4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <linux/kprobes.h>
55 #include <asm/unistd.h>
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
71 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76 * Some helpers for converting nanosecond timing to jiffy resolution
78 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82 * These are the 'tuning knobs' of the scheduler:
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
88 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89 #define DEF_TIMESLICE (100 * HZ / 1000)
90 #define ON_RUNQUEUE_WEIGHT 30
91 #define CHILD_PENALTY 95
92 #define PARENT_PENALTY 100
94 #define PRIO_BONUS_RATIO 25
95 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96 #define INTERACTIVE_DELTA 2
97 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
99 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
107 * This part scales the interactivity limit depending on niceness.
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
129 #define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 #define GRANULARITY (10 * HZ / 1000 ? : 1)
136 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144 #define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 #define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
154 #define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
158 #define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
170 #define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
173 static unsigned int static_prio_timeslice(int static_prio)
175 if (static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
178 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
181 static inline unsigned int task_timeslice(task_t *p)
183 return static_prio_timeslice(p->static_prio);
186 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
187 < (long long) (sd)->cache_hot_time)
190 * These are the runqueue data structures:
193 typedef struct runqueue runqueue_t;
196 unsigned int nr_active;
197 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
198 struct list_head queue[MAX_PRIO];
202 * This is the main, per-CPU runqueue data structure.
204 * Locking rule: those places that want to lock multiple runqueues
205 * (such as the load balancing or the thread migration code), lock
206 * acquire operations must be ordered by ascending &runqueue.
212 * nr_running and cpu_load should be in the same cacheline because
213 * remote CPUs use both these fields when doing load calculation.
215 unsigned long nr_running;
216 unsigned long raw_weighted_load;
218 unsigned long cpu_load[3];
220 unsigned long long nr_switches;
223 * This is part of a global counter where only the total sum
224 * over all CPUs matters. A task can increase this counter on
225 * one CPU and if it got migrated afterwards it may decrease
226 * it on another CPU. Always updated under the runqueue lock:
228 unsigned long nr_uninterruptible;
230 unsigned long expired_timestamp;
231 unsigned long long timestamp_last_tick;
233 struct mm_struct *prev_mm;
234 prio_array_t *active, *expired, arrays[2];
235 int best_expired_prio;
239 struct sched_domain *sd;
241 /* For active balancing */
245 task_t *migration_thread;
246 struct list_head migration_queue;
249 #ifdef CONFIG_SCHEDSTATS
251 struct sched_info rq_sched_info;
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
270 static DEFINE_PER_CPU(struct runqueue, runqueues);
273 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
274 * See detach_destroy_domains: synchronize_sched for details.
276 * The domain tree of any CPU may only be accessed from within
277 * preempt-disabled sections.
279 #define for_each_domain(cpu, domain) \
280 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
282 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
283 #define this_rq() (&__get_cpu_var(runqueues))
284 #define task_rq(p) cpu_rq(task_cpu(p))
285 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
287 #ifndef prepare_arch_switch
288 # define prepare_arch_switch(next) do { } while (0)
290 #ifndef finish_arch_switch
291 # define finish_arch_switch(prev) do { } while (0)
294 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
295 static inline int task_running(runqueue_t *rq, task_t *p)
297 return rq->curr == p;
300 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
304 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
306 #ifdef CONFIG_DEBUG_SPINLOCK
307 /* this is a valid case when another task releases the spinlock */
308 rq->lock.owner = current;
310 spin_unlock_irq(&rq->lock);
313 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
314 static inline int task_running(runqueue_t *rq, task_t *p)
319 return rq->curr == p;
323 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
327 * We can optimise this out completely for !SMP, because the
328 * SMP rebalancing from interrupt is the only thing that cares
333 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
334 spin_unlock_irq(&rq->lock);
336 spin_unlock(&rq->lock);
340 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
344 * After ->oncpu is cleared, the task can be moved to a different CPU.
345 * We must ensure this doesn't happen until the switch is completely
351 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
355 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
358 * __task_rq_lock - lock the runqueue a given task resides on.
359 * Must be called interrupts disabled.
361 static inline runqueue_t *__task_rq_lock(task_t *p)
368 spin_lock(&rq->lock);
369 if (unlikely(rq != task_rq(p))) {
370 spin_unlock(&rq->lock);
371 goto repeat_lock_task;
377 * task_rq_lock - lock the runqueue a given task resides on and disable
378 * interrupts. Note the ordering: we can safely lookup the task_rq without
379 * explicitly disabling preemption.
381 static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
387 local_irq_save(*flags);
389 spin_lock(&rq->lock);
390 if (unlikely(rq != task_rq(p))) {
391 spin_unlock_irqrestore(&rq->lock, *flags);
392 goto repeat_lock_task;
397 static inline void __task_rq_unlock(runqueue_t *rq)
400 spin_unlock(&rq->lock);
403 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
406 spin_unlock_irqrestore(&rq->lock, *flags);
409 #ifdef CONFIG_SCHEDSTATS
411 * bump this up when changing the output format or the meaning of an existing
412 * format, so that tools can adapt (or abort)
414 #define SCHEDSTAT_VERSION 12
416 static int show_schedstat(struct seq_file *seq, void *v)
420 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
421 seq_printf(seq, "timestamp %lu\n", jiffies);
422 for_each_online_cpu(cpu) {
423 runqueue_t *rq = cpu_rq(cpu);
425 struct sched_domain *sd;
429 /* runqueue-specific stats */
431 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
432 cpu, rq->yld_both_empty,
433 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
434 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
435 rq->ttwu_cnt, rq->ttwu_local,
436 rq->rq_sched_info.cpu_time,
437 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
439 seq_printf(seq, "\n");
442 /* domain-specific stats */
444 for_each_domain(cpu, sd) {
445 enum idle_type itype;
446 char mask_str[NR_CPUS];
448 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
449 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
450 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
452 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
454 sd->lb_balanced[itype],
455 sd->lb_failed[itype],
456 sd->lb_imbalance[itype],
457 sd->lb_gained[itype],
458 sd->lb_hot_gained[itype],
459 sd->lb_nobusyq[itype],
460 sd->lb_nobusyg[itype]);
462 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
463 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
464 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
465 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
466 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
474 static int schedstat_open(struct inode *inode, struct file *file)
476 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
477 char *buf = kmalloc(size, GFP_KERNEL);
483 res = single_open(file, show_schedstat, NULL);
485 m = file->private_data;
493 struct file_operations proc_schedstat_operations = {
494 .open = schedstat_open,
497 .release = single_release,
500 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
501 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
502 #else /* !CONFIG_SCHEDSTATS */
503 # define schedstat_inc(rq, field) do { } while (0)
504 # define schedstat_add(rq, field, amt) do { } while (0)
508 * rq_lock - lock a given runqueue and disable interrupts.
510 static inline runqueue_t *this_rq_lock(void)
517 spin_lock(&rq->lock);
522 #ifdef CONFIG_SCHEDSTATS
524 * Called when a process is dequeued from the active array and given
525 * the cpu. We should note that with the exception of interactive
526 * tasks, the expired queue will become the active queue after the active
527 * queue is empty, without explicitly dequeuing and requeuing tasks in the
528 * expired queue. (Interactive tasks may be requeued directly to the
529 * active queue, thus delaying tasks in the expired queue from running;
530 * see scheduler_tick()).
532 * This function is only called from sched_info_arrive(), rather than
533 * dequeue_task(). Even though a task may be queued and dequeued multiple
534 * times as it is shuffled about, we're really interested in knowing how
535 * long it was from the *first* time it was queued to the time that it
538 static inline void sched_info_dequeued(task_t *t)
540 t->sched_info.last_queued = 0;
544 * Called when a task finally hits the cpu. We can now calculate how
545 * long it was waiting to run. We also note when it began so that we
546 * can keep stats on how long its timeslice is.
548 static void sched_info_arrive(task_t *t)
550 unsigned long now = jiffies, diff = 0;
551 struct runqueue *rq = task_rq(t);
553 if (t->sched_info.last_queued)
554 diff = now - t->sched_info.last_queued;
555 sched_info_dequeued(t);
556 t->sched_info.run_delay += diff;
557 t->sched_info.last_arrival = now;
558 t->sched_info.pcnt++;
563 rq->rq_sched_info.run_delay += diff;
564 rq->rq_sched_info.pcnt++;
568 * Called when a process is queued into either the active or expired
569 * array. The time is noted and later used to determine how long we
570 * had to wait for us to reach the cpu. Since the expired queue will
571 * become the active queue after active queue is empty, without dequeuing
572 * and requeuing any tasks, we are interested in queuing to either. It
573 * is unusual but not impossible for tasks to be dequeued and immediately
574 * requeued in the same or another array: this can happen in sched_yield(),
575 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
578 * This function is only called from enqueue_task(), but also only updates
579 * the timestamp if it is already not set. It's assumed that
580 * sched_info_dequeued() will clear that stamp when appropriate.
