 }
3042
3043                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3044                         IPW_DEBUG_TX("no room in tx_queue\n");
3045                         break;
3046                 }
3047
3048                 list_del(element);
3049                 DEC_STAT(&priv->tx_pend_stat);
3050
3051                 tbd = &txq->drv[txq->next];
3052
3053                 packet->index = txq->next;
3054
3055                 ipw_hdr = packet->info.d_struct.data;
3056                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3057                     fragments[0]->data;
3058
3059                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3060                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3061                            Addr3 = DA */
3062                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3063                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3064                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3065                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3066                            Addr3 = BSSID */
3067                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3068                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3069                 }
3070
3071                 ipw_hdr->host_command_reg = SEND;
3072                 ipw_hdr->host_command_reg1 = 0;
3073
3074                 /* For now we only support host based encryption */
3075                 ipw_hdr->needs_encryption = 0;
3076                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3077                 if (packet->info.d_struct.txb->nr_frags > 1)
3078                         ipw_hdr->fragment_size =
3079                             packet->info.d_struct.txb->frag_size -
3080                             IEEE80211_3ADDR_LEN;
3081                 else
3082                         ipw_hdr->fragment_size = 0;
3083
3084                 tbd->host_addr = packet->info.d_struct.data_phys;
3085                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3086                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3087                 tbd->status.info.field =
3088                     IPW_BD_STATUS_TX_FRAME_802_3 |
3089                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3090                 txq->next++;
3091                 txq->next %= txq->entries;
3092
3093                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3094                              packet->index, tbd->host_addr, tbd->buf_length);
3095 #ifdef CONFIG_IPW2100_DEBUG
3096                 if (packet->info.d_struct.txb->nr_frags > 1)
3097                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3098                                        packet->info.d_struct.txb->nr_frags);
3099 #endif
3100
3101                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3102                         tbd = &txq->drv[txq->next];
3103                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3104                                 tbd->status.info.field =
3105                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3106                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3107                         else
3108                                 tbd->status.info.field =
3109                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3110                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3111
3112                         tbd->buf_length = packet->info.d_struct.txb->
3113                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3114
3115                         tbd->host_addr = pci_map_single(priv->pci_dev,
3116                                                         packet->info.d_struct.
3117                                                         txb->fragments[i]->
3118                                                         data +
3119                                                         IEEE80211_3ADDR_LEN,
3120                                                         tbd->buf_length,
3121                                                         PCI_DMA_TODEVICE);
3122
3123                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3124                                      txq->next, tbd->host_addr,
3125                                      tbd->buf_length);
3126
3127                         pci_dma_sync_single_for_device(priv->pci_dev,
3128                                                        tbd->host_addr,
3129                                                        tbd->buf_length,
3130                                                        PCI_DMA_TODEVICE);
3131
3132                         txq->next++;
3133                         txq->next %= txq->entries;
3134                 }
3135
3136                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3137                 SET_STAT(&priv->txq_stat, txq->available);
3138
3139                 list_add_tail(element, &priv->fw_pend_list);
3140                 INC_STAT(&priv->fw_pend_stat);
3141         }
3142
3143         if (txq->next != next) {
3144                 /* kick off the DMA by notifying firmware the
3145                  * write index has moved; make sure TBD stores are sync'd */
3146                 write_register(priv->net_dev,
3147                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3148                                txq->next);
3149         }
3150         return;
3151 }
3152
3153 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3154 {
3155         struct net_device *dev = priv->net_dev;
3156         unsigned long flags;
3157         u32 inta, tmp;
3158
3159         spin_lock_irqsave(&priv->low_lock, flags);
3160         ipw2100_disable_interrupts(priv);
3161
3162         read_register(dev, IPW_REG_INTA, &inta);
3163
3164         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3165                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3166
3167         priv->in_isr++;
3168         priv->interrupts++;
3169
3170         /* We do not loop and keep polling for more interrupts as this
3171          * is frowned upon and doesn't play nicely with other potentially
3172          * chained IRQs */
3173         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3174                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3175
3176         if (inta & IPW2100_INTA_FATAL_ERROR) {
3177                 printk(KERN_WARNING DRV_NAME
3178                        ": Fatal interrupt. Scheduling firmware restart.\n");
3179                 priv->inta_other++;
3180                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3181
3182                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3183                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3184                                priv->net_dev->name, priv->fatal_error);
3185
3186                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3187                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3188                                priv->net_dev->name, tmp);
3189
3190                 /* Wake up any sleeping jobs */
3191                 schedule_reset(priv);
3192         }
3193
3194         if (inta & IPW2100_INTA_PARITY_ERROR) {
3195                 printk(KERN_ERR DRV_NAME
3196                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3197                 priv->inta_other++;
3198                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3199         }
3200
3201         if (inta & IPW2100_INTA_RX_TRANSFER) {
3202                 IPW_DEBUG_ISR("RX interrupt\n");
3203
3204                 priv->rx_interrupts++;
3205
3206                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3207
3208                 __ipw2100_rx_process(priv);
3209                 __ipw2100_tx_complete(priv);
3210         }
3211
3212         if (inta & IPW2100_INTA_TX_TRANSFER) {
3213                 IPW_DEBUG_ISR("TX interrupt\n");
3214
3215                 priv->tx_interrupts++;
3216
3217                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3218
3219                 __ipw2100_tx_complete(priv);
3220                 ipw2100_tx_send_commands(priv);
3221                 ipw2100_tx_send_data(priv);
3222         }
3223
3224         if (inta & IPW2100_INTA_TX_COMPLETE) {
3225                 IPW_DEBUG_ISR("TX complete\n");
3226                 priv->inta_other++;
3227                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3228
3229                 __ipw2100_tx_complete(priv);
3230         }
3231
3232         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3233                 /* ipw2100_handle_event(dev); */
3234                 priv->inta_other++;
3235                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3236         }
3237
3238         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3239                 IPW_DEBUG_ISR("FW init done interrupt\n");
3240                 priv->inta_other++;
3241
3242                 read_register(dev, IPW_REG_INTA, &tmp);
3243                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3244                            IPW2100_INTA_PARITY_ERROR)) {
3245                         write_register(dev, IPW_REG_INTA,
3246                                        IPW2100_INTA_FATAL_ERROR |
3247                                        IPW2100_INTA_PARITY_ERROR);
3248                 }
3249
3250                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3251         }
3252
3253         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3254                 IPW_DEBUG_ISR("Status change interrupt\n");
3255                 priv->inta_other++;
3256                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3257         }
3258
3259         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3260                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3261                 priv->inta_other++;
3262                 write_register(dev, IPW_REG_INTA,
3263                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3264         }
3265
3266         priv->in_isr--;
3267         ipw2100_enable_interrupts(priv);
3268
3269         spin_unlock_irqrestore(&priv->low_lock, flags);
3270
3271         IPW_DEBUG_ISR("exit\n");
3272 }
3273
3274 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3275 {
3276         struct ipw2100_priv *priv = data;
3277         u32 inta, inta_mask;
3278
3279         if (!data)
3280                 return IRQ_NONE;
3281
3282         spin_lock(&priv->low_lock);
3283
3284         /* We check to see if we should be ignoring interrupts before
3285          * we touch the hardware.  During ucode load if we try and handle
3286          * an interrupt we can cause keyboard problems as well as cause
3287          * the ucode to fail to initialize */
3288         if (!(priv->status & STATUS_INT_ENABLED)) {
3289                 /* Shared IRQ */
3290                 goto none;
3291         }
3292
3293         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3294         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3295
3296         if (inta == 0xFFFFFFFF) {
3297                 /* Hardware disappeared */
3298                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3299                 goto none;
3300         }
3301
3302         inta &= IPW_INTERRUPT_MASK;
3303
3304         if (!(inta & inta_mask)) {
3305                 /* Shared interrupt */
3306                 goto none;
3307         }
3308
3309         /* We disable the hardware interrupt here just to prevent unneeded
3310          * calls to be made.  We disable this again within the actual
3311          * work tasklet, so if another part of the code re-enables the
3312          * interrupt, that is fine */
3313         ipw2100_disable_interrupts(priv);
3314
3315         tasklet_schedule(&priv->irq_tasklet);
3316         spin_unlock(&priv->low_lock);
3317
3318         return IRQ_HANDLED;
3319       none:
3320         spin_unlock(&priv->low_lock);
3321         return IRQ_NONE;
3322 }
3323
3324 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3325                       int pri)
3326 {
3327         struct ipw2100_priv *priv = ieee80211_priv(dev);
3328         struct list_head *element;
3329         struct ipw2100_tx_packet *packet;
3330         unsigned long flags;
3331
3332         spin_lock_irqsave(&priv->low_lock, flags);
3333
3334         if (!(priv->status & STATUS_ASSOCIATED)) {
3335                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3336                 priv->ieee->stats.tx_carrier_errors++;
3337                 netif_stop_queue(dev);
3338                 goto fail_unlock;
3339         }
3340
3341         if (list_empty(&priv->tx_free_list))
3342                 goto fail_unlock;
3343
3344         element = priv->tx_free_list.next;
3345         packet = list_entry(element, struct ipw2100_tx_packet, list);
3346
3347         packet->info.d_struct.txb = txb;
3348
3349         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3350         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3351
3352         packet->jiffy_start = jiffies;
3353
3354         list_del(element);
3355         DEC_STAT(&priv->tx_free_stat);
3356
3357         list_add_tail(element, &priv->tx_pend_list);
3358         INC_STAT(&priv->tx_pend_stat);
3359
3360         ipw2100_tx_send_data(priv);
3361
3362         spin_unlock_irqrestore(&priv->low_lock, flags);
3363         return 0;
3364
3365       fail_unlock:
3366         netif_stop_queue(dev);
3367         spin_unlock_irqrestore(&priv->low_lock, flags);
3368         return 1;
3369 }
3370
3371 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3372 {
3373         int i, j, err = -EINVAL;
3374         void *v;
3375         dma_addr_t p;
3376
3377         priv->msg_buffers =
3378             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3379                                                 sizeof(struct
3380                                                        ipw2100_tx_packet),
3381                                                 GFP_KERNEL);
3382         if (!priv->msg_buffers) {
3383                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3384                        "buffers.\n", priv->net_dev->name);
3385                 return -ENOMEM;
3386         }
3387
3388         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3389                 v = pci_alloc_consistent(priv->pci_dev,
3390                                          sizeof(struct ipw2100_cmd_header), &p);
3391                 if (!v) {
3392                         printk(KERN_ERR DRV_NAME ": "
3393                                "%s: PCI alloc failed for msg "
3394                                "buffers.\n", priv->net_dev->name);
3395                         err = -ENOMEM;
3396                         break;
3397                 }
3398
3399                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3400
3401                 priv->msg_buffers[i].type = COMMAND;
3402                 priv->msg_buffers[i].info.c_struct.cmd =
3403                     (struct ipw2100_cmd_header *)v;
3404                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3405         }
3406
3407         if (i == IPW_COMMAND_POOL_SIZE)
3408                 return 0;
3409
3410         for (j = 0; j < i; j++) {
3411                 pci_free_consistent(priv->pci_dev,
3412                                     sizeof(struct ipw2100_cmd_header),
3413                                     priv->msg_buffers[j].info.c_struct.cmd,
3414                                     priv->msg_buffers[j].info.c_struct.
3415                                     cmd_phys);
3416         }
3417
3418         kfree(priv->msg_buffers);
3419         priv->msg_buffers = NULL;
3420
3421         return err;
3422 }
3423
3424 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3425 {
3426         int i;
3427
3428         INIT_LIST_HEAD(&priv->msg_free_list);
3429         INIT_LIST_HEAD(&priv->msg_pend_list);
3430
3431         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3432                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3433         SET_STAT(&priv->msg_free_stat, i);
3434
3435         return 0;
3436 }
3437
3438 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3439 {
3440         int i;
3441
3442         if (!priv->msg_buffers)
3443                 return;
3444
3445         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3446                 pci_free_consistent(priv->pci_dev,
3447                                     sizeof(struct ipw2100_cmd_header),
3448                                     priv->msg_buffers[i].info.c_struct.cmd,
3449                                     priv->msg_buffers[i].info.c_struct.
3450                                     cmd_phys);
3451         }
3452
3453         kfree(priv->msg_buffers);
3454         priv->msg_buffers = NULL;
3455 }
3456
3457 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3458                         char *buf)
3459 {
3460         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3461         char *out = buf;
3462         int i, j;
3463         u32 val;
3464
3465         for (i = 0; i < 16; i++) {
3466                 out += sprintf(out, "[%08X] ", i * 16);
3467                 for (j = 0; j < 16; j += 4) {
3468                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3469                         out += sprintf(out, "%08X ", val);
3470                 }
3471                 out += sprintf(out, "\n");
3472         }
3473
3474         return out - buf;
3475 }
3476
3477 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3478
3479 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3480                         char *buf)
3481 {
3482         struct ipw2100_priv *p = d->driver_data;
3483         return sprintf(buf, "0x%08x\n", (int)p->config);
3484 }
3485
3486 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3487
3488 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3489                            char *buf)
3490 {
3491         struct ipw2100_priv *p = d->driver_data;
3492         return sprintf(buf, "0x%08x\n", (int)p->status);
3493 }
3494
3495 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3496
3497 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3498                                char *buf)
3499 {
3500         struct ipw2100_priv *p = d->driver_data;
3501         return sprintf(buf, "0x%08x\n", (int)p->capability);
3502 }
3503
3504 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3505
3506 #define IPW2100_REG(x) { IPW_ ##x, #x }
3507 static const struct {
3508         u32 addr;
3509         const char *name;
3510 } hw_data[] = {
3511 IPW2100_REG(REG_GP_CNTRL),
3512             IPW2100_REG(REG_GPIO),
3513             IPW2100_REG(REG_INTA),
3514             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3515 #define IPW2100_NIC(x, s) { x, #x, s }
3516 static const struct {
3517         u32 addr;
3518         const char *name;
3519         size_t size;
3520 } nic_data[] = {
3521 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3522             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3523 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3524 static const struct {
3525         u8 index;
3526         const char *name;
3527         const char *desc;
3528 } ord_data[] = {
3529 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3530             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3531                                 "successful Host Tx's (MSDU)"),
3532             IPW2100_ORD(STAT_TX_DIR_DATA,
3533                                 "successful Directed Tx's (MSDU)"),
3534             IPW2100_ORD(STAT_TX_DIR_DATA1,
3535                                 "successful Directed Tx's (MSDU) @ 1MB"),
3536             IPW2100_ORD(STAT_TX_DIR_DATA2,
3537                                 "successful Directed Tx's (MSDU) @ 2MB"),
3538             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3539                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3540             IPW2100_ORD(STAT_TX_DIR_DATA11,
3541                                 "successful Directed Tx's (MSDU) @ 11MB"),
3542             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3543                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3544             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3545                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3546             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3547                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3548             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3549                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3550             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3551             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3552             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3553             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3554             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3555             IPW2100_ORD(STAT_TX_ASSN_RESP,
3556                                 "successful Association response Tx's"),
3557             IPW2100_ORD(STAT_TX_REASSN,
3558                                 "successful Reassociation Tx's"),
3559             IPW2100_ORD(STAT_TX_REASSN_RESP,
3560                                 "successful Reassociation response Tx's"),
3561             IPW2100_ORD(STAT_TX_PROBE,
3562                                 "probes successfully transmitted"),
3563             IPW2100_ORD(STAT_TX_PROBE_RESP,
3564                                 "probe responses successfully transmitted"),
3565             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3566             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3567             IPW2100_ORD(STAT_TX_DISASSN,
3568                                 "successful Disassociation TX"),
3569             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3570             IPW2100_ORD(STAT_TX_DEAUTH,
3571                                 "successful Deauthentication TX"),
3572             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3573                                 "Total successful Tx data bytes"),
3574             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3575             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3576             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3577             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3578             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3579             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3580             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3581                                 "times max tries in a hop failed"),
3582             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3583                                 "times disassociation failed"),
3584             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3585             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3586             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3587             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3588             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3589             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3590             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3591                                 "directed packets at 5.5MB"),
3592             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3593             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3594             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3595                                 "nondirected packets at 1MB"),
3596             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3597                                 "nondirected packets at 2MB"),
3598             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3599                                 "nondirected packets at 5.5MB"),
3600             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3601                                 "nondirected packets at 11MB"),
3602             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3603             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3604                                                                     "Rx CTS"),
3605             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3606             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3607             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3608             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3609             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3610             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3611             IPW2100_ORD(STAT_RX_REASSN_RESP,
3612                                 "Reassociation response Rx's"),
3613             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3614             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3615             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3616             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3617             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3618             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3619             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3620             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3621                                 "Total rx data bytes received"),
3622             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3623             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3624             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3625             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3626             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3627             IPW2100_ORD(STAT_RX_DUPLICATE1,
3628                                 "duplicate rx packets at 1MB"),
3629             IPW2100_ORD(STAT_RX_DUPLICATE2,
3630                                 "duplicate rx packets at 2MB"),
3631             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3632                                 "duplicate rx packets at 5.5MB"),
3633             IPW2100_ORD(STAT_RX_DUPLICATE11,
3634                                 "duplicate rx packets at 11MB"),
3635             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3636             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3637             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3638             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3639             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3640                                 "rx frames with invalid protocol"),
3641             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3642             IPW2100_ORD(STAT_RX_NO_BUFFER,
3643                                 "rx frames rejected due to no buffer"),
3644             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3645                                 "rx frames dropped due to missing fragment"),
3646             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3647                                 "rx frames dropped due to non-sequential fragment"),
3648             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3649                                 "rx frames dropped due to unmatched 1st frame"),
3650             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3651                                 "rx frames dropped due to uncompleted frame"),
3652             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3653                                 "ICV errors during decryption"),
3654             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3655             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3656             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3657                                 "poll response timeouts"),
3658             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3659                                 "timeouts waiting for last {broad,multi}cast pkt"),
3660             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3661             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3662             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3663             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3664             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3665                                 "current calculation of % missed beacons"),
3666             IPW2100_ORD(STAT_PERCENT_RETRIES,
3667                                 "current calculation of % missed tx retries"),
3668             IPW2100_ORD(ASSOCIATED_AP_PTR,
3669                                 "0 if not associated, else pointer to AP table entry"),
3670             IPW2100_ORD(AVAILABLE_AP_CNT,
3671                                 "AP's decsribed in the AP table"),
3672             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3673             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3674             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3675             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3676                                 "failures due to response fail"),
3677             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3678             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3679             IPW2100_ORD(STAT_ROAM_INHIBIT,
3680                                 "times roaming was inhibited due to activity"),
3681             IPW2100_ORD(RSSI_AT_ASSN,
3682                                 "RSSI of associated AP at time of association"),
3683             IPW2100_ORD(STAT_ASSN_CAUSE1,
3684                                 "reassociation: no probe response or TX on hop"),
3685             IPW2100_ORD(STAT_ASSN_CAUSE2,
3686                                 "reassociation: poor tx/rx quality"),
