Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux-2.6] / fs / ecryptfs / crypto.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
38
39 static int
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41                              struct page *dst_page, int dst_offset,
42                              struct page *src_page, int src_offset, int size,
43                              unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46                              struct page *dst_page, int dst_offset,
47                              struct page *src_page, int src_offset, int size,
48                              unsigned char *iv);
49
50 /**
51  * ecryptfs_to_hex
52  * @dst: Buffer to take hex character representation of contents of
53  *       src; must be at least of size (src_size * 2)
54  * @src: Buffer to be converted to a hex string respresentation
55  * @src_size: number of bytes to convert
56  */
57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58 {
59         int x;
60
61         for (x = 0; x < src_size; x++)
62                 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
63 }
64
65 /**
66  * ecryptfs_from_hex
67  * @dst: Buffer to take the bytes from src hex; must be at least of
68  *       size (src_size / 2)
69  * @src: Buffer to be converted from a hex string respresentation to raw value
70  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71  */
72 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73 {
74         int x;
75         char tmp[3] = { 0, };
76
77         for (x = 0; x < dst_size; x++) {
78                 tmp[0] = src[x * 2];
79                 tmp[1] = src[x * 2 + 1];
80                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
81         }
82 }
83
84 /**
85  * ecryptfs_calculate_md5 - calculates the md5 of @src
86  * @dst: Pointer to 16 bytes of allocated memory
87  * @crypt_stat: Pointer to crypt_stat struct for the current inode
88  * @src: Data to be md5'd
89  * @len: Length of @src
90  *
91  * Uses the allocated crypto context that crypt_stat references to
92  * generate the MD5 sum of the contents of src.
93  */
94 static int ecryptfs_calculate_md5(char *dst,
95                                   struct ecryptfs_crypt_stat *crypt_stat,
96                                   char *src, int len)
97 {
98         struct scatterlist sg;
99         struct hash_desc desc = {
100                 .tfm = crypt_stat->hash_tfm,
101                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
102         };
103         int rc = 0;
104
105         mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106         sg_init_one(&sg, (u8 *)src, len);
107         if (!desc.tfm) {
108                 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109                                              CRYPTO_ALG_ASYNC);
110                 if (IS_ERR(desc.tfm)) {
111                         rc = PTR_ERR(desc.tfm);
112                         ecryptfs_printk(KERN_ERR, "Error attempting to "
113                                         "allocate crypto context; rc = [%d]\n",
114                                         rc);
115                         goto out;
116                 }
117                 crypt_stat->hash_tfm = desc.tfm;
118         }
119         rc = crypto_hash_init(&desc);
120         if (rc) {
121                 printk(KERN_ERR
122                        "%s: Error initializing crypto hash; rc = [%d]\n",
123                        __func__, rc);
124                 goto out;
125         }
126         rc = crypto_hash_update(&desc, &sg, len);
127         if (rc) {
128                 printk(KERN_ERR
129                        "%s: Error updating crypto hash; rc = [%d]\n",
130                        __func__, rc);
131                 goto out;
132         }
133         rc = crypto_hash_final(&desc, dst);
134         if (rc) {
135                 printk(KERN_ERR
136                        "%s: Error finalizing crypto hash; rc = [%d]\n",
137                        __func__, rc);
138                 goto out;
139         }
140 out:
141         mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142         return rc;
143 }
144
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146                                                   char *cipher_name,
147                                                   char *chaining_modifier)
148 {
149         int cipher_name_len = strlen(cipher_name);
150         int chaining_modifier_len = strlen(chaining_modifier);
151         int algified_name_len;
152         int rc;
153
154         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156         if (!(*algified_name)) {
157                 rc = -ENOMEM;
158                 goto out;
159         }
160         snprintf((*algified_name), algified_name_len, "%s(%s)",
161                  chaining_modifier, cipher_name);
162         rc = 0;
163 out:
164         return rc;
165 }
166
167 /**
168  * ecryptfs_derive_iv
169  * @iv: destination for the derived iv vale
170  * @crypt_stat: Pointer to crypt_stat struct for the current inode
171  * @offset: Offset of the extent whose IV we are to derive
172  *
173  * Generate the initialization vector from the given root IV and page
174  * offset.
175  *
176  * Returns zero on success; non-zero on error.
177  */
178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179                        loff_t offset)
180 {
181         int rc = 0;
182         char dst[MD5_DIGEST_SIZE];
183         char src[ECRYPTFS_MAX_IV_BYTES + 16];
184
185         if (unlikely(ecryptfs_verbosity > 0)) {
186                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
188         }
189         /* TODO: It is probably secure to just cast the least
190          * significant bits of the root IV into an unsigned long and
191          * add the offset to that rather than go through all this
192          * hashing business. -Halcrow */
193         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194         memset((src + crypt_stat->iv_bytes), 0, 16);
195         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196         if (unlikely(ecryptfs_verbosity > 0)) {
197                 ecryptfs_printk(KERN_DEBUG, "source:\n");
198                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
199         }
200         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201                                     (crypt_stat->iv_bytes + 16));
202         if (rc) {
203                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204                                 "MD5 while generating IV for a page\n");
205                 goto out;
206         }
207         memcpy(iv, dst, crypt_stat->iv_bytes);
208         if (unlikely(ecryptfs_verbosity > 0)) {
209                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
211         }
212 out:
213         return rc;
214 }
215
216 /**
217  * ecryptfs_init_crypt_stat
218  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219  *
220  * Initialize the crypt_stat structure.
221  */
222 void
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
224 {
225         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226         INIT_LIST_HEAD(&crypt_stat->keysig_list);
227         mutex_init(&crypt_stat->keysig_list_mutex);
228         mutex_init(&crypt_stat->cs_mutex);
229         mutex_init(&crypt_stat->cs_tfm_mutex);
230         mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
232 }
233
234 /**
235  * ecryptfs_destroy_crypt_stat
236  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
237  *
238  * Releases all memory associated with a crypt_stat struct.
239  */
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
241 {
242         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
243
244         if (crypt_stat->tfm)
245                 crypto_free_blkcipher(crypt_stat->tfm);
246         if (crypt_stat->hash_tfm)
247                 crypto_free_hash(crypt_stat->hash_tfm);
248         mutex_lock(&crypt_stat->keysig_list_mutex);
249         list_for_each_entry_safe(key_sig, key_sig_tmp,
250                                  &crypt_stat->keysig_list, crypt_stat_list) {
251                 list_del(&key_sig->crypt_stat_list);
252                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253         }
254         mutex_unlock(&crypt_stat->keysig_list_mutex);
255         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
256 }
257
258 void ecryptfs_destroy_mount_crypt_stat(
259         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
260 {
261         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
262
263         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
264                 return;
265         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
266         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
267                                  &mount_crypt_stat->global_auth_tok_list,
268                                  mount_crypt_stat_list) {
269                 list_del(&auth_tok->mount_crypt_stat_list);
270                 mount_crypt_stat->num_global_auth_toks--;
271                 if (auth_tok->global_auth_tok_key
272                     && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
273                         key_put(auth_tok->global_auth_tok_key);
274                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
275         }
276         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
277         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
278 }
279
280 /**
281  * virt_to_scatterlist
282  * @addr: Virtual address
283  * @size: Size of data; should be an even multiple of the block size
284  * @sg: Pointer to scatterlist array; set to NULL to obtain only
285  *      the number of scatterlist structs required in array
286  * @sg_size: Max array size
287  *
288  * Fills in a scatterlist array with page references for a passed
289  * virtual address.