582 static inline void sched_info_queued(task_t *t)
584 if (!t->sched_info.last_queued)
585 t->sched_info.last_queued = jiffies;
589 * Called when a process ceases being the active-running process, either
590 * voluntarily or involuntarily. Now we can calculate how long we ran.
592 static inline void sched_info_depart(task_t *t)
594 struct runqueue *rq = task_rq(t);
595 unsigned long diff = jiffies - t->sched_info.last_arrival;
597 t->sched_info.cpu_time += diff;
600 rq->rq_sched_info.cpu_time += diff;
604 * Called when tasks are switched involuntarily due, typically, to expiring
605 * their time slice. (This may also be called when switching to or from
606 * the idle task.) We are only called when prev != next.
608 static inline void sched_info_switch(task_t *prev, task_t *next)
610 struct runqueue *rq = task_rq(prev);
613 * prev now departs the cpu. It's not interesting to record
614 * stats about how efficient we were at scheduling the idle
617 if (prev != rq->idle)
618 sched_info_depart(prev);
620 if (next != rq->idle)
621 sched_info_arrive(next);
624 #define sched_info_queued(t) do { } while (0)
625 #define sched_info_switch(t, next) do { } while (0)
626 #endif /* CONFIG_SCHEDSTATS */
629 * Adding/removing a task to/from a priority array:
631 static void dequeue_task(struct task_struct *p, prio_array_t *array)
634 list_del(&p->run_list);
635 if (list_empty(array->queue + p->prio))
636 __clear_bit(p->prio, array->bitmap);
639 static void enqueue_task(struct task_struct *p, prio_array_t *array)
641 sched_info_queued(p);
642 list_add_tail(&p->run_list, array->queue + p->prio);
643 __set_bit(p->prio, array->bitmap);
649 * Put task to the end of the run list without the overhead of dequeue
650 * followed by enqueue.
652 static void requeue_task(struct task_struct *p, prio_array_t *array)
654 list_move_tail(&p->run_list, array->queue + p->prio);
657 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
659 list_add(&p->run_list, array->queue + p->prio);
660 __set_bit(p->prio, array->bitmap);
666 * __normal_prio - return the priority that is based on the static
667 * priority but is modified by bonuses/penalties.
669 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
670 * into the -5 ... 0 ... +5 bonus/penalty range.
672 * We use 25% of the full 0...39 priority range so that:
674 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
675 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
677 * Both properties are important to certain workloads.
680 static inline int __normal_prio(task_t *p)
684 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
686 prio = p->static_prio - bonus;
687 if (prio < MAX_RT_PRIO)
689 if (prio > MAX_PRIO-1)
695 * To aid in avoiding the subversion of "niceness" due to uneven distribution
696 * of tasks with abnormal "nice" values across CPUs the contribution that
697 * each task makes to its run queue's load is weighted according to its
698 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
699 * scaled version of the new time slice allocation that they receive on time
704 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
705 * If static_prio_timeslice() is ever changed to break this assumption then
706 * this code will need modification
708 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
709 #define LOAD_WEIGHT(lp) \
710 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
711 #define PRIO_TO_LOAD_WEIGHT(prio) \
712 LOAD_WEIGHT(static_prio_timeslice(prio))
713 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
714 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
716 static void set_load_weight(task_t *p)
718 if (has_rt_policy(p)) {
720 if (p == task_rq(p)->migration_thread)
722 * The migration thread does the actual balancing.
723 * Giving its load any weight will skew balancing
729 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
731 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
734 static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
736 rq->raw_weighted_load += p->load_weight;
739 static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
741 rq->raw_weighted_load -= p->load_weight;
744 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
747 inc_raw_weighted_load(rq, p);
750 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
753 dec_raw_weighted_load(rq, p);
757 * Calculate the expected normal priority: i.e. priority
758 * without taking RT-inheritance into account. Might be
759 * boosted by interactivity modifiers. Changes upon fork,
760 * setprio syscalls, and whenever the interactivity
761 * estimator recalculates.
763 static inline int normal_prio(task_t *p)
767 if (has_rt_policy(p))
768 prio = MAX_RT_PRIO-1 - p->rt_priority;
770 prio = __normal_prio(p);
775 * Calculate the current priority, i.e. the priority
776 * taken into account by the scheduler. This value might
777 * be boosted by RT tasks, or might be boosted by
778 * interactivity modifiers. Will be RT if the task got
779 * RT-boosted. If not then it returns p->normal_prio.
781 static int effective_prio(task_t *p)
783 p->normal_prio = normal_prio(p);
785 * If we are RT tasks or we were boosted to RT priority,
786 * keep the priority unchanged. Otherwise, update priority
787 * to the normal priority:
789 if (!rt_prio(p->prio))
790 return p->normal_prio;
795 * __activate_task - move a task to the runqueue.
797 static void __activate_task(task_t *p, runqueue_t *rq)
799 prio_array_t *target = rq->active;
802 target = rq->expired;
803 enqueue_task(p, target);
804 inc_nr_running(p, rq);
808 * __activate_idle_task - move idle task to the _front_ of runqueue.
810 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
812 enqueue_task_head(p, rq->active);
813 inc_nr_running(p, rq);
817 * Recalculate p->normal_prio and p->prio after having slept,
818 * updating the sleep-average too:
820 static int recalc_task_prio(task_t *p, unsigned long long now)
822 /* Caller must always ensure 'now >= p->timestamp' */
823 unsigned long sleep_time = now - p->timestamp;
828 if (likely(sleep_time > 0)) {
830 * This ceiling is set to the lowest priority that would allow
831 * a task to be reinserted into the active array on timeslice
834 unsigned long ceiling = INTERACTIVE_SLEEP(p);
836 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
838 * Prevents user tasks from achieving best priority
839 * with one single large enough sleep.
841 p->sleep_avg = ceiling;
843 * Using INTERACTIVE_SLEEP() as a ceiling places a
844 * nice(0) task 1ms sleep away from promotion, and
845 * gives it 700ms to round-robin with no chance of
846 * being demoted. This is more than generous, so
847 * mark this sleep as non-interactive to prevent the
848 * on-runqueue bonus logic from intervening should
849 * this task not receive cpu immediately.
851 p->sleep_type = SLEEP_NONINTERACTIVE;
854 * Tasks waking from uninterruptible sleep are
855 * limited in their sleep_avg rise as they
856 * are likely to be waiting on I/O
858 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
859 if (p->sleep_avg >= ceiling)
861 else if (p->sleep_avg + sleep_time >=
863 p->sleep_avg = ceiling;
869 * This code gives a bonus to interactive tasks.
871 * The boost works by updating the 'average sleep time'
872 * value here, based on ->timestamp. The more time a
873 * task spends sleeping, the higher the average gets -
874 * and the higher the priority boost gets as well.
876 p->sleep_avg += sleep_time;
879 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
880 p->sleep_avg = NS_MAX_SLEEP_AVG;
883 return effective_prio(p);
887 * activate_task - move a task to the runqueue and do priority recalculation
889 * Update all the scheduling statistics stuff. (sleep average
890 * calculation, priority modifiers, etc.)
892 static void activate_task(task_t *p, runqueue_t *rq, int local)
894 unsigned long long now;
899 /* Compensate for drifting sched_clock */
900 runqueue_t *this_rq = this_rq();
901 now = (now - this_rq->timestamp_last_tick)
902 + rq->timestamp_last_tick;
907 p->prio = recalc_task_prio(p, now);
910 * This checks to make sure it's not an uninterruptible task
911 * that is now waking up.
913 if (p->sleep_type == SLEEP_NORMAL) {
915 * Tasks which were woken up by interrupts (ie. hw events)
916 * are most likely of interactive nature. So we give them
917 * the credit of extending their sleep time to the period
918 * of time they spend on the runqueue, waiting for execution
919 * on a CPU, first time around:
922 p->sleep_type = SLEEP_INTERRUPTED;
925 * Normal first-time wakeups get a credit too for
926 * on-runqueue time, but it will be weighted down:
928 p->sleep_type = SLEEP_INTERACTIVE;
933 __activate_task(p, rq);
937 * deactivate_task - remove a task from the runqueue.
939 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
941 dec_nr_running(p, rq);
942 dequeue_task(p, p->array);
947 * resched_task - mark a task 'to be rescheduled now'.