3687             IPW2100_ORD(STAT_ASSN_CAUSE3,
3688                                 "reassociation: tx/rx quality (excessive AP load"),
3689             IPW2100_ORD(STAT_ASSN_CAUSE4,
3690                                 "reassociation: AP RSSI level"),
3691             IPW2100_ORD(STAT_ASSN_CAUSE5,
3692                                 "reassociations due to load leveling"),
3693             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3694             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3695                                 "times authentication response failed"),
3696             IPW2100_ORD(STATION_TABLE_CNT,
3697                                 "entries in association table"),
3698             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3699             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3700             IPW2100_ORD(COUNTRY_CODE,
3701                                 "IEEE country code as recv'd from beacon"),
3702             IPW2100_ORD(COUNTRY_CHANNELS,
3703                                 "channels suported by country"),
3704             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3705             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3706             IPW2100_ORD(ANTENNA_DIVERSITY,
3707                                 "TRUE if antenna diversity is disabled"),
3708             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3709             IPW2100_ORD(OUR_FREQ,
3710                                 "current radio freq lower digits - channel ID"),
3711             IPW2100_ORD(RTC_TIME, "current RTC time"),
3712             IPW2100_ORD(PORT_TYPE, "operating mode"),
3713             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3714             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3715             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3716             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3717             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3718             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3719             IPW2100_ORD(CAPABILITIES,
3720                                 "Management frame capability field"),
3721             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3722             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3723             IPW2100_ORD(RTS_THRESHOLD,
3724                                 "Min packet length for RTS handshaking"),
3725             IPW2100_ORD(INT_MODE, "International mode"),
3726             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3727                                 "protocol frag threshold"),
3728             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3729                                 "EEPROM offset in SRAM"),
3730             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3731                                 "EEPROM size in SRAM"),
3732             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3733             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3734                                 "EEPROM IBSS 11b channel set"),
3735             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3736             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3737             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3738             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3739             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3740
3741 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3742                               char *buf)
3743 {
3744         int i;
3745         struct ipw2100_priv *priv = dev_get_drvdata(d);
3746         struct net_device *dev = priv->net_dev;
3747         char *out = buf;
3748         u32 val = 0;
3749
3750         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3751
3752         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3753                 read_register(dev, hw_data[i].addr, &val);
3754                 out += sprintf(out, "%30s [%08X] : %08X\n",
3755                                hw_data[i].name, hw_data[i].addr, val);
3756         }
3757
3758         return out - buf;
3759 }
3760
3761 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3762
3763 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3764                              char *buf)
3765 {
3766         struct ipw2100_priv *priv = dev_get_drvdata(d);
3767         struct net_device *dev = priv->net_dev;
3768         char *out = buf;
3769         int i;
3770
3771         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3772
3773         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3774                 u8 tmp8;
3775                 u16 tmp16;
3776                 u32 tmp32;
3777
3778                 switch (nic_data[i].size) {
3779                 case 1:
3780                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3781                         out += sprintf(out, "%30s [%08X] : %02X\n",
3782                                        nic_data[i].name, nic_data[i].addr,
3783                                        tmp8);
3784                         break;
3785                 case 2:
3786                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3787                         out += sprintf(out, "%30s [%08X] : %04X\n",
3788                                        nic_data[i].name, nic_data[i].addr,
3789                                        tmp16);
3790                         break;
3791                 case 4:
3792                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3793                         out += sprintf(out, "%30s [%08X] : %08X\n",
3794                                        nic_data[i].name, nic_data[i].addr,
3795                                        tmp32);
3796                         break;
3797                 }
3798         }
3799         return out - buf;
3800 }
3801
3802 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3803
3804 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3805                            char *buf)
3806 {
3807         struct ipw2100_priv *priv = dev_get_drvdata(d);
3808         struct net_device *dev = priv->net_dev;
3809         static unsigned long loop = 0;
3810         int len = 0;
3811         u32 buffer[4];
3812         int i;
3813         char line[81];
3814
3815         if (loop >= 0x30000)
3816                 loop = 0;
3817
3818         /* sysfs provides us PAGE_SIZE buffer */
3819         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3820
3821                 if (priv->snapshot[0])
3822                         for (i = 0; i < 4; i++)
3823                                 buffer[i] =
3824                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3825                 else
3826                         for (i = 0; i < 4; i++)
3827                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3828
3829                 if (priv->dump_raw)
3830                         len += sprintf(buf + len,
3831                                        "%c%c%c%c"
3832                                        "%c%c%c%c"
3833                                        "%c%c%c%c"
3834                                        "%c%c%c%c",
3835                                        ((u8 *) buffer)[0x0],
3836                                        ((u8 *) buffer)[0x1],
3837                                        ((u8 *) buffer)[0x2],
3838                                        ((u8 *) buffer)[0x3],
3839                                        ((u8 *) buffer)[0x4],
3840                                        ((u8 *) buffer)[0x5],
3841                                        ((u8 *) buffer)[0x6],
3842                                        ((u8 *) buffer)[0x7],
3843                                        ((u8 *) buffer)[0x8],
3844                                        ((u8 *) buffer)[0x9],
3845                                        ((u8 *) buffer)[0xa],
3846                                        ((u8 *) buffer)[0xb],
3847                                        ((u8 *) buffer)[0xc],
3848                                        ((u8 *) buffer)[0xd],
3849                                        ((u8 *) buffer)[0xe],
3850                                        ((u8 *) buffer)[0xf]);
3851                 else
3852                         len += sprintf(buf + len, "%s\n",
3853                                        snprint_line(line, sizeof(line),
3854                                                     (u8 *) buffer, 16, loop));
3855                 loop += 16;
3856         }
3857
3858         return len;
3859 }
3860
3861 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3862                             const char *buf, size_t count)
3863 {
3864         struct ipw2100_priv *priv = dev_get_drvdata(d);
3865         struct net_device *dev = priv->net_dev;
3866         const char *p = buf;
3867
3868         (void)dev;              /* kill unused-var warning for debug-only code */
3869
3870         if (count < 1)
3871                 return count;
3872
3873         if (p[0] == '1' ||
3874             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3875                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3876                                dev->name);
3877                 priv->dump_raw = 1;
3878
3879         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3880                                    tolower(p[1]) == 'f')) {
3881                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3882                                dev->name);
3883                 priv->dump_raw = 0;
3884
3885         } else if (tolower(p[0]) == 'r') {
3886                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3887                 ipw2100_snapshot_free(priv);
3888
3889         } else
3890                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3891                                "reset = clear memory snapshot\n", dev->name);
3892
3893         return count;
3894 }
3895
3896 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3897
3898 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3899                              char *buf)
3900 {
3901         struct ipw2100_priv *priv = dev_get_drvdata(d);
3902         u32 val = 0;
3903         int len = 0;
3904         u32 val_len;
3905         static int loop = 0;
3906
3907         if (priv->status & STATUS_RF_KILL_MASK)
3908                 return 0;
3909
3910         if (loop >= ARRAY_SIZE(ord_data))
3911                 loop = 0;
3912
3913         /* sysfs provides us PAGE_SIZE buffer */
3914         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3915                 val_len = sizeof(u32);
3916
3917                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3918                                         &val_len))
3919                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3920                                        ord_data[loop].index,
3921                                        ord_data[loop].desc);
3922                 else
3923                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3924                                        ord_data[loop].index, val,
3925                                        ord_data[loop].desc);
3926                 loop++;
3927         }
3928
3929         return len;
3930 }
3931
3932 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3933
3934 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3935                           char *buf)
3936 {
3937         struct ipw2100_priv *priv = dev_get_drvdata(d);
3938         char *out = buf;
3939
3940         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3941                        priv->interrupts, priv->tx_interrupts,
3942                        priv->rx_interrupts, priv->inta_other);
3943         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3944         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3945 #ifdef CONFIG_IPW2100_DEBUG
3946         out += sprintf(out, "packet mismatch image: %s\n",
3947                        priv->snapshot[0] ? "YES" : "NO");
3948 #endif
3949
3950         return out - buf;
3951 }
3952
3953 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3954
3955 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3956 {
3957         int err;
3958
3959         if (mode == priv->ieee->iw_mode)
3960                 return 0;
3961
3962         err = ipw2100_disable_adapter(priv);
3963         if (err) {
3964                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3965                        priv->net_dev->name, err);
3966                 return err;
3967         }
3968
3969         switch (mode) {
3970         case IW_MODE_INFRA:
3971                 priv->net_dev->type = ARPHRD_ETHER;
3972                 break;
3973         case IW_MODE_ADHOC:
3974                 priv->net_dev->type = ARPHRD_ETHER;
3975                 break;
3976 #ifdef CONFIG_IPW2100_MONITOR
3977         case IW_MODE_MONITOR:
3978                 priv->last_mode = priv->ieee->iw_mode;
3979                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3980                 break;
3981 #endif                          /* CONFIG_IPW2100_MONITOR */
3982         }
3983
3984         priv->ieee->iw_mode = mode;
3985
3986 #ifdef CONFIG_PM
3987         /* Indicate ipw2100_download_firmware download firmware
3988          * from disk instead of memory. */
3989         ipw2100_firmware.version = 0;
3990 #endif
3991
3992         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3993         priv->reset_backoff = 0;
3994         schedule_reset(priv);
3995
3996         return 0;
3997 }
3998
3999 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4000                               char *buf)
4001 {
4002         struct ipw2100_priv *priv = dev_get_drvdata(d);
4003         int len = 0;
4004
4005 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4006
4007         if (priv->status & STATUS_ASSOCIATED)
4008                 len += sprintf(buf + len, "connected: %lu\n",
4009                                get_seconds() - priv->connect_start);
4010         else
4011                 len += sprintf(buf + len, "not connected\n");
4012
4013         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4014         DUMP_VAR(status, "08lx");
4015         DUMP_VAR(config, "08lx");
4016         DUMP_VAR(capability, "08lx");
4017
4018         len +=
4019             sprintf(buf + len, "last_rtc: %lu\n",
4020                     (unsigned long)priv->last_rtc);
4021
4022         DUMP_VAR(fatal_error, "d");
4023         DUMP_VAR(stop_hang_check, "d");
4024         DUMP_VAR(stop_rf_kill, "d");
4025         DUMP_VAR(messages_sent, "d");
4026
4027         DUMP_VAR(tx_pend_stat.value, "d");
4028         DUMP_VAR(tx_pend_stat.hi, "d");
4029
4030         DUMP_VAR(tx_free_stat.value, "d");
4031         DUMP_VAR(tx_free_stat.lo, "d");
4032
4033         DUMP_VAR(msg_free_stat.value, "d");
4034         DUMP_VAR(msg_free_stat.lo, "d");
4035
4036         DUMP_VAR(msg_pend_stat.value, "d");
4037         DUMP_VAR(msg_pend_stat.hi, "d");
4038
4039         DUMP_VAR(fw_pend_stat.value, "d");
4040         DUMP_VAR(fw_pend_stat.hi, "d");
4041
4042         DUMP_VAR(txq_stat.value, "d");
4043         DUMP_VAR(txq_stat.lo, "d");
4044
4045         DUMP_VAR(ieee->scans, "d");
4046         DUMP_VAR(reset_backoff, "d");
4047
4048         return len;
4049 }
4050
4051 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4052
4053 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4054                             char *buf)
4055 {
4056         struct ipw2100_priv *priv = dev_get_drvdata(d);
4057         char essid[IW_ESSID_MAX_SIZE + 1];
4058         u8 bssid[ETH_ALEN];
4059         u32 chan = 0;
4060         char *out = buf;
4061         int length;
4062         int ret;
4063
4064         if (priv->status & STATUS_RF_KILL_MASK)
4065                 return 0;
4066
4067         memset(essid, 0, sizeof(essid));
4068         memset(bssid, 0, sizeof(bssid));
4069
4070         length = IW_ESSID_MAX_SIZE;
4071         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4072         if (ret)
4073                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4074                                __LINE__);
4075
4076         length = sizeof(bssid);
4077         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4078                                   bssid, &length);
4079         if (ret)
4080                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4081                                __LINE__);
4082
4083         length = sizeof(u32);
4084         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4085         if (ret)
4086                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4087                                __LINE__);
4088
4089         out += sprintf(out, "ESSID: %s\n", essid);
4090         out += sprintf(out, "BSSID:   %pM\n", bssid);
4091         out += sprintf(out, "Channel: %d\n", chan);
4092
4093         return out - buf;
4094 }
4095
4096 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4097
4098 #ifdef CONFIG_IPW2100_DEBUG
4099 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4100 {
4101         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4102 }
4103
4104 static ssize_t store_debug_level(struct device_driver *d,
4105                                  const char *buf, size_t count)
4106 {
4107         char *p = (char *)buf;
4108         u32 val;
4109
4110         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4111                 p++;
4112                 if (p[0] == 'x' || p[0] == 'X')
4113                         p++;
4114                 val = simple_strtoul(p, &p, 16);
4115         } else
4116                 val = simple_strtoul(p, &p, 10);
4117         if (p == buf)
4118                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4119         else
4120                 ipw2100_debug_level = val;
4121
4122         return strnlen(buf, count);
4123 }
4124
4125 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4126                    store_debug_level);
4127 #endif                          /* CONFIG_IPW2100_DEBUG */
4128
4129 static ssize_t show_fatal_error(struct device *d,
4130                                 struct device_attribute *attr, char *buf)
4131 {
4132         struct ipw2100_priv *priv = dev_get_drvdata(d);
4133         char *out = buf;
4134         int i;
4135
4136         if (priv->fatal_error)
4137                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4138         else
4139                 out += sprintf(out, "0\n");
4140
4141         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4142                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4143                                         IPW2100_ERROR_QUEUE])
4144                         continue;
4145
4146                 out += sprintf(out, "%d. 0x%08X\n", i,
4147                                priv->fatal_errors[(priv->fatal_index - i) %
4148                                                   IPW2100_ERROR_QUEUE]);
4149         }
4150
4151         return out - buf;
4152 }
4153
4154 static ssize_t store_fatal_error(struct device *d,
4155                                  struct device_attribute *attr, const char *buf,
4156                                  size_t count)
4157 {
4158         struct ipw2100_priv *priv = dev_get_drvdata(d);
4159         schedule_reset(priv);
4160         return count;
4161 }
4162
4163 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4164                    store_fatal_error);
4165
4166 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4167                              char *buf)
4168 {
4169         struct ipw2100_priv *priv = dev_get_drvdata(d);
4170         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4171 }
4172
4173 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4174                               const char *buf, size_t count)
4175 {
4176         struct ipw2100_priv *priv = dev_get_drvdata(d);
4177         struct net_device *dev = priv->net_dev;
4178         char buffer[] = "00000000";
4179         unsigned long len =
4180             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4181         unsigned long val;
4182         char *p = buffer;
4183
4184         (void)dev;              /* kill unused-var warning for debug-only code */
4185
4186         IPW_DEBUG_INFO("enter\n");
4187
4188         strncpy(buffer, buf, len);
4189         buffer[len] = 0;
4190
4191         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4192                 p++;
4193                 if (p[0] == 'x' || p[0] == 'X')
4194                         p++;
4195                 val = simple_strtoul(p, &p, 16);
4196         } else
4197                 val = simple_strtoul(p, &p, 10);
4198         if (p == buffer) {
4199                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4200         } else {
4201                 priv->ieee->scan_age = val;
4202                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4203         }
4204
4205         IPW_DEBUG_INFO("exit\n");
4206         return len;
4207 }
4208
4209 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4210
4211 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4212                             char *buf)
4213 {
4214         /* 0 - RF kill not enabled
4215            1 - SW based RF kill active (sysfs)
4216            2 - HW based RF kill active
4217            3 - Both HW and SW baed RF kill active */
4218         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4219         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4220             (rf_kill_active(priv) ? 0x2 : 0x0);
4221         return sprintf(buf, "%i\n", val);
4222 }
4223
4224 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4225 {
4226         if ((disable_radio ? 1 : 0) ==
4227             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4228                 return 0;
4229
4230         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4231                           disable_radio ? "OFF" : "ON");
4232
4233         mutex_lock(&priv->action_mutex);
4234
4235         if (disable_radio) {
4236                 priv->status |= STATUS_RF_KILL_SW;
4237                 ipw2100_down(priv);
4238         } else {
4239                 priv->status &= ~STATUS_RF_KILL_SW;
4240                 if (rf_kill_active(priv)) {
4241                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4242                                           "disabled by HW switch\n");
4243                         /* Make sure the RF_KILL check timer is running */
4244                         priv->stop_rf_kill = 0;
4245                         cancel_delayed_work(&priv->rf_kill);
4246                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4247                                            round_jiffies_relative(HZ));
4248                 } else
4249                         schedule_reset(priv);
4250         }
4251
4252         mutex_unlock(&priv->action_mutex);
4253         return 1;
4254 }
4255
4256 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4257                              const char *buf, size_t count)
4258 {
4259         struct ipw2100_priv *priv = dev_get_drvdata(d);
4260         ipw_radio_kill_sw(priv, buf[0] == '1');
4261         return count;
4262 }
4263
4264 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4265
4266 static struct attribute *ipw2100_sysfs_entries[] = {
4267         &dev_attr_hardware.attr,
4268         &dev_attr_registers.attr,
4269         &dev_attr_ordinals.attr,
4270         &dev_attr_pci.attr,
4271         &dev_attr_stats.attr,
4272         &dev_attr_internals.attr,
4273         &dev_attr_bssinfo.attr,
4274         &dev_attr_memory.attr,
4275         &dev_attr_scan_age.attr,
4276         &dev_attr_fatal_error.attr,
4277         &dev_attr_rf_kill.attr,
4278         &dev_attr_cfg.attr,
4279         &dev_attr_status.attr,
4280         &dev_attr_capability.attr,
4281         NULL,
4282 };
4283
4284 static struct attribute_group ipw2100_attribute_group = {
4285         .attrs = ipw2100_sysfs_entries,
4286 };
4287
4288 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4289 {
4290         struct ipw2100_status_queue *q = &priv->status_queue;
4291
4292         IPW_DEBUG_INFO("enter\n");
4293
4294         q->size = entries * sizeof(struct ipw2100_status);
4295         q->drv =
4296             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4297                                                           q->size, &q->nic);
4298         if (!q->drv) {
4299                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4300                 return -ENOMEM;
4301         }
4302
4303         memset(q->drv, 0, q->size);
4304
4305         IPW_DEBUG_INFO("exit\n");
4306
4307         return 0;
4308 }
4309
4310 static void status_queue_free(struct ipw2100_priv *priv)
4311 {
4312         IPW_DEBUG_INFO("enter\n");
4313
4314         if (priv->status_queue.drv) {
4315                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4316                                     priv->status_queue.drv,
4317                                     priv->status_queue.nic);
4318                 priv->status_queue.drv = NULL;
4319         }
4320
4321         IPW_DEBUG_INFO("exit\n");
4322 }
4323
4324 static int bd_queue_allocate(struct ipw2100_priv *priv,
4325                              struct ipw2100_bd_queue *q, int entries)
4326 {
4327         IPW_DEBUG_INFO("enter\n");
4328
4329         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4330
4331         q->entries = entries;
4332         q->size = entries * sizeof(struct ipw2100_bd);
4333         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4334         if (!q->drv) {
4335                 IPW_DEBUG_INFO
4336                     ("can't allocate shared memory for buffer descriptors\n");
4337                 return -ENOMEM;
4338         }
4339         memset(q->drv, 0, q->size);
4340
4341         IPW_DEBUG_INFO("exit\n");
4342
4343         return 0;
4344 }
4345
4346 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4347 {
4348         IPW_DEBUG_INFO("enter\n");
4349
4350         if (!q)
4351                 return;
4352
4353         if (q->drv) {
4354                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4355                 q->drv = NULL;
4356         }
4357
4358         IPW_DEBUG_INFO("exit\n");
4359 }
4360
4361 static void bd_queue_initialize(struct ipw2100_priv *priv,
4362                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4363                                 u32 r, u32 w)
4364 {
4365         IPW_DEBUG_INFO("enter\n");
4366
4367         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4368                        (u32) q->nic);
4369
4370         write_register(priv->net_dev, base, q->nic);
4371         write_register(priv->net_dev, size, q->entries);
4372         write_register(priv->net_dev, r, q->oldest);
4373         write_register(priv->net_dev, w, q->next);
4374
4375         IPW_DEBUG_INFO("exit\n");
4376 }
4377
4378 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4379 {
4380         if (priv->workqueue) {
4381                 priv->stop_rf_kill = 1;
4382                 priv->stop_hang_check = 1;
4383                 cancel_delayed_work(&priv->reset_work);
4384                 cancel_delayed_work(&priv->security_work);
4385                 cancel_delayed_work(&priv->wx_event_work);
4386                 cancel_delayed_work(&priv->hang_check);
4387                 cancel_delayed_work(&priv->rf_kill);
4388                 cancel_delayed_work(&priv->scan_event_later);
4389                 destroy_workqueue(priv->workqueue);
4390                 priv->workqueue = NULL;
4391         }
4392 }
4393
4394 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4395 {
4396         int i, j, err = -EINVAL;
4397         void *v;
4398         dma_addr_t p;
4399
4400         IPW_DEBUG_INFO("enter\n");
4401
4402         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4403         if (err) {
4404                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4405                                 priv->net_dev->name);
4406                 return err;
4407         }
4408
4409         priv->tx_buffers =
4410             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4411                                                 sizeof(struct
4412                                                        ipw2100_tx_packet),
4413                                                 GFP_ATOMIC);
4414         if (!priv->tx_buffers) {
4415                 printk(KERN_ERR DRV_NAME
4416                        ": %s: alloc failed form tx buffers.\n",
4417                        priv->net_dev->name);
4418                 bd_queue_free(priv, &priv->tx_queue);
4419                 return -ENOMEM;
4420         }
4421
4422         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4423                 v = pci_alloc_consistent(priv->pci_dev,
4424                                          sizeof(struct ipw2100_data_header),
4425                                          &p);
4426                 if (!v) {
4427                         printk(KERN_ERR DRV_NAME
4428                                ": %s: PCI alloc failed for tx " "buffers.\n",
4429                                priv->net_dev->name);
4430                         err = -ENOMEM;
4431                         break;
4432                 }
4433
4434                 priv->tx_buffers[i].type = DATA;
4435                 priv->tx_buffers[i].info.d_struct.data =
4436                     (struct ipw2100_data_header *)v;
4437                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4438                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4439         }
4440
4441         if (i == TX_PENDED_QUEUE_LENGTH)
4442                 return 0;
4443
4444         for (j = 0; j < i; j++) {
4445                 pci_free_consistent(priv->pci_dev,
4446                                     sizeof(struct ipw2100_data_header),
4447                                     priv->tx_buffers[j].info.d_struct.data,
4448                                     priv->tx_buffers[j].info.d_struct.