290  *
291  * Returns the number of scatterlist structs in array used
292  */
293 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
294                         int sg_size)
295 {
296         int i = 0;
297         struct page *pg;
298         int offset;
299         int remainder_of_page;
300
301         sg_init_table(sg, sg_size);
302
303         while (size > 0 && i < sg_size) {
304                 pg = virt_to_page(addr);
305                 offset = offset_in_page(addr);
306                 if (sg)
307                         sg_set_page(&sg[i], pg, 0, offset);
308                 remainder_of_page = PAGE_CACHE_SIZE - offset;
309                 if (size >= remainder_of_page) {
310                         if (sg)
311                                 sg[i].length = remainder_of_page;
312                         addr += remainder_of_page;
313                         size -= remainder_of_page;
314                 } else {
315                         if (sg)
316                                 sg[i].length = size;
317                         addr += size;
318                         size = 0;
319                 }
320                 i++;
321         }
322         if (size > 0)
323                 return -ENOMEM;
324         return i;
325 }
326
327 /**
328  * encrypt_scatterlist
329  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
330  * @dest_sg: Destination of encrypted data
331  * @src_sg: Data to be encrypted
332  * @size: Length of data to be encrypted
333  * @iv: iv to use during encryption
334  *
335  * Returns the number of bytes encrypted; negative value on error
336  */
337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
338                                struct scatterlist *dest_sg,
339                                struct scatterlist *src_sg, int size,
340                                unsigned char *iv)
341 {
342         struct blkcipher_desc desc = {
343                 .tfm = crypt_stat->tfm,
344                 .info = iv,
345                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
346         };
347         int rc = 0;
348
349         BUG_ON(!crypt_stat || !crypt_stat->tfm
350                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351         if (unlikely(ecryptfs_verbosity > 0)) {
352                 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
353                                 crypt_stat->key_size);
354                 ecryptfs_dump_hex(crypt_stat->key,
355                                   crypt_stat->key_size);
356         }
357         /* Consider doing this once, when the file is opened */
358         mutex_lock(&crypt_stat->cs_tfm_mutex);
359         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
360                 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
361                                              crypt_stat->key_size);
362                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
363         }
364         if (rc) {
365                 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
366                                 rc);
367                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
368                 rc = -EINVAL;
369                 goto out;
370         }
371         ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
372         crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
373         mutex_unlock(&crypt_stat->cs_tfm_mutex);
374 out:
375         return rc;
376 }
377
378 /**
379  * ecryptfs_lower_offset_for_extent
380  *
381  * Convert an eCryptfs page index into a lower byte offset
382  */
383 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
384                                              struct ecryptfs_crypt_stat *crypt_stat)
385 {
386         (*offset) = (crypt_stat->num_header_bytes_at_front
387                      + (crypt_stat->extent_size * extent_num));
388 }
389
390 /**
391  * ecryptfs_encrypt_extent
392  * @enc_extent_page: Allocated page into which to encrypt the data in
393  *                   @page
394  * @crypt_stat: crypt_stat containing cryptographic context for the
395  *              encryption operation
396  * @page: Page containing plaintext data extent to encrypt
397  * @extent_offset: Page extent offset for use in generating IV
398  *
399  * Encrypts one extent of data.
400  *
401  * Return zero on success; non-zero otherwise
402  */
403 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
404                                    struct ecryptfs_crypt_stat *crypt_stat,
405                                    struct page *page,
406                                    unsigned long extent_offset)
407 {
408         loff_t extent_base;
409         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
410         int rc;
411
412         extent_base = (((loff_t)page->index)
413                        * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
414         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
415                                 (extent_base + extent_offset));
416         if (rc) {
417                 ecryptfs_printk(KERN_ERR, "Error attempting to "
418                                 "derive IV for extent [0x%.16x]; "
419                                 "rc = [%d]\n", (extent_base + extent_offset),
420                                 rc);
421                 goto out;
422         }
423         if (unlikely(ecryptfs_verbosity > 0)) {
424                 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
425                                 "with iv:\n");
426                 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
427                 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
428                                 "encryption:\n");
429                 ecryptfs_dump_hex((char *)
430                                   (page_address(page)
431                                    + (extent_offset * crypt_stat->extent_size)),
432                                   8);
433         }
434         rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
435                                           page, (extent_offset
436                                                  * crypt_stat->extent_size),
437                                           crypt_stat->extent_size, extent_iv);
438         if (rc < 0) {
439                 printk(KERN_ERR "%s: Error attempting to encrypt page with "
440                        "page->index = [%ld], extent_offset = [%ld]; "
441                        "rc = [%d]\n", __func__, page->index, extent_offset,
442                        rc);
443                 goto out;
444         }
445         rc = 0;
446         if (unlikely(ecryptfs_verbosity > 0)) {
447                 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
448                                 "rc = [%d]\n", (extent_base + extent_offset),
449                                 rc);
450                 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
451                                 "encryption:\n");
452                 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
453         }
454 out:
455         return rc;
456 }
457
458 /**
459  * ecryptfs_encrypt_page
460  * @page: Page mapped from the eCryptfs inode for the file; contains
461  *        decrypted content that needs to be encrypted (to a temporary
462  *        page; not in place) and written out to the lower file
463  *
464  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
465  * that eCryptfs pages may straddle the lower pages -- for instance,
466  * if the file was created on a machine with an 8K page size
467  * (resulting in an 8K header), and then the file is copied onto a
468  * host with a 32K page size, then when reading page 0 of the eCryptfs
469  * file, 24K of page 0 of the lower file will be read and decrypted,
470  * and then 8K of page 1 of the lower file will be read and decrypted.
471  *
472  * Returns zero on success; negative on error
473  */
474 int ecryptfs_encrypt_page(struct page *page)
475 {
476         struct inode *ecryptfs_inode;
477         struct ecryptfs_crypt_stat *crypt_stat;
478         char *enc_extent_virt;
479         struct page *enc_extent_page = NULL;
480         loff_t extent_offset;
481         int rc = 0;
482
483         ecryptfs_inode = page->mapping->host;
484         crypt_stat =
485                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
486         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
487         enc_extent_page = alloc_page(GFP_USER);
488         if (!enc_extent_page) {
489                 rc = -ENOMEM;
490                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
491                                 "encrypted extent\n");
492                 goto out;
493         }
494         enc_extent_virt = kmap(enc_extent_page);
495         for (extent_offset = 0;
496              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
497              extent_offset++) {
498                 loff_t offset;
499
500                 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
501                                              extent_offset);
502                 if (rc) {
503                         printk(KERN_ERR "%s: Error encrypting extent; "
504                                "rc = [%d]\n", __func__, rc);
505                         goto out;
506                 }
507                 ecryptfs_lower_offset_for_extent(
508                         &offset, ((((loff_t)page->index)
509                                    * (PAGE_CACHE_SIZE
510                                       / crypt_stat->extent_size))
511                                   + extent_offset), crypt_stat);
512                 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
513                                           offset, crypt_stat->extent_size);
514                 if (rc) {
515                         ecryptfs_printk(KERN_ERR, "Error attempting "
516                                         "to write lower page; rc = [%d]"
517                                         "\n", rc);
518                         goto out;
519                 }
520         }
521 out:
522         if (enc_extent_page) {
523                 kunmap(enc_extent_page);
524                 __free_page(enc_extent_page);
525         }
526         return rc;
527 }
528
529 static int ecryptfs_decrypt_extent(struct page *page,
530                                    struct ecryptfs_crypt_stat *crypt_stat,
531                                    struct page *enc_extent_page,
532                                    unsigned long extent_offset)
533 {
534         loff_t extent_base;
535         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
536         int rc;
537
538         extent_base = (((loff_t)page->index)
539                        * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
540         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
541                                 (extent_base + extent_offset));
542         if (rc) {
543                 ecryptfs_printk(KERN_ERR, "Error attempting to "
544                                 "derive IV for extent [0x%.16x]; "
545                                 "rc = [%d]\n", (extent_base + extent_offset),
546                                 rc);
547                 goto out;
548         }
549         if (unlikely(ecryptfs_verbosity > 0)) {
550                 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
551                                 "with iv:\n");
552                 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
553                 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
554                                 "decryption:\n");
555                 ecryptfs_dump_hex((char *)
556                                   (page_address(enc_extent_page)
557                                    + (extent_offset * crypt_stat->extent_size)),
558                                   8);
559         }
560         rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
561                                           (extent_offset
562                                            * crypt_stat->extent_size),
563                                           enc_extent_page, 0,
564                                           crypt_stat->extent_size, extent_iv);
565         if (rc < 0) {
566                 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
567                        "page->index = [%ld], extent_offset = [%ld]; "
568                        "rc = [%d]\n", __func__, page->index, extent_offset,
569                        rc);
570                 goto out;
571         }
572         rc = 0;
573         if (unlikely(ecryptfs_verbosity > 0)) {
574                 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
575                                 "rc = [%d]\n", (extent_base + extent_offset),
576                                 rc);
577                 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
578                                 "decryption:\n");
579                 ecryptfs_dump_hex((char *)(page_address(page)
580                                            + (extent_offset
581                                               * crypt_stat->extent_size)), 8);
582         }
583 out:
584         return rc;
585 }
586
587 /**
588  * ecryptfs_decrypt_page
589  * @page: Page mapped from the eCryptfs inode for the file; data read
590  *        and decrypted from the lower file will be written into this
591  *        page
592  *
593  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
594  * that eCryptfs pages may straddle the lower pages -- for instance,
595  * if the file was created on a machine with an 8K page size
596  * (resulting in an 8K header), and then the file is copied onto a
597  * host with a 32K page size, then when reading page 0 of the eCryptfs
598  * file, 24K of page 0 of the lower file will be read and decrypted,
599  * and then 8K of page 1 of the lower file will be read and decrypted.
