2 * SMP support for power macintosh.
4 * We support both the old "powersurge" SMP architecture
5 * and the current Core99 (G4 PowerMac) machines.
7 * Note that we don't support the very first rev. of
8 * Apple/DayStar 2 CPUs board, the one with the funky
9 * watchdog. Hopefully, none of these should be there except
10 * maybe internally to Apple. I should probably still add some
11 * code to detect this card though and disable SMP. --BenH.
13 * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net)
14 * and Ben Herrenschmidt <benh@kernel.crashing.org>.
16 * Support for DayStar quad CPU cards
17 * Copyright (C) XLR8, Inc. 1994-2000
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version
22 * 2 of the License, or (at your option) any later version.
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/smp_lock.h>
28 #include <linux/interrupt.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/hardirq.h>
35 #include <linux/cpu.h>
36 #include <linux/compiler.h>
38 #include <asm/ptrace.h>
39 #include <asm/atomic.h>
42 #include <asm/pgtable.h>
43 #include <asm/sections.h>
47 #include <asm/machdep.h>
48 #include <asm/pmac_feature.h>
51 #include <asm/cacheflush.h>
52 #include <asm/keylargo.h>
53 #include <asm/pmac_low_i2c.h>
54 #include <asm/pmac_pfunc.h>
59 #define DBG(fmt...) udbg_printf(fmt)
64 extern void __secondary_start_pmac_0(void);
65 extern int pmac_pfunc_base_install(void);
69 /* Sync flag for HW tb sync */
70 static volatile int sec_tb_reset = 0;
73 * Powersurge (old powermac SMP) support.
76 /* Addresses for powersurge registers */
77 #define HAMMERHEAD_BASE 0xf8000000
78 #define HHEAD_CONFIG 0x90
79 #define HHEAD_SEC_INTR 0xc0
81 /* register for interrupting the primary processor on the powersurge */
82 /* N.B. this is actually the ethernet ROM! */
83 #define PSURGE_PRI_INTR 0xf3019000
85 /* register for storing the start address for the secondary processor */
86 /* N.B. this is the PCI config space address register for the 1st bridge */
87 #define PSURGE_START 0xf2800000
89 /* Daystar/XLR8 4-CPU card */
90 #define PSURGE_QUAD_REG_ADDR 0xf8800000
92 #define PSURGE_QUAD_IRQ_SET 0
93 #define PSURGE_QUAD_IRQ_CLR 1
94 #define PSURGE_QUAD_IRQ_PRIMARY 2
95 #define PSURGE_QUAD_CKSTOP_CTL 3
96 #define PSURGE_QUAD_PRIMARY_ARB 4
97 #define PSURGE_QUAD_BOARD_ID 6
98 #define PSURGE_QUAD_WHICH_CPU 7
99 #define PSURGE_QUAD_CKSTOP_RDBK 8
100 #define PSURGE_QUAD_RESET_CTL 11
102 #define PSURGE_QUAD_OUT(r, v) (out_8(quad_base + ((r) << 4) + 4, (v)))
103 #define PSURGE_QUAD_IN(r) (in_8(quad_base + ((r) << 4) + 4) & 0x0f)
104 #define PSURGE_QUAD_BIS(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v)))
105 #define PSURGE_QUAD_BIC(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v)))
107 /* virtual addresses for the above */
108 static volatile u8 __iomem *hhead_base;
109 static volatile u8 __iomem *quad_base;
110 static volatile u32 __iomem *psurge_pri_intr;
111 static volatile u8 __iomem *psurge_sec_intr;
112 static volatile u32 __iomem *psurge_start;
114 /* values for psurge_type */
115 #define PSURGE_NONE -1
116 #define PSURGE_DUAL 0
117 #define PSURGE_QUAD_OKEE 1
118 #define PSURGE_QUAD_COTTON 2
119 #define PSURGE_QUAD_ICEGRASS 3
121 /* what sort of powersurge board we have */
122 static int psurge_type = PSURGE_NONE;
125 * Set and clear IPIs for powersurge.
127 static inline void psurge_set_ipi(int cpu)
129 if (psurge_type == PSURGE_NONE)
132 in_be32(psurge_pri_intr);
133 else if (psurge_type == PSURGE_DUAL)
134 out_8(psurge_sec_intr, 0);
136 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu);
139 static inline void psurge_clr_ipi(int cpu)
142 switch(psurge_type) {
144 out_8(psurge_sec_intr, ~0);
148 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu);
154 * On powersurge (old SMP powermac architecture) we don't have
155 * separate IPIs for separate messages like openpic does. Instead
156 * we have a bitmap for each processor, where a 1 bit means that
157 * the corresponding message is pending for that processor.