4449                                     data_phys);
4450         }
4451
4452         kfree(priv->tx_buffers);
4453         priv->tx_buffers = NULL;
4454
4455         return err;
4456 }
4457
4458 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4459 {
4460         int i;
4461
4462         IPW_DEBUG_INFO("enter\n");
4463
4464         /*
4465          * reinitialize packet info lists
4466          */
4467         INIT_LIST_HEAD(&priv->fw_pend_list);
4468         INIT_STAT(&priv->fw_pend_stat);
4469
4470         /*
4471          * reinitialize lists
4472          */
4473         INIT_LIST_HEAD(&priv->tx_pend_list);
4474         INIT_LIST_HEAD(&priv->tx_free_list);
4475         INIT_STAT(&priv->tx_pend_stat);
4476         INIT_STAT(&priv->tx_free_stat);
4477
4478         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4479                 /* We simply drop any SKBs that have been queued for
4480                  * transmit */
4481                 if (priv->tx_buffers[i].info.d_struct.txb) {
4482                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4483                                            txb);
4484                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4485                 }
4486
4487                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4488         }
4489
4490         SET_STAT(&priv->tx_free_stat, i);
4491
4492         priv->tx_queue.oldest = 0;
4493         priv->tx_queue.available = priv->tx_queue.entries;
4494         priv->tx_queue.next = 0;
4495         INIT_STAT(&priv->txq_stat);
4496         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4497
4498         bd_queue_initialize(priv, &priv->tx_queue,
4499                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4500                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4501                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4502                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4503
4504         IPW_DEBUG_INFO("exit\n");
4505
4506 }
4507
4508 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4509 {
4510         int i;
4511
4512         IPW_DEBUG_INFO("enter\n");
4513
4514         bd_queue_free(priv, &priv->tx_queue);
4515
4516         if (!priv->tx_buffers)
4517                 return;
4518
4519         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4520                 if (priv->tx_buffers[i].info.d_struct.txb) {
4521                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4522                                            txb);
4523                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4524                 }
4525                 if (priv->tx_buffers[i].info.d_struct.data)
4526                         pci_free_consistent(priv->pci_dev,
4527                                             sizeof(struct ipw2100_data_header),
4528                                             priv->tx_buffers[i].info.d_struct.
4529                                             data,
4530                                             priv->tx_buffers[i].info.d_struct.
4531                                             data_phys);
4532         }
4533
4534         kfree(priv->tx_buffers);
4535         priv->tx_buffers = NULL;
4536
4537         IPW_DEBUG_INFO("exit\n");
4538 }
4539
4540 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4541 {
4542         int i, j, err = -EINVAL;
4543
4544         IPW_DEBUG_INFO("enter\n");
4545
4546         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4547         if (err) {
4548                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4549                 return err;
4550         }
4551
4552         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4553         if (err) {
4554                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4555                 bd_queue_free(priv, &priv->rx_queue);
4556                 return err;
4557         }
4558
4559         /*
4560          * allocate packets
4561          */
4562         priv->rx_buffers = (struct ipw2100_rx_packet *)
4563             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4564                     GFP_KERNEL);
4565         if (!priv->rx_buffers) {
4566                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4567
4568                 bd_queue_free(priv, &priv->rx_queue);
4569
4570                 status_queue_free(priv);
4571
4572                 return -ENOMEM;
4573         }
4574
4575         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4576                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4577
4578                 err = ipw2100_alloc_skb(priv, packet);
4579                 if (unlikely(err)) {
4580                         err = -ENOMEM;
4581                         break;
4582                 }
4583
4584                 /* The BD holds the cache aligned address */
4585                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4586                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4587                 priv->status_queue.drv[i].status_fields = 0;
4588         }
4589
4590         if (i == RX_QUEUE_LENGTH)
4591                 return 0;
4592
4593         for (j = 0; j < i; j++) {
4594                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4595                                  sizeof(struct ipw2100_rx_packet),
4596                                  PCI_DMA_FROMDEVICE);
4597                 dev_kfree_skb(priv->rx_buffers[j].skb);
4598         }
4599
4600         kfree(priv->rx_buffers);
4601         priv->rx_buffers = NULL;
4602
4603         bd_queue_free(priv, &priv->rx_queue);
4604
4605         status_queue_free(priv);
4606
4607         return err;
4608 }
4609
4610 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4611 {
4612         IPW_DEBUG_INFO("enter\n");
4613
4614         priv->rx_queue.oldest = 0;
4615         priv->rx_queue.available = priv->rx_queue.entries - 1;
4616         priv->rx_queue.next = priv->rx_queue.entries - 1;
4617
4618         INIT_STAT(&priv->rxq_stat);
4619         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4620
4621         bd_queue_initialize(priv, &priv->rx_queue,
4622                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4623                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4624                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4625                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4626
4627         /* set up the status queue */
4628         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4629                        priv->status_queue.nic);
4630
4631         IPW_DEBUG_INFO("exit\n");
4632 }
4633
4634 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4635 {
4636         int i;
4637
4638         IPW_DEBUG_INFO("enter\n");
4639
4640         bd_queue_free(priv, &priv->rx_queue);
4641         status_queue_free(priv);
4642
4643         if (!priv->rx_buffers)
4644                 return;
4645
4646         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4647                 if (priv->rx_buffers[i].rxp) {
4648                         pci_unmap_single(priv->pci_dev,
4649                                          priv->rx_buffers[i].dma_addr,
4650                                          sizeof(struct ipw2100_rx),
4651                                          PCI_DMA_FROMDEVICE);
4652                         dev_kfree_skb(priv->rx_buffers[i].skb);
4653                 }
4654         }
4655
4656         kfree(priv->rx_buffers);
4657         priv->rx_buffers = NULL;
4658
4659         IPW_DEBUG_INFO("exit\n");
4660 }
4661
4662 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4663 {
4664         u32 length = ETH_ALEN;
4665         u8 addr[ETH_ALEN];
4666
4667         int err;
4668
4669         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4670         if (err) {
4671                 IPW_DEBUG_INFO("MAC address read failed\n");
4672                 return -EIO;
4673         }
4674
4675         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4676         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4677
4678         return 0;
4679 }
4680
4681 /********************************************************************
4682  *
4683  * Firmware Commands
4684  *
4685  ********************************************************************/
4686
4687 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4688 {
4689         struct host_command cmd = {
4690                 .host_command = ADAPTER_ADDRESS,
4691                 .host_command_sequence = 0,
4692                 .host_command_length = ETH_ALEN
4693         };
4694         int err;
4695
4696         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4697
4698         IPW_DEBUG_INFO("enter\n");
4699
4700         if (priv->config & CFG_CUSTOM_MAC) {
4701                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4702                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4703         } else
4704                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4705                        ETH_ALEN);
4706
4707         err = ipw2100_hw_send_command(priv, &cmd);
4708
4709         IPW_DEBUG_INFO("exit\n");
4710         return err;
4711 }
4712
4713 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4714                                  int batch_mode)
4715 {
4716         struct host_command cmd = {
4717                 .host_command = PORT_TYPE,
4718                 .host_command_sequence = 0,
4719                 .host_command_length = sizeof(u32)
4720         };
4721         int err;
4722
4723         switch (port_type) {
4724         case IW_MODE_INFRA:
4725                 cmd.host_command_parameters[0] = IPW_BSS;
4726                 break;
4727         case IW_MODE_ADHOC:
4728                 cmd.host_command_parameters[0] = IPW_IBSS;
4729                 break;
4730         }
4731
4732         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4733                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4734
4735         if (!batch_mode) {
4736                 err = ipw2100_disable_adapter(priv);
4737                 if (err) {
4738                         printk(KERN_ERR DRV_NAME
4739                                ": %s: Could not disable adapter %d\n",
4740                                priv->net_dev->name, err);
4741                         return err;
4742                 }
4743         }
4744
4745         /* send cmd to firmware */
4746         err = ipw2100_hw_send_command(priv, &cmd);
4747
4748         if (!batch_mode)
4749                 ipw2100_enable_adapter(priv);
4750
4751         return err;
4752 }
4753
4754 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4755                                int batch_mode)
4756 {
4757         struct host_command cmd = {
4758                 .host_command = CHANNEL,
4759                 .host_command_sequence = 0,
4760                 .host_command_length = sizeof(u32)
4761         };
4762         int err;
4763
4764         cmd.host_command_parameters[0] = channel;
4765
4766         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4767
4768         /* If BSS then we don't support channel selection */
4769         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4770                 return 0;
4771
4772         if ((channel != 0) &&
4773             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4774                 return -EINVAL;
4775
4776         if (!batch_mode) {
4777                 err = ipw2100_disable_adapter(priv);
4778                 if (err)
4779                         return err;
4780         }
4781
4782         err = ipw2100_hw_send_command(priv, &cmd);
4783         if (err) {
4784                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4785                 return err;
4786         }
4787
4788         if (channel)
4789                 priv->config |= CFG_STATIC_CHANNEL;
4790         else
4791                 priv->config &= ~CFG_STATIC_CHANNEL;
4792
4793         priv->channel = channel;
4794
4795         if (!batch_mode) {
4796                 err = ipw2100_enable_adapter(priv);
4797                 if (err)
4798                         return err;
4799         }
4800
4801         return 0;
4802 }
4803
4804 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4805 {
4806         struct host_command cmd = {
4807                 .host_command = SYSTEM_CONFIG,
4808                 .host_command_sequence = 0,
4809                 .host_command_length = 12,
4810         };
4811         u32 ibss_mask, len = sizeof(u32);
4812         int err;
4813
4814         /* Set system configuration */
4815
4816         if (!batch_mode) {
4817                 err = ipw2100_disable_adapter(priv);
4818                 if (err)
4819                         return err;
4820         }
4821
4822         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4823                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4824
4825         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4826             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4827
4828         if (!(priv->config & CFG_LONG_PREAMBLE))
4829                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4830
4831         err = ipw2100_get_ordinal(priv,
4832                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4833                                   &ibss_mask, &len);
4834         if (err)
4835                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4836
4837         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4838         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4839
4840         /* 11b only */
4841         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4842
4843         err = ipw2100_hw_send_command(priv, &cmd);
4844         if (err)
4845                 return err;
4846
4847 /* If IPv6 is configured in the kernel then we don't want to filter out all
4848  * of the multicast packets as IPv6 needs some. */
4849 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4850         cmd.host_command = ADD_MULTICAST;
4851         cmd.host_command_sequence = 0;
4852         cmd.host_command_length = 0;
4853
4854         ipw2100_hw_send_command(priv, &cmd);
4855 #endif
4856         if (!batch_mode) {
4857                 err = ipw2100_enable_adapter(priv);
4858                 if (err)
4859                         return err;
4860         }
4861
4862         return 0;
4863 }
4864
4865 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4866                                 int batch_mode)
4867 {
4868         struct host_command cmd = {
4869                 .host_command = BASIC_TX_RATES,
4870                 .host_command_sequence = 0,
4871                 .host_command_length = 4
4872         };
4873         int err;
4874
4875         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4876
4877         if (!batch_mode) {
4878                 err = ipw2100_disable_adapter(priv);
4879                 if (err)
4880                         return err;
4881         }
4882
4883         /* Set BASIC TX Rate first */
4884         ipw2100_hw_send_command(priv, &cmd);
4885
4886         /* Set TX Rate */
4887         cmd.host_command = TX_RATES;
4888         ipw2100_hw_send_command(priv, &cmd);
4889
4890         /* Set MSDU TX Rate */
4891         cmd.host_command = MSDU_TX_RATES;
4892         ipw2100_hw_send_command(priv, &cmd);
4893
4894         if (!batch_mode) {
4895                 err = ipw2100_enable_adapter(priv);
4896                 if (err)
4897                         return err;
4898         }
4899
4900         priv->tx_rates = rate;
4901
4902         return 0;
4903 }
4904
4905 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4906 {
4907         struct host_command cmd = {
4908                 .host_command = POWER_MODE,
4909                 .host_command_sequence = 0,
4910                 .host_command_length = 4
4911         };
4912         int err;
4913
4914         cmd.host_command_parameters[0] = power_level;
4915
4916         err = ipw2100_hw_send_command(priv, &cmd);
4917         if (err)
4918                 return err;
4919
4920         if (power_level == IPW_POWER_MODE_CAM)
4921                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4922         else
4923                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4924
4925 #ifdef IPW2100_TX_POWER
4926         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4927                 /* Set beacon interval */
4928                 cmd.host_command = TX_POWER_INDEX;
4929                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4930
4931                 err = ipw2100_hw_send_command(priv, &cmd);
4932                 if (err)
4933                         return err;
4934         }
4935 #endif
4936
4937         return 0;
4938 }
4939
4940 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4941 {
4942         struct host_command cmd = {
4943                 .host_command = RTS_THRESHOLD,
4944                 .host_command_sequence = 0,
4945                 .host_command_length = 4
4946         };
4947         int err;
4948
4949         if (threshold & RTS_DISABLED)
4950                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4951         else
4952                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4953
4954         err = ipw2100_hw_send_command(priv, &cmd);
4955         if (err)
4956                 return err;
4957
4958         priv->rts_threshold = threshold;
4959
4960         return 0;
4961 }
4962
4963 #if 0
4964 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4965                                         u32 threshold, int batch_mode)
4966 {
4967         struct host_command cmd = {
4968                 .host_command = FRAG_THRESHOLD,
4969                 .host_command_sequence = 0,
4970                 .host_command_length = 4,
4971                 .host_command_parameters[0] = 0,
4972         };
4973         int err;
4974
4975         if (!batch_mode) {
4976                 err = ipw2100_disable_adapter(priv);
4977                 if (err)
4978                         return err;
4979         }
4980
4981         if (threshold == 0)
4982                 threshold = DEFAULT_FRAG_THRESHOLD;
4983         else {
4984                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4985                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4986         }
4987
4988         cmd.host_command_parameters[0] = threshold;
4989
4990         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4991
4992         err = ipw2100_hw_send_command(priv, &cmd);
4993
4994         if (!batch_mode)
4995                 ipw2100_enable_adapter(priv);
4996
4997         if (!err)
4998                 priv->frag_threshold = threshold;
4999
5000         return err;
5001 }
5002 #endif
5003
5004 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5005 {
5006         struct host_command cmd = {
5007                 .host_command = SHORT_RETRY_LIMIT,
5008                 .host_command_sequence = 0,
5009                 .host_command_length = 4
5010         };
5011         int err;
5012
5013         cmd.host_command_parameters[0] = retry;
5014
5015         err = ipw2100_hw_send_command(priv, &cmd);
5016         if (err)
5017                 return err;
5018
5019         priv->short_retry_limit = retry;
5020
5021         return 0;
5022 }
5023
5024 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5025 {
5026         struct host_command cmd = {
5027                 .host_command = LONG_RETRY_LIMIT,
5028                 .host_command_sequence = 0,
5029                 .host_command_length = 4
5030         };
5031         int err;
5032
5033         cmd.host_command_parameters[0] = retry;
5034
5035         err = ipw2100_hw_send_command(priv, &cmd);
5036         if (err)
5037                 return err;
5038
5039         priv->long_retry_limit = retry;
5040
5041         return 0;
5042 }
5043
5044 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5045                                        int batch_mode)
5046 {
5047         struct host_command cmd = {
5048                 .host_command = MANDATORY_BSSID,
5049                 .host_command_sequence = 0,
5050                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5051         };
5052         int err;
5053
5054 #ifdef CONFIG_IPW2100_DEBUG
5055         if (bssid != NULL)
5056                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5057         else
5058                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5059 #endif
5060         /* if BSSID is empty then we disable mandatory bssid mode */
5061         if (bssid != NULL)
5062                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5063
5064         if (!batch_mode) {
5065                 err = ipw2100_disable_adapter(priv);
5066                 if (err)
5067                         return err;
5068         }
5069
5070         err = ipw2100_hw_send_command(priv, &cmd);
5071
5072         if (!batch_mode)
5073                 ipw2100_enable_adapter(priv);
5074
5075         return err;
5076 }
5077
5078 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5079 {
5080         struct host_command cmd = {
5081                 .host_command = DISASSOCIATION_BSSID,
5082                 .host_command_sequence = 0,
5083                 .host_command_length = ETH_ALEN
5084         };
5085         int err;
5086         int len;
5087
5088         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5089
5090         len = ETH_ALEN;
5091         /* The Firmware currently ignores the BSSID and just disassociates from
5092          * the currently associated AP -- but in the off chance that a future
5093          * firmware does use the BSSID provided here, we go ahead and try and
5094          * set it to the currently associated AP's BSSID */
5095         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5096
5097         err = ipw2100_hw_send_command(priv, &cmd);
5098
5099         return err;
5100 }
5101
5102 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5103                               struct ipw2100_wpa_assoc_frame *, int)
5104     __attribute__ ((unused));
5105
5106 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5107                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5108                               int batch_mode)
5109 {
5110         struct host_command cmd = {
5111                 .host_command = SET_WPA_IE,
5112                 .host_command_sequence = 0,
5113                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5114         };
5115         int err;
5116
5117         IPW_DEBUG_HC("SET_WPA_IE\n");
5118
5119         if (!batch_mode) {
5120                 err = ipw2100_disable_adapter(priv);
5121                 if (err)
5122                         return err;
5123         }
5124
5125         memcpy(cmd.host_command_parameters, wpa_frame,
5126                sizeof(struct ipw2100_wpa_assoc_frame));
5127
5128         err = ipw2100_hw_send_command(priv, &cmd);
5129
5130         if (!batch_mode) {
5131                 if (ipw2100_enable_adapter(priv))
5132                         err = -EIO;
5133         }
5134
5135         return err;
5136 }
5137
5138 struct security_info_params {
5139         u32 allowed_ciphers;
5140         u16 version;
5141         u8 auth_mode;
5142         u8 replay_counters_number;
5143         u8 unicast_using_group;
5144 } __attribute__ ((packed));
5145
5146 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5147                                             int auth_mode,
5148                                             int security_level,
5149                                             int unicast_using_group,
5150                                             int batch_mode)
5151 {
5152         struct host_command cmd = {
5153                 .host_command = SET_SECURITY_INFORMATION,
5154                 .host_command_sequence = 0,
5155                 .host_command_length = sizeof(struct security_info_params)
5156         };
5157         struct security_info_params *security =
5158             (struct security_info_params *)&cmd.host_command_parameters;
5159         int err;
5160         memset(security, 0, sizeof(*security));
5161
5162         /* If shared key AP authentication is turned on, then we need to
5163          * configure the firmware to try and use it.