600  *
601  * Returns zero on success; negative on error
602  */
603 int ecryptfs_decrypt_page(struct page *page)
604 {
605         struct inode *ecryptfs_inode;
606         struct ecryptfs_crypt_stat *crypt_stat;
607         char *enc_extent_virt;
608         struct page *enc_extent_page = NULL;
609         unsigned long extent_offset;
610         int rc = 0;
611
612         ecryptfs_inode = page->mapping->host;
613         crypt_stat =
614                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
615         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
616         enc_extent_page = alloc_page(GFP_USER);
617         if (!enc_extent_page) {
618                 rc = -ENOMEM;
619                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
620                                 "encrypted extent\n");
621                 goto out;
622         }
623         enc_extent_virt = kmap(enc_extent_page);
624         for (extent_offset = 0;
625              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
626              extent_offset++) {
627                 loff_t offset;
628
629                 ecryptfs_lower_offset_for_extent(
630                         &offset, ((page->index * (PAGE_CACHE_SIZE
631                                                   / crypt_stat->extent_size))
632                                   + extent_offset), crypt_stat);
633                 rc = ecryptfs_read_lower(enc_extent_virt, offset,
634                                          crypt_stat->extent_size,
635                                          ecryptfs_inode);
636                 if (rc) {
637                         ecryptfs_printk(KERN_ERR, "Error attempting "
638                                         "to read lower page; rc = [%d]"
639                                         "\n", rc);
640                         goto out;
641                 }
642                 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
643                                              extent_offset);
644                 if (rc) {
645                         printk(KERN_ERR "%s: Error encrypting extent; "
646                                "rc = [%d]\n", __func__, rc);
647                         goto out;
648                 }
649         }
650 out:
651         if (enc_extent_page) {
652                 kunmap(enc_extent_page);
653                 __free_page(enc_extent_page);
654         }
655         return rc;
656 }
657
658 /**
659  * decrypt_scatterlist
660  * @crypt_stat: Cryptographic context
661  * @dest_sg: The destination scatterlist to decrypt into
662  * @src_sg: The source scatterlist to decrypt from
663  * @size: The number of bytes to decrypt
664  * @iv: The initialization vector to use for the decryption
665  *
666  * Returns the number of bytes decrypted; negative value on error
667  */
668 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
669                                struct scatterlist *dest_sg,
670                                struct scatterlist *src_sg, int size,
671                                unsigned char *iv)
672 {
673         struct blkcipher_desc desc = {
674                 .tfm = crypt_stat->tfm,
675                 .info = iv,
676                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
677         };
678         int rc = 0;
679
680         /* Consider doing this once, when the file is opened */
681         mutex_lock(&crypt_stat->cs_tfm_mutex);
682         rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
683                                      crypt_stat->key_size);
684         if (rc) {
685                 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
686                                 rc);
687                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
688                 rc = -EINVAL;
689                 goto out;
690         }
691         ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
692         rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
693         mutex_unlock(&crypt_stat->cs_tfm_mutex);
694         if (rc) {
695                 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
696                                 rc);
697                 goto out;
698         }
699         rc = size;
700 out:
701         return rc;
702 }
703
704 /**
705  * ecryptfs_encrypt_page_offset
706  * @crypt_stat: The cryptographic context
707  * @dst_page: The page to encrypt into
708  * @dst_offset: The offset in the page to encrypt into
709  * @src_page: The page to encrypt from
710  * @src_offset: The offset in the page to encrypt from
711  * @size: The number of bytes to encrypt
712  * @iv: The initialization vector to use for the encryption
713  *
714  * Returns the number of bytes encrypted
715  */
716 static int
717 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
718                              struct page *dst_page, int dst_offset,
719                              struct page *src_page, int src_offset, int size,
720                              unsigned char *iv)
721 {
722         struct scatterlist src_sg, dst_sg;
723
724         sg_init_table(&src_sg, 1);
725         sg_init_table(&dst_sg, 1);
726
727         sg_set_page(&src_sg, src_page, size, src_offset);
728         sg_set_page(&dst_sg, dst_page, size, dst_offset);
729         return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
730 }
731
732 /**
733  * ecryptfs_decrypt_page_offset
734  * @crypt_stat: The cryptographic context
735  * @dst_page: The page to decrypt into
736  * @dst_offset: The offset in the page to decrypt into
737  * @src_page: The page to decrypt from
738  * @src_offset: The offset in the page to decrypt from
739  * @size: The number of bytes to decrypt
740  * @iv: The initialization vector to use for the decryption
741  *
742  * Returns the number of bytes decrypted
743  */
744 static int
745 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
746                              struct page *dst_page, int dst_offset,
747                              struct page *src_page, int src_offset, int size,
748                              unsigned char *iv)
749 {
750         struct scatterlist src_sg, dst_sg;
751
752         sg_init_table(&src_sg, 1);
753         sg_set_page(&src_sg, src_page, size, src_offset);
754
755         sg_init_table(&dst_sg, 1);
756         sg_set_page(&dst_sg, dst_page, size, dst_offset);
757
758         return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
759 }
760
761 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
762
763 /**
764  * ecryptfs_init_crypt_ctx
765  * @crypt_stat: Uninitilized crypt stats structure
766  *
767  * Initialize the crypto context.
768  *
769  * TODO: Performance: Keep a cache of initialized cipher contexts;
770  * only init if needed
771  */
772 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
773 {
774         char *full_alg_name;
775         int rc = -EINVAL;
776
777         if (!crypt_stat->cipher) {
778                 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
779                 goto out;
780         }
781         ecryptfs_printk(KERN_DEBUG,
782                         "Initializing cipher [%s]; strlen = [%d]; "
783                         "key_size_bits = [%d]\n",
784                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
785                         crypt_stat->key_size << 3);
786         if (crypt_stat->tfm) {
787                 rc = 0;
788                 goto out;
789         }
790         mutex_lock(&crypt_stat->cs_tfm_mutex);
791         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
792                                                     crypt_stat->cipher, "cbc");
793         if (rc)
794                 goto out_unlock;
795         crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
796                                                  CRYPTO_ALG_ASYNC);
797         kfree(full_alg_name);
798         if (IS_ERR(crypt_stat->tfm)) {
799                 rc = PTR_ERR(crypt_stat->tfm);
800                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
801                                 "Error initializing cipher [%s]\n",
802                                 crypt_stat->cipher);
803                 goto out_unlock;
804         }
805         crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
806         rc = 0;
807 out_unlock:
808         mutex_unlock(&crypt_stat->cs_tfm_mutex);
809 out:
810         return rc;
811 }
812
813 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
814 {
815         int extent_size_tmp;
816
817         crypt_stat->extent_mask = 0xFFFFFFFF;
818         crypt_stat->extent_shift = 0;
819         if (crypt_stat->extent_size == 0)
820                 return;
821         extent_size_tmp = crypt_stat->extent_size;
822         while ((extent_size_tmp & 0x01) == 0) {
823                 extent_size_tmp >>= 1;
824                 crypt_stat->extent_mask <<= 1;
825                 crypt_stat->extent_shift++;
826         }
827 }
828
829 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
830 {
831         /* Default values; may be overwritten as we are parsing the
832          * packets. */
833         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
834         set_extent_mask_and_shift(crypt_stat);
835         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
836         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
837                 crypt_stat->num_header_bytes_at_front = 0;
838         else {
839                 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
840                         crypt_stat->num_header_bytes_at_front =
841                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
842                 else
843                         crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE;
844         }
845 }
846
847 /**
848  * ecryptfs_compute_root_iv
849  * @crypt_stats
850  *
851  * On error, sets the root IV to all 0's.