949 * On UP this means the setting of the need_resched flag, on SMP it
950 * might also involve a cross-CPU call to trigger the scheduler on
955 #ifndef tsk_is_polling
956 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
959 static void resched_task(task_t *p)
963 assert_spin_locked(&task_rq(p)->lock);
965 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
968 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
971 if (cpu == smp_processor_id())
974 /* NEED_RESCHED must be visible before we test polling */
976 if (!tsk_is_polling(p))
977 smp_send_reschedule(cpu);
980 static inline void resched_task(task_t *p)
982 assert_spin_locked(&task_rq(p)->lock);
983 set_tsk_need_resched(p);
988 * task_curr - is this task currently executing on a CPU?
989 * @p: the task in question.
991 inline int task_curr(const task_t *p)
993 return cpu_curr(task_cpu(p)) == p;
996 /* Used instead of source_load when we know the type == 0 */
997 unsigned long weighted_cpuload(const int cpu)
999 return cpu_rq(cpu)->raw_weighted_load;
1004 struct list_head list;
1009 struct completion done;
1013 * The task's runqueue lock must be held.
1014 * Returns true if you have to wait for migration thread.
1016 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
1018 runqueue_t *rq = task_rq(p);
1021 * If the task is not on a runqueue (and not running), then
1022 * it is sufficient to simply update the task's cpu field.
1024 if (!p->array && !task_running(rq, p)) {
1025 set_task_cpu(p, dest_cpu);
1029 init_completion(&req->done);
1031 req->dest_cpu = dest_cpu;
1032 list_add(&req->list, &rq->migration_queue);
1037 * wait_task_inactive - wait for a thread to unschedule.
1039 * The caller must ensure that the task *will* unschedule sometime soon,
1040 * else this function might spin for a *long* time. This function can't
1041 * be called with interrupts off, or it may introduce deadlock with
1042 * smp_call_function() if an IPI is sent by the same process we are
1043 * waiting to become inactive.
1045 void wait_task_inactive(task_t *p)
1047 unsigned long flags;
1052 rq = task_rq_lock(p, &flags);
1053 /* Must be off runqueue entirely, not preempted. */
1054 if (unlikely(p->array || task_running(rq, p))) {
1055 /* If it's preempted, we yield. It could be a while. */
1056 preempted = !task_running(rq, p);
1057 task_rq_unlock(rq, &flags);
1063 task_rq_unlock(rq, &flags);
1067 * kick_process - kick a running thread to enter/exit the kernel
1068 * @p: the to-be-kicked thread
1070 * Cause a process which is running on another CPU to enter
1071 * kernel-mode, without any delay. (to get signals handled.)
1073 * NOTE: this function doesnt have to take the runqueue lock,
1074 * because all it wants to ensure is that the remote task enters
1075 * the kernel. If the IPI races and the task has been migrated
1076 * to another CPU then no harm is done and the purpose has been
1079 void kick_process(task_t *p)
1085 if ((cpu != smp_processor_id()) && task_curr(p))
1086 smp_send_reschedule(cpu);
1091 * Return a low guess at the load of a migration-source cpu weighted
1092 * according to the scheduling class and "nice" value.
1094 * We want to under-estimate the load of migration sources, to
1095 * balance conservatively.
1097 static inline unsigned long source_load(int cpu, int type)
1099 runqueue_t *rq = cpu_rq(cpu);
1102 return rq->raw_weighted_load;
1104 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1108 * Return a high guess at the load of a migration-target cpu weighted
1109 * according to the scheduling class and "nice" value.
1111 static inline unsigned long target_load(int cpu, int type)
1113 runqueue_t *rq = cpu_rq(cpu);
1116 return rq->raw_weighted_load;
1118 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1122 * Return the average load per task on the cpu's run queue
1124 static inline unsigned long cpu_avg_load_per_task(int cpu)
1126 runqueue_t *rq = cpu_rq(cpu);
1127 unsigned long n = rq->nr_running;
1129 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1133 * find_idlest_group finds and returns the least busy CPU group within the
1136 static struct sched_group *
1137 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1139 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1140 unsigned long min_load = ULONG_MAX, this_load = 0;
1141 int load_idx = sd->forkexec_idx;
1142 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1145 unsigned long load, avg_load;
1149 /* Skip over this group if it has no CPUs allowed */
1150 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1153 local_group = cpu_isset(this_cpu, group->cpumask);
1155 /* Tally up the load of all CPUs in the group */
1158 for_each_cpu_mask(i, group->cpumask) {
1159 /* Bias balancing toward cpus of our domain */
1161 load = source_load(i, load_idx);
1163 load = target_load(i, load_idx);
1168 /* Adjust by relative CPU power of the group */
1169 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1172 this_load = avg_load;
1174 } else if (avg_load < min_load) {
1175 min_load = avg_load;
1179 group = group->next;
1180 } while (group != sd->groups);
1182 if (!idlest || 100*this_load < imbalance*min_load)
1188 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1191 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1194 unsigned long load, min_load = ULONG_MAX;
1198 /* Traverse only the allowed CPUs */
1199 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1201 for_each_cpu_mask(i, tmp) {
1202 load = weighted_cpuload(i);
1204 if (load < min_load || (load == min_load && i == this_cpu)) {
1214 * sched_balance_self: balance the current task (running on cpu) in domains
1215 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1218 * Balance, ie. select the least loaded group.
1220 * Returns the target CPU number, or the same CPU if no balancing is needed.
1222 * preempt must be disabled.
1224 static int sched_balance_self(int cpu, int flag)
1226 struct task_struct *t = current;
1227 struct sched_domain *tmp, *sd = NULL;
1229 for_each_domain(cpu, tmp) {
1231 * If power savings logic is enabled for a domain, stop there.
1233 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1235 if (tmp->flags & flag)
1241 struct sched_group *group;
1246 group = find_idlest_group(sd, t, cpu);
1250 new_cpu = find_idlest_cpu(group, t, cpu);
1251 if (new_cpu == -1 || new_cpu == cpu)
1254 /* Now try balancing at a lower domain level */
1258 weight = cpus_weight(span);
1259 for_each_domain(cpu, tmp) {
1260 if (weight <= cpus_weight(tmp->span))
1262 if (tmp->flags & flag)
1265 /* while loop will break here if sd == NULL */
1271 #endif /* CONFIG_SMP */
1274 * wake_idle() will wake a task on an idle cpu if task->cpu is
1275 * not idle and an idle cpu is available. The span of cpus to
1276 * search starts with cpus closest then further out as needed,
1277 * so we always favor a closer, idle cpu.
1279 * Returns the CPU we should wake onto.
1281 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1282 static int wake_idle(int cpu, task_t *p)
1285 struct sched_domain *sd;
1291 for_each_domain(cpu, sd) {
1292 if (sd->flags & SD_WAKE_IDLE) {
1293 cpus_and(tmp, sd->span, p->cpus_allowed);
1294 for_each_cpu_mask(i, tmp) {
1305 static inline int wake_idle(int cpu, task_t *p)
1312 * try_to_wake_up - wake up a thread
1313 * @p: the to-be-woken-up thread
1314 * @state: the mask of task states that can be woken
1315 * @sync: do a synchronous wakeup?
1317 * Put it on the run-queue if it's not already there. The "current"
1318 * thread is always on the run-queue (except when the actual
1319 * re-schedule is in progress), and as such you're allowed to do
1320 * the simpler "current->state = TASK_RUNNING" to mark yourself
1321 * runnable without the overhead of this.
1323 * returns failure only if the task is already active.
1325 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1327 int cpu, this_cpu, success = 0;
1328 unsigned long flags;
1332 unsigned long load, this_load;
1333 struct sched_domain *sd, *this_sd = NULL;
1337 rq = task_rq_lock(p, &flags);
1338 old_state = p->state;
1339 if (!(old_state & state))
1346 this_cpu = smp_processor_id();
1349 if (unlikely(task_running(rq, p)))
1354 schedstat_inc(rq, ttwu_cnt);
1355 if (cpu == this_cpu) {
1356 schedstat_inc(rq, ttwu_local);
1360 for_each_domain(this_cpu, sd) {
1361 if (cpu_isset(cpu, sd->span)) {
1362 schedstat_inc(sd, ttwu_wake_remote);
1368 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1372 * Check for affine wakeup and passive balancing possibilities.