5164          *
5165          * Actual data encryption/decryption is handled by the host. */
5166         security->auth_mode = auth_mode;
5167         security->unicast_using_group = unicast_using_group;
5168
5169         switch (security_level) {
5170         default:
5171         case SEC_LEVEL_0:
5172                 security->allowed_ciphers = IPW_NONE_CIPHER;
5173                 break;
5174         case SEC_LEVEL_1:
5175                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5176                     IPW_WEP104_CIPHER;
5177                 break;
5178         case SEC_LEVEL_2:
5179                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5180                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5181                 break;
5182         case SEC_LEVEL_2_CKIP:
5183                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5184                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5185                 break;
5186         case SEC_LEVEL_3:
5187                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5188                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5189                 break;
5190         }
5191
5192         IPW_DEBUG_HC
5193             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5194              security->auth_mode, security->allowed_ciphers, security_level);
5195
5196         security->replay_counters_number = 0;
5197
5198         if (!batch_mode) {
5199                 err = ipw2100_disable_adapter(priv);
5200                 if (err)
5201                         return err;
5202         }
5203
5204         err = ipw2100_hw_send_command(priv, &cmd);
5205
5206         if (!batch_mode)
5207                 ipw2100_enable_adapter(priv);
5208
5209         return err;
5210 }
5211
5212 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5213 {
5214         struct host_command cmd = {
5215                 .host_command = TX_POWER_INDEX,
5216                 .host_command_sequence = 0,
5217                 .host_command_length = 4
5218         };
5219         int err = 0;
5220         u32 tmp = tx_power;
5221
5222         if (tx_power != IPW_TX_POWER_DEFAULT)
5223                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5224                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5225
5226         cmd.host_command_parameters[0] = tmp;
5227
5228         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5229                 err = ipw2100_hw_send_command(priv, &cmd);
5230         if (!err)
5231                 priv->tx_power = tx_power;
5232
5233         return 0;
5234 }
5235
5236 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5237                                             u32 interval, int batch_mode)
5238 {
5239         struct host_command cmd = {
5240                 .host_command = BEACON_INTERVAL,
5241                 .host_command_sequence = 0,
5242                 .host_command_length = 4
5243         };
5244         int err;
5245
5246         cmd.host_command_parameters[0] = interval;
5247
5248         IPW_DEBUG_INFO("enter\n");
5249
5250         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5251                 if (!batch_mode) {
5252                         err = ipw2100_disable_adapter(priv);
5253                         if (err)
5254                                 return err;
5255                 }
5256
5257                 ipw2100_hw_send_command(priv, &cmd);
5258
5259                 if (!batch_mode) {
5260                         err = ipw2100_enable_adapter(priv);
5261                         if (err)
5262                                 return err;
5263                 }
5264         }
5265
5266         IPW_DEBUG_INFO("exit\n");
5267
5268         return 0;
5269 }
5270
5271 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5272 {
5273         ipw2100_tx_initialize(priv);
5274         ipw2100_rx_initialize(priv);
5275         ipw2100_msg_initialize(priv);
5276 }
5277
5278 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5279 {
5280         ipw2100_tx_free(priv);
5281         ipw2100_rx_free(priv);
5282         ipw2100_msg_free(priv);
5283 }
5284
5285 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5286 {
5287         if (ipw2100_tx_allocate(priv) ||
5288             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5289                 goto fail;
5290
5291         return 0;
5292
5293       fail:
5294         ipw2100_tx_free(priv);
5295         ipw2100_rx_free(priv);
5296         ipw2100_msg_free(priv);
5297         return -ENOMEM;
5298 }
5299
5300 #define IPW_PRIVACY_CAPABLE 0x0008
5301
5302 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5303                                  int batch_mode)
5304 {
5305         struct host_command cmd = {
5306                 .host_command = WEP_FLAGS,
5307                 .host_command_sequence = 0,
5308                 .host_command_length = 4
5309         };
5310         int err;
5311
5312         cmd.host_command_parameters[0] = flags;
5313
5314         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5315
5316         if (!batch_mode) {
5317                 err = ipw2100_disable_adapter(priv);
5318                 if (err) {
5319                         printk(KERN_ERR DRV_NAME
5320                                ": %s: Could not disable adapter %d\n",
5321                                priv->net_dev->name, err);
5322                         return err;
5323                 }
5324         }
5325
5326         /* send cmd to firmware */
5327         err = ipw2100_hw_send_command(priv, &cmd);
5328
5329         if (!batch_mode)
5330                 ipw2100_enable_adapter(priv);
5331
5332         return err;
5333 }
5334
5335 struct ipw2100_wep_key {
5336         u8 idx;
5337         u8 len;
5338         u8 key[13];
5339 };
5340
5341 /* Macros to ease up priting WEP keys */
5342 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5343 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5344 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5345 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5346
5347 /**
5348  * Set a the wep key
5349  *
5350  * @priv: struct to work on
5351  * @idx: index of the key we want to set
5352  * @key: ptr to the key data to set
5353  * @len: length of the buffer at @key
5354  * @batch_mode: FIXME perform the operation in batch mode, not
5355  *              disabling the device.
5356  *
5357  * @returns 0 if OK, < 0 errno code on error.
5358  *
5359  * Fill out a command structure with the new wep key, length an
5360  * index and send it down the wire.
5361  */
5362 static int ipw2100_set_key(struct ipw2100_priv *priv,
5363                            int idx, char *key, int len, int batch_mode)
5364 {
5365         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5366         struct host_command cmd = {
5367                 .host_command = WEP_KEY_INFO,
5368                 .host_command_sequence = 0,
5369                 .host_command_length = sizeof(struct ipw2100_wep_key),
5370         };
5371         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5372         int err;
5373
5374         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5375                      idx, keylen, len);
5376
5377         /* NOTE: We don't check cached values in case the firmware was reset
5378          * or some other problem is occurring.  If the user is setting the key,
5379          * then we push the change */
5380
5381         wep_key->idx = idx;
5382         wep_key->len = keylen;
5383
5384         if (keylen) {
5385                 memcpy(wep_key->key, key, len);
5386                 memset(wep_key->key + len, 0, keylen - len);
5387         }
5388
5389         /* Will be optimized out on debug not being configured in */
5390         if (keylen == 0)
5391                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5392                               priv->net_dev->name, wep_key->idx);
5393         else if (keylen == 5)
5394                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5395                               priv->net_dev->name, wep_key->idx, wep_key->len,
5396                               WEP_STR_64(wep_key->key));
5397         else
5398                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5399                               "\n",
5400                               priv->net_dev->name, wep_key->idx, wep_key->len,
5401                               WEP_STR_128(wep_key->key));
5402
5403         if (!batch_mode) {
5404                 err = ipw2100_disable_adapter(priv);
5405                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5406                 if (err) {
5407                         printk(KERN_ERR DRV_NAME
5408                                ": %s: Could not disable adapter %d\n",
5409                                priv->net_dev->name, err);
5410                         return err;
5411                 }
5412         }
5413
5414         /* send cmd to firmware */
5415         err = ipw2100_hw_send_command(priv, &cmd);
5416
5417         if (!batch_mode) {
5418                 int err2 = ipw2100_enable_adapter(priv);
5419                 if (err == 0)
5420                         err = err2;
5421         }
5422         return err;
5423 }
5424
5425 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5426                                  int idx, int batch_mode)
5427 {
5428         struct host_command cmd = {
5429                 .host_command = WEP_KEY_INDEX,
5430                 .host_command_sequence = 0,
5431                 .host_command_length = 4,
5432                 .host_command_parameters = {idx},
5433         };
5434         int err;
5435
5436         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5437
5438         if (idx < 0 || idx > 3)
5439                 return -EINVAL;
5440
5441         if (!batch_mode) {
5442                 err = ipw2100_disable_adapter(priv);
5443                 if (err) {
5444                         printk(KERN_ERR DRV_NAME
5445                                ": %s: Could not disable adapter %d\n",
5446                                priv->net_dev->name, err);
5447                         return err;
5448                 }
5449         }
5450
5451         /* send cmd to firmware */
5452         err = ipw2100_hw_send_command(priv, &cmd);
5453
5454         if (!batch_mode)
5455                 ipw2100_enable_adapter(priv);
5456
5457         return err;
5458 }
5459
5460 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5461 {
5462         int i, err, auth_mode, sec_level, use_group;
5463
5464         if (!(priv->status & STATUS_RUNNING))
5465                 return 0;
5466
5467         if (!batch_mode) {
5468                 err = ipw2100_disable_adapter(priv);
5469                 if (err)
5470                         return err;
5471         }
5472
5473         if (!priv->ieee->sec.enabled) {
5474                 err =
5475                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5476                                                      SEC_LEVEL_0, 0, 1);
5477         } else {
5478                 auth_mode = IPW_AUTH_OPEN;
5479                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5480                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5481                                 auth_mode = IPW_AUTH_SHARED;
5482                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5483                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5484                 }
5485
5486                 sec_level = SEC_LEVEL_0;
5487                 if (priv->ieee->sec.flags & SEC_LEVEL)
5488                         sec_level = priv->ieee->sec.level;
5489
5490                 use_group = 0;
5491                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5492                         use_group = priv->ieee->sec.unicast_uses_group;
5493
5494                 err =
5495                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5496                                                      use_group, 1);
5497         }
5498
5499         if (err)
5500                 goto exit;
5501
5502         if (priv->ieee->sec.enabled) {
5503                 for (i = 0; i < 4; i++) {
5504                         if (!(priv->ieee->sec.flags & (1 << i))) {
5505                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5506                                 priv->ieee->sec.key_sizes[i] = 0;
5507                         } else {
5508                                 err = ipw2100_set_key(priv, i,
5509                                                       priv->ieee->sec.keys[i],
5510                                                       priv->ieee->sec.
5511                                                       key_sizes[i], 1);
5512                                 if (err)
5513                                         goto exit;
5514                         }
5515                 }
5516
5517                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5518         }
5519
5520         /* Always enable privacy so the Host can filter WEP packets if
5521          * encrypted data is sent up */
5522         err =
5523             ipw2100_set_wep_flags(priv,
5524                                   priv->ieee->sec.
5525                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5526         if (err)
5527                 goto exit;
5528
5529         priv->status &= ~STATUS_SECURITY_UPDATED;
5530
5531       exit:
5532         if (!batch_mode)
5533                 ipw2100_enable_adapter(priv);
5534
5535         return err;
5536 }
5537
5538 static void ipw2100_security_work(struct work_struct *work)
5539 {
5540         struct ipw2100_priv *priv =
5541                 container_of(work, struct ipw2100_priv, security_work.work);
5542
5543         /* If we happen to have reconnected before we get a chance to
5544          * process this, then update the security settings--which causes
5545          * a disassociation to occur */
5546         if (!(priv->status & STATUS_ASSOCIATED) &&
5547             priv->status & STATUS_SECURITY_UPDATED)
5548                 ipw2100_configure_security(priv, 0);
5549 }
5550
5551 static void shim__set_security(struct net_device *dev,
5552                                struct ieee80211_security *sec)
5553 {
5554         struct ipw2100_priv *priv = ieee80211_priv(dev);
5555         int i, force_update = 0;
5556
5557         mutex_lock(&priv->action_mutex);
5558         if (!(priv->status & STATUS_INITIALIZED))
5559                 goto done;
5560
5561         for (i = 0; i < 4; i++) {
5562                 if (sec->flags & (1 << i)) {
5563                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5564                         if (sec->key_sizes[i] == 0)
5565                                 priv->ieee->sec.flags &= ~(1 << i);
5566                         else
5567                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5568                                        sec->key_sizes[i]);
5569                         if (sec->level == SEC_LEVEL_1) {
5570                                 priv->ieee->sec.flags |= (1 << i);
5571                                 priv->status |= STATUS_SECURITY_UPDATED;
5572                         } else
5573                                 priv->ieee->sec.flags &= ~(1 << i);
5574                 }
5575         }
5576
5577         if ((sec->flags & SEC_ACTIVE_KEY) &&
5578             priv->ieee->sec.active_key != sec->active_key) {
5579                 if (sec->active_key <= 3) {
5580                         priv->ieee->sec.active_key = sec->active_key;
5581                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5582                 } else
5583                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5584
5585                 priv->status |= STATUS_SECURITY_UPDATED;
5586         }
5587
5588         if ((sec->flags & SEC_AUTH_MODE) &&
5589             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5590                 priv->ieee->sec.auth_mode = sec->auth_mode;
5591                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5592                 priv->status |= STATUS_SECURITY_UPDATED;
5593         }
5594
5595         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5596                 priv->ieee->sec.flags |= SEC_ENABLED;
5597                 priv->ieee->sec.enabled = sec->enabled;
5598                 priv->status |= STATUS_SECURITY_UPDATED;
5599                 force_update = 1;
5600         }
5601
5602         if (sec->flags & SEC_ENCRYPT)
5603                 priv->ieee->sec.encrypt = sec->encrypt;
5604
5605         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5606                 priv->ieee->sec.level = sec->level;
5607                 priv->ieee->sec.flags |= SEC_LEVEL;
5608                 priv->status |= STATUS_SECURITY_UPDATED;
5609         }
5610
5611         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5612                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5613                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5614                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5615                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5616                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5617                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5618                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5619                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5620                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5621
5622 /* As a temporary work around to enable WPA until we figure out why
5623  * wpa_supplicant toggles the security capability of the driver, which
5624  * forces a disassocation with force_update...
5625  *
5626  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5627         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5628                 ipw2100_configure_security(priv, 0);
5629       done:
5630         mutex_unlock(&priv->action_mutex);
5631 }
5632
5633 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5634 {
5635         int err;
5636         int batch_mode = 1;
5637         u8 *bssid;
5638
5639         IPW_DEBUG_INFO("enter\n");
5640
5641         err = ipw2100_disable_adapter(priv);
5642         if (err)
5643                 return err;
5644 #ifdef CONFIG_IPW2100_MONITOR
5645         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5646                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5647                 if (err)
5648                         return err;
5649
5650                 IPW_DEBUG_INFO("exit\n");
5651
5652                 return 0;
5653         }
5654 #endif                          /* CONFIG_IPW2100_MONITOR */
5655
5656         err = ipw2100_read_mac_address(priv);
5657         if (err)
5658                 return -EIO;
5659
5660         err = ipw2100_set_mac_address(priv, batch_mode);
5661         if (err)
5662                 return err;
5663
5664         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5665         if (err)
5666                 return err;
5667
5668         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5669                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5670                 if (err)
5671                         return err;
5672         }
5673
5674         err = ipw2100_system_config(priv, batch_mode);
5675         if (err)
5676                 return err;
5677
5678         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5679         if (err)
5680                 return err;
5681
5682         /* Default to power mode OFF */
5683         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5684         if (err)
5685                 return err;
5686
5687         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5688         if (err)
5689                 return err;
5690
5691         if (priv->config & CFG_STATIC_BSSID)
5692                 bssid = priv->bssid;
5693         else
5694                 bssid = NULL;
5695         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5696         if (err)
5697                 return err;
5698
5699         if (priv->config & CFG_STATIC_ESSID)
5700                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5701                                         batch_mode);
5702         else
5703                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5704         if (err)
5705                 return err;
5706
5707         err = ipw2100_configure_security(priv, batch_mode);
5708         if (err)
5709                 return err;
5710
5711         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5712                 err =
5713                     ipw2100_set_ibss_beacon_interval(priv,
5714                                                      priv->beacon_interval,
5715                                                      batch_mode);
5716                 if (err)
5717                         return err;
5718
5719                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5720                 if (err)
5721                         return err;
5722         }
5723
5724         /*
5725            err = ipw2100_set_fragmentation_threshold(
5726            priv, priv->frag_threshold, batch_mode);
5727            if (err)
5728            return err;
5729          */
5730
5731         IPW_DEBUG_INFO("exit\n");
5732
5733         return 0;
5734 }
5735
5736 /*************************************************************************
5737  *
5738  * EXTERNALLY CALLED METHODS
5739  *
5740  *************************************************************************/
5741
5742 /* This method is called by the network layer -- not to be confused with
5743  * ipw2100_set_mac_address() declared above called by this driver (and this
5744  * method as well) to talk to the firmware */
5745 static int ipw2100_set_address(struct net_device *dev, void *p)
5746 {
5747         struct ipw2100_priv *priv = ieee80211_priv(dev);
5748         struct sockaddr *addr = p;
5749         int err = 0;
5750
5751         if (!is_valid_ether_addr(addr->sa_data))
5752                 return -EADDRNOTAVAIL;
5753
5754         mutex_lock(&priv->action_mutex);
5755
5756         priv->config |= CFG_CUSTOM_MAC;
5757         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5758
5759         err = ipw2100_set_mac_address(priv, 0);
5760         if (err)
5761                 goto done;
5762
5763         priv->reset_backoff = 0;
5764         mutex_unlock(&priv->action_mutex);
5765         ipw2100_reset_adapter(&priv->reset_work.work);
5766         return 0;
5767
5768       done:
5769         mutex_unlock(&priv->action_mutex);
5770         return err;
5771 }
5772
5773 static int ipw2100_open(struct net_device *dev)
5774 {
5775         struct ipw2100_priv *priv = ieee80211_priv(dev);
5776         unsigned long flags;
5777         IPW_DEBUG_INFO("dev->open\n");
5778
5779         spin_lock_irqsave(&priv->low_lock, flags);
5780         if (priv->status & STATUS_ASSOCIATED) {
5781                 netif_carrier_on(dev);
5782                 netif_start_queue(dev);
5783         }
5784         spin_unlock_irqrestore(&priv->low_lock, flags);
5785
5786         return 0;
5787 }
5788
5789 static int ipw2100_close(struct net_device *dev)
5790 {
5791         struct ipw2100_priv *priv = ieee80211_priv(dev);
5792         unsigned long flags;
5793         struct list_head *element;
5794         struct ipw2100_tx_packet *packet;
5795
5796         IPW_DEBUG_INFO("enter\n");
5797
5798         spin_lock_irqsave(&priv->low_lock, flags);
5799
5800         if (priv->status & STATUS_ASSOCIATED)
5801                 netif_carrier_off(dev);
5802         netif_stop_queue(dev);
5803
5804         /* Flush the TX queue ... */
5805         while (!list_empty(&priv->tx_pend_list)) {
5806                 element = priv->tx_pend_list.next;
5807                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5808
5809                 list_del(element);
5810                 DEC_STAT(&priv->tx_pend_stat);
5811
5812                 ieee80211_txb_free(packet->info.d_struct.txb);
5813                 packet->info.d_struct.txb = NULL;
5814
5815                 list_add_tail(element, &priv->tx_free_list);
5816                 INC_STAT(&priv->tx_free_stat);
5817         }
5818         spin_unlock_irqrestore(&priv->low_lock, flags);
5819
5820         IPW_DEBUG_INFO("exit\n");
5821
5822         return 0;
5823 }
5824
5825 /*
5826  * TODO:  Fix this function... its just wrong
5827  */
5828 static void ipw2100_tx_timeout(struct net_device *dev)
5829 {
5830         struct ipw2100_priv *priv = ieee80211_priv(dev);
5831
5832         priv->ieee->stats.tx_errors++;
5833
5834 #ifdef CONFIG_IPW2100_MONITOR
5835         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5836                 return;
5837 #endif
5838
5839         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5840                        dev->name);
5841         schedule_reset(priv);
5842 }
5843
5844 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5845 {
5846         /* This is called when wpa_supplicant loads and closes the driver
5847          * interface. */
5848         priv->ieee->wpa_enabled = value;
5849         return 0;
5850 }
5851
5852 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5853 {
5854
5855         struct ieee80211_device *ieee = priv->ieee;
5856         struct ieee80211_security sec = {
5857                 .flags = SEC_AUTH_MODE,
5858         };
5859         int ret = 0;
5860
5861         if (value & IW_AUTH_ALG_SHARED_KEY) {
5862                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5863                 ieee->open_wep = 0;
5864         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5865                 sec.auth_mode = WLAN_AUTH_OPEN;
5866                 ieee->open_wep = 1;
5867         } else if (value & IW_AUTH_ALG_LEAP) {
5868                 sec.auth_mode = WLAN_AUTH_LEAP;