852  */
853 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
854 {
855         int rc = 0;
856         char dst[MD5_DIGEST_SIZE];
857
858         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
859         BUG_ON(crypt_stat->iv_bytes <= 0);
860         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
861                 rc = -EINVAL;
862                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
863                                 "cannot generate root IV\n");
864                 goto out;
865         }
866         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
867                                     crypt_stat->key_size);
868         if (rc) {
869                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
870                                 "MD5 while generating root IV\n");
871                 goto out;
872         }
873         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
874 out:
875         if (rc) {
876                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
877                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
878         }
879         return rc;
880 }
881
882 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
883 {
884         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
885         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
886         ecryptfs_compute_root_iv(crypt_stat);
887         if (unlikely(ecryptfs_verbosity > 0)) {
888                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
889                 ecryptfs_dump_hex(crypt_stat->key,
890                                   crypt_stat->key_size);
891         }
892 }
893
894 /**
895  * ecryptfs_copy_mount_wide_flags_to_inode_flags
896  * @crypt_stat: The inode's cryptographic context
897  * @mount_crypt_stat: The mount point's cryptographic context
898  *
899  * This function propagates the mount-wide flags to individual inode
900  * flags.
901  */
902 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
903         struct ecryptfs_crypt_stat *crypt_stat,
904         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
905 {
906         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
907                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
908         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
909                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
910         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
911                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
912                 if (mount_crypt_stat->flags
913                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
914                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
915                 else if (mount_crypt_stat->flags
916                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
917                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
918         }
919 }
920
921 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
922         struct ecryptfs_crypt_stat *crypt_stat,
923         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
924 {
925         struct ecryptfs_global_auth_tok *global_auth_tok;
926         int rc = 0;
927
928         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
929         list_for_each_entry(global_auth_tok,
930                             &mount_crypt_stat->global_auth_tok_list,
931                             mount_crypt_stat_list) {
932                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
933                         continue;
934                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
935                 if (rc) {
936                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
937                         mutex_unlock(
938                                 &mount_crypt_stat->global_auth_tok_list_mutex);
939                         goto out;
940                 }
941         }
942         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
943 out:
944         return rc;
945 }
946
947 /**
948  * ecryptfs_set_default_crypt_stat_vals
949  * @crypt_stat: The inode's cryptographic context
950  * @mount_crypt_stat: The mount point's cryptographic context
951  *
952  * Default values in the event that policy does not override them.
953  */
954 static void ecryptfs_set_default_crypt_stat_vals(
955         struct ecryptfs_crypt_stat *crypt_stat,
956         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
957 {
958         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
959                                                       mount_crypt_stat);
960         ecryptfs_set_default_sizes(crypt_stat);
961         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
962         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
963         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
964         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
965         crypt_stat->mount_crypt_stat = mount_crypt_stat;
966 }
967
968 /**
969  * ecryptfs_new_file_context
970  * @ecryptfs_dentry: The eCryptfs dentry
971  *
972  * If the crypto context for the file has not yet been established,
973  * this is where we do that.  Establishing a new crypto context
974  * involves the following decisions:
975  *  - What cipher to use?
976  *  - What set of authentication tokens to use?
977  * Here we just worry about getting enough information into the
978  * authentication tokens so that we know that they are available.
979  * We associate the available authentication tokens with the new file
980  * via the set of signatures in the crypt_stat struct.  Later, when
981  * the headers are actually written out, we may again defer to
982  * userspace to perform the encryption of the session key; for the
983  * foreseeable future, this will be the case with public key packets.
984  *
985  * Returns zero on success; non-zero otherwise
986  */
987 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
988 {
989         struct ecryptfs_crypt_stat *crypt_stat =
990             &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
991         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
992             &ecryptfs_superblock_to_private(
993                     ecryptfs_dentry->d_sb)->mount_crypt_stat;
994         int cipher_name_len;
995         int rc = 0;
996
997         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
998         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
999         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1000                                                       mount_crypt_stat);
1001         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1002                                                          mount_crypt_stat);
1003         if (rc) {
1004                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1005                        "to the inode key sigs; rc = [%d]\n", rc);
1006                 goto out;
1007         }
1008         cipher_name_len =
1009                 strlen(mount_crypt_stat->global_default_cipher_name);
1010         memcpy(crypt_stat->cipher,
1011                mount_crypt_stat->global_default_cipher_name,
1012                cipher_name_len);
1013         crypt_stat->cipher[cipher_name_len] = '\0';
1014         crypt_stat->key_size =
1015                 mount_crypt_stat->global_default_cipher_key_size;
1016         ecryptfs_generate_new_key(crypt_stat);
1017         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1018         if (rc)
1019                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1020                                 "context for cipher [%s]: rc = [%d]\n",
1021                                 crypt_stat->cipher, rc);
1022 out:
1023         return rc;
1024 }
1025
1026 /**
1027  * contains_ecryptfs_marker - check for the ecryptfs marker
1028  * @data: The data block in which to check
1029  *
1030  * Returns one if marker found; zero if not found
1031  */
1032 static int contains_ecryptfs_marker(char *data)
1033 {
1034         u32 m_1, m_2;
1035
1036         m_1 = get_unaligned_be32(data);
1037         m_2 = get_unaligned_be32(data + 4);
1038         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1039                 return 1;
1040         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1041                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1042                         MAGIC_ECRYPTFS_MARKER);
1043         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1044                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1045         return 0;
1046 }
1047
1048 struct ecryptfs_flag_map_elem {
1049         u32 file_flag;
1050         u32 local_flag;
1051 };
1052
1053 /* Add support for additional flags by adding elements here. */
1054 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1055         {0x00000001, ECRYPTFS_ENABLE_HMAC},
1056         {0x00000002, ECRYPTFS_ENCRYPTED},
1057         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1058         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1059 };
1060
1061 /**
1062  * ecryptfs_process_flags
1063  * @crypt_stat: The cryptographic context
1064  * @page_virt: Source data to be parsed
1065  * @bytes_read: Updated with the number of bytes read
1066  *
1067  * Returns zero on success; non-zero if the flag set is invalid
1068  */
1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1070                                   char *page_virt, int *bytes_read)
1071 {
1072         int rc = 0;
1073         int i;
1074         u32 flags;
1075
1076         flags = get_unaligned_be32(page_virt);
1077         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1078                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
1079                 if (flags & ecryptfs_flag_map[i].file_flag) {
1080                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1081                 } else
1082                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1083         /* Version is in top 8 bits of the 32-bit flag vector */
1084         crypt_stat->file_version = ((flags >> 24) & 0xFF);
1085         (*bytes_read) = 4;
1086         return rc;
1087 }
1088
1089 /**
1090  * write_ecryptfs_marker
1091  * @page_virt: The pointer to in a page to begin writing the marker
1092  * @written: Number of bytes written
1093  *
1094  * Marker = 0x3c81b7f5
1095  */
1096 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1097 {
1098         u32 m_1, m_2;
1099
1100         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1101         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1102         put_unaligned_be32(m_1, page_virt);
1103         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1104         put_unaligned_be32(m_2, page_virt);
1105         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1106 }
1107
1108 static void
1109 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1110                      size_t *written)
1111 {
1112         u32 flags = 0;
1113         int i;
1114
1115         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1116                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
1117                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1118                         flags |= ecryptfs_flag_map[i].file_flag;
1119         /* Version is in top 8 bits of the 32-bit flag vector */
1120         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1121         put_unaligned_be32(flags, page_virt);
1122         (*written) = 4;
1123 }
1124
1125 struct ecryptfs_cipher_code_str_map_elem {
1126         char cipher_str[16];
1127         u8 cipher_code;
1128 };
1129
1130 /* Add support for additional ciphers by adding elements here. The
1131  * cipher_code is whatever OpenPGP applicatoins use to identify the
1132  * ciphers. List in order of probability. */
1133 static struct ecryptfs_cipher_code_str_map_elem
1134 ecryptfs_cipher_code_str_map[] = {
1135         {"aes",RFC2440_CIPHER_AES_128 },
1136         {"blowfish", RFC2440_CIPHER_BLOWFISH},