158 * Ideally each cpu's entry would be in a different cache line.
161 static unsigned long psurge_smp_message[NR_CPUS];
163 void psurge_smp_message_recv(void)
165 int cpu = smp_processor_id();
168 /* clear interrupt */
171 if (num_online_cpus() < 2)
174 /* make sure there is a message there */
175 for (msg = 0; msg < 4; msg++)
176 if (test_and_clear_bit(msg, &psurge_smp_message[cpu]))
177 smp_message_recv(msg);
180 irqreturn_t psurge_primary_intr(int irq, void *d)
182 psurge_smp_message_recv();
186 static void smp_psurge_message_pass(int target, int msg)
190 if (num_online_cpus() < 2)
193 for_each_online_cpu(i) {
194 if (target == MSG_ALL
195 || (target == MSG_ALL_BUT_SELF && i != smp_processor_id())
197 set_bit(msg, &psurge_smp_message[i]);
204 * Determine a quad card presence. We read the board ID register, we
205 * force the data bus to change to something else, and we read it again.
206 * It it's stable, then the register probably exist (ugh !)
208 static int __init psurge_quad_probe(void)
213 type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID);
214 if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS
215 || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
218 /* looks OK, try a slightly more rigorous test */
219 /* bogus is not necessarily cacheline-aligned,
220 though I don't suppose that really matters. -- paulus */
221 for (i = 0; i < 100; i++) {
222 volatile u32 bogus[8];
223 bogus[(0+i)%8] = 0x00000000;
224 bogus[(1+i)%8] = 0x55555555;
225 bogus[(2+i)%8] = 0xFFFFFFFF;
226 bogus[(3+i)%8] = 0xAAAAAAAA;
227 bogus[(4+i)%8] = 0x33333333;
228 bogus[(5+i)%8] = 0xCCCCCCCC;
229 bogus[(6+i)%8] = 0xCCCCCCCC;
230 bogus[(7+i)%8] = 0x33333333;
232 asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory");
234 if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
240 static void __init psurge_quad_init(void)
244 if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351);
245 procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU);
246 if (psurge_type == PSURGE_QUAD_ICEGRASS)
247 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
249 PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits);
251 out_8(psurge_sec_intr, ~0);
252 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits);
253 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
254 if (psurge_type != PSURGE_QUAD_ICEGRASS)
255 PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits);
256 PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits);
258 PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits);
260 PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits);
264 static int __init smp_psurge_probe(void)
267 struct device_node *dn;
269 /* We don't do SMP on the PPC601 -- paulus */
270 if (PVR_VER(mfspr(SPRN_PVR)) == 1)
274 * The powersurge cpu board can be used in the generation
275 * of powermacs that have a socket for an upgradeable cpu card,
276 * including the 7500, 8500, 9500, 9600.
277 * The device tree doesn't tell you if you have 2 cpus because
278 * OF doesn't know anything about the 2nd processor.
279 * Instead we look for magic bits in magic registers,
280 * in the hammerhead memory controller in the case of the
281 * dual-cpu powersurge board. -- paulus.
283 dn = of_find_node_by_name(NULL, "hammerhead");
288 hhead_base = ioremap(HAMMERHEAD_BASE, 0x800);
289 quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024);
290 psurge_sec_intr = hhead_base + HHEAD_SEC_INTR;
292 psurge_type = psurge_quad_probe();
293 if (psurge_type != PSURGE_DUAL) {
295 /* All released cards using this HW design have 4 CPUs */
299 if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) {
300 /* not a dual-cpu card */
302 psurge_type = PSURGE_NONE;
308 psurge_start = ioremap(PSURGE_START, 4);
309 psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4);
312 * This is necessary because OF doesn't know about the
313 * secondary cpu(s), and thus there aren't nodes in the
314 * device tree for them, and smp_setup_cpu_maps hasn't
315 * set their bits in cpu_possible_map and cpu_present_map.
319 for (i = 1; i < ncpus ; ++i) {
320 cpu_set(i, cpu_present_map);
321 cpu_set(i, cpu_possible_map);
322 set_hard_smp_processor_id(i, i);
325 if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352);
330 static void __init smp_psurge_kick_cpu(int nr)
332 unsigned long start = __pa(__secondary_start_pmac_0) + nr * 8;
336 /* may need to flush here if secondary bats aren't setup */
337 for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32)
338 asm volatile("dcbf 0,%0" : : "r" (a) : "memory");
339 asm volatile("sync");
341 if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353);
343 out_be32(psurge_start, start);
348 * We can't use udelay here because the timebase is now frozen.