5869                 ieee->open_wep = 1;
5870         } else
5871                 return -EINVAL;
5872
5873         if (ieee->set_security)
5874                 ieee->set_security(ieee->dev, &sec);
5875         else
5876                 ret = -EOPNOTSUPP;
5877
5878         return ret;
5879 }
5880
5881 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5882                                     char *wpa_ie, int wpa_ie_len)
5883 {
5884
5885         struct ipw2100_wpa_assoc_frame frame;
5886
5887         frame.fixed_ie_mask = 0;
5888
5889         /* copy WPA IE */
5890         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5891         frame.var_ie_len = wpa_ie_len;
5892
5893         /* make sure WPA is enabled */
5894         ipw2100_wpa_enable(priv, 1);
5895         ipw2100_set_wpa_ie(priv, &frame, 0);
5896 }
5897
5898 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5899                                     struct ethtool_drvinfo *info)
5900 {
5901         struct ipw2100_priv *priv = ieee80211_priv(dev);
5902         char fw_ver[64], ucode_ver[64];
5903
5904         strcpy(info->driver, DRV_NAME);
5905         strcpy(info->version, DRV_VERSION);
5906
5907         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5908         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5909
5910         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5911                  fw_ver, priv->eeprom_version, ucode_ver);
5912
5913         strcpy(info->bus_info, pci_name(priv->pci_dev));
5914 }
5915
5916 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5917 {
5918         struct ipw2100_priv *priv = ieee80211_priv(dev);
5919         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5920 }
5921
5922 static const struct ethtool_ops ipw2100_ethtool_ops = {
5923         .get_link = ipw2100_ethtool_get_link,
5924         .get_drvinfo = ipw_ethtool_get_drvinfo,
5925 };
5926
5927 static void ipw2100_hang_check(struct work_struct *work)
5928 {
5929         struct ipw2100_priv *priv =
5930                 container_of(work, struct ipw2100_priv, hang_check.work);
5931         unsigned long flags;
5932         u32 rtc = 0xa5a5a5a5;
5933         u32 len = sizeof(rtc);
5934         int restart = 0;
5935
5936         spin_lock_irqsave(&priv->low_lock, flags);
5937
5938         if (priv->fatal_error != 0) {
5939                 /* If fatal_error is set then we need to restart */
5940                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5941                                priv->net_dev->name);
5942
5943                 restart = 1;
5944         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5945                    (rtc == priv->last_rtc)) {
5946                 /* Check if firmware is hung */
5947                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5948                                priv->net_dev->name);
5949
5950                 restart = 1;
5951         }
5952
5953         if (restart) {
5954                 /* Kill timer */
5955                 priv->stop_hang_check = 1;
5956                 priv->hangs++;
5957
5958                 /* Restart the NIC */
5959                 schedule_reset(priv);
5960         }
5961
5962         priv->last_rtc = rtc;
5963
5964         if (!priv->stop_hang_check)
5965                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5966
5967         spin_unlock_irqrestore(&priv->low_lock, flags);
5968 }
5969
5970 static void ipw2100_rf_kill(struct work_struct *work)
5971 {
5972         struct ipw2100_priv *priv =
5973                 container_of(work, struct ipw2100_priv, rf_kill.work);
5974         unsigned long flags;
5975
5976         spin_lock_irqsave(&priv->low_lock, flags);
5977
5978         if (rf_kill_active(priv)) {
5979                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5980                 if (!priv->stop_rf_kill)
5981                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
5982                                            round_jiffies_relative(HZ));
5983                 goto exit_unlock;
5984         }
5985
5986         /* RF Kill is now disabled, so bring the device back up */
5987
5988         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5989                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5990                                   "device\n");
5991                 schedule_reset(priv);
5992         } else
5993                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5994                                   "enabled\n");
5995
5996       exit_unlock:
5997         spin_unlock_irqrestore(&priv->low_lock, flags);
5998 }
5999
6000 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6001
6002 /* Look into using netdev destructor to shutdown ieee80211? */
6003
6004 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6005                                                void __iomem * base_addr,
6006                                                unsigned long mem_start,
6007                                                unsigned long mem_len)
6008 {
6009         struct ipw2100_priv *priv;
6010         struct net_device *dev;
6011
6012         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6013         if (!dev)
6014                 return NULL;
6015         priv = ieee80211_priv(dev);
6016         priv->ieee = netdev_priv(dev);
6017         priv->pci_dev = pci_dev;
6018         priv->net_dev = dev;
6019
6020         priv->ieee->hard_start_xmit = ipw2100_tx;
6021         priv->ieee->set_security = shim__set_security;
6022
6023         priv->ieee->perfect_rssi = -20;
6024         priv->ieee->worst_rssi = -85;
6025
6026         dev->open = ipw2100_open;
6027         dev->stop = ipw2100_close;
6028         dev->init = ipw2100_net_init;
6029         dev->ethtool_ops = &ipw2100_ethtool_ops;
6030         dev->tx_timeout = ipw2100_tx_timeout;
6031         dev->wireless_handlers = &ipw2100_wx_handler_def;
6032         priv->wireless_data.ieee80211 = priv->ieee;
6033         dev->wireless_data = &priv->wireless_data;
6034         dev->set_mac_address = ipw2100_set_address;
6035         dev->watchdog_timeo = 3 * HZ;
6036         dev->irq = 0;
6037
6038         dev->base_addr = (unsigned long)base_addr;
6039         dev->mem_start = mem_start;
6040         dev->mem_end = dev->mem_start + mem_len - 1;
6041
6042         /* NOTE: We don't use the wireless_handlers hook
6043          * in dev as the system will start throwing WX requests
6044          * to us before we're actually initialized and it just
6045          * ends up causing problems.  So, we just handle
6046          * the WX extensions through the ipw2100_ioctl interface */
6047
6048         /* memset() puts everything to 0, so we only have explicitly set
6049          * those values that need to be something else */
6050
6051         /* If power management is turned on, default to AUTO mode */
6052         priv->power_mode = IPW_POWER_AUTO;
6053
6054 #ifdef CONFIG_IPW2100_MONITOR
6055         priv->config |= CFG_CRC_CHECK;
6056 #endif
6057         priv->ieee->wpa_enabled = 0;
6058         priv->ieee->drop_unencrypted = 0;
6059         priv->ieee->privacy_invoked = 0;
6060         priv->ieee->ieee802_1x = 1;
6061
6062         /* Set module parameters */
6063         switch (mode) {
6064         case 1:
6065                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6066                 break;
6067 #ifdef CONFIG_IPW2100_MONITOR
6068         case 2:
6069                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6070                 break;
6071 #endif
6072         default:
6073         case 0:
6074                 priv->ieee->iw_mode = IW_MODE_INFRA;
6075                 break;
6076         }
6077
6078         if (disable == 1)
6079                 priv->status |= STATUS_RF_KILL_SW;
6080
6081         if (channel != 0 &&
6082             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6083                 priv->config |= CFG_STATIC_CHANNEL;
6084                 priv->channel = channel;
6085         }
6086
6087         if (associate)
6088                 priv->config |= CFG_ASSOCIATE;
6089
6090         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6091         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6092         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6093         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6094         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6095         priv->tx_power = IPW_TX_POWER_DEFAULT;
6096         priv->tx_rates = DEFAULT_TX_RATES;
6097
6098         strcpy(priv->nick, "ipw2100");
6099
6100         spin_lock_init(&priv->low_lock);
6101         mutex_init(&priv->action_mutex);
6102         mutex_init(&priv->adapter_mutex);
6103
6104         init_waitqueue_head(&priv->wait_command_queue);
6105
6106         netif_carrier_off(dev);
6107
6108         INIT_LIST_HEAD(&priv->msg_free_list);
6109         INIT_LIST_HEAD(&priv->msg_pend_list);
6110         INIT_STAT(&priv->msg_free_stat);
6111         INIT_STAT(&priv->msg_pend_stat);
6112
6113         INIT_LIST_HEAD(&priv->tx_free_list);
6114         INIT_LIST_HEAD(&priv->tx_pend_list);
6115         INIT_STAT(&priv->tx_free_stat);
6116         INIT_STAT(&priv->tx_pend_stat);
6117
6118         INIT_LIST_HEAD(&priv->fw_pend_list);
6119         INIT_STAT(&priv->fw_pend_stat);
6120
6121         priv->workqueue = create_workqueue(DRV_NAME);
6122
6123         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6124         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6125         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6126         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6127         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6128         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6129         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6130
6131         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6132                      ipw2100_irq_tasklet, (unsigned long)priv);
6133
6134         /* NOTE:  We do not start the deferred work for status checks yet */
6135         priv->stop_rf_kill = 1;
6136         priv->stop_hang_check = 1;
6137
6138         return dev;
6139 }
6140
6141 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6142                                 const struct pci_device_id *ent)
6143 {
6144         unsigned long mem_start, mem_len, mem_flags;
6145         void __iomem *base_addr = NULL;
6146         struct net_device *dev = NULL;
6147         struct ipw2100_priv *priv = NULL;
6148         int err = 0;
6149         int registered = 0;
6150         u32 val;
6151
6152         IPW_DEBUG_INFO("enter\n");
6153
6154         mem_start = pci_resource_start(pci_dev, 0);
6155         mem_len = pci_resource_len(pci_dev, 0);
6156         mem_flags = pci_resource_flags(pci_dev, 0);
6157
6158         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6159                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6160                 err = -ENODEV;
6161                 goto fail;
6162         }
6163
6164         base_addr = ioremap_nocache(mem_start, mem_len);
6165         if (!base_addr) {
6166                 printk(KERN_WARNING DRV_NAME
6167                        "Error calling ioremap_nocache.\n");
6168                 err = -EIO;
6169                 goto fail;
6170         }
6171
6172         /* allocate and initialize our net_device */
6173         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6174         if (!dev) {
6175                 printk(KERN_WARNING DRV_NAME
6176                        "Error calling ipw2100_alloc_device.\n");
6177                 err = -ENOMEM;
6178                 goto fail;
6179         }
6180
6181         /* set up PCI mappings for device */
6182         err = pci_enable_device(pci_dev);
6183         if (err) {
6184                 printk(KERN_WARNING DRV_NAME
6185                        "Error calling pci_enable_device.\n");
6186                 return err;
6187         }
6188
6189         priv = ieee80211_priv(dev);
6190
6191         pci_set_master(pci_dev);
6192         pci_set_drvdata(pci_dev, priv);
6193
6194         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6195         if (err) {
6196                 printk(KERN_WARNING DRV_NAME
6197                        "Error calling pci_set_dma_mask.\n");
6198                 pci_disable_device(pci_dev);
6199                 return err;
6200         }
6201
6202         err = pci_request_regions(pci_dev, DRV_NAME);
6203         if (err) {
6204                 printk(KERN_WARNING DRV_NAME
6205                        "Error calling pci_request_regions.\n");
6206                 pci_disable_device(pci_dev);
6207                 return err;
6208         }
6209
6210         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6211          * PCI Tx retries from interfering with C3 CPU state */
6212         pci_read_config_dword(pci_dev, 0x40, &val);
6213         if ((val & 0x0000ff00) != 0)
6214                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6215
6216         pci_set_power_state(pci_dev, PCI_D0);
6217
6218         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6219                 printk(KERN_WARNING DRV_NAME
6220                        "Device not found via register read.\n");
6221                 err = -ENODEV;
6222                 goto fail;
6223         }
6224
6225         SET_NETDEV_DEV(dev, &pci_dev->dev);
6226
6227         /* Force interrupts to be shut off on the device */
6228         priv->status |= STATUS_INT_ENABLED;
6229         ipw2100_disable_interrupts(priv);
6230
6231         /* Allocate and initialize the Tx/Rx queues and lists */
6232         if (ipw2100_queues_allocate(priv)) {
6233                 printk(KERN_WARNING DRV_NAME
6234                        "Error calling ipw2100_queues_allocate.\n");
6235                 err = -ENOMEM;
6236                 goto fail;
6237         }
6238         ipw2100_queues_initialize(priv);
6239
6240         err = request_irq(pci_dev->irq,
6241                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6242         if (err) {
6243                 printk(KERN_WARNING DRV_NAME
6244                        "Error calling request_irq: %d.\n", pci_dev->irq);
6245                 goto fail;
6246         }
6247         dev->irq = pci_dev->irq;
6248
6249         IPW_DEBUG_INFO("Attempting to register device...\n");
6250
6251         printk(KERN_INFO DRV_NAME
6252                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6253
6254         /* Bring up the interface.  Pre 0.46, after we registered the
6255          * network device we would call ipw2100_up.  This introduced a race
6256          * condition with newer hotplug configurations (network was coming
6257          * up and making calls before the device was initialized).
6258          *
6259          * If we called ipw2100_up before we registered the device, then the
6260          * device name wasn't registered.  So, we instead use the net_dev->init
6261          * member to call a function that then just turns and calls ipw2100_up.
6262          * net_dev->init is called after name allocation but before the
6263          * notifier chain is called */
6264         err = register_netdev(dev);
6265         if (err) {
6266                 printk(KERN_WARNING DRV_NAME
6267                        "Error calling register_netdev.\n");
6268                 goto fail;
6269         }
6270
6271         mutex_lock(&priv->action_mutex);
6272         registered = 1;
6273
6274         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6275
6276         /* perform this after register_netdev so that dev->name is set */
6277         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6278         if (err)
6279                 goto fail_unlock;
6280
6281         /* If the RF Kill switch is disabled, go ahead and complete the
6282          * startup sequence */
6283         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6284                 /* Enable the adapter - sends HOST_COMPLETE */
6285                 if (ipw2100_enable_adapter(priv)) {
6286                         printk(KERN_WARNING DRV_NAME
6287                                ": %s: failed in call to enable adapter.\n",
6288                                priv->net_dev->name);
6289                         ipw2100_hw_stop_adapter(priv);
6290                         err = -EIO;
6291                         goto fail_unlock;
6292                 }
6293
6294                 /* Start a scan . . . */
6295                 ipw2100_set_scan_options(priv);
6296                 ipw2100_start_scan(priv);
6297         }
6298
6299         IPW_DEBUG_INFO("exit\n");
6300
6301         priv->status |= STATUS_INITIALIZED;
6302
6303         mutex_unlock(&priv->action_mutex);
6304
6305         return 0;
6306
6307       fail_unlock:
6308         mutex_unlock(&priv->action_mutex);
6309
6310       fail:
6311         if (dev) {
6312                 if (registered)
6313                         unregister_netdev(dev);
6314
6315                 ipw2100_hw_stop_adapter(priv);
6316
6317                 ipw2100_disable_interrupts(priv);
6318
6319                 if (dev->irq)
6320                         free_irq(dev->irq, priv);
6321
6322                 ipw2100_kill_workqueue(priv);
6323
6324                 /* These are safe to call even if they weren't allocated */
6325                 ipw2100_queues_free(priv);
6326                 sysfs_remove_group(&pci_dev->dev.kobj,
6327                                    &ipw2100_attribute_group);
6328
6329                 free_ieee80211(dev);
6330                 pci_set_drvdata(pci_dev, NULL);
6331         }
6332
6333         if (base_addr)
6334                 iounmap(base_addr);
6335
6336         pci_release_regions(pci_dev);
6337         pci_disable_device(pci_dev);
6338
6339         return err;
6340 }
6341
6342 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6343 {
6344         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6345         struct net_device *dev;
6346
6347         if (priv) {
6348                 mutex_lock(&priv->action_mutex);
6349
6350                 priv->status &= ~STATUS_INITIALIZED;
6351
6352                 dev = priv->net_dev;
6353                 sysfs_remove_group(&pci_dev->dev.kobj,
6354                                    &ipw2100_attribute_group);
6355
6356 #ifdef CONFIG_PM
6357                 if (ipw2100_firmware.version)
6358                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6359 #endif
6360                 /* Take down the hardware */
6361                 ipw2100_down(priv);
6362
6363                 /* Release the mutex so that the network subsystem can
6364                  * complete any needed calls into the driver... */
6365                 mutex_unlock(&priv->action_mutex);
6366
6367                 /* Unregister the device first - this results in close()
6368                  * being called if the device is open.  If we free storage
6369                  * first, then close() will crash. */
6370                 unregister_netdev(dev);
6371
6372                 /* ipw2100_down will ensure that there is no more pending work
6373                  * in the workqueue's, so we can safely remove them now. */
6374                 ipw2100_kill_workqueue(priv);
6375
6376                 ipw2100_queues_free(priv);
6377
6378                 /* Free potential debugging firmware snapshot */
6379                 ipw2100_snapshot_free(priv);
6380
6381                 if (dev->irq)
6382                         free_irq(dev->irq, priv);
6383
6384                 if (dev->base_addr)
6385                         iounmap((void __iomem *)dev->base_addr);
6386
6387                 free_ieee80211(dev);
6388         }
6389
6390         pci_release_regions(pci_dev);
6391         pci_disable_device(pci_dev);
6392
6393         IPW_DEBUG_INFO("exit\n");
6394 }
6395
6396 #ifdef CONFIG_PM
6397 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6398 {
6399         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6400         struct net_device *dev = priv->net_dev;
6401
6402         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6403
6404         mutex_lock(&priv->action_mutex);
6405         if (priv->status & STATUS_INITIALIZED) {
6406                 /* Take down the device; powers it off, etc. */
6407                 ipw2100_down(priv);
6408         }
6409
6410         /* Remove the PRESENT state of the device */
6411         netif_device_detach(dev);
6412
6413         pci_save_state(pci_dev);
6414         pci_disable_device(pci_dev);
6415         pci_set_power_state(pci_dev, PCI_D3hot);
6416
6417         mutex_unlock(&priv->action_mutex);
6418
6419         return 0;
6420 }
6421
6422 static int ipw2100_resume(struct pci_dev *pci_dev)
6423 {
6424         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6425         struct net_device *dev = priv->net_dev;
6426         int err;
6427         u32 val;
6428
6429         if (IPW2100_PM_DISABLED)
6430                 return 0;
6431
6432         mutex_lock(&priv->action_mutex);
6433
6434         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6435
6436         pci_set_power_state(pci_dev, PCI_D0);
6437         err = pci_enable_device(pci_dev);
6438         if (err) {
6439                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6440                        dev->name);
6441                 mutex_unlock(&priv->action_mutex);
6442                 return err;
6443         }
6444         pci_restore_state(pci_dev);
6445
6446         /*
6447          * Suspend/Resume resets the PCI configuration space, so we have to
6448          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6449          * from interfering with C3 CPU state. pci_restore_state won't help
6450          * here since it only restores the first 64 bytes pci config header.
6451          */
6452         pci_read_config_dword(pci_dev, 0x40, &val);
6453         if ((val & 0x0000ff00) != 0)
6454                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6455
6456         /* Set the device back into the PRESENT state; this will also wake
6457          * the queue of needed */
6458         netif_device_attach(dev);
6459
6460         /* Bring the device back up */
6461         if (!(priv->status & STATUS_RF_KILL_SW))
6462                 ipw2100_up(priv, 0);
6463
6464         mutex_unlock(&priv->action_mutex);
6465
6466         return 0;
6467 }
6468 #endif
6469
6470 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6471
6472 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6473         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6474         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6475         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6476         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6477         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6478         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6479         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6480         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6481         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6482         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6483         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6484         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6485         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6486
6487         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6488         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6489         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6490         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6491         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6492
6493         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6494         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6495         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6496         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6497         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6498         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6499         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6500
6501         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6502
6503         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6504         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6505         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6506         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6507         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6508         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6509         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6510
6511         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6512         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6513         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6514         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6515         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6516         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6517
6518         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6519         {0,},
6520 };
6521
6522 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6523
6524 static struct pci_driver ipw2100_pci_driver = {
6525         .name = DRV_NAME,
6526         .id_table = ipw2100_pci_id_table,
6527         .probe = ipw2100_pci_init_one,
6528         .remove = __devexit_p(ipw2100_pci_remove_one),
6529 #ifdef CONFIG_PM
6530         .suspend = ipw2100_suspend,
6531         .resume = ipw2100_resume,
6532 #endif
6533 };
6534
6535 /**
6536  * Initialize the ipw2100 driver/module
6537  *
6538  * @returns 0 if ok, < 0 errno node con error.
6539  *
6540  * Note: we cannot init the /proc stuff until the PCI driver is there,
6541  * or we risk an unlikely race condition on someone accessing
6542  * uninitialized data in the PCI dev struct through /proc.