1137         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1138         {"cast5", RFC2440_CIPHER_CAST_5},
1139         {"twofish", RFC2440_CIPHER_TWOFISH},
1140         {"cast6", RFC2440_CIPHER_CAST_6},
1141         {"aes", RFC2440_CIPHER_AES_192},
1142         {"aes", RFC2440_CIPHER_AES_256}
1143 };
1144
1145 /**
1146  * ecryptfs_code_for_cipher_string
1147  * @cipher_name: The string alias for the cipher
1148  * @key_bytes: Length of key in bytes; used for AES code selection
1149  *
1150  * Returns zero on no match, or the cipher code on match
1151  */
1152 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1153 {
1154         int i;
1155         u8 code = 0;
1156         struct ecryptfs_cipher_code_str_map_elem *map =
1157                 ecryptfs_cipher_code_str_map;
1158
1159         if (strcmp(cipher_name, "aes") == 0) {
1160                 switch (key_bytes) {
1161                 case 16:
1162                         code = RFC2440_CIPHER_AES_128;
1163                         break;
1164                 case 24:
1165                         code = RFC2440_CIPHER_AES_192;
1166                         break;
1167                 case 32:
1168                         code = RFC2440_CIPHER_AES_256;
1169                 }
1170         } else {
1171                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1172                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1173                                 code = map[i].cipher_code;
1174                                 break;
1175                         }
1176         }
1177         return code;
1178 }
1179
1180 /**
1181  * ecryptfs_cipher_code_to_string
1182  * @str: Destination to write out the cipher name
1183  * @cipher_code: The code to convert to cipher name string
1184  *
1185  * Returns zero on success
1186  */
1187 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1188 {
1189         int rc = 0;
1190         int i;
1191
1192         str[0] = '\0';
1193         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1194                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1195                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1196         if (str[0] == '\0') {
1197                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1198                                 "[%d]\n", cipher_code);
1199                 rc = -EINVAL;
1200         }
1201         return rc;
1202 }
1203
1204 int ecryptfs_read_and_validate_header_region(char *data,
1205                                              struct inode *ecryptfs_inode)
1206 {
1207         struct ecryptfs_crypt_stat *crypt_stat =
1208                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1209         int rc;
1210
1211         if (crypt_stat->extent_size == 0)
1212                 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1213         rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1214                                  ecryptfs_inode);
1215         if (rc) {
1216                 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1217                        __func__, rc);
1218                 goto out;
1219         }
1220         if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1221                 rc = -EINVAL;
1222         }
1223 out:
1224         return rc;
1225 }
1226
1227 void
1228 ecryptfs_write_header_metadata(char *virt,
1229                                struct ecryptfs_crypt_stat *crypt_stat,
1230                                size_t *written)
1231 {
1232         u32 header_extent_size;
1233         u16 num_header_extents_at_front;
1234
1235         header_extent_size = (u32)crypt_stat->extent_size;
1236         num_header_extents_at_front =
1237                 (u16)(crypt_stat->num_header_bytes_at_front
1238                       / crypt_stat->extent_size);
1239         put_unaligned_be32(header_extent_size, virt);
1240         virt += 4;
1241         put_unaligned_be16(num_header_extents_at_front, virt);
1242         (*written) = 6;
1243 }
1244
1245 struct kmem_cache *ecryptfs_header_cache_1;
1246 struct kmem_cache *ecryptfs_header_cache_2;
1247
1248 /**
1249  * ecryptfs_write_headers_virt
1250  * @page_virt: The virtual address to write the headers to
1251  * @max: The size of memory allocated at page_virt
1252  * @size: Set to the number of bytes written by this function
1253  * @crypt_stat: The cryptographic context
1254  * @ecryptfs_dentry: The eCryptfs dentry
1255  *
1256  * Format version: 1
1257  *
1258  *   Header Extent:
1259  *     Octets 0-7:        Unencrypted file size (big-endian)
1260  *     Octets 8-15:       eCryptfs special marker
1261  *     Octets 16-19:      Flags
1262  *      Octet 16:         File format version number (between 0 and 255)
1263  *      Octets 17-18:     Reserved
1264  *      Octet 19:         Bit 1 (lsb): Reserved
1265  *                        Bit 2: Encrypted?
1266  *                        Bits 3-8: Reserved
1267  *     Octets 20-23:      Header extent size (big-endian)
1268  *     Octets 24-25:      Number of header extents at front of file
1269  *                        (big-endian)
1270  *     Octet  26:         Begin RFC 2440 authentication token packet set
1271  *   Data Extent 0:
1272  *     Lower data (CBC encrypted)
1273  *   Data Extent 1:
1274  *     Lower data (CBC encrypted)
1275  *   ...
1276  *
1277  * Returns zero on success
1278  */
1279 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1280                                        size_t *size,
1281                                        struct ecryptfs_crypt_stat *crypt_stat,
1282                                        struct dentry *ecryptfs_dentry)
1283 {
1284         int rc;
1285         size_t written;
1286         size_t offset;
1287
1288         offset = ECRYPTFS_FILE_SIZE_BYTES;
1289         write_ecryptfs_marker((page_virt + offset), &written);
1290         offset += written;
1291         write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1292         offset += written;
1293         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1294                                        &written);
1295         offset += written;
1296         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1297                                               ecryptfs_dentry, &written,
1298                                               max - offset);
1299         if (rc)
1300                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1301                                 "set; rc = [%d]\n", rc);
1302         if (size) {
1303                 offset += written;
1304                 *size = offset;
1305         }
1306         return rc;
1307 }
1308
1309 static int
1310 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1311                                     char *virt, size_t virt_len)
1312 {
1313         int rc;
1314
1315         rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1316                                   0, virt_len);
1317         if (rc)
1318                 printk(KERN_ERR "%s: Error attempting to write header "
1319                        "information to lower file; rc = [%d]\n", __func__,
1320                        rc);
1321         return rc;
1322 }
1323
1324 static int
1325 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1326                                  char *page_virt, size_t size)
1327 {
1328         int rc;
1329
1330         rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1331                                size, 0);
1332         return rc;
1333 }
1334
1335 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1336                                                unsigned int order)
1337 {
1338         struct page *page;
1339
1340         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1341         if (page)
1342                 return (unsigned long) page_address(page);
1343         return 0;
1344 }
1345
1346 /**
1347  * ecryptfs_write_metadata
1348  * @ecryptfs_dentry: The eCryptfs dentry
1349  *
1350  * Write the file headers out.  This will likely involve a userspace
1351  * callout, in which the session key is encrypted with one or more
1352  * public keys and/or the passphrase necessary to do the encryption is
1353  * retrieved via a prompt.  Exactly what happens at this point should
1354  * be policy-dependent.
1355  *
1356  * Returns zero on success; non-zero on error
1357  */
1358 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1359 {
1360         struct ecryptfs_crypt_stat *crypt_stat =
1361                 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1362         unsigned int order;
1363         char *virt;
1364         size_t virt_len;
1365         size_t size = 0;
1366         int rc = 0;
1367
1368         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1369                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1370                         printk(KERN_ERR "Key is invalid; bailing out\n");
1371                         rc = -EINVAL;
1372                         goto out;
1373                 }
1374         } else {
1375                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1376                        __func__);
1377                 rc = -EINVAL;
1378                 goto out;
1379         }
1380         virt_len = crypt_stat->num_header_bytes_at_front;
1381         order = get_order(virt_len);
1382         /* Released in this function */
1383         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1384         if (!virt) {
1385                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1386                 rc = -ENOMEM;
1387                 goto out;
1388         }
1389         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1390                                          ecryptfs_dentry);
1391         if (unlikely(rc)) {
1392                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1393                        __func__, rc);
1394                 goto out_free;
1395         }
1396         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1397                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1398                                                       size);
1399         else
1400                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1401                                                          virt_len);
1402         if (rc) {
1403                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1404                        "rc = [%d]\n", __func__, rc);
1405                 goto out_free;
1406         }
1407 out_free:
1408         free_pages((unsigned long)virt, order);
1409 out:
1410         return rc;
1411 }
1412
1413 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1414 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1415 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1416                                  char *virt, int *bytes_read,
1417                                  int validate_header_size)
1418 {
1419         int rc = 0;
1420         u32 header_extent_size;
1421         u16 num_header_extents_at_front;
1422
1423         header_extent_size = get_unaligned_be32(virt);
1424         virt += sizeof(__be32);
1425         num_header_extents_at_front = get_unaligned_be16(virt);
1426         crypt_stat->num_header_bytes_at_front =
1427                 (((size_t)num_header_extents_at_front
1428                   * (size_t)header_extent_size));
1429         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1430         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1431             && (crypt_stat->num_header_bytes_at_front
1432                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1433                 rc = -EINVAL;
1434                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1435                        crypt_stat->num_header_bytes_at_front);
1436         }
1437         return rc;
1438 }
1439
1440 /**
1441  * set_default_header_data
1442  * @crypt_stat: The cryptographic context
1443  *
1444  * For version 0 file format; this function is only for backwards
1445  * compatibility for files created with the prior versions of
1446  * eCryptfs.