1375 int idx = this_sd->wake_idx;
1376 unsigned int imbalance;
1378 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1380 load = source_load(cpu, idx);
1381 this_load = target_load(this_cpu, idx);
1383 new_cpu = this_cpu; /* Wake to this CPU if we can */
1385 if (this_sd->flags & SD_WAKE_AFFINE) {
1386 unsigned long tl = this_load;
1387 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1390 * If sync wakeup then subtract the (maximum possible)
1391 * effect of the currently running task from the load
1392 * of the current CPU:
1395 tl -= current->load_weight;
1398 tl + target_load(cpu, idx) <= tl_per_task) ||
1399 100*(tl + p->load_weight) <= imbalance*load) {
1401 * This domain has SD_WAKE_AFFINE and
1402 * p is cache cold in this domain, and
1403 * there is no bad imbalance.
1405 schedstat_inc(this_sd, ttwu_move_affine);
1411 * Start passive balancing when half the imbalance_pct
1414 if (this_sd->flags & SD_WAKE_BALANCE) {
1415 if (imbalance*this_load <= 100*load) {
1416 schedstat_inc(this_sd, ttwu_move_balance);
1422 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1424 new_cpu = wake_idle(new_cpu, p);
1425 if (new_cpu != cpu) {
1426 set_task_cpu(p, new_cpu);
1427 task_rq_unlock(rq, &flags);
1428 /* might preempt at this point */
1429 rq = task_rq_lock(p, &flags);
1430 old_state = p->state;
1431 if (!(old_state & state))
1436 this_cpu = smp_processor_id();
1441 #endif /* CONFIG_SMP */
1442 if (old_state == TASK_UNINTERRUPTIBLE) {
1443 rq->nr_uninterruptible--;
1445 * Tasks on involuntary sleep don't earn
1446 * sleep_avg beyond just interactive state.
1448 p->sleep_type = SLEEP_NONINTERACTIVE;
1452 * Tasks that have marked their sleep as noninteractive get
1453 * woken up with their sleep average not weighted in an
1456 if (old_state & TASK_NONINTERACTIVE)
1457 p->sleep_type = SLEEP_NONINTERACTIVE;
1460 activate_task(p, rq, cpu == this_cpu);
1462 * Sync wakeups (i.e. those types of wakeups where the waker
1463 * has indicated that it will leave the CPU in short order)
1464 * don't trigger a preemption, if the woken up task will run on
1465 * this cpu. (in this case the 'I will reschedule' promise of
1466 * the waker guarantees that the freshly woken up task is going
1467 * to be considered on this CPU.)
1469 if (!sync || cpu != this_cpu) {
1470 if (TASK_PREEMPTS_CURR(p, rq))
1471 resched_task(rq->curr);
1476 p->state = TASK_RUNNING;
1478 task_rq_unlock(rq, &flags);
1483 int fastcall wake_up_process(task_t *p)
1485 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1486 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1489 EXPORT_SYMBOL(wake_up_process);
1491 int fastcall wake_up_state(task_t *p, unsigned int state)
1493 return try_to_wake_up(p, state, 0);
1497 * Perform scheduler related setup for a newly forked process p.
1498 * p is forked by current.
1500 void fastcall sched_fork(task_t *p, int clone_flags)
1502 int cpu = get_cpu();
1505 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1507 set_task_cpu(p, cpu);
1510 * We mark the process as running here, but have not actually
1511 * inserted it onto the runqueue yet. This guarantees that
1512 * nobody will actually run it, and a signal or other external
1513 * event cannot wake it up and insert it on the runqueue either.
1515 p->state = TASK_RUNNING;
1518 * Make sure we do not leak PI boosting priority to the child:
1520 p->prio = current->normal_prio;
1522 INIT_LIST_HEAD(&p->run_list);
1524 #ifdef CONFIG_SCHEDSTATS
1525 memset(&p->sched_info, 0, sizeof(p->sched_info));
1527 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1530 #ifdef CONFIG_PREEMPT
1531 /* Want to start with kernel preemption disabled. */
1532 task_thread_info(p)->preempt_count = 1;
1535 * Share the timeslice between parent and child, thus the
1536 * total amount of pending timeslices in the system doesn't change,
1537 * resulting in more scheduling fairness.
1539 local_irq_disable();
1540 p->time_slice = (current->time_slice + 1) >> 1;
1542 * The remainder of the first timeslice might be recovered by
1543 * the parent if the child exits early enough.
1545 p->first_time_slice = 1;
1546 current->time_slice >>= 1;
1547 p->timestamp = sched_clock();
1548 if (unlikely(!current->time_slice)) {
1550 * This case is rare, it happens when the parent has only
1551 * a single jiffy left from its timeslice. Taking the
1552 * runqueue lock is not a problem.
1554 current->time_slice = 1;
1562 * wake_up_new_task - wake up a newly created task for the first time.
1564 * This function will do some initial scheduler statistics housekeeping
1565 * that must be done for every newly created context, then puts the task
1566 * on the runqueue and wakes it.
1568 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1570 unsigned long flags;
1572 runqueue_t *rq, *this_rq;
1574 rq = task_rq_lock(p, &flags);
1575 BUG_ON(p->state != TASK_RUNNING);
1576 this_cpu = smp_processor_id();
1580 * We decrease the sleep average of forking parents
1581 * and children as well, to keep max-interactive tasks
1582 * from forking tasks that are max-interactive. The parent
1583 * (current) is done further down, under its lock.
1585 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1586 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1588 p->prio = effective_prio(p);
1590 if (likely(cpu == this_cpu)) {
1591 if (!(clone_flags & CLONE_VM)) {
1593 * The VM isn't cloned, so we're in a good position to
1594 * do child-runs-first in anticipation of an exec. This
1595 * usually avoids a lot of COW overhead.
1597 if (unlikely(!current->array))
1598 __activate_task(p, rq);
1600 p->prio = current->prio;
1601 p->normal_prio = current->normal_prio;
1602 list_add_tail(&p->run_list, ¤t->run_list);
1603 p->array = current->array;
1604 p->array->nr_active++;
1605 inc_nr_running(p, rq);
1609 /* Run child last */
1610 __activate_task(p, rq);
1612 * We skip the following code due to cpu == this_cpu
1614 * task_rq_unlock(rq, &flags);
1615 * this_rq = task_rq_lock(current, &flags);
1619 this_rq = cpu_rq(this_cpu);
1622 * Not the local CPU - must adjust timestamp. This should
1623 * get optimised away in the !CONFIG_SMP case.
1625 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1626 + rq->timestamp_last_tick;
1627 __activate_task(p, rq);
1628 if (TASK_PREEMPTS_CURR(p, rq))
1629 resched_task(rq->curr);
1632 * Parent and child are on different CPUs, now get the
1633 * parent runqueue to update the parent's ->sleep_avg:
1635 task_rq_unlock(rq, &flags);
1636 this_rq = task_rq_lock(current, &flags);
1638 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1639 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1640 task_rq_unlock(this_rq, &flags);
1644 * Potentially available exiting-child timeslices are
1645 * retrieved here - this way the parent does not get
1646 * penalized for creating too many threads.
1648 * (this cannot be used to 'generate' timeslices
1649 * artificially, because any timeslice recovered here
1650 * was given away by the parent in the first place.)
1652 void fastcall sched_exit(task_t *p)
1654 unsigned long flags;
1658 * If the child was a (relative-) CPU hog then decrease
1659 * the sleep_avg of the parent as well.
1661 rq = task_rq_lock(p->parent, &flags);
1662 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1663 p->parent->time_slice += p->time_slice;
1664 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1665 p->parent->time_slice = task_timeslice(p);
1667 if (p->sleep_avg < p->parent->sleep_avg)
1668 p->parent->sleep_avg = p->parent->sleep_avg /
1669 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1671 task_rq_unlock(rq, &flags);
1675 * prepare_task_switch - prepare to switch tasks
1676 * @rq: the runqueue preparing to switch
1677 * @next: the task we are going to switch to.
1679 * This is called with the rq lock held and interrupts off. It must
1680 * be paired with a subsequent finish_task_switch after the context
1683 * prepare_task_switch sets up locking and calls architecture specific
1686 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1688 prepare_lock_switch(rq, next);
1689 prepare_arch_switch(next);
1693 * finish_task_switch - clean up after a task-switch
1694 * @rq: runqueue associated with task-switch
1695 * @prev: the thread we just switched away from.
1697 * finish_task_switch must be called after the context switch, paired
1698 * with a prepare_task_switch call before the context switch.
1699 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1700 * and do any other architecture-specific cleanup actions.
1702 * Note that we may have delayed dropping an mm in context_switch(). If
1703 * so, we finish that here outside of the runqueue lock. (Doing it
1704 * with the lock held can cause deadlocks; see schedule() for
1707 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1708 __releases(rq->lock)
1710 struct mm_struct *mm = rq->prev_mm;
1711 unsigned long prev_task_flags;
1716 * A task struct has one reference for the use as "current".