350 for (i = 0; i < 2000; ++i)
354 if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354);
358 * With the dual-cpu powersurge board, the decrementers and timebases
359 * of both cpus are frozen after the secondary cpu is started up,
360 * until we give the secondary cpu another interrupt. This routine
361 * uses this to get the timebases synchronized.
364 static void __init psurge_dual_sync_tb(int cpu_nr)
368 set_dec(tb_ticks_per_jiffy);
378 /* wait for the secondary to have reset its TB before proceeding */
379 for (t = 10000000; t > 0 && !sec_tb_reset; --t)
382 /* now interrupt the secondary, starting both TBs */
386 static struct irqaction psurge_irqaction = {
387 .handler = psurge_primary_intr,
388 .flags = IRQF_DISABLED,
389 .mask = CPU_MASK_NONE,
390 .name = "primary IPI",
393 static void __init smp_psurge_setup_cpu(int cpu_nr)
397 /* If we failed to start the second CPU, we should still
398 * send it an IPI to start the timebase & DEC or we might
401 if (num_online_cpus() < 2) {
402 if (psurge_type == PSURGE_DUAL)
406 /* reset the entry point so if we get another intr we won't
407 * try to startup again */
408 out_be32(psurge_start, 0x100);
409 if (setup_irq(30, &psurge_irqaction))
410 printk(KERN_ERR "Couldn't get primary IPI interrupt");
413 if (psurge_type == PSURGE_DUAL)
414 psurge_dual_sync_tb(cpu_nr);
417 void __init smp_psurge_take_timebase(void)
419 /* Dummy implementation */
422 void __init smp_psurge_give_timebase(void)
424 /* Dummy implementation */
427 /* PowerSurge-style Macs */
428 struct smp_ops_t psurge_smp_ops = {
429 .message_pass = smp_psurge_message_pass,
430 .probe = smp_psurge_probe,
431 .kick_cpu = smp_psurge_kick_cpu,
432 .setup_cpu = smp_psurge_setup_cpu,
433 .give_timebase = smp_psurge_give_timebase,
434 .take_timebase = smp_psurge_take_timebase,
436 #endif /* CONFIG_PPC32 - actually powersurge support */
439 * Core 99 and later support
442 static void (*pmac_tb_freeze)(int freeze);
446 static void smp_core99_give_timebase(void)
450 local_irq_save(flags);
455 (*pmac_tb_freeze)(1);
462 (*pmac_tb_freeze)(0);
465 local_irq_restore(flags);
469 static void __devinit smp_core99_take_timebase(void)
473 local_irq_save(flags);
480 set_tb(timebase >> 32, timebase & 0xffffffff);
483 set_dec(tb_ticks_per_jiffy/2);
485 local_irq_restore(flags);
490 * G5s enable/disable the timebase via an i2c-connected clock chip.
492 static struct pmac_i2c_bus *pmac_tb_clock_chip_host;
493 static u8 pmac_tb_pulsar_addr;
495 static void smp_core99_cypress_tb_freeze(int freeze)
500 /* Strangely, the device-tree says address is 0xd2, but darwin
503 pmac_i2c_setmode(pmac_tb_clock_chip_host,
504 pmac_i2c_mode_combined);
505 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
506 0xd0 | pmac_i2c_read,
511 data = (data & 0xf3) | (freeze ? 0x00 : 0x0c);
513 pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_stdsub);
514 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
515 0xd0 | pmac_i2c_write,
520 printk("Cypress Timebase %s rc: %d\n",
521 freeze ? "freeze" : "unfreeze", rc);
522 panic("Timebase freeze failed !\n");
527 static void smp_core99_pulsar_tb_freeze(int freeze)
532 pmac_i2c_setmode(pmac_tb_clock_chip_host,
533 pmac_i2c_mode_combined);
534 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
535 pmac_tb_pulsar_addr | pmac_i2c_read,
540 data = (data & 0x88) | (freeze ? 0x11 : 0x22);
542 pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_stdsub);
543 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
544 pmac_tb_pulsar_addr | pmac_i2c_write,
548 printk(KERN_ERR "Pulsar Timebase %s rc: %d\n",
549 freeze ? "freeze" : "unfreeze", rc);
550 panic("Timebase freeze failed !\n");
554 static void __init smp_core99_setup_i2c_hwsync(int ncpus)
556 struct device_node *cc = NULL;
557 struct device_node *p;
558 const char *name = NULL;
562 /* Look for the clock chip */