1447  */
1448 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1449 {
1450         crypt_stat->num_header_bytes_at_front =
1451                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1452 }
1453
1454 /**
1455  * ecryptfs_read_headers_virt
1456  * @page_virt: The virtual address into which to read the headers
1457  * @crypt_stat: The cryptographic context
1458  * @ecryptfs_dentry: The eCryptfs dentry
1459  * @validate_header_size: Whether to validate the header size while reading
1460  *
1461  * Read/parse the header data. The header format is detailed in the
1462  * comment block for the ecryptfs_write_headers_virt() function.
1463  *
1464  * Returns zero on success
1465  */
1466 static int ecryptfs_read_headers_virt(char *page_virt,
1467                                       struct ecryptfs_crypt_stat *crypt_stat,
1468                                       struct dentry *ecryptfs_dentry,
1469                                       int validate_header_size)
1470 {
1471         int rc = 0;
1472         int offset;
1473         int bytes_read;
1474
1475         ecryptfs_set_default_sizes(crypt_stat);
1476         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1477                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1478         offset = ECRYPTFS_FILE_SIZE_BYTES;
1479         rc = contains_ecryptfs_marker(page_virt + offset);
1480         if (rc == 0) {
1481                 rc = -EINVAL;
1482                 goto out;
1483         }
1484         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1485         rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1486                                     &bytes_read);
1487         if (rc) {
1488                 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1489                 goto out;
1490         }
1491         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1492                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1493                                 "file version [%d] is supported by this "
1494                                 "version of eCryptfs\n",
1495                                 crypt_stat->file_version,
1496                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1497                 rc = -EINVAL;
1498                 goto out;
1499         }
1500         offset += bytes_read;
1501         if (crypt_stat->file_version >= 1) {
1502                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1503                                            &bytes_read, validate_header_size);
1504                 if (rc) {
1505                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1506                                         "metadata; rc = [%d]\n", rc);
1507                 }
1508                 offset += bytes_read;
1509         } else
1510                 set_default_header_data(crypt_stat);
1511         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1512                                        ecryptfs_dentry);
1513 out:
1514         return rc;
1515 }
1516
1517 /**
1518  * ecryptfs_read_xattr_region
1519  * @page_virt: The vitual address into which to read the xattr data
1520  * @ecryptfs_inode: The eCryptfs inode
1521  *
1522  * Attempts to read the crypto metadata from the extended attribute
1523  * region of the lower file.
1524  *
1525  * Returns zero on success; non-zero on error
1526  */
1527 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1528 {
1529         struct dentry *lower_dentry =
1530                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1531         ssize_t size;
1532         int rc = 0;
1533
1534         size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1535                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1536         if (size < 0) {
1537                 if (unlikely(ecryptfs_verbosity > 0))
1538                         printk(KERN_INFO "Error attempting to read the [%s] "
1539                                "xattr from the lower file; return value = "
1540                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1541                 rc = -EINVAL;
1542                 goto out;
1543         }
1544 out:
1545         return rc;
1546 }
1547
1548 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1549                                             struct dentry *ecryptfs_dentry)
1550 {
1551         int rc;
1552
1553         rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1554         if (rc)
1555                 goto out;
1556         if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1557                 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1558                         "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1559                 rc = -EINVAL;
1560         }
1561 out:
1562         return rc;
1563 }
1564
1565 /**
1566  * ecryptfs_read_metadata
1567  *
1568  * Common entry point for reading file metadata. From here, we could
1569  * retrieve the header information from the header region of the file,
1570  * the xattr region of the file, or some other repostory that is
1571  * stored separately from the file itself. The current implementation
1572  * supports retrieving the metadata information from the file contents
1573  * and from the xattr region.
1574  *
1575  * Returns zero if valid headers found and parsed; non-zero otherwise
1576  */
1577 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1578 {
1579         int rc = 0;
1580         char *page_virt = NULL;
1581         struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1582         struct ecryptfs_crypt_stat *crypt_stat =
1583             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1584         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1585                 &ecryptfs_superblock_to_private(
1586                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1587
1588         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1589                                                       mount_crypt_stat);
1590         /* Read the first page from the underlying file */
1591         page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1592         if (!page_virt) {
1593                 rc = -ENOMEM;
1594                 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1595                        __func__);
1596                 goto out;
1597         }
1598         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1599                                  ecryptfs_inode);
1600         if (!rc)
1601                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1602                                                 ecryptfs_dentry,
1603                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1604         if (rc) {
1605                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1606                 if (rc) {
1607                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1608                                "file header region or xattr region\n");
1609                         rc = -EINVAL;
1610                         goto out;
1611                 }
1612                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1613                                                 ecryptfs_dentry,
1614                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1615                 if (rc) {
1616                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1617                                "file xattr region either\n");
1618                         rc = -EINVAL;
1619                 }
1620                 if (crypt_stat->mount_crypt_stat->flags
1621                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1622                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1623                 } else {
1624                         printk(KERN_WARNING "Attempt to access file with "
1625                                "crypto metadata only in the extended attribute "
1626                                "region, but eCryptfs was mounted without "
1627                                "xattr support enabled. eCryptfs will not treat "
1628                                "this like an encrypted file.\n");
1629                         rc = -EINVAL;
1630                 }
1631         }
1632 out:
1633         if (page_virt) {
1634                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1635                 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1636         }
1637         return rc;
1638 }
1639
1640 /**
1641  * ecryptfs_encrypt_filename - encrypt filename
1642  *
1643  * CBC-encrypts the filename. We do not want to encrypt the same
1644  * filename with the same key and IV, which may happen with hard
1645  * links, so we prepend random bits to each filename.
1646  *
1647  * Returns zero on success; non-zero otherwise
1648  */
1649 static int
1650 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1651                           struct ecryptfs_crypt_stat *crypt_stat,
1652                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1653 {
1654         int rc = 0;
1655
1656         filename->encrypted_filename = NULL;
1657         filename->encrypted_filename_size = 0;
1658         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1659             || (mount_crypt_stat && (mount_crypt_stat->flags
1660                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1661                 size_t packet_size;
1662                 size_t remaining_bytes;
1663
1664                 rc = ecryptfs_write_tag_70_packet(
1665                         NULL, NULL,
1666                         &filename->encrypted_filename_size,
1667                         mount_crypt_stat, NULL,
1668                         filename->filename_size);
1669                 if (rc) {
1670                         printk(KERN_ERR "%s: Error attempting to get packet "
1671                                "size for tag 72; rc = [%d]\n", __func__,
1672                                rc);
1673                         filename->encrypted_filename_size = 0;
1674                         goto out;
1675                 }
1676                 filename->encrypted_filename =
1677                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1678                 if (!filename->encrypted_filename) {
1679                         printk(KERN_ERR "%s: Out of memory whilst attempting "
1680                                "to kmalloc [%zd] bytes\n", __func__,
1681                                filename->encrypted_filename_size);
1682                         rc = -ENOMEM;
1683                         goto out;
1684                 }
1685                 remaining_bytes = filename->encrypted_filename_size;
1686                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1687                                                   &remaining_bytes,
1688                                                   &packet_size,
1689                                                   mount_crypt_stat,
1690                                                   filename->filename,
1691                                                   filename->filename_size);
1692                 if (rc) {
1693                         printk(KERN_ERR "%s: Error attempting to generate "
1694                                "tag 70 packet; rc = [%d]\n", __func__,
1695                                rc);
1696                         kfree(filename->encrypted_filename);
1697                         filename->encrypted_filename = NULL;
1698                         filename->encrypted_filename_size = 0;
1699                         goto out;
1700                 }
1701                 filename->encrypted_filename_size = packet_size;
1702         } else {
1703                 printk(KERN_ERR "%s: No support for requested filename "
1704                        "encryption method in this release\n", __func__);
1705                 rc = -ENOTSUPP;
1706                 goto out;
1707         }
1708 out:
1709         return rc;
1710 }
1711
1712 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1713                                   const char *name, size_t name_size)
1714 {
1715         int rc = 0;
1716
1717         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1718         if (!(*copied_name)) {
1719                 rc = -ENOMEM;
1720                 goto out;
1721         }
1722         memcpy((void *)(*copied_name), (void *)name, name_size);
1723         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1724                                                  * in printing out the
1725                                                  * string in debug
1726                                                  * messages */
1727         (*copied_name_size) = name_size;
1728 out:
1729         return rc;
1730 }
1731
1732 /**
1733  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1734  * @key_tfm: Crypto context for key material, set by this function
1735  * @cipher_name: Name of the cipher
1736  * @key_size: Size of the key in bytes
1737  *
1738  * Returns zero on success. Any crypto_tfm structs allocated here
1739  * should be released by other functions, such as on a superblock put
1740  * event, regardless of whether this function succeeds for fails.