6543  */
6544 static int __init ipw2100_init(void)
6545 {
6546         int ret;
6547
6548         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6549         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6550
6551         ret = pci_register_driver(&ipw2100_pci_driver);
6552         if (ret)
6553                 goto out;
6554
6555         pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
6556                         PM_QOS_DEFAULT_VALUE);
6557 #ifdef CONFIG_IPW2100_DEBUG
6558         ipw2100_debug_level = debug;
6559         ret = driver_create_file(&ipw2100_pci_driver.driver,
6560                                  &driver_attr_debug_level);
6561 #endif
6562
6563 out:
6564         return ret;
6565 }
6566
6567 /**
6568  * Cleanup ipw2100 driver registration
6569  */
6570 static void __exit ipw2100_exit(void)
6571 {
6572         /* FIXME: IPG: check that we have no instances of the devices open */
6573 #ifdef CONFIG_IPW2100_DEBUG
6574         driver_remove_file(&ipw2100_pci_driver.driver,
6575                            &driver_attr_debug_level);
6576 #endif
6577         pci_unregister_driver(&ipw2100_pci_driver);
6578         pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100");
6579 }
6580
6581 module_init(ipw2100_init);
6582 module_exit(ipw2100_exit);
6583
6584 #define WEXT_USECHANNELS 1
6585
6586 static const long ipw2100_frequencies[] = {
6587         2412, 2417, 2422, 2427,
6588         2432, 2437, 2442, 2447,
6589         2452, 2457, 2462, 2467,
6590         2472, 2484
6591 };
6592
6593 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
6594
6595 static const long ipw2100_rates_11b[] = {
6596         1000000,
6597         2000000,
6598         5500000,
6599         11000000
6600 };
6601
6602 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6603
6604 static int ipw2100_wx_get_name(struct net_device *dev,
6605                                struct iw_request_info *info,
6606                                union iwreq_data *wrqu, char *extra)
6607 {
6608         /*
6609          * This can be called at any time.  No action lock required
6610          */
6611
6612         struct ipw2100_priv *priv = ieee80211_priv(dev);
6613         if (!(priv->status & STATUS_ASSOCIATED))
6614                 strcpy(wrqu->name, "unassociated");
6615         else
6616                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6617
6618         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6619         return 0;
6620 }
6621
6622 static int ipw2100_wx_set_freq(struct net_device *dev,
6623                                struct iw_request_info *info,
6624                                union iwreq_data *wrqu, char *extra)
6625 {
6626         struct ipw2100_priv *priv = ieee80211_priv(dev);
6627         struct iw_freq *fwrq = &wrqu->freq;
6628         int err = 0;
6629
6630         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6631                 return -EOPNOTSUPP;
6632
6633         mutex_lock(&priv->action_mutex);
6634         if (!(priv->status & STATUS_INITIALIZED)) {
6635                 err = -EIO;
6636                 goto done;
6637         }
6638
6639         /* if setting by freq convert to channel */
6640         if (fwrq->e == 1) {
6641                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6642                         int f = fwrq->m / 100000;
6643                         int c = 0;
6644
6645                         while ((c < REG_MAX_CHANNEL) &&
6646                                (f != ipw2100_frequencies[c]))
6647                                 c++;
6648
6649                         /* hack to fall through */
6650                         fwrq->e = 0;
6651                         fwrq->m = c + 1;
6652                 }
6653         }
6654
6655         if (fwrq->e > 0 || fwrq->m > 1000) {
6656                 err = -EOPNOTSUPP;
6657                 goto done;
6658         } else {                /* Set the channel */
6659                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6660                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6661         }
6662
6663       done:
6664         mutex_unlock(&priv->action_mutex);
6665         return err;
6666 }
6667
6668 static int ipw2100_wx_get_freq(struct net_device *dev,
6669                                struct iw_request_info *info,
6670                                union iwreq_data *wrqu, char *extra)
6671 {
6672         /*
6673          * This can be called at any time.  No action lock required
6674          */
6675
6676         struct ipw2100_priv *priv = ieee80211_priv(dev);
6677
6678         wrqu->freq.e = 0;
6679
6680         /* If we are associated, trying to associate, or have a statically
6681          * configured CHANNEL then return that; otherwise return ANY */
6682         if (priv->config & CFG_STATIC_CHANNEL ||
6683             priv->status & STATUS_ASSOCIATED)
6684                 wrqu->freq.m = priv->channel;
6685         else
6686                 wrqu->freq.m = 0;
6687
6688         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6689         return 0;
6690
6691 }
6692
6693 static int ipw2100_wx_set_mode(struct net_device *dev,
6694                                struct iw_request_info *info,
6695                                union iwreq_data *wrqu, char *extra)
6696 {
6697         struct ipw2100_priv *priv = ieee80211_priv(dev);
6698         int err = 0;
6699
6700         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6701
6702         if (wrqu->mode == priv->ieee->iw_mode)
6703                 return 0;
6704
6705         mutex_lock(&priv->action_mutex);
6706         if (!(priv->status & STATUS_INITIALIZED)) {
6707                 err = -EIO;
6708                 goto done;
6709         }
6710
6711         switch (wrqu->mode) {
6712 #ifdef CONFIG_IPW2100_MONITOR
6713         case IW_MODE_MONITOR:
6714                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6715                 break;
6716 #endif                          /* CONFIG_IPW2100_MONITOR */
6717         case IW_MODE_ADHOC:
6718                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6719                 break;
6720         case IW_MODE_INFRA:
6721         case IW_MODE_AUTO:
6722         default:
6723                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6724                 break;
6725         }
6726
6727       done:
6728         mutex_unlock(&priv->action_mutex);
6729         return err;
6730 }
6731
6732 static int ipw2100_wx_get_mode(struct net_device *dev,
6733                                struct iw_request_info *info,
6734                                union iwreq_data *wrqu, char *extra)
6735 {
6736         /*
6737          * This can be called at any time.  No action lock required
6738          */
6739
6740         struct ipw2100_priv *priv = ieee80211_priv(dev);
6741
6742         wrqu->mode = priv->ieee->iw_mode;
6743         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6744
6745         return 0;
6746 }
6747
6748 #define POWER_MODES 5
6749
6750 /* Values are in microsecond */
6751 static const s32 timeout_duration[POWER_MODES] = {
6752         350000,
6753         250000,
6754         75000,
6755         37000,
6756         25000,
6757 };
6758
6759 static const s32 period_duration[POWER_MODES] = {
6760         400000,
6761         700000,
6762         1000000,
6763         1000000,
6764         1000000
6765 };
6766
6767 static int ipw2100_wx_get_range(struct net_device *dev,
6768                                 struct iw_request_info *info,
6769                                 union iwreq_data *wrqu, char *extra)
6770 {
6771         /*
6772          * This can be called at any time.  No action lock required
6773          */
6774
6775         struct ipw2100_priv *priv = ieee80211_priv(dev);
6776         struct iw_range *range = (struct iw_range *)extra;
6777         u16 val;
6778         int i, level;
6779
6780         wrqu->data.length = sizeof(*range);
6781         memset(range, 0, sizeof(*range));
6782
6783         /* Let's try to keep this struct in the same order as in
6784          * linux/include/wireless.h
6785          */
6786
6787         /* TODO: See what values we can set, and remove the ones we can't
6788          * set, or fill them with some default data.
6789          */
6790
6791         /* ~5 Mb/s real (802.11b) */
6792         range->throughput = 5 * 1000 * 1000;
6793
6794 //      range->sensitivity;     /* signal level threshold range */
6795
6796         range->max_qual.qual = 100;
6797         /* TODO: Find real max RSSI and stick here */
6798         range->max_qual.level = 0;
6799         range->max_qual.noise = 0;
6800         range->max_qual.updated = 7;    /* Updated all three */
6801
6802         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6803         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6804         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6805         range->avg_qual.noise = 0;
6806         range->avg_qual.updated = 7;    /* Updated all three */
6807
6808         range->num_bitrates = RATE_COUNT;
6809
6810         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6811                 range->bitrate[i] = ipw2100_rates_11b[i];
6812         }
6813
6814         range->min_rts = MIN_RTS_THRESHOLD;
6815         range->max_rts = MAX_RTS_THRESHOLD;
6816         range->min_frag = MIN_FRAG_THRESHOLD;
6817         range->max_frag = MAX_FRAG_THRESHOLD;
6818
6819         range->min_pmp = period_duration[0];    /* Minimal PM period */
6820         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6821         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6822         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6823
6824         /* How to decode max/min PM period */
6825         range->pmp_flags = IW_POWER_PERIOD;
6826         /* How to decode max/min PM period */
6827         range->pmt_flags = IW_POWER_TIMEOUT;
6828         /* What PM options are supported */
6829         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6830
6831         range->encoding_size[0] = 5;
6832         range->encoding_size[1] = 13;   /* Different token sizes */
6833         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6834         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6835 //      range->encoding_login_index;            /* token index for login token */
6836
6837         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6838                 range->txpower_capa = IW_TXPOW_DBM;
6839                 range->num_txpower = IW_MAX_TXPOWER;
6840                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6841                      i < IW_MAX_TXPOWER;
6842                      i++, level -=
6843                      ((IPW_TX_POWER_MAX_DBM -
6844                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6845                         range->txpower[i] = level / 16;
6846         } else {
6847                 range->txpower_capa = 0;
6848                 range->num_txpower = 0;
6849         }
6850
6851         /* Set the Wireless Extension versions */
6852         range->we_version_compiled = WIRELESS_EXT;
6853         range->we_version_source = 18;
6854
6855 //      range->retry_capa;      /* What retry options are supported */
6856 //      range->retry_flags;     /* How to decode max/min retry limit */
6857 //      range->r_time_flags;    /* How to decode max/min retry life */
6858 //      range->min_retry;       /* Minimal number of retries */
6859 //      range->max_retry;       /* Maximal number of retries */
6860 //      range->min_r_time;      /* Minimal retry lifetime */
6861 //      range->max_r_time;      /* Maximal retry lifetime */
6862
6863         range->num_channels = FREQ_COUNT;
6864
6865         val = 0;
6866         for (i = 0; i < FREQ_COUNT; i++) {
6867                 // TODO: Include only legal frequencies for some countries
6868 //              if (local->channel_mask & (1 << i)) {
6869                 range->freq[val].i = i + 1;
6870                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6871                 range->freq[val].e = 1;
6872                 val++;
6873 //              }
6874                 if (val == IW_MAX_FREQUENCIES)
6875                         break;
6876         }
6877         range->num_frequency = val;
6878
6879         /* Event capability (kernel + driver) */
6880         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6881                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6882         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6883
6884         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6885                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6886
6887         IPW_DEBUG_WX("GET Range\n");
6888
6889         return 0;
6890 }
6891
6892 static int ipw2100_wx_set_wap(struct net_device *dev,
6893                               struct iw_request_info *info,
6894                               union iwreq_data *wrqu, char *extra)
6895 {
6896         struct ipw2100_priv *priv = ieee80211_priv(dev);
6897         int err = 0;
6898
6899         static const unsigned char any[] = {
6900                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6901         };
6902         static const unsigned char off[] = {
6903                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6904         };
6905
6906         // sanity checks
6907         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6908                 return -EINVAL;
6909
6910         mutex_lock(&priv->action_mutex);
6911         if (!(priv->status & STATUS_INITIALIZED)) {
6912                 err = -EIO;
6913                 goto done;
6914         }
6915
6916         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6917             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6918                 /* we disable mandatory BSSID association */
6919                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6920                 priv->config &= ~CFG_STATIC_BSSID;
6921                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6922                 goto done;
6923         }
6924
6925         priv->config |= CFG_STATIC_BSSID;
6926         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6927
6928         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6929
6930         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6931
6932       done:
6933         mutex_unlock(&priv->action_mutex);
6934         return err;
6935 }
6936
6937 static int ipw2100_wx_get_wap(struct net_device *dev,
6938                               struct iw_request_info *info,
6939                               union iwreq_data *wrqu, char *extra)
6940 {
6941         /*
6942          * This can be called at any time.  No action lock required
6943          */
6944
6945         struct ipw2100_priv *priv = ieee80211_priv(dev);
6946
6947         /* If we are associated, trying to associate, or have a statically
6948          * configured BSSID then return that; otherwise return ANY */
6949         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6950                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6951                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6952         } else
6953                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6954
6955         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6956         return 0;
6957 }
6958
6959 static int ipw2100_wx_set_essid(struct net_device *dev,
6960                                 struct iw_request_info *info,
6961                                 union iwreq_data *wrqu, char *extra)
6962 {
6963         struct ipw2100_priv *priv = ieee80211_priv(dev);
6964         char *essid = "";       /* ANY */
6965         int length = 0;
6966         int err = 0;
6967         DECLARE_SSID_BUF(ssid);
6968
6969         mutex_lock(&priv->action_mutex);
6970         if (!(priv->status & STATUS_INITIALIZED)) {
6971                 err = -EIO;
6972                 goto done;
6973         }
6974
6975         if (wrqu->essid.flags && wrqu->essid.length) {
6976                 length = wrqu->essid.length;
6977                 essid = extra;
6978         }
6979
6980         if (length == 0) {
6981                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6982                 priv->config &= ~CFG_STATIC_ESSID;
6983                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6984                 goto done;
6985         }
6986
6987         length = min(length, IW_ESSID_MAX_SIZE);
6988
6989         priv->config |= CFG_STATIC_ESSID;
6990
6991         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6992                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6993                 err = 0;
6994                 goto done;
6995         }
6996
6997         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
6998                      print_ssid(ssid, essid, length), length);
6999
7000         priv->essid_len = length;
7001         memcpy(priv->essid, essid, priv->essid_len);
7002
7003         err = ipw2100_set_essid(priv, essid, length, 0);
7004
7005       done:
7006         mutex_unlock(&priv->action_mutex);
7007         return err;
7008 }
7009
7010 static int ipw2100_wx_get_essid(struct net_device *dev,
7011                                 struct iw_request_info *info,
7012                                 union iwreq_data *wrqu, char *extra)
7013 {
7014         /*
7015          * This can be called at any time.  No action lock required
7016          */
7017
7018         struct ipw2100_priv *priv = ieee80211_priv(dev);
7019         DECLARE_SSID_BUF(ssid);
7020
7021         /* If we are associated, trying to associate, or have a statically
7022          * configured ESSID then return that; otherwise return ANY */
7023         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7024                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7025                              print_ssid(ssid, priv->essid, priv->essid_len));
7026                 memcpy(extra, priv->essid, priv->essid_len);
7027                 wrqu->essid.length = priv->essid_len;
7028                 wrqu->essid.flags = 1;  /* active */
7029         } else {
7030                 IPW_DEBUG_WX("Getting essid: ANY\n");
7031                 wrqu->essid.length = 0;
7032                 wrqu->essid.flags = 0;  /* active */
7033         }
7034
7035         return 0;
7036 }
7037
7038 static int ipw2100_wx_set_nick(struct net_device *dev,
7039                                struct iw_request_info *info,
7040                                union iwreq_data *wrqu, char *extra)
7041 {
7042         /*
7043          * This can be called at any time.  No action lock required
7044          */
7045
7046         struct ipw2100_priv *priv = ieee80211_priv(dev);
7047
7048         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7049                 return -E2BIG;
7050
7051         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7052         memset(priv->nick, 0, sizeof(priv->nick));
7053         memcpy(priv->nick, extra, wrqu->data.length);
7054
7055         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7056
7057         return 0;
7058 }
7059
7060 static int ipw2100_wx_get_nick(struct net_device *dev,
7061                                struct iw_request_info *info,
7062                                union iwreq_data *wrqu, char *extra)
7063 {
7064         /*
7065          * This can be called at any time.  No action lock required
7066          */
7067
7068         struct ipw2100_priv *priv = ieee80211_priv(dev);
7069
7070         wrqu->data.length = strlen(priv->nick);
7071         memcpy(extra, priv->nick, wrqu->data.length);
7072         wrqu->data.flags = 1;   /* active */
7073
7074         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7075
7076         return 0;
7077 }
7078
7079 static int ipw2100_wx_set_rate(struct net_device *dev,
7080                                struct iw_request_info *info,
7081                                union iwreq_data *wrqu, char *extra)
7082 {
7083         struct ipw2100_priv *priv = ieee80211_priv(dev);
7084         u32 target_rate = wrqu->bitrate.value;
7085         u32 rate;
7086         int err = 0;
7087
7088         mutex_lock(&priv->action_mutex);
7089         if (!(priv->status & STATUS_INITIALIZED)) {
7090                 err = -EIO;
7091                 goto done;
7092         }
7093
7094         rate = 0;
7095
7096         if (target_rate == 1000000 ||
7097             (!wrqu->bitrate.fixed && target_rate > 1000000))
7098                 rate |= TX_RATE_1_MBIT;
7099         if (target_rate == 2000000 ||
7100             (!wrqu->bitrate.fixed && target_rate > 2000000))
7101                 rate |= TX_RATE_2_MBIT;
7102         if (target_rate == 5500000 ||
7103             (!wrqu->bitrate.fixed && target_rate > 5500000))
7104                 rate |= TX_RATE_5_5_MBIT;
7105         if (target_rate == 11000000 ||
7106             (!wrqu->bitrate.fixed && target_rate > 11000000))
7107                 rate |= TX_RATE_11_MBIT;
7108         if (rate == 0)
7109                 rate = DEFAULT_TX_RATES;
7110
7111         err = ipw2100_set_tx_rates(priv, rate, 0);
7112
7113         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7114       done:
7115         mutex_unlock(&priv->action_mutex);
7116         return err;
7117 }
7118
7119 static int ipw2100_wx_get_rate(struct net_device *dev,
7120                                struct iw_request_info *info,
7121                                union iwreq_data *wrqu, char *extra)
7122 {
7123         struct ipw2100_priv *priv = ieee80211_priv(dev);
7124         int val;
7125         int len = sizeof(val);
7126         int err = 0;
7127
7128         if (!(priv->status & STATUS_ENABLED) ||
7129             priv->status & STATUS_RF_KILL_MASK ||
7130             !(priv->status & STATUS_ASSOCIATED)) {
7131                 wrqu->bitrate.value = 0;
7132                 return 0;
7133         }
7134
7135         mutex_lock(&priv->action_mutex);
7136         if (!(priv->status & STATUS_INITIALIZED)) {
7137                 err = -EIO;
7138                 goto done;
7139         }
7140
7141         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7142         if (err) {
7143                 IPW_DEBUG_WX("failed querying ordinals.\n");
7144                 goto done;
7145         }
7146
7147         switch (val & TX_RATE_MASK) {
7148         case TX_RATE_1_MBIT:
7149                 wrqu->bitrate.value = 1000000;
7150                 break;
7151         case TX_RATE_2_MBIT:
7152                 wrqu->bitrate.value = 2000000;
7153                 break;
7154         case TX_RATE_5_5_MBIT:
7155                 wrqu->bitrate.value = 5500000;
7156                 break;
7157         case TX_RATE_11_MBIT:
7158                 wrqu->bitrate.value = 11000000;
7159                 break;
7160         default:
7161                 wrqu->bitrate.value = 0;
7162         }
7163
7164         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7165
7166       done:
7167         mutex_unlock(&priv->action_mutex);
7168         return err;
7169 }
7170
7171 static int ipw2100_wx_set_rts(struct net_device *dev,
7172                               struct iw_request_info *info,
7173                               union iwreq_data *wrqu, char *extra)
7174 {
7175         struct ipw2100_priv *priv = ieee80211_priv(dev);
7176         int value, err;
7177
7178         /* Auto RTS not yet supported */
7179         if (wrqu->rts.fixed == 0)
7180                 return -EINVAL;
7181
7182         mutex_lock(&priv->action_mutex);
7183         if (!(priv->status & STATUS_INITIALIZED)) {
7184                 err = -EIO;
7185                 goto done;
7186         }
7187
7188         if (wrqu->rts.disabled)
7189                 value = priv->rts_threshold | RTS_DISABLED;
7190         else {
7191                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7192                         err = -EINVAL;
7193                         goto done;
7194                 }
7195                 value = wrqu->rts.value;
7196         }
7197
7198         err = ipw2100_set_rts_threshold(priv, value);
7199
7200         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7201       done:
7202         mutex_unlock(&priv->action_mutex);
7203         return err;
7204 }
7205
7206 static int ipw2100_wx_get_rts(struct net_device *dev,
7207                               struct iw_request_info *info,
7208                               union iwreq_data *wrqu, char *extra)
7209 {
7210         /*
7211          * This can be called at any time.  No action lock required
7212          */
7213
7214         struct ipw2100_priv *priv = ieee80211_priv(dev);
7215
7216         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7217         wrqu->rts.fixed = 1;    /* no auto select */
7218
7219         /* If RTS is set to the default value, then it is disabled */
7220         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7221
7222         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7223
7224         return 0;
7225 }
7226
7227 static int ipw2100_wx_set_txpow(struct net_device *dev,
7228                                 struct iw_request_info *info,
7229                                 union iwreq_data *wrqu, char *extra)
7230 {
7231         struct ipw2100_priv *priv = ieee80211_priv(dev);
7232         int err = 0, value;
7233         
7234         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7235                 return -EINPROGRESS;
7236
7237         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7238                 return 0;
7239
7240         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7241                 return -EINVAL;
7242
7243         if (wrqu->txpower.fixed == 0)
7244                 value = IPW_TX_POWER_DEFAULT;
7245         else {
7246                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7247                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7248                         return -EINVAL;
7249
7250                 value = wrqu->txpower.value;
7251         }
7252
7253         mutex_lock(&priv->action_mutex);
7254         if (!(priv->status & STATUS_INITIALIZED)) {
7255                 err = -EIO;
7256                 goto done;
7257         }
7258
7259         err = ipw2100_set_tx_power(priv, value);
7260
7261         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7262
7263       done:
7264         mutex_unlock(&priv->action_mutex);
7265         return err;
7266 }
7267
7268 static int ipw2100_wx_get_txpow(struct net_device *dev,
7269                                 struct iw_request_info *info,
7270                                 union iwreq_data *wrqu, char *extra)
7271 {
7272         /*
7273          * This can be called at any time.  No action lock required
7274          */
7275
7276         struct ipw2100_priv *priv = ieee80211_priv(dev);
7277
7278         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7279
7280         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7281                 wrqu->txpower.fixed = 0;
7282                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7283         } else {
7284                 wrqu->txpower.fixed = 1;
7285                 wrqu->txpower.value = priv->tx_power;
7286         }
7287
7288         wrqu->txpower.flags = IW_TXPOW_DBM;
7289
7290         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7291
7292         return 0;
7293 }
7294
7295 static int ipw2100_wx_set_frag(struct net_device *dev,
7296                                struct iw_request_info *info,
7297                                union iwreq_data *wrqu, char *extra)
7298 {
7299         /*
7300          * This can be called at any time.  No action lock required
7301          */
7302
7303         struct ipw2100_priv *priv = ieee80211_priv(dev);
7304
7305         if (!wrqu->frag.fixed)
7306                 return -EINVAL;
7307
7308         if (wrqu->frag.disabled) {
7309                 priv->frag_threshold |= FRAG_DISABLED;
7310                 priv->ieee->fts = DEFAULT_FTS;
7311         } else {
7312                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7313                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7314                         return -EINVAL;
7315
7316                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7317                 priv->frag_threshold = priv->ieee->fts;
7318         }
7319
7320         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7321
7322         return 0;
7323 }
7324
7325 static int ipw2100_wx_get_frag(struct net_device *dev,
7326                                struct iw_request_info *info,
7327                                union iwreq_data *wrqu, char *extra)
7328 {
7329         /*
7330          * This can be called at any time.  No action lock required
7331          */
7332
7333         struct ipw2100_priv *priv = ieee80211_priv(dev);
7334         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7335         wrqu->frag.fixed = 0;   /* no auto select */
7336         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7337
7338         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7339
7340         return 0;
7341 }
7342
7343 static int ipw2100_wx_set_retry(struct net_device *dev,
7344                                 struct iw_request_info *info,
7345                                 union iwreq_data *wrqu, char *extra)
7346 {
7347         struct ipw2100_priv *priv = ieee80211_priv(dev);
7348         int err = 0;
7349
7350         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7351                 return -EINVAL;
7352
7353         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7354                 return 0;
7355
7356         mutex_lock(&priv->action_mutex);
7357         if (!(priv->status & STATUS_INITIALIZED)) {
7358                 err = -EIO;
7359                 goto done;
7360         }
7361
7362         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7363                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7364                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7365                              wrqu->retry.value);
7366                 goto done;
7367         }
7368
7369         if (wrqu->retry.flags & IW_RETRY_LONG) {
7370                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7371                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7372                              wrqu->retry.value);
7373                 goto done;
7374         }
7375
7376         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7377         if (!err)
7378                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7379
7380         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7381
7382       done:
7383         mutex_unlock(&priv->action_mutex);
7384         return err;
7385 }
7386
7387 static int ipw2100_wx_get_retry(struct net_device *dev,
7388                                 struct iw_request_info *info,
7389                                 union iwreq_data *wrqu, char *extra)
7390 {
7391         /*
7392          * This can be called at any time.  No action lock required
7393          */
7394
7395         struct ipw2100_priv *priv = ieee80211_priv(dev);
7396
7397         wrqu->retry.disabled = 0;       /* can't be disabled */
7398
7399         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7400                 return -EINVAL;
7401
7402         if (wrqu->retry.flags & IW_RETRY_LONG) {
7403                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7404                 wrqu->retry.value = priv->long_retry_limit;
7405         } else {
7406                 wrqu->retry.flags =
7407                     (priv->short_retry_limit !=
7408                      priv->long_retry_limit) ?