563 while ((cc = of_find_node_by_name(cc, "i2c-hwclock")) != NULL) {
564 p = of_get_parent(cc);
565 ok = p && device_is_compatible(p, "uni-n-i2c");
570 pmac_tb_clock_chip_host = pmac_i2c_find_bus(cc);
571 if (pmac_tb_clock_chip_host == NULL)
573 reg = of_get_property(cc, "reg", NULL);
578 if (device_is_compatible(cc,"pulsar-legacy-slewing")) {
579 pmac_tb_freeze = smp_core99_pulsar_tb_freeze;
580 pmac_tb_pulsar_addr = 0xd2;
582 } else if (device_is_compatible(cc, "cy28508")) {
583 pmac_tb_freeze = smp_core99_cypress_tb_freeze;
588 pmac_tb_freeze = smp_core99_pulsar_tb_freeze;
589 pmac_tb_pulsar_addr = 0xd4;
593 if (pmac_tb_freeze != NULL)
596 if (pmac_tb_freeze != NULL) {
597 /* Open i2c bus for synchronous access */
598 if (pmac_i2c_open(pmac_tb_clock_chip_host, 1)) {
599 printk(KERN_ERR "Failed top open i2c bus for clock"
600 " sync, fallback to software sync !\n");
603 printk(KERN_INFO "Processor timebase sync using %s i2c clock\n",
608 pmac_tb_freeze = NULL;
609 pmac_tb_clock_chip_host = NULL;
615 * Newer G5s uses a platform function
618 static void smp_core99_pfunc_tb_freeze(int freeze)
620 struct device_node *cpus;
621 struct pmf_args args;
623 cpus = of_find_node_by_path("/cpus");
624 BUG_ON(cpus == NULL);
626 args.u[0].v = !freeze;
627 pmf_call_function(cpus, "cpu-timebase", &args);
631 #else /* CONFIG_PPC64 */
634 * SMP G4 use a GPIO to enable/disable the timebase.
637 static unsigned int core99_tb_gpio; /* Timebase freeze GPIO */
639 static void smp_core99_gpio_tb_freeze(int freeze)
642 pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4);
644 pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0);
645 pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
649 #endif /* !CONFIG_PPC64 */
651 /* L2 and L3 cache settings to pass from CPU0 to CPU1 on G4 cpus */
652 volatile static long int core99_l2_cache;
653 volatile static long int core99_l3_cache;
655 static void __devinit core99_init_caches(int cpu)
658 if (!cpu_has_feature(CPU_FTR_L2CR))
662 core99_l2_cache = _get_L2CR();
663 printk("CPU0: L2CR is %lx\n", core99_l2_cache);
665 printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR());
667 _set_L2CR(core99_l2_cache);
668 printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache);
671 if (!cpu_has_feature(CPU_FTR_L3CR))
675 core99_l3_cache = _get_L3CR();
676 printk("CPU0: L3CR is %lx\n", core99_l3_cache);
678 printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR());
680 _set_L3CR(core99_l3_cache);
681 printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache);
683 #endif /* !CONFIG_PPC64 */
686 static void __init smp_core99_setup(int ncpus)
690 /* i2c based HW sync on some G5s */
691 if (machine_is_compatible("PowerMac7,2") ||
692 machine_is_compatible("PowerMac7,3") ||
693 machine_is_compatible("RackMac3,1"))
694 smp_core99_setup_i2c_hwsync(ncpus);
696 /* pfunc based HW sync on recent G5s */
697 if (pmac_tb_freeze == NULL) {
698 struct device_node *cpus =
699 of_find_node_by_path("/cpus");
701 of_get_property(cpus, "platform-cpu-timebase", NULL)) {
702 pmac_tb_freeze = smp_core99_pfunc_tb_freeze;
703 printk(KERN_INFO "Processor timebase sync using"
704 " platform function\n");
708 #else /* CONFIG_PPC64 */
710 /* GPIO based HW sync on ppc32 Core99 */
711 if (pmac_tb_freeze == NULL && !machine_is_compatible("MacRISC4")) {
712 struct device_node *cpu;
713 const u32 *tbprop = NULL;
715 core99_tb_gpio = KL_GPIO_TB_ENABLE; /* default value */
716 cpu = of_find_node_by_type(NULL, "cpu");
718 tbprop = of_get_property(cpu, "timebase-enable", NULL);
720 core99_tb_gpio = *tbprop;
723 pmac_tb_freeze = smp_core99_gpio_tb_freeze;
724 printk(KERN_INFO "Processor timebase sync using"
725 " GPIO 0x%02x\n", core99_tb_gpio);
728 #endif /* CONFIG_PPC64 */
730 /* No timebase sync, fallback to software */
731 if (pmac_tb_freeze == NULL) {