1741  */
1742 static int
1743 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1744                             char *cipher_name, size_t *key_size)
1745 {
1746         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1747         char *full_alg_name;
1748         int rc;
1749
1750         *key_tfm = NULL;
1751         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1752                 rc = -EINVAL;
1753                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1754                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1755                 goto out;
1756         }
1757         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1758                                                     "ecb");
1759         if (rc)
1760                 goto out;
1761         *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1762         kfree(full_alg_name);
1763         if (IS_ERR(*key_tfm)) {
1764                 rc = PTR_ERR(*key_tfm);
1765                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1766                        "[%s]; rc = [%d]\n", cipher_name, rc);
1767                 goto out;
1768         }
1769         crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1770         if (*key_size == 0) {
1771                 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1772
1773                 *key_size = alg->max_keysize;
1774         }
1775         get_random_bytes(dummy_key, *key_size);
1776         rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1777         if (rc) {
1778                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1779                        "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1780                 rc = -EINVAL;
1781                 goto out;
1782         }
1783 out:
1784         return rc;
1785 }
1786
1787 struct kmem_cache *ecryptfs_key_tfm_cache;
1788 static struct list_head key_tfm_list;
1789 struct mutex key_tfm_list_mutex;
1790
1791 int ecryptfs_init_crypto(void)
1792 {
1793         mutex_init(&key_tfm_list_mutex);
1794         INIT_LIST_HEAD(&key_tfm_list);
1795         return 0;
1796 }
1797
1798 /**
1799  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1800  *
1801  * Called only at module unload time
1802  */
1803 int ecryptfs_destroy_crypto(void)
1804 {
1805         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1806
1807         mutex_lock(&key_tfm_list_mutex);
1808         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1809                                  key_tfm_list) {
1810                 list_del(&key_tfm->key_tfm_list);
1811                 if (key_tfm->key_tfm)
1812                         crypto_free_blkcipher(key_tfm->key_tfm);
1813                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1814         }
1815         mutex_unlock(&key_tfm_list_mutex);
1816         return 0;
1817 }
1818
1819 int
1820 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1821                          size_t key_size)
1822 {
1823         struct ecryptfs_key_tfm *tmp_tfm;
1824         int rc = 0;
1825
1826         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1827
1828         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1829         if (key_tfm != NULL)
1830                 (*key_tfm) = tmp_tfm;
1831         if (!tmp_tfm) {
1832                 rc = -ENOMEM;
1833                 printk(KERN_ERR "Error attempting to allocate from "
1834                        "ecryptfs_key_tfm_cache\n");
1835                 goto out;
1836         }
1837         mutex_init(&tmp_tfm->key_tfm_mutex);
1838         strncpy(tmp_tfm->cipher_name, cipher_name,
1839                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1840         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1841         tmp_tfm->key_size = key_size;
1842         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1843                                          tmp_tfm->cipher_name,
1844                                          &tmp_tfm->key_size);
1845         if (rc) {
1846                 printk(KERN_ERR "Error attempting to initialize key TFM "
1847                        "cipher with name = [%s]; rc = [%d]\n",
1848                        tmp_tfm->cipher_name, rc);
1849                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1850                 if (key_tfm != NULL)
1851                         (*key_tfm) = NULL;
1852                 goto out;
1853         }
1854         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1855 out:
1856         return rc;
1857 }
1858
1859 /**
1860  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1861  * @cipher_name: the name of the cipher to search for
1862  * @key_tfm: set to corresponding tfm if found
1863  *
1864  * Searches for cached key_tfm matching @cipher_name
1865  * Must be called with &key_tfm_list_mutex held
1866  * Returns 1 if found, with @key_tfm set
1867  * Returns 0 if not found, with @key_tfm set to NULL
1868  */
1869 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1870 {
1871         struct ecryptfs_key_tfm *tmp_key_tfm;
1872
1873         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1874
1875         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1876                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1877                         if (key_tfm)
1878                                 (*key_tfm) = tmp_key_tfm;
1879                         return 1;
1880                 }
1881         }
1882         if (key_tfm)
1883                 (*key_tfm) = NULL;
1884         return 0;
1885 }
1886
1887 /**
1888  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1889  *
1890  * @tfm: set to cached tfm found, or new tfm created
1891  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1892  * @cipher_name: the name of the cipher to search for and/or add
1893  *
1894  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1895  * Searches for cached item first, and creates new if not found.
1896  * Returns 0 on success, non-zero if adding new cipher failed
1897  */
1898 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1899                                                struct mutex **tfm_mutex,
1900                                                char *cipher_name)
1901 {
1902         struct ecryptfs_key_tfm *key_tfm;
1903         int rc = 0;
1904
1905         (*tfm) = NULL;
1906         (*tfm_mutex) = NULL;
1907
1908         mutex_lock(&key_tfm_list_mutex);
1909         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1910                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1911                 if (rc) {
1912                         printk(KERN_ERR "Error adding new key_tfm to list; "
1913                                         "rc = [%d]\n", rc);
1914                         goto out;
1915                 }
1916         }
1917         (*tfm) = key_tfm->key_tfm;
1918         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1919 out:
1920         mutex_unlock(&key_tfm_list_mutex);
1921         return rc;
1922 }
1923
1924 /* 64 characters forming a 6-bit target field */
1925 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1926                                                  "EFGHIJKLMNOPQRST"
1927                                                  "UVWXYZabcdefghij"
1928                                                  "klmnopqrstuvwxyz");
1929
1930 /* We could either offset on every reverse map or just pad some 0x00's
1931  * at the front here */
1932 static const unsigned char filename_rev_map[] = {
1933         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1934         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1935         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1936         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1937         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1938         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1939         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1940         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1941         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1942         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1943         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1944         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1945         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1946         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1947         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1948         0x3D, 0x3E, 0x3F
1949 };
1950
1951 /**
1952  * ecryptfs_encode_for_filename
1953  * @dst: Destination location for encoded filename
1954  * @dst_size: Size of the encoded filename in bytes
1955  * @src: Source location for the filename to encode
1956  * @src_size: Size of the source in bytes
1957  */
1958 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1959                                   unsigned char *src, size_t src_size)
1960 {
1961         size_t num_blocks;
1962         size_t block_num = 0;
1963         size_t dst_offset = 0;
1964         unsigned char last_block[3];
1965
1966         if (src_size == 0) {
1967                 (*dst_size) = 0;
1968                 goto out;
1969         }
1970         num_blocks = (src_size / 3);
1971         if ((src_size % 3) == 0) {
1972                 memcpy(last_block, (&src[src_size - 3]), 3);
1973         } else {
1974                 num_blocks++;
1975                 last_block[2] = 0x00;
1976                 switch (src_size % 3) {
1977                 case 1:
1978                         last_block[0] = src[src_size - 1];
1979                         last_block[1] = 0x00;
1980                         break;
1981                 case 2:
1982                         last_block[0] = src[src_size - 2];
1983                         last_block[1] = src[src_size - 1];
1984                 }
1985         }
1986         (*dst_size) = (num_blocks * 4);
1987         if (!dst)
1988                 goto out;
1989         while (block_num < num_blocks) {
1990                 unsigned char *src_block;
1991                 unsigned char dst_block[4];
1992
1993                 if (block_num == (num_blocks - 1))
1994                         src_block = last_block;
1995                 else
1996                         src_block = &src[block_num * 3];
1997                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1998                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1999                                 | ((src_block[1] >> 4) & 0x0F));
2000                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2001                                 | ((src_block[2] >> 6) & 0x03));
2002                 dst_block[3] = (src_block[2] & 0x3F);
2003                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2004                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2005                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2006                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2007                 block_num++;
2008         }
2009 out:
2010         return;
2011 }
2012
2013 /**
2014  * ecryptfs_decode_from_filename
2015  * @dst: If NULL, this function only sets @dst_size and returns. If
2016  *       non-NULL, this function decodes the encoded octets in @src
2017  *       into the memory that @dst points to.