7409                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7410
7411                 wrqu->retry.value = priv->short_retry_limit;
7412         }
7413
7414         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7415
7416         return 0;
7417 }
7418
7419 static int ipw2100_wx_set_scan(struct net_device *dev,
7420                                struct iw_request_info *info,
7421                                union iwreq_data *wrqu, char *extra)
7422 {
7423         struct ipw2100_priv *priv = ieee80211_priv(dev);
7424         int err = 0;
7425
7426         mutex_lock(&priv->action_mutex);
7427         if (!(priv->status & STATUS_INITIALIZED)) {
7428                 err = -EIO;
7429                 goto done;
7430         }
7431
7432         IPW_DEBUG_WX("Initiating scan...\n");
7433
7434         priv->user_requested_scan = 1;
7435         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7436                 IPW_DEBUG_WX("Start scan failed.\n");
7437
7438                 /* TODO: Mark a scan as pending so when hardware initialized
7439                  *       a scan starts */
7440         }
7441
7442       done:
7443         mutex_unlock(&priv->action_mutex);
7444         return err;
7445 }
7446
7447 static int ipw2100_wx_get_scan(struct net_device *dev,
7448                                struct iw_request_info *info,
7449                                union iwreq_data *wrqu, char *extra)
7450 {
7451         /*
7452          * This can be called at any time.  No action lock required
7453          */
7454
7455         struct ipw2100_priv *priv = ieee80211_priv(dev);
7456         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7457 }
7458
7459 /*
7460  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7461  */
7462 static int ipw2100_wx_set_encode(struct net_device *dev,
7463                                  struct iw_request_info *info,
7464                                  union iwreq_data *wrqu, char *key)
7465 {
7466         /*
7467          * No check of STATUS_INITIALIZED required
7468          */
7469
7470         struct ipw2100_priv *priv = ieee80211_priv(dev);
7471         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7472 }
7473
7474 static int ipw2100_wx_get_encode(struct net_device *dev,
7475                                  struct iw_request_info *info,
7476                                  union iwreq_data *wrqu, char *key)
7477 {
7478         /*
7479          * This can be called at any time.  No action lock required
7480          */
7481
7482         struct ipw2100_priv *priv = ieee80211_priv(dev);
7483         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7484 }
7485
7486 static int ipw2100_wx_set_power(struct net_device *dev,
7487                                 struct iw_request_info *info,
7488                                 union iwreq_data *wrqu, char *extra)
7489 {
7490         struct ipw2100_priv *priv = ieee80211_priv(dev);
7491         int err = 0;
7492
7493         mutex_lock(&priv->action_mutex);
7494         if (!(priv->status & STATUS_INITIALIZED)) {
7495                 err = -EIO;
7496                 goto done;
7497         }
7498
7499         if (wrqu->power.disabled) {
7500                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7501                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7502                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7503                 goto done;
7504         }
7505
7506         switch (wrqu->power.flags & IW_POWER_MODE) {
7507         case IW_POWER_ON:       /* If not specified */
7508         case IW_POWER_MODE:     /* If set all mask */
7509         case IW_POWER_ALL_R:    /* If explicitly state all */
7510                 break;
7511         default:                /* Otherwise we don't support it */
7512                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7513                              wrqu->power.flags);
7514                 err = -EOPNOTSUPP;
7515                 goto done;
7516         }
7517
7518         /* If the user hasn't specified a power management mode yet, default
7519          * to BATTERY */
7520         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7521         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7522
7523         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7524
7525       done:
7526         mutex_unlock(&priv->action_mutex);
7527         return err;
7528
7529 }
7530
7531 static int ipw2100_wx_get_power(struct net_device *dev,
7532                                 struct iw_request_info *info,
7533                                 union iwreq_data *wrqu, char *extra)
7534 {
7535         /*
7536          * This can be called at any time.  No action lock required
7537          */
7538
7539         struct ipw2100_priv *priv = ieee80211_priv(dev);
7540
7541         if (!(priv->power_mode & IPW_POWER_ENABLED))
7542                 wrqu->power.disabled = 1;
7543         else {
7544                 wrqu->power.disabled = 0;
7545                 wrqu->power.flags = 0;
7546         }
7547
7548         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7549
7550         return 0;
7551 }
7552
7553 /*
7554  * WE-18 WPA support
7555  */
7556
7557 /* SIOCSIWGENIE */
7558 static int ipw2100_wx_set_genie(struct net_device *dev,
7559                                 struct iw_request_info *info,
7560                                 union iwreq_data *wrqu, char *extra)
7561 {
7562
7563         struct ipw2100_priv *priv = ieee80211_priv(dev);
7564         struct ieee80211_device *ieee = priv->ieee;
7565         u8 *buf;
7566
7567         if (!ieee->wpa_enabled)
7568                 return -EOPNOTSUPP;
7569
7570         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7571             (wrqu->data.length && extra == NULL))
7572                 return -EINVAL;
7573
7574         if (wrqu->data.length) {
7575                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7576                 if (buf == NULL)
7577                         return -ENOMEM;
7578
7579                 kfree(ieee->wpa_ie);
7580                 ieee->wpa_ie = buf;
7581                 ieee->wpa_ie_len = wrqu->data.length;
7582         } else {
7583                 kfree(ieee->wpa_ie);
7584                 ieee->wpa_ie = NULL;
7585                 ieee->wpa_ie_len = 0;
7586         }
7587
7588         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7589
7590         return 0;
7591 }
7592
7593 /* SIOCGIWGENIE */
7594 static int ipw2100_wx_get_genie(struct net_device *dev,
7595                                 struct iw_request_info *info,
7596                                 union iwreq_data *wrqu, char *extra)
7597 {
7598         struct ipw2100_priv *priv = ieee80211_priv(dev);
7599         struct ieee80211_device *ieee = priv->ieee;
7600
7601         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7602                 wrqu->data.length = 0;
7603                 return 0;
7604         }
7605
7606         if (wrqu->data.length < ieee->wpa_ie_len)
7607                 return -E2BIG;
7608
7609         wrqu->data.length = ieee->wpa_ie_len;
7610         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7611
7612         return 0;
7613 }
7614
7615 /* SIOCSIWAUTH */
7616 static int ipw2100_wx_set_auth(struct net_device *dev,
7617                                struct iw_request_info *info,
7618                                union iwreq_data *wrqu, char *extra)
7619 {
7620         struct ipw2100_priv *priv = ieee80211_priv(dev);
7621         struct ieee80211_device *ieee = priv->ieee;
7622         struct iw_param *param = &wrqu->param;
7623         struct lib80211_crypt_data *crypt;
7624         unsigned long flags;
7625         int ret = 0;
7626
7627         switch (param->flags & IW_AUTH_INDEX) {
7628         case IW_AUTH_WPA_VERSION:
7629         case IW_AUTH_CIPHER_PAIRWISE:
7630         case IW_AUTH_CIPHER_GROUP:
7631         case IW_AUTH_KEY_MGMT:
7632                 /*
7633                  * ipw2200 does not use these parameters
7634                  */
7635                 break;
7636
7637         case IW_AUTH_TKIP_COUNTERMEASURES:
7638                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7639                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7640                         break;
7641
7642                 flags = crypt->ops->get_flags(crypt->priv);
7643
7644                 if (param->value)
7645                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7646                 else
7647                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7648
7649                 crypt->ops->set_flags(flags, crypt->priv);
7650
7651                 break;
7652
7653         case IW_AUTH_DROP_UNENCRYPTED:{
7654                         /* HACK:
7655                          *
7656                          * wpa_supplicant calls set_wpa_enabled when the driver
7657                          * is loaded and unloaded, regardless of if WPA is being
7658                          * used.  No other calls are made which can be used to
7659                          * determine if encryption will be used or not prior to
7660                          * association being expected.  If encryption is not being
7661                          * used, drop_unencrypted is set to false, else true -- we
7662                          * can use this to determine if the CAP_PRIVACY_ON bit should
7663                          * be set.
7664                          */
7665                         struct ieee80211_security sec = {
7666                                 .flags = SEC_ENABLED,
7667                                 .enabled = param->value,
7668                         };
7669                         priv->ieee->drop_unencrypted = param->value;
7670                         /* We only change SEC_LEVEL for open mode. Others
7671                          * are set by ipw_wpa_set_encryption.
7672                          */
7673                         if (!param->value) {
7674                                 sec.flags |= SEC_LEVEL;
7675                                 sec.level = SEC_LEVEL_0;
7676                         } else {
7677                                 sec.flags |= SEC_LEVEL;
7678                                 sec.level = SEC_LEVEL_1;
7679                         }
7680                         if (priv->ieee->set_security)
7681                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7682                         break;
7683                 }
7684
7685         case IW_AUTH_80211_AUTH_ALG:
7686                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7687                 break;
7688
7689         case IW_AUTH_WPA_ENABLED:
7690                 ret = ipw2100_wpa_enable(priv, param->value);
7691                 break;
7692
7693         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7694                 ieee->ieee802_1x = param->value;
7695                 break;
7696
7697                 //case IW_AUTH_ROAMING_CONTROL:
7698         case IW_AUTH_PRIVACY_INVOKED:
7699                 ieee->privacy_invoked = param->value;
7700                 break;
7701
7702         default:
7703                 return -EOPNOTSUPP;
7704         }
7705         return ret;
7706 }
7707
7708 /* SIOCGIWAUTH */
7709 static int ipw2100_wx_get_auth(struct net_device *dev,
7710                                struct iw_request_info *info,
7711                                union iwreq_data *wrqu, char *extra)
7712 {
7713         struct ipw2100_priv *priv = ieee80211_priv(dev);
7714         struct ieee80211_device *ieee = priv->ieee;
7715         struct lib80211_crypt_data *crypt;
7716         struct iw_param *param = &wrqu->param;
7717         int ret = 0;
7718
7719         switch (param->flags & IW_AUTH_INDEX) {
7720         case IW_AUTH_WPA_VERSION:
7721         case IW_AUTH_CIPHER_PAIRWISE:
7722         case IW_AUTH_CIPHER_GROUP:
7723         case IW_AUTH_KEY_MGMT:
7724                 /*
7725                  * wpa_supplicant will control these internally
7726                  */
7727                 ret = -EOPNOTSUPP;
7728                 break;
7729
7730         case IW_AUTH_TKIP_COUNTERMEASURES:
7731                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7732                 if (!crypt || !crypt->ops->get_flags) {
7733                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7734                                           "crypt not set!\n");
7735                         break;
7736                 }
7737
7738                 param->value = (crypt->ops->get_flags(crypt->priv) &
7739                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7740
7741                 break;
7742
7743         case IW_AUTH_DROP_UNENCRYPTED:
7744                 param->value = ieee->drop_unencrypted;
7745                 break;
7746
7747         case IW_AUTH_80211_AUTH_ALG:
7748                 param->value = priv->ieee->sec.auth_mode;
7749                 break;
7750
7751         case IW_AUTH_WPA_ENABLED:
7752                 param->value = ieee->wpa_enabled;
7753                 break;
7754
7755         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7756                 param->value = ieee->ieee802_1x;
7757                 break;
7758
7759         case IW_AUTH_ROAMING_CONTROL:
7760         case IW_AUTH_PRIVACY_INVOKED:
7761                 param->value = ieee->privacy_invoked;
7762                 break;
7763
7764         default:
7765                 return -EOPNOTSUPP;
7766         }
7767         return 0;
7768 }
7769
7770 /* SIOCSIWENCODEEXT */
7771 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7772                                     struct iw_request_info *info,
7773                                     union iwreq_data *wrqu, char *extra)
7774 {
7775         struct ipw2100_priv *priv = ieee80211_priv(dev);
7776         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7777 }
7778
7779 /* SIOCGIWENCODEEXT */
7780 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7781                                     struct iw_request_info *info,
7782                                     union iwreq_data *wrqu, char *extra)
7783 {
7784         struct ipw2100_priv *priv = ieee80211_priv(dev);
7785         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7786 }
7787
7788 /* SIOCSIWMLME */
7789 static int ipw2100_wx_set_mlme(struct net_device *dev,
7790                                struct iw_request_info *info,
7791                                union iwreq_data *wrqu, char *extra)
7792 {
7793         struct ipw2100_priv *priv = ieee80211_priv(dev);
7794         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7795         __le16 reason;
7796
7797         reason = cpu_to_le16(mlme->reason_code);
7798
7799         switch (mlme->cmd) {
7800         case IW_MLME_DEAUTH:
7801                 // silently ignore
7802                 break;
7803
7804         case IW_MLME_DISASSOC:
7805                 ipw2100_disassociate_bssid(priv);
7806                 break;
7807
7808         default:
7809                 return -EOPNOTSUPP;
7810         }
7811         return 0;
7812 }
7813
7814 /*
7815  *
7816  * IWPRIV handlers
7817  *
7818  */
7819 #ifdef CONFIG_IPW2100_MONITOR
7820 static int ipw2100_wx_set_promisc(struct net_device *dev,
7821                                   struct iw_request_info *info,
7822                                   union iwreq_data *wrqu, char *extra)
7823 {
7824         struct ipw2100_priv *priv = ieee80211_priv(dev);
7825         int *parms = (int *)extra;
7826         int enable = (parms[0] > 0);
7827         int err = 0;
7828
7829         mutex_lock(&priv->action_mutex);
7830         if (!(priv->status & STATUS_INITIALIZED)) {
7831                 err = -EIO;
7832                 goto done;
7833         }
7834
7835         if (enable) {
7836                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7837                         err = ipw2100_set_channel(priv, parms[1], 0);
7838                         goto done;
7839                 }
7840                 priv->channel = parms[1];
7841                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7842         } else {
7843                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7844                         err = ipw2100_switch_mode(priv, priv->last_mode);
7845         }
7846       done:
7847         mutex_unlock(&priv->action_mutex);
7848         return err;
7849 }
7850
7851 static int ipw2100_wx_reset(struct net_device *dev,
7852                             struct iw_request_info *info,
7853                             union iwreq_data *wrqu, char *extra)
7854 {
7855         struct ipw2100_priv *priv = ieee80211_priv(dev);
7856         if (priv->status & STATUS_INITIALIZED)
7857                 schedule_reset(priv);
7858         return 0;
7859 }
7860
7861 #endif
7862
7863 static int ipw2100_wx_set_powermode(struct net_device *dev,
7864                                     struct iw_request_info *info,
7865                                     union iwreq_data *wrqu, char *extra)
7866 {
7867         struct ipw2100_priv *priv = ieee80211_priv(dev);
7868         int err = 0, mode = *(int *)extra;
7869
7870         mutex_lock(&priv->action_mutex);
7871         if (!(priv->status & STATUS_INITIALIZED)) {
7872                 err = -EIO;
7873                 goto done;
7874         }
7875
7876         if ((mode < 0) || (mode > POWER_MODES))
7877                 mode = IPW_POWER_AUTO;
7878
7879         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7880                 err = ipw2100_set_power_mode(priv, mode);
7881       done:
7882         mutex_unlock(&priv->action_mutex);
7883         return err;
7884 }
7885
7886 #define MAX_POWER_STRING 80
7887 static int ipw2100_wx_get_powermode(struct net_device *dev,
7888                                     struct iw_request_info *info,
7889                                     union iwreq_data *wrqu, char *extra)
7890 {
7891         /*
7892          * This can be called at any time.  No action lock required
7893          */
7894
7895         struct ipw2100_priv *priv = ieee80211_priv(dev);
7896         int level = IPW_POWER_LEVEL(priv->power_mode);
7897         s32 timeout, period;
7898
7899         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7900                 snprintf(extra, MAX_POWER_STRING,
7901                          "Power save level: %d (Off)", level);
7902         } else {
7903                 switch (level) {
7904                 case IPW_POWER_MODE_CAM:
7905                         snprintf(extra, MAX_POWER_STRING,
7906                                  "Power save level: %d (None)", level);
7907                         break;
7908                 case IPW_POWER_AUTO:
7909                         snprintf(extra, MAX_POWER_STRING,
7910                                  "Power save level: %d (Auto)", level);
7911                         break;
7912                 default:
7913                         timeout = timeout_duration[level - 1] / 1000;
7914                         period = period_duration[level - 1] / 1000;
7915                         snprintf(extra, MAX_POWER_STRING,
7916                                  "Power save level: %d "
7917                                  "(Timeout %dms, Period %dms)",
7918                                  level, timeout, period);
7919                 }
7920         }
7921
7922         wrqu->data.length = strlen(extra) + 1;
7923
7924         return 0;
7925 }
7926
7927 static int ipw2100_wx_set_preamble(struct net_device *dev,
7928                                    struct iw_request_info *info,
7929                                    union iwreq_data *wrqu, char *extra)
7930 {
7931         struct ipw2100_priv *priv = ieee80211_priv(dev);
7932         int err, mode = *(int *)extra;
7933
7934         mutex_lock(&priv->action_mutex);
7935         if (!(priv->status & STATUS_INITIALIZED)) {
7936                 err = -EIO;
7937                 goto done;
7938         }
7939
7940         if (mode == 1)
7941                 priv->config |= CFG_LONG_PREAMBLE;
7942         else if (mode == 0)
7943                 priv->config &= ~CFG_LONG_PREAMBLE;
7944         else {
7945                 err = -EINVAL;
7946                 goto done;
7947         }
7948
7949         err = ipw2100_system_config(priv, 0);
7950
7951       done:
7952         mutex_unlock(&priv->action_mutex);
7953         return err;
7954 }
7955
7956 static int ipw2100_wx_get_preamble(struct net_device *dev,
7957                                    struct iw_request_info *info,
7958                                    union iwreq_data *wrqu, char *extra)
7959 {
7960         /*
7961          * This can be called at any time.  No action lock required
7962          */
7963
7964         struct ipw2100_priv *priv = ieee80211_priv(dev);
7965
7966         if (priv->config & CFG_LONG_PREAMBLE)
7967                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7968         else
7969                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7970
7971         return 0;
7972 }
7973
7974 #ifdef CONFIG_IPW2100_MONITOR
7975 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7976                                     struct iw_request_info *info,
7977                                     union iwreq_data *wrqu, char *extra)
7978 {
7979         struct ipw2100_priv *priv = ieee80211_priv(dev);
7980         int err, mode = *(int *)extra;
7981
7982         mutex_lock(&priv->action_mutex);
7983         if (!(priv->status & STATUS_INITIALIZED)) {
7984                 err = -EIO;
7985                 goto done;
7986         }
7987
7988         if (mode == 1)
7989                 priv->config |= CFG_CRC_CHECK;
7990         else if (mode == 0)
7991                 priv->config &= ~CFG_CRC_CHECK;
7992         else {
7993                 err = -EINVAL;
7994                 goto done;
7995         }
7996         err = 0;
7997
7998       done:
7999         mutex_unlock(&priv->action_mutex);
8000         return err;
8001 }
8002
8003 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8004                                     struct iw_request_info *info,
8005                                     union iwreq_data *wrqu, char *extra)
8006 {
8007         /*
8008          * This can be called at any time.  No action lock required
8009          */
8010
8011         struct ipw2100_priv *priv = ieee80211_priv(dev);
8012
8013         if (priv->config & CFG_CRC_CHECK)
8014                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8015         else
8016                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8017
8018         return 0;
8019 }
8020 #endif                          /* CONFIG_IPW2100_MONITOR */
8021
8022 static iw_handler ipw2100_wx_handlers[] = {
8023         NULL,                   /* SIOCSIWCOMMIT */
8024         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8025         NULL,                   /* SIOCSIWNWID */
8026         NULL,                   /* SIOCGIWNWID */
8027         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8028         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8029         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8030         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8031         NULL,                   /* SIOCSIWSENS */
8032         NULL,                   /* SIOCGIWSENS */
8033         NULL,                   /* SIOCSIWRANGE */
8034         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8035         NULL,                   /* SIOCSIWPRIV */
8036         NULL,                   /* SIOCGIWPRIV */
8037         NULL,                   /* SIOCSIWSTATS */
8038         NULL,                   /* SIOCGIWSTATS */
8039         NULL,                   /* SIOCSIWSPY */
8040         NULL,                   /* SIOCGIWSPY */
8041         NULL,                   /* SIOCGIWTHRSPY */
8042         NULL,                   /* SIOCWIWTHRSPY */
8043         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8044         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8045         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8046         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8047         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8048         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8049         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8050         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8051         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8052         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8053         NULL,                   /* -- hole -- */
8054         NULL,                   /* -- hole -- */
8055         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8056         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8057         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8058         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8059         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8060         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8061         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8062         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8063         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8064         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8065         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8066         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8067         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8068         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8069         NULL,                   /* -- hole -- */
8070         NULL,                   /* -- hole -- */
8071         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8072         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8073         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8074         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8075         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8076         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8077         NULL,                   /* SIOCSIWPMKSA */
8078 };
8079
8080 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8081 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8082 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8083 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8084 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8085 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8086 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8087 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8088
8089 static const struct iw_priv_args ipw2100_private_args[] = {
8090
8091 #ifdef CONFIG_IPW2100_MONITOR
8092         {
8093          IPW2100_PRIV_SET_MONITOR,
8094          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8095         {
8096          IPW2100_PRIV_RESET,
8097          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8098 #endif                          /* CONFIG_IPW2100_MONITOR */
8099
8100         {
8101          IPW2100_PRIV_SET_POWER,
8102          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8103         {
8104          IPW2100_PRIV_GET_POWER,
8105          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8106          "get_power"},
8107         {
8108          IPW2100_PRIV_SET_LONGPREAMBLE,
8109          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8110         {
8111          IPW2100_PRIV_GET_LONGPREAMBLE,
8112          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8113 #ifdef CONFIG_IPW2100_MONITOR
8114         {
8115          IPW2100_PRIV_SET_CRC_CHECK,
8116          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8117         {
8118          IPW2100_PRIV_GET_CRC_CHECK,
8119          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8120 #endif                          /* CONFIG_IPW2100_MONITOR */
8121 };
8122
8123 static iw_handler ipw2100_private_handler[] = {
8124 #ifdef CONFIG_IPW2100_MONITOR
8125         ipw2100_wx_set_promisc,
8126         ipw2100_wx_reset,
8127 #else                           /* CONFIG_IPW2100_MONITOR */
8128         NULL,
8129         NULL,
8130 #endif                          /* CONFIG_IPW2100_MONITOR */
8131         ipw2100_wx_set_powermode,
8132         ipw2100_wx_get_powermode,
8133         ipw2100_wx_set_preamble,
8134         ipw2100_wx_get_preamble,
8135 #ifdef CONFIG_IPW2100_MONITOR
8136         ipw2100_wx_set_crc_check,
8137         ipw2100_wx_get_crc_check,
8138 #else                           /* CONFIG_IPW2100_MONITOR */
8139         NULL,
8140         NULL,
8141 #endif                          /* CONFIG_IPW2100_MONITOR */
8142 };
8143
8144 /*
8145  * Get wireless statistics.