1717 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1718 * calls schedule one last time. The schedule call will never return,
1719 * and the scheduled task must drop that reference.
1720 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1721 * still held, otherwise prev could be scheduled on another cpu, die
1722 * there before we look at prev->state, and then the reference would
1724 * Manfred Spraul <manfred@colorfullife.com>
1726 prev_task_flags = prev->flags;
1727 finish_arch_switch(prev);
1728 finish_lock_switch(rq, prev);
1731 if (unlikely(prev_task_flags & PF_DEAD)) {
1733 * Remove function-return probe instances associated with this
1734 * task and put them back on the free list.
1736 kprobe_flush_task(prev);
1737 put_task_struct(prev);
1742 * schedule_tail - first thing a freshly forked thread must call.
1743 * @prev: the thread we just switched away from.
1745 asmlinkage void schedule_tail(task_t *prev)
1746 __releases(rq->lock)
1748 runqueue_t *rq = this_rq();
1749 finish_task_switch(rq, prev);
1750 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1751 /* In this case, finish_task_switch does not reenable preemption */
1754 if (current->set_child_tid)
1755 put_user(current->pid, current->set_child_tid);
1759 * context_switch - switch to the new MM and the new
1760 * thread's register state.
1763 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1765 struct mm_struct *mm = next->mm;
1766 struct mm_struct *oldmm = prev->active_mm;
1768 if (unlikely(!mm)) {
1769 next->active_mm = oldmm;
1770 atomic_inc(&oldmm->mm_count);
1771 enter_lazy_tlb(oldmm, next);
1773 switch_mm(oldmm, mm, next);
1775 if (unlikely(!prev->mm)) {
1776 prev->active_mm = NULL;
1777 WARN_ON(rq->prev_mm);
1778 rq->prev_mm = oldmm;
1781 /* Here we just switch the register state and the stack. */
1782 switch_to(prev, next, prev);
1788 * nr_running, nr_uninterruptible and nr_context_switches:
1790 * externally visible scheduler statistics: current number of runnable
1791 * threads, current number of uninterruptible-sleeping threads, total
1792 * number of context switches performed since bootup.
1794 unsigned long nr_running(void)
1796 unsigned long i, sum = 0;
1798 for_each_online_cpu(i)
1799 sum += cpu_rq(i)->nr_running;
1804 unsigned long nr_uninterruptible(void)
1806 unsigned long i, sum = 0;
1808 for_each_possible_cpu(i)
1809 sum += cpu_rq(i)->nr_uninterruptible;
1812 * Since we read the counters lockless, it might be slightly
1813 * inaccurate. Do not allow it to go below zero though:
1815 if (unlikely((long)sum < 0))
1821 unsigned long long nr_context_switches(void)
1824 unsigned long long sum = 0;
1826 for_each_possible_cpu(i)
1827 sum += cpu_rq(i)->nr_switches;
1832 unsigned long nr_iowait(void)
1834 unsigned long i, sum = 0;
1836 for_each_possible_cpu(i)
1837 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1842 unsigned long nr_active(void)
1844 unsigned long i, running = 0, uninterruptible = 0;
1846 for_each_online_cpu(i) {
1847 running += cpu_rq(i)->nr_running;
1848 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1851 if (unlikely((long)uninterruptible < 0))
1852 uninterruptible = 0;
1854 return running + uninterruptible;
1860 * double_rq_lock - safely lock two runqueues
1862 * Note this does not disable interrupts like task_rq_lock,
1863 * you need to do so manually before calling.
1865 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1866 __acquires(rq1->lock)
1867 __acquires(rq2->lock)
1870 spin_lock(&rq1->lock);
1871 __acquire(rq2->lock); /* Fake it out ;) */
1874 spin_lock(&rq1->lock);
1875 spin_lock(&rq2->lock);
1877 spin_lock(&rq2->lock);
1878 spin_lock(&rq1->lock);
1884 * double_rq_unlock - safely unlock two runqueues
1886 * Note this does not restore interrupts like task_rq_unlock,
1887 * you need to do so manually after calling.
1889 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1890 __releases(rq1->lock)
1891 __releases(rq2->lock)
1893 spin_unlock(&rq1->lock);
1895 spin_unlock(&rq2->lock);
1897 __release(rq2->lock);
1901 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1903 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1904 __releases(this_rq->lock)
1905 __acquires(busiest->lock)
1906 __acquires(this_rq->lock)
1908 if (unlikely(!spin_trylock(&busiest->lock))) {
1909 if (busiest < this_rq) {
1910 spin_unlock(&this_rq->lock);
1911 spin_lock(&busiest->lock);
1912 spin_lock(&this_rq->lock);
1914 spin_lock(&busiest->lock);
1919 * If dest_cpu is allowed for this process, migrate the task to it.
1920 * This is accomplished by forcing the cpu_allowed mask to only
1921 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1922 * the cpu_allowed mask is restored.
1924 static void sched_migrate_task(task_t *p, int dest_cpu)
1926 migration_req_t req;
1928 unsigned long flags;
1930 rq = task_rq_lock(p, &flags);
1931 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1932 || unlikely(cpu_is_offline(dest_cpu)))
1935 /* force the process onto the specified CPU */
1936 if (migrate_task(p, dest_cpu, &req)) {
1937 /* Need to wait for migration thread (might exit: take ref). */
1938 struct task_struct *mt = rq->migration_thread;
1939 get_task_struct(mt);
1940 task_rq_unlock(rq, &flags);
1941 wake_up_process(mt);
1942 put_task_struct(mt);
1943 wait_for_completion(&req.done);
1947 task_rq_unlock(rq, &flags);
1951 * sched_exec - execve() is a valuable balancing opportunity, because at
1952 * this point the task has the smallest effective memory and cache footprint.
1954 void sched_exec(void)
1956 int new_cpu, this_cpu = get_cpu();
1957 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1959 if (new_cpu != this_cpu)
1960 sched_migrate_task(current, new_cpu);
1964 * pull_task - move a task from a remote runqueue to the local runqueue.
1965 * Both runqueues must be locked.
1968 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1969 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1971 dequeue_task(p, src_array);
1972 dec_nr_running(p, src_rq);
1973 set_task_cpu(p, this_cpu);
1974 inc_nr_running(p, this_rq);
1975 enqueue_task(p, this_array);
1976 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1977 + this_rq->timestamp_last_tick;
1979 * Note that idle threads have a prio of MAX_PRIO, for this test
1980 * to be always true for them.
1982 if (TASK_PREEMPTS_CURR(p, this_rq))
1983 resched_task(this_rq->curr);
1987 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1990 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1991 struct sched_domain *sd, enum idle_type idle,
1995 * We do not migrate tasks that are:
1996 * 1) running (obviously), or
1997 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1998 * 3) are cache-hot on their current CPU.
2000 if (!cpu_isset(this_cpu, p->cpus_allowed))
2004 if (task_running(rq, p))
2008 * Aggressive migration if:
2009 * 1) task is cache cold, or
2010 * 2) too many balance attempts have failed.
2013 if (sd->nr_balance_failed > sd->cache_nice_tries)
2016 if (task_hot(p, rq->timestamp_last_tick, sd))
2021 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2023 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2024 * load from busiest to this_rq, as part of a balancing operation within
2025 * "domain". Returns the number of tasks moved.
2027 * Called with both runqueues locked.
2029 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
2030 unsigned long max_nr_move, unsigned long max_load_move,
2031 struct sched_domain *sd, enum idle_type idle,
2034 prio_array_t *array, *dst_array;
2035 struct list_head *head, *curr;
2036 int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio;
2037 int busiest_best_prio_seen;
2038 int skip_for_load; /* skip the task based on weighted load issues */
2042 if (max_nr_move == 0 || max_load_move == 0)
2045 rem_load_move = max_load_move;
2047 this_best_prio = rq_best_prio(this_rq);
2048 busiest_best_prio = rq_best_prio(busiest);
2050 * Enable handling of the case where there is more than one task
2051 * with the best priority. If the current running task is one
2052 * of those with prio==busiest_best_prio we know it won't be moved
2053 * and therefore it's safe to override the skip (based on load) of
2054 * any task we find with that prio.