2018  * @dst_size: Set to the size of the decoded string.
2019  * @src: The encoded set of octets to decode.
2020  * @src_size: The size of the encoded set of octets to decode.
2021  */
2022 static void
2023 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2024                               const unsigned char *src, size_t src_size)
2025 {
2026         u8 current_bit_offset = 0;
2027         size_t src_byte_offset = 0;
2028         size_t dst_byte_offset = 0;
2029
2030         if (dst == NULL) {
2031                 /* Not exact; conservatively long. Every block of 4
2032                  * encoded characters decodes into a block of 3
2033                  * decoded characters. This segment of code provides
2034                  * the caller with the maximum amount of allocated
2035                  * space that @dst will need to point to in a
2036                  * subsequent call. */
2037                 (*dst_size) = (((src_size + 1) * 3) / 4);
2038                 goto out;
2039         }
2040         while (src_byte_offset < src_size) {
2041                 unsigned char src_byte =
2042                                 filename_rev_map[(int)src[src_byte_offset]];
2043
2044                 switch (current_bit_offset) {
2045                 case 0:
2046                         dst[dst_byte_offset] = (src_byte << 2);
2047                         current_bit_offset = 6;
2048                         break;
2049                 case 6:
2050                         dst[dst_byte_offset++] |= (src_byte >> 4);
2051                         dst[dst_byte_offset] = ((src_byte & 0xF)
2052                                                  << 4);
2053                         current_bit_offset = 4;
2054                         break;
2055                 case 4:
2056                         dst[dst_byte_offset++] |= (src_byte >> 2);
2057                         dst[dst_byte_offset] = (src_byte << 6);
2058                         current_bit_offset = 2;
2059                         break;
2060                 case 2:
2061                         dst[dst_byte_offset++] |= (src_byte);
2062                         dst[dst_byte_offset] = 0;
2063                         current_bit_offset = 0;
2064                         break;
2065                 }
2066                 src_byte_offset++;
2067         }
2068         (*dst_size) = dst_byte_offset;
2069 out:
2070         return;
2071 }
2072
2073 /**
2074  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2075  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2076  * @name: The plaintext name
2077  * @length: The length of the plaintext
2078  * @encoded_name: The encypted name
2079  *
2080  * Encrypts and encodes a filename into something that constitutes a
2081  * valid filename for a filesystem, with printable characters.
2082  *
2083  * We assume that we have a properly initialized crypto context,
2084  * pointed to by crypt_stat->tfm.
2085  *
2086  * Returns zero on success; non-zero on otherwise
2087  */
2088 int ecryptfs_encrypt_and_encode_filename(
2089         char **encoded_name,
2090         size_t *encoded_name_size,
2091         struct ecryptfs_crypt_stat *crypt_stat,
2092         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2093         const char *name, size_t name_size)
2094 {
2095         size_t encoded_name_no_prefix_size;
2096         int rc = 0;
2097
2098         (*encoded_name) = NULL;
2099         (*encoded_name_size) = 0;
2100         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2101             || (mount_crypt_stat && (mount_crypt_stat->flags
2102                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2103                 struct ecryptfs_filename *filename;
2104
2105                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2106                 if (!filename) {
2107                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2108                                "to kzalloc [%zd] bytes\n", __func__,
2109                                sizeof(*filename));
2110                         rc = -ENOMEM;
2111                         goto out;
2112                 }
2113                 filename->filename = (char *)name;
2114                 filename->filename_size = name_size;
2115                 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2116                                                mount_crypt_stat);
2117                 if (rc) {
2118                         printk(KERN_ERR "%s: Error attempting to encrypt "
2119                                "filename; rc = [%d]\n", __func__, rc);
2120                         kfree(filename);
2121                         goto out;
2122                 }
2123                 ecryptfs_encode_for_filename(
2124                         NULL, &encoded_name_no_prefix_size,
2125                         filename->encrypted_filename,
2126                         filename->encrypted_filename_size);
2127                 if ((crypt_stat && (crypt_stat->flags
2128                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2129                     || (mount_crypt_stat
2130                         && (mount_crypt_stat->flags
2131                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2132                         (*encoded_name_size) =
2133                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2134                                  + encoded_name_no_prefix_size);
2135                 else
2136                         (*encoded_name_size) =
2137                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2138                                  + encoded_name_no_prefix_size);
2139                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2140                 if (!(*encoded_name)) {
2141                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2142                                "to kzalloc [%zd] bytes\n", __func__,
2143                                (*encoded_name_size));
2144                         rc = -ENOMEM;
2145                         kfree(filename->encrypted_filename);
2146                         kfree(filename);
2147                         goto out;
2148                 }
2149                 if ((crypt_stat && (crypt_stat->flags
2150                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2151                     || (mount_crypt_stat
2152                         && (mount_crypt_stat->flags
2153                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2154                         memcpy((*encoded_name),
2155                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2156                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2157                         ecryptfs_encode_for_filename(
2158                             ((*encoded_name)
2159                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2160                             &encoded_name_no_prefix_size,
2161                             filename->encrypted_filename,
2162                             filename->encrypted_filename_size);
2163                         (*encoded_name_size) =
2164                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2165                                  + encoded_name_no_prefix_size);
2166                         (*encoded_name)[(*encoded_name_size)] = '\0';
2167                         (*encoded_name_size)++;
2168                 } else {
2169                         rc = -ENOTSUPP;
2170                 }
2171                 if (rc) {
2172                         printk(KERN_ERR "%s: Error attempting to encode "
2173                                "encrypted filename; rc = [%d]\n", __func__,
2174                                rc);
2175                         kfree((*encoded_name));
2176                         (*encoded_name) = NULL;
2177                         (*encoded_name_size) = 0;
2178                 }
2179                 kfree(filename->encrypted_filename);
2180                 kfree(filename);
2181         } else {
2182                 rc = ecryptfs_copy_filename(encoded_name,
2183                                             encoded_name_size,
2184                                             name, name_size);
2185         }
2186 out:
2187         return rc;
2188 }
2189
2190 /**
2191  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2192  * @plaintext_name: The plaintext name
2193  * @plaintext_name_size: The plaintext name size
2194  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2195  * @name: The filename in cipher text
2196  * @name_size: The cipher text name size
2197  *
2198  * Decrypts and decodes the filename.
2199  *
2200  * Returns zero on error; non-zero otherwise
2201  */
2202 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2203                                          size_t *plaintext_name_size,
2204                                          struct dentry *ecryptfs_dir_dentry,
2205                                          const char *name, size_t name_size)
2206 {
2207         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2208                 &ecryptfs_superblock_to_private(
2209                         ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2210         char *decoded_name;
2211         size_t decoded_name_size;
2212         size_t packet_size;
2213         int rc = 0;
2214
2215         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2216             && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2217             && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2218             && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2219                         ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2220                 const char *orig_name = name;
2221                 size_t orig_name_size = name_size;
2222
2223                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2224                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2225                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2226                                               name, name_size);
2227                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2228                 if (!decoded_name) {
2229                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2230                                "to kmalloc [%zd] bytes\n", __func__,
2231                                decoded_name_size);
2232                         rc = -ENOMEM;
2233                         goto out;
2234                 }
2235                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2236                                               name, name_size);
2237                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2238                                                   plaintext_name_size,
2239                                                   &packet_size,
2240                                                   mount_crypt_stat,
2241                                                   decoded_name,
2242                                                   decoded_name_size);
2243                 if (rc) {
2244                         printk(KERN_INFO "%s: Could not parse tag 70 packet "
2245                                "from filename; copying through filename "
2246                                "as-is\n", __func__);
2247                         rc = ecryptfs_copy_filename(plaintext_name,
2248                                                     plaintext_name_size,
2249                                                     orig_name, orig_name_size);
2250                         goto out_free;
2251                 }
2252         } else {
2253                 rc = ecryptfs_copy_filename(plaintext_name,
2254                                             plaintext_name_size,
2255                                             name, name_size);
2256                 goto out;
2257         }
2258 out_free:
2259         kfree(decoded_name);
2260 out:
2261         return rc;
2262 }