732 smp_ops->give_timebase = smp_generic_give_timebase;
733 smp_ops->take_timebase = smp_generic_take_timebase;
734 printk(KERN_INFO "Processor timebase sync using software\n");
741 /* XXX should get this from reg properties */
742 for (i = 1; i < ncpus; ++i)
747 /* 32 bits SMP can't NAP */
748 if (!machine_is_compatible("MacRISC4"))
752 static int __init smp_core99_probe(void)
754 struct device_node *cpus;
757 if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345);
759 /* Count CPUs in the device-tree */
760 for (cpus = NULL; (cpus = of_find_node_by_type(cpus, "cpu")) != NULL;)
763 printk(KERN_INFO "PowerMac SMP probe found %d cpus\n", ncpus);
765 /* Nothing more to do if less than 2 of them */
769 /* We need to perform some early initialisations before we can start
770 * setting up SMP as we are running before initcalls
772 pmac_pfunc_base_install();
775 /* Setup various bits like timebase sync method, ability to nap, ... */
776 smp_core99_setup(ncpus);
781 /* Collect l2cr and l3cr values from CPU 0 */
782 core99_init_caches(0);
787 static void __devinit smp_core99_kick_cpu(int nr)
789 unsigned int save_vector;
790 unsigned long target, flags;
791 volatile unsigned int *vector
792 = ((volatile unsigned int *)(KERNELBASE+0x100));
794 if (nr < 0 || nr > 3)
798 ppc_md.progress("smp_core99_kick_cpu", 0x346);
800 local_irq_save(flags);
802 /* Save reset vector */
803 save_vector = *vector;
805 /* Setup fake reset vector that does
806 * b __secondary_start_pmac_0 + nr*8 - KERNELBASE
808 target = (unsigned long) __secondary_start_pmac_0 + nr * 8;
809 create_branch((unsigned long)vector, target, BRANCH_SET_LINK);
811 /* Put some life in our friend */
812 pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0);
814 /* FIXME: We wait a bit for the CPU to take the exception, I should
815 * instead wait for the entry code to set something for me. Well,
816 * ideally, all that crap will be done in prom.c and the CPU left
817 * in a RAM-based wait loop like CHRP.
821 /* Restore our exception vector */
822 *vector = save_vector;
823 flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
825 local_irq_restore(flags);
826 if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347);
829 static void __devinit smp_core99_setup_cpu(int cpu_nr)
833 core99_init_caches(cpu_nr);
836 mpic_setup_this_cpu();
840 extern void g5_phy_disable_cpu1(void);
842 /* Close i2c bus if it was used for tb sync */
843 if (pmac_tb_clock_chip_host) {
844 pmac_i2c_close(pmac_tb_clock_chip_host);
845 pmac_tb_clock_chip_host = NULL;
848 /* If we didn't start the second CPU, we must take
851 if (machine_is_compatible("MacRISC4") &&
852 num_online_cpus() < 2)
853 g5_phy_disable_cpu1();
854 #endif /* CONFIG_PPC64 */
857 ppc_md.progress("core99_setup_cpu 0 done", 0x349);
862 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PPC32)
864 int smp_core99_cpu_disable(void)
866 cpu_clear(smp_processor_id(), cpu_online_map);
868 /* XXX reset cpu affinity here */
869 mpic_cpu_set_priority(0xf);
870 asm volatile("mtdec %0" : : "r" (0x7fffffff));
873 asm volatile("mtdec %0" : : "r" (0x7fffffff));
877 extern void low_cpu_die(void) __attribute__((noreturn)); /* in sleep.S */
878 static int cpu_dead[NR_CPUS];
883 cpu_dead[smp_processor_id()] = 1;
888 void smp_core99_cpu_die(unsigned int cpu)
893 while (!cpu_dead[cpu]) {
894 if (--timeout == 0) {
895 printk("CPU %u refused to die!\n", cpu);
905 /* Core99 Macs (dual G4s and G5s) */
906 struct smp_ops_t core99_smp_ops = {
907 .message_pass = smp_mpic_message_pass,
908 .probe = smp_core99_probe,
909 .kick_cpu = smp_core99_kick_cpu,
910 .setup_cpu = smp_core99_setup_cpu,
911 .give_timebase = smp_core99_give_timebase,
912 .take_timebase = smp_core99_take_timebase,
913 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PPC32)
914 .cpu_disable = smp_core99_cpu_disable,
915 .cpu_die = smp_core99_cpu_die,