2056 busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio;
2059 * We first consider expired tasks. Those will likely not be
2060 * executed in the near future, and they are most likely to
2061 * be cache-cold, thus switching CPUs has the least effect
2064 if (busiest->expired->nr_active) {
2065 array = busiest->expired;
2066 dst_array = this_rq->expired;
2068 array = busiest->active;
2069 dst_array = this_rq->active;
2073 /* Start searching at priority 0: */
2077 idx = sched_find_first_bit(array->bitmap);
2079 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2080 if (idx >= MAX_PRIO) {
2081 if (array == busiest->expired && busiest->active->nr_active) {
2082 array = busiest->active;
2083 dst_array = this_rq->active;
2089 head = array->queue + idx;
2092 tmp = list_entry(curr, task_t, run_list);
2097 * To help distribute high priority tasks accross CPUs we don't
2098 * skip a task if it will be the highest priority task (i.e. smallest
2099 * prio value) on its new queue regardless of its load weight
2101 skip_for_load = tmp->load_weight > rem_load_move;
2102 if (skip_for_load && idx < this_best_prio)
2103 skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio;
2104 if (skip_for_load ||
2105 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2106 busiest_best_prio_seen |= idx == busiest_best_prio;
2113 #ifdef CONFIG_SCHEDSTATS
2114 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2115 schedstat_inc(sd, lb_hot_gained[idle]);
2118 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2120 rem_load_move -= tmp->load_weight;
2123 * We only want to steal up to the prescribed number of tasks
2124 * and the prescribed amount of weighted load.
2126 if (pulled < max_nr_move && rem_load_move > 0) {
2127 if (idx < this_best_prio)
2128 this_best_prio = idx;
2136 * Right now, this is the only place pull_task() is called,
2137 * so we can safely collect pull_task() stats here rather than
2138 * inside pull_task().
2140 schedstat_add(sd, lb_gained[idle], pulled);
2143 *all_pinned = pinned;
2148 * find_busiest_group finds and returns the busiest CPU group within the
2149 * domain. It calculates and returns the amount of weighted load which should be
2150 * moved to restore balance via the imbalance parameter.
2152 static struct sched_group *
2153 find_busiest_group(struct sched_domain *sd, int this_cpu,
2154 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2156 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2157 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2158 unsigned long max_pull;
2159 unsigned long busiest_load_per_task, busiest_nr_running;
2160 unsigned long this_load_per_task, this_nr_running;
2162 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2163 int power_savings_balance = 1;
2164 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2165 unsigned long min_nr_running = ULONG_MAX;
2166 struct sched_group *group_min = NULL, *group_leader = NULL;
2169 max_load = this_load = total_load = total_pwr = 0;
2170 busiest_load_per_task = busiest_nr_running = 0;
2171 this_load_per_task = this_nr_running = 0;
2172 if (idle == NOT_IDLE)
2173 load_idx = sd->busy_idx;
2174 else if (idle == NEWLY_IDLE)
2175 load_idx = sd->newidle_idx;
2177 load_idx = sd->idle_idx;
2180 unsigned long load, group_capacity;
2183 unsigned long sum_nr_running, sum_weighted_load;
2185 local_group = cpu_isset(this_cpu, group->cpumask);
2187 /* Tally up the load of all CPUs in the group */
2188 sum_weighted_load = sum_nr_running = avg_load = 0;
2190 for_each_cpu_mask(i, group->cpumask) {
2191 runqueue_t *rq = cpu_rq(i);
2193 if (*sd_idle && !idle_cpu(i))
2196 /* Bias balancing toward cpus of our domain */
2198 load = target_load(i, load_idx);
2200 load = source_load(i, load_idx);
2203 sum_nr_running += rq->nr_running;
2204 sum_weighted_load += rq->raw_weighted_load;
2207 total_load += avg_load;
2208 total_pwr += group->cpu_power;
2210 /* Adjust by relative CPU power of the group */
2211 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2213 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2216 this_load = avg_load;
2218 this_nr_running = sum_nr_running;
2219 this_load_per_task = sum_weighted_load;
2220 } else if (avg_load > max_load &&
2221 sum_nr_running > group_capacity) {
2222 max_load = avg_load;
2224 busiest_nr_running = sum_nr_running;
2225 busiest_load_per_task = sum_weighted_load;
2228 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2230 * Busy processors will not participate in power savings
2233 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2237 * If the local group is idle or completely loaded
2238 * no need to do power savings balance at this domain
2240 if (local_group && (this_nr_running >= group_capacity ||
2242 power_savings_balance = 0;
2245 * If a group is already running at full capacity or idle,
2246 * don't include that group in power savings calculations
2248 if (!power_savings_balance || sum_nr_running >= group_capacity
2253 * Calculate the group which has the least non-idle load.
2254 * This is the group from where we need to pick up the load
2257 if ((sum_nr_running < min_nr_running) ||
2258 (sum_nr_running == min_nr_running &&
2259 first_cpu(group->cpumask) <
2260 first_cpu(group_min->cpumask))) {
2262 min_nr_running = sum_nr_running;
2263 min_load_per_task = sum_weighted_load /
2268 * Calculate the group which is almost near its
2269 * capacity but still has some space to pick up some load
2270 * from other group and save more power
2272 if (sum_nr_running <= group_capacity - 1)
2273 if (sum_nr_running > leader_nr_running ||
2274 (sum_nr_running == leader_nr_running &&
2275 first_cpu(group->cpumask) >
2276 first_cpu(group_leader->cpumask))) {
2277 group_leader = group;
2278 leader_nr_running = sum_nr_running;
2283 group = group->next;
2284 } while (group != sd->groups);
2286 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2289 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2291 if (this_load >= avg_load ||
2292 100*max_load <= sd->imbalance_pct*this_load)
2295 busiest_load_per_task /= busiest_nr_running;
2297 * We're trying to get all the cpus to the average_load, so we don't
2298 * want to push ourselves above the average load, nor do we wish to
2299 * reduce the max loaded cpu below the average load, as either of these
2300 * actions would just result in more rebalancing later, and ping-pong
2301 * tasks around. Thus we look for the minimum possible imbalance.
2302 * Negative imbalances (*we* are more loaded than anyone else) will
2303 * be counted as no imbalance for these purposes -- we can't fix that
2304 * by pulling tasks to us. Be careful of negative numbers as they'll
2305 * appear as very large values with unsigned longs.
2307 if (max_load <= busiest_load_per_task)
2311 * In the presence of smp nice balancing, certain scenarios can have
2312 * max load less than avg load(as we skip the groups at or below
2313 * its cpu_power, while calculating max_load..)
2315 if (max_load < avg_load) {
2317 goto small_imbalance;
2320 /* Don't want to pull so many tasks that a group would go idle */
2321 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2323 /* How much load to actually move to equalise the imbalance */
2324 *imbalance = min(max_pull * busiest->cpu_power,
2325 (avg_load - this_load) * this->cpu_power)
2329 * if *imbalance is less than the average load per runnable task
2330 * there is no gaurantee that any tasks will be moved so we'll have
2331 * a think about bumping its value to force at least one task to be
2334 if (*imbalance < busiest_load_per_task) {
2335 unsigned long pwr_now, pwr_move;
2340 pwr_move = pwr_now = 0;
2342 if (this_nr_running) {
2343 this_load_per_task /= this_nr_running;
2344 if (busiest_load_per_task > this_load_per_task)
2347 this_load_per_task = SCHED_LOAD_SCALE;
2349 if (max_load - this_load >= busiest_load_per_task * imbn) {
2350 *imbalance = busiest_load_per_task;
2355 * OK, we don't have enough imbalance to justify moving tasks,
2356 * however we may be able to increase total CPU power used by
2360 pwr_now += busiest->cpu_power *
2361 min(busiest_load_per_task, max_load);
2362 pwr_now += this->cpu_power *
2363 min(this_load_per_task, this_load);
2364 pwr_now /= SCHED_LOAD_SCALE;
2366 /* Amount of load we'd subtract */
2367 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
2369 pwr_move += busiest->cpu_power *
2370 min(busiest_load_per_task, max_load - tmp);
2372 /* Amount of load we'd add */
2373 if (max_load*busiest->cpu_power <
2374 busiest_load_per_task*SCHED_LOAD_SCALE)
2375 tmp = max_load*busiest->cpu_power/this->cpu_power;
2377 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2378 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
2379 pwr_move /= SCHED_LOAD_SCALE;
2381 /* Move if we gain throughput */
2382 if (pwr_move <= pwr_now)
2385 *imbalance = busiest_load_per_task;
2391 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2392 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2395 if (this == group_leader && group_leader != group_min) {
2396 *imbalance = min_load_per_task;
2406 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2408 static runqueue_t *find_busiest_queue(struct sched_group *group,
2409 enum idle_type idle, unsigned long imbalance)
2411 unsigned long max_load = 0;
2412 runqueue_t *busiest = NULL, *rqi;
2415 for_each_cpu_mask(i, group->cpumask) {
2418 if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
2421 if (rqi->raw_weighted_load > max_load) {
2422 max_load = rqi->raw_weighted_load;
2431 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2432 * so long as it is large enough.
2434 #define MAX_PINNED_INTERVAL 512
2436 #define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
2438 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2439 * tasks if there is an imbalance.
2441 * Called with this_rq unlocked.
2443 static int load_balance(int this_cpu, runqueue_t *this_rq,
2444 struct sched_domain *sd, enum idle_type idle)
2446 struct sched_group *group;
2447 runqueue_t *busiest;
2448 unsigned long imbalance;
2449 int nr_moved, all_pinned = 0;
2450 int active_balance = 0;
2453 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2454 !sched_smt_power_savings)
2457 schedstat_inc(sd, lb_cnt[idle]);
2459 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2461 schedstat_inc(sd, lb_nobusyg[idle]);
2465 busiest = find_busiest_queue(group, idle, imbalance);
2467 schedstat_inc(sd, lb_nobusyq[idle]);
2471 BUG_ON(busiest == this_rq);
2473 schedstat_add(sd, lb_imbalance[idle], imbalance);
2476 if (busiest->nr_running > 1) {
2478 * Attempt to move tasks. If find_busiest_group has found
2479 * an imbalance but busiest->nr_running <= 1, the group is
2480 * still unbalanced. nr_moved simply stays zero, so it is
2481 * correctly treated as an imbalance.
2483 double_rq_lock(this_rq, busiest);
2484 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2485 minus_1_or_zero(busiest->nr_running),
2486 imbalance, sd, idle, &all_pinned);
2487 double_rq_unlock(this_rq, busiest);
2489 /* All tasks on this runqueue were pinned by CPU affinity */
2490 if (unlikely(all_pinned))
2495 schedstat_inc(sd, lb_failed[idle]);
2496 sd->nr_balance_failed++;
2498 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2500 spin_lock(&busiest->lock);
2502 /* don't kick the migration_thread, if the curr
2503 * task on busiest cpu can't be moved to this_cpu
2505 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2506 spin_unlock(&busiest->lock);
2508 goto out_one_pinned;
2511 if (!busiest->active_balance) {
2512 busiest->active_balance = 1;
2513 busiest->push_cpu = this_cpu;
2516 spin_unlock(&busiest->lock);
2518 wake_up_process(busiest->migration_thread);
2521 * We've kicked active balancing, reset the failure
2524 sd->nr_balance_failed = sd->cache_nice_tries+1;
2527 sd->nr_balance_failed = 0;
2529 if (likely(!active_balance)) {
2530 /* We were unbalanced, so reset the balancing interval */
2531 sd->balance_interval = sd->min_interval;
2534 * If we've begun active balancing, start to back off. This
2535 * case may not be covered by the all_pinned logic if there
2536 * is only 1 task on the busy runqueue (because we don't call
2539 if (sd->balance_interval < sd->max_interval)
2540 sd->balance_interval *= 2;
2543 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2544 !sched_smt_power_savings)
2549 schedstat_inc(sd, lb_balanced[idle]);
2551 sd->nr_balance_failed = 0;
2554 /* tune up the balancing interval */
2555 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2556 (sd->balance_interval < sd->max_interval))
2557 sd->balance_interval *= 2;
2559 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2565 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2566 * tasks if there is an imbalance.
2568 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2569 * this_rq is locked.
2571 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2572 struct sched_domain *sd)
2574 struct sched_group *group;
2575 runqueue_t *busiest = NULL;
2576 unsigned long imbalance;
2580 if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2583 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2584 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2586 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2590 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
2592 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2596 BUG_ON(busiest == this_rq);
2598 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2601 if (busiest->nr_running > 1) {
2602 /* Attempt to move tasks */
2603 double_lock_balance(this_rq, busiest);
2604 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2605 minus_1_or_zero(busiest->nr_running),
2606 imbalance, sd, NEWLY_IDLE, NULL);
2607 spin_unlock(&busiest->lock);
2611 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2612 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2615 sd->nr_balance_failed = 0;
2620 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2621 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2623 sd->nr_balance_failed = 0;
2628 * idle_balance is called by schedule() if this_cpu is about to become
2629 * idle. Attempts to pull tasks from other CPUs.
2631 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2633 struct sched_domain *sd;
2635 for_each_domain(this_cpu, sd) {
2636 if (sd->flags & SD_BALANCE_NEWIDLE) {
2637 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2638 /* We've pulled tasks over so stop searching */
2646 * active_load_balance is run by migration threads. It pushes running tasks
2647 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2648 * running on each physical CPU where possible, and avoids physical /
2649 * logical imbalances.
2651 * Called with busiest_rq locked.
2653 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2655 struct sched_domain *sd;
2656 runqueue_t *target_rq;
2657 int target_cpu = busiest_rq->push_cpu;
2659 if (busiest_rq->nr_running <= 1)
2660 /* no task to move */
2663 target_rq = cpu_rq(target_cpu);
2666 * This condition is "impossible", if it occurs
2667 * we need to fix it. Originally reported by
2668 * Bjorn Helgaas on a 128-cpu setup.
2670 BUG_ON(busiest_rq == target_rq);
2672 /* move a task from busiest_rq to target_rq */
2673 double_lock_balance(busiest_rq, target_rq);
2675 /* Search for an sd spanning us and the target CPU. */
2676 for_each_domain(target_cpu, sd) {
2677 if ((sd->flags & SD_LOAD_BALANCE) &&
2678 cpu_isset(busiest_cpu, sd->span))
2682 if (unlikely(sd == NULL))
2685 schedstat_inc(sd, alb_cnt);
2687 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2688 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
2689 schedstat_inc(sd, alb_pushed);
2691 schedstat_inc(sd, alb_failed);
2693 spin_unlock(&target_rq->lock);
2697 * rebalance_tick will get called every timer tick, on every CPU.
2699 * It checks each scheduling domain to see if it is due to be balanced,
2700 * and initiates a balancing operation if so.
2702 * Balancing parameters are set up in arch_init_sched_domains.
2705 /* Don't have all balancing operations going off at once */
2706 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2708 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2709 enum idle_type idle)
2711 unsigned long old_load, this_load;
2712 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2713 struct sched_domain *sd;
2716 this_load = this_rq->raw_weighted_load;
2717 /* Update our load */
2718 for (i = 0; i < 3; i++) {
2719 unsigned long new_load = this_load;
2721 old_load = this_rq->cpu_load[i];
2723 * Round up the averaging division if load is increasing. This
2724 * prevents us from getting stuck on 9 if the load is 10, for
2727 if (new_load > old_load)
2728 new_load += scale-1;
2729 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2732 for_each_domain(this_cpu, sd) {
2733 unsigned long interval;
2735 if (!(sd->flags & SD_LOAD_BALANCE))
2738 interval = sd->balance_interval;
2739 if (idle != SCHED_IDLE)
2740 interval *= sd->busy_factor;
2742 /* scale ms to jiffies */
2743 interval = msecs_to_jiffies(interval);
2744 if (unlikely(!interval))
2747 if (j - sd->last_balance >= interval) {
2748 if (load_balance(this_cpu, this_rq, sd, idle)) {
2750 * We've pulled tasks over so either we're no
2751 * longer idle, or one of our SMT siblings is
2756 sd->last_balance += interval;
2762 * on UP we do not need to balance between CPUs:
2764 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2767 static inline void idle_balance(int cpu, runqueue_t *rq)
2772 static inline int wake_priority_sleeper(runqueue_t *rq)
2775 #ifdef CONFIG_SCHED_SMT
2776 spin_lock(&rq->lock);
2778 * If an SMT sibling task has been put to sleep for priority
2779 * reasons reschedule the idle task to see if it can now run.
2781 if (rq->nr_running) {
2782 resched_task(rq->idle);
2785 spin_unlock(&rq->lock);
2790 DEFINE_PER_CPU(struct kernel_stat, kstat);
2792 EXPORT_PER_CPU_SYMBOL(kstat);
2795 * This is called on clock ticks and on context switches.
2796 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2798 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2799 unsigned long long now)
2801 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2802 p->sched_time += now - last;
2806 * Return current->sched_time plus any more ns on the sched_clock
2807 * that have not yet been banked.
2809 unsigned long long current_sched_time(const task_t *tsk)
2811 unsigned long long ns;
2812 unsigned long flags;
2813 local_irq_save(flags);
2814 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2815 ns = tsk->sched_time + (sched_clock() - ns);
2816 local_irq_restore(flags);
2821 * We place interactive tasks back into the active array, if possible.
2823 * To guarantee that this does not starve expired tasks we ignore the
2824 * interactivity of a task if the first expired task had to wait more
2825 * than a 'reasonable' amount of time. This deadline timeout is
2826 * load-dependent, as the frequency of array switched decreases with
2827 * increasing number of running tasks. We also ignore the interactivity
2828 * if a better static_prio task has expired:
2830 #define EXPIRED_STARVING(rq) \
2831 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2832 (jiffies - (rq)->expired_timestamp >= \
2833 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2834 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2837 * Account user cpu time to a process.
2838 * @p: the process that the cpu time gets accounted to
2839 * @hardirq_offset: the offset to subtract from hardirq_count()
2840 * @cputime: the cpu time spent in user space since the last update
2842 void account_user_time(struct task_struct *p, cputime_t cputime)
2844 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2847 p->utime = cputime_add(p->utime, cputime);
2849 /* Add user time to cpustat. */
2850 tmp = cputime_to_cputime64(cputime);
2851 if (TASK_NICE(p) > 0)
2852 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2854 cpustat->user = cputime64_add(cpustat->user, tmp);
2858 * Account system cpu time to a process.
2859 * @p: the process that the cpu time gets accounted to
2860 * @hardirq_offset: the offset to subtract from hardirq_count()
2861 * @cputime: the cpu time spent in kernel space since the last update
2863 void account_system_time(struct task_struct *p, int hardirq_offset,
2866 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2867 runqueue_t *rq = this_rq();
2870 p->stime = cputime_add(p->stime, cputime);
2872 /* Add system time to cpustat. */
2873 tmp = cputime_to_cputime64(cputime);
2874 if (hardirq_count() - hardirq_offset)
2875 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2876 else if (softirq_count())
2877 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2878 else if (p != rq->idle)
2879 cpustat->system = cputime64_add(cpustat->system, tmp);
2880 else if (atomic_read(&rq->nr_iowait) > 0)
2881 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2883 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2884 /* Account for system time used */
2885 acct_update_integrals(p);
2889 * Account for involuntary wait time.
2890 * @p: the process from which the cpu time has been stolen
2891 * @steal: the cpu time spent in involuntary wait
2893 void account_steal_time(struct task_struct *p, cputime_t steal)
2895 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2896 cputime64_t tmp = cputime_to_cputime64(steal);
2897 runqueue_t *rq = this_rq();
2899 if (p == rq->idle) {
2900 p->stime = cputime_add(p->stime, steal);
2901 if (atomic_read(&rq->nr_iowait) > 0)
2902 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2904 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2906 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2910 * This function gets called by the timer code, with HZ frequency.
2911 * We call it with interrupts disabled.
2913 * It also gets called by the fork code, when changing the parent's
2916 void scheduler_tick(void)
2918 int cpu = smp_processor_id();
2919 runqueue_t *rq = this_rq();
2920 task_t *p = current;
2921 unsigned long long now = sched_clock();
2923 update_cpu_clock(p, rq, now);
2925 rq->timestamp_last_tick = now;
2927 if (p == rq->idle) {
2928 if (wake_priority_sleeper(rq))
2930 rebalance_tick(cpu, rq, SCHED_IDLE);
2934 /* Task might have expired already, but not scheduled off yet */
2935 if (p->array != rq->active) {
2936 set_tsk_need_resched(p);
2939 spin_lock(&rq->lock);
2941 * The task was running during this tick - update the
2942 * time slice counter. Note: we do not update a thread's
2943 * priority until it either goes to sleep or uses up its
2944 * timeslice. This makes it possible for interactive tasks
2945 * to use up their timeslices at their highest priority levels.
2949 * RR tasks need a special form of timeslice management.
2950 * FIFO tasks have no timeslices.
2952 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2953 p->time_slice = task_timeslice(p);
2954 p->first_time_slice = 0;
2955 set_tsk_need_resched(p);
2957 /* put it at the end of the queue: */
2958 requeue_task(p, rq->active);
2962 if (!--p->time_slice) {
2963 dequeue_task(p, rq->active);
2964 set_tsk_need_resched(p);
2965 p->prio = effective_prio(p);
2966 p->time_slice = task_timeslice(p);
2967 p->first_time_slice = 0;
2969 if (!rq->expired_timestamp)
2970 rq->expired_timestamp = jiffies;
2971 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2972 enqueue_task(p, rq->expired);
2973 if (p->static_prio < rq->best_expired_prio)
2974 rq->best_expired_prio = p->static_prio;
2976 enqueue_task(p, rq->active);
2979 * Prevent a too long timeslice allowing a task to monopolize
2980 * the CPU. We do this by splitting up the timeslice into
2983 * Note: this does not mean the task's timeslices expire or
2984 * get lost in any way, they just might be preempted by
2985 * another task of equal priority. (one with higher
2986 * priority would have preempted this task already.) We
2987 * requeue this task to the end of the list on this priority
2988 * level, which is in essence a round-robin of tasks with
2991 * This only applies to tasks in the interactive
2992 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2994 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2995 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2996 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2997 (p->array == rq->active)) {
2999 requeue_task(p, rq->active);
3000 set_tsk_need_resched(p);
3004 spin_unlock(&rq->lock);
3006 rebalance_tick(cpu, rq, NOT_IDLE);
3009 #ifdef CONFIG_SCHED_SMT
3010 static inline void wakeup_busy_runqueue(runqueue_t *rq)
3012 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3013 if (rq->curr == rq->idle && rq->nr_running)
3014 resched_task(rq->idle);
3018 * Called with interrupt disabled and this_rq's runqueue locked.
3020 static void wake_sleeping_dependent(int this_cpu)
3022 struct sched_domain *tmp, *sd = NULL;
3025 for_each_domain(this_cpu, tmp) {
3026 if (tmp->flags & SD_SHARE_CPUPOWER) {
3035 for_each_cpu_mask(i, sd->span) {
3036 runqueue_t *smt_rq = cpu_rq(i);
3040 if (unlikely(!spin_trylock(&smt_rq->lock)))
3043 wakeup_busy_runqueue(smt_rq);
3044 spin_unlock(&smt_rq->lock);
3049 * number of 'lost' timeslices this task wont be able to fully
3050 * utilize, if another task runs on a sibling. This models the
3051 * slowdown effect of other tasks running on siblings:
3053 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
3055 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3059 * To minimise lock contention and not have to drop this_rq's runlock we only
3060 * trylock the sibling runqueues and bypass those runqueues if we fail to
3061 * acquire their lock. As we only trylock the normal locking order does not
3062 * need to be obeyed.
3064 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
3066 struct sched_domain *tmp, *sd = NULL;
3069 /* kernel/rt threads do not participate in dependent sleeping */
3070 if (!p->mm || rt_task(p))
3073 for_each_domain(this_cpu, tmp) {
3074 if (tmp->flags & SD_SHARE_CPUPOWER) {
3083 for_each_cpu_mask(i, sd->span) {
3091 if (unlikely(!spin_trylock(&smt_rq->lock)))
3094 smt_curr = smt_rq->curr;
3100 * If a user task with lower static priority than the
3101 * running task on the SMT sibling is trying to schedule,
3102 * delay it till there is proportionately less timeslice
3103 * left of the sibling task to prevent a lower priority
3104 * task from using an unfair proportion of the
3105 * physical cpu's resources. -ck
3107 if (rt_task(smt_curr)) {
3109 * With real time tasks we run non-rt tasks only
3110 * per_cpu_gain% of the time.
3112 if ((jiffies % DEF_TIMESLICE) >
3113 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3116 if (smt_curr->static_prio < p->static_prio &&
3117 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3118 smt_slice(smt_curr, sd) > task_timeslice(p))
3122 spin_unlock(&smt_rq->lock);
3127 static inline void wake_sleeping_dependent(int this_cpu)
3131 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
3138 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3140 void fastcall add_preempt_count(int val)
3145 BUG_ON((preempt_count() < 0));
3146 preempt_count() += val;
3148 * Spinlock count overflowing soon?
3150 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
3152 EXPORT_SYMBOL(add_preempt_count);
3154 void fastcall sub_preempt_count(int val)
3159 BUG_ON(val > preempt_count());
3161 * Is the spinlock portion underflowing?
3163 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
3164 preempt_count() -= val;
3166 EXPORT_SYMBOL(sub_preempt_count);
3170 static inline int interactive_sleep(enum sleep_type sleep_type)
3172 return (sleep_type == SLEEP_INTERACTIVE ||
3173 sleep_type == SLEEP_INTERRUPTED);
3177 * schedule() is the main scheduler function.