8146  * Called by /proc/net/wireless
8147  * Also called by SIOCGIWSTATS
8148  */
8149 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8150 {
8151         enum {
8152                 POOR = 30,
8153                 FAIR = 60,
8154                 GOOD = 80,
8155                 VERY_GOOD = 90,
8156                 EXCELLENT = 95,
8157                 PERFECT = 100
8158         };
8159         int rssi_qual;
8160         int tx_qual;
8161         int beacon_qual;
8162
8163         struct ipw2100_priv *priv = ieee80211_priv(dev);
8164         struct iw_statistics *wstats;
8165         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8166         u32 ord_len = sizeof(u32);
8167
8168         if (!priv)
8169                 return (struct iw_statistics *)NULL;
8170
8171         wstats = &priv->wstats;
8172
8173         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8174          * ipw2100_wx_wireless_stats seems to be called before fw is
8175          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8176          * and associated; if not associcated, the values are all meaningless
8177          * anyway, so set them all to NULL and INVALID */
8178         if (!(priv->status & STATUS_ASSOCIATED)) {
8179                 wstats->miss.beacon = 0;
8180                 wstats->discard.retries = 0;
8181                 wstats->qual.qual = 0;
8182                 wstats->qual.level = 0;
8183                 wstats->qual.noise = 0;
8184                 wstats->qual.updated = 7;
8185                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8186                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8187                 return wstats;
8188         }
8189
8190         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8191                                 &missed_beacons, &ord_len))
8192                 goto fail_get_ordinal;
8193
8194         /* If we don't have a connection the quality and level is 0 */
8195         if (!(priv->status & STATUS_ASSOCIATED)) {
8196                 wstats->qual.qual = 0;
8197                 wstats->qual.level = 0;
8198         } else {
8199                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8200                                         &rssi, &ord_len))
8201                         goto fail_get_ordinal;
8202                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8203                 if (rssi < 10)
8204                         rssi_qual = rssi * POOR / 10;
8205                 else if (rssi < 15)
8206                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8207                 else if (rssi < 20)
8208                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8209                 else if (rssi < 30)
8210                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8211                             10 + GOOD;
8212                 else
8213                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8214                             10 + VERY_GOOD;
8215
8216                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8217                                         &tx_retries, &ord_len))
8218                         goto fail_get_ordinal;
8219
8220                 if (tx_retries > 75)
8221                         tx_qual = (90 - tx_retries) * POOR / 15;
8222                 else if (tx_retries > 70)
8223                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8224                 else if (tx_retries > 65)
8225                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8226                 else if (tx_retries > 50)
8227                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8228                             15 + GOOD;
8229                 else
8230                         tx_qual = (50 - tx_retries) *
8231                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8232
8233                 if (missed_beacons > 50)
8234                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8235                 else if (missed_beacons > 40)
8236                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8237                             10 + POOR;
8238                 else if (missed_beacons > 32)
8239                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8240                             18 + FAIR;
8241                 else if (missed_beacons > 20)
8242                         beacon_qual = (32 - missed_beacons) *
8243                             (VERY_GOOD - GOOD) / 20 + GOOD;
8244                 else
8245                         beacon_qual = (20 - missed_beacons) *
8246                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8247
8248                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8249
8250 #ifdef CONFIG_IPW2100_DEBUG
8251                 if (beacon_qual == quality)
8252                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8253                 else if (tx_qual == quality)
8254                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8255                 else if (quality != 100)
8256                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8257                 else
8258                         IPW_DEBUG_WX("Quality not clamped.\n");
8259 #endif
8260
8261                 wstats->qual.qual = quality;
8262                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8263         }
8264
8265         wstats->qual.noise = 0;
8266         wstats->qual.updated = 7;
8267         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8268
8269         /* FIXME: this is percent and not a # */
8270         wstats->miss.beacon = missed_beacons;
8271
8272         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8273                                 &tx_failures, &ord_len))
8274                 goto fail_get_ordinal;
8275         wstats->discard.retries = tx_failures;
8276
8277         return wstats;
8278
8279       fail_get_ordinal:
8280         IPW_DEBUG_WX("failed querying ordinals.\n");
8281
8282         return (struct iw_statistics *)NULL;
8283 }
8284
8285 static struct iw_handler_def ipw2100_wx_handler_def = {
8286         .standard = ipw2100_wx_handlers,
8287         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8288         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8289         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8290         .private = (iw_handler *) ipw2100_private_handler,
8291         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8292         .get_wireless_stats = ipw2100_wx_wireless_stats,
8293 };
8294
8295 static void ipw2100_wx_event_work(struct work_struct *work)
8296 {
8297         struct ipw2100_priv *priv =
8298                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8299         union iwreq_data wrqu;
8300         int len = ETH_ALEN;
8301
8302         if (priv->status & STATUS_STOPPING)
8303                 return;
8304
8305         mutex_lock(&priv->action_mutex);
8306
8307         IPW_DEBUG_WX("enter\n");
8308
8309         mutex_unlock(&priv->action_mutex);
8310
8311         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8312
8313         /* Fetch BSSID from the hardware */
8314         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8315             priv->status & STATUS_RF_KILL_MASK ||
8316             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8317                                 &priv->bssid, &len)) {
8318                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8319         } else {
8320                 /* We now have the BSSID, so can finish setting to the full
8321                  * associated state */
8322                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8323                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8324                 priv->status &= ~STATUS_ASSOCIATING;
8325                 priv->status |= STATUS_ASSOCIATED;
8326                 netif_carrier_on(priv->net_dev);
8327                 netif_wake_queue(priv->net_dev);
8328         }
8329
8330         if (!(priv->status & STATUS_ASSOCIATED)) {
8331                 IPW_DEBUG_WX("Configuring ESSID\n");
8332                 mutex_lock(&priv->action_mutex);
8333                 /* This is a disassociation event, so kick the firmware to
8334                  * look for another AP */
8335                 if (priv->config & CFG_STATIC_ESSID)
8336                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8337                                           0);
8338                 else
8339                         ipw2100_set_essid(priv, NULL, 0, 0);
8340                 mutex_unlock(&priv->action_mutex);
8341         }
8342
8343         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8344 }
8345
8346 #define IPW2100_FW_MAJOR_VERSION 1
8347 #define IPW2100_FW_MINOR_VERSION 3
8348
8349 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8350 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8351
8352 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8353                              IPW2100_FW_MAJOR_VERSION)
8354
8355 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8356 "." __stringify(IPW2100_FW_MINOR_VERSION)
8357
8358 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8359
8360 /*
8361
8362 BINARY FIRMWARE HEADER FORMAT
8363
8364 offset      length   desc
8365 0           2        version
8366 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8367 4           4        fw_len
8368 8           4        uc_len
8369 C           fw_len   firmware data
8370 12 + fw_len uc_len   microcode data
8371
8372 */
8373
8374 struct ipw2100_fw_header {
8375         short version;
8376         short mode;
8377         unsigned int fw_size;
8378         unsigned int uc_size;
8379 } __attribute__ ((packed));
8380
8381 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8382 {
8383         struct ipw2100_fw_header *h =
8384             (struct ipw2100_fw_header *)fw->fw_entry->data;
8385
8386         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8387                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8388                        "(detected version id of %u). "
8389                        "See Documentation/networking/README.ipw2100\n",
8390                        h->version);
8391                 return 1;
8392         }
8393
8394         fw->version = h->version;
8395         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8396         fw->fw.size = h->fw_size;
8397         fw->uc.data = fw->fw.data + h->fw_size;
8398         fw->uc.size = h->uc_size;
8399
8400         return 0;
8401 }
8402
8403 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8404                                 struct ipw2100_fw *fw)
8405 {
8406         char *fw_name;
8407         int rc;
8408
8409         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8410                        priv->net_dev->name);
8411
8412         switch (priv->ieee->iw_mode) {
8413         case IW_MODE_ADHOC:
8414                 fw_name = IPW2100_FW_NAME("-i");
8415                 break;
8416 #ifdef CONFIG_IPW2100_MONITOR
8417         case IW_MODE_MONITOR:
8418                 fw_name = IPW2100_FW_NAME("-p");
8419                 break;
8420 #endif
8421         case IW_MODE_INFRA:
8422         default:
8423                 fw_name = IPW2100_FW_NAME("");
8424                 break;
8425         }
8426
8427         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8428
8429         if (rc < 0) {
8430                 printk(KERN_ERR DRV_NAME ": "
8431                        "%s: Firmware '%s' not available or load failed.\n",
8432                        priv->net_dev->name, fw_name);
8433                 return rc;
8434         }
8435         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8436                        fw->fw_entry->size);
8437
8438         ipw2100_mod_firmware_load(fw);
8439
8440         return 0;
8441 }
8442
8443 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8444                                      struct ipw2100_fw *fw)
8445 {
8446         fw->version = 0;
8447         if (fw->fw_entry)
8448                 release_firmware(fw->fw_entry);
8449         fw->fw_entry = NULL;
8450 }
8451
8452 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8453                                  size_t max)
8454 {
8455         char ver[MAX_FW_VERSION_LEN];
8456         u32 len = MAX_FW_VERSION_LEN;
8457         u32 tmp;
8458         int i;
8459         /* firmware version is an ascii string (max len of 14) */
8460         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8461                 return -EIO;
8462         tmp = max;
8463         if (len >= max)
8464                 len = max - 1;
8465         for (i = 0; i < len; i++)
8466                 buf[i] = ver[i];
8467         buf[i] = '\0';
8468         return tmp;
8469 }
8470
8471 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8472                                     size_t max)
8473 {
8474         u32 ver;
8475         u32 len = sizeof(ver);
8476         /* microcode version is a 32 bit integer */
8477         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8478                 return -EIO;
8479         return snprintf(buf, max, "%08X", ver);
8480 }
8481
8482 /*
8483  * On exit, the firmware will have been freed from the fw list
8484  */
8485 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8486 {
8487         /* firmware is constructed of N contiguous entries, each entry is
8488          * structured as:
8489          *
8490          * offset    sie         desc
8491          * 0         4           address to write to
8492          * 4         2           length of data run
8493          * 6         length      data
8494          */
8495         unsigned int addr;
8496         unsigned short len;
8497
8498         const unsigned char *firmware_data = fw->fw.data;
8499         unsigned int firmware_data_left = fw->fw.size;
8500
8501         while (firmware_data_left > 0) {
8502                 addr = *(u32 *) (firmware_data);
8503                 firmware_data += 4;
8504                 firmware_data_left -= 4;
8505
8506                 len = *(u16 *) (firmware_data);
8507                 firmware_data += 2;
8508                 firmware_data_left -= 2;
8509
8510                 if (len > 32) {
8511                         printk(KERN_ERR DRV_NAME ": "
8512                                "Invalid firmware run-length of %d bytes\n",
8513                                len);
8514                         return -EINVAL;
8515                 }
8516
8517                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8518                 firmware_data += len;
8519                 firmware_data_left -= len;
8520         }
8521
8522         return 0;
8523 }
8524
8525 struct symbol_alive_response {
8526         u8 cmd_id;
8527         u8 seq_num;
8528         u8 ucode_rev;
8529         u8 eeprom_valid;
8530         u16 valid_flags;
8531         u8 IEEE_addr[6];
8532         u16 flags;
8533         u16 pcb_rev;
8534         u16 clock_settle_time;  // 1us LSB
8535         u16 powerup_settle_time;        // 1us LSB
8536         u16 hop_settle_time;    // 1us LSB
8537         u8 date[3];             // month, day, year
8538         u8 time[2];             // hours, minutes
8539         u8 ucode_valid;
8540 };
8541
8542 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8543                                   struct ipw2100_fw *fw)
8544 {
8545         struct net_device *dev = priv->net_dev;
8546         const unsigned char *microcode_data = fw->uc.data;
8547         unsigned int microcode_data_left = fw->uc.size;
8548         void __iomem *reg = (void __iomem *)dev->base_addr;
8549
8550         struct symbol_alive_response response;
8551         int i, j;
8552         u8 data;
8553
8554         /* Symbol control */
8555         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8556         readl(reg);
8557         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8558         readl(reg);
8559
8560         /* HW config */
8561         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8562         readl(reg);
8563         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8564         readl(reg);
8565
8566         /* EN_CS_ACCESS bit to reset control store pointer */
8567         write_nic_byte(dev, 0x210000, 0x40);
8568         readl(reg);
8569         write_nic_byte(dev, 0x210000, 0x0);
8570         readl(reg);
8571         write_nic_byte(dev, 0x210000, 0x40);
8572         readl(reg);
8573
8574         /* copy microcode from buffer into Symbol */
8575
8576         while (microcode_data_left > 0) {
8577                 write_nic_byte(dev, 0x210010, *microcode_data++);
8578                 write_nic_byte(dev, 0x210010, *microcode_data++);
8579                 microcode_data_left -= 2;
8580         }
8581
8582         /* EN_CS_ACCESS bit to reset the control store pointer */
8583         write_nic_byte(dev, 0x210000, 0x0);
8584         readl(reg);
8585
8586         /* Enable System (Reg 0)
8587          * first enable causes garbage in RX FIFO */
8588         write_nic_byte(dev, 0x210000, 0x0);
8589         readl(reg);
8590         write_nic_byte(dev, 0x210000, 0x80);
8591         readl(reg);
8592
8593         /* Reset External Baseband Reg */
8594         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8595         readl(reg);
8596         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8597         readl(reg);
8598
8599         /* HW Config (Reg 5) */
8600         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8601         readl(reg);
8602         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8603         readl(reg);
8604
8605         /* Enable System (Reg 0)
8606          * second enable should be OK */
8607         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8608         readl(reg);
8609         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8610
8611         /* check Symbol is enabled - upped this from 5 as it wasn't always
8612          * catching the update */
8613         for (i = 0; i < 10; i++) {
8614                 udelay(10);
8615
8616                 /* check Dino is enabled bit */
8617                 read_nic_byte(dev, 0x210000, &data);
8618                 if (data & 0x1)
8619                         break;
8620         }
8621
8622         if (i == 10) {
8623                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8624                        dev->name);
8625                 return -EIO;
8626         }
8627
8628         /* Get Symbol alive response */
8629         for (i = 0; i < 30; i++) {
8630                 /* Read alive response structure */
8631                 for (j = 0;
8632                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8633                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8634
8635                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8636                         break;
8637                 udelay(10);
8638         }
8639
8640         if (i == 30) {
8641                 printk(KERN_ERR DRV_NAME
8642                        ": %s: No response from Symbol - hw not alive\n",
8643                        dev->name);
8644                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8645                 return -EIO;
8646         }
8647
8648         return 0;
8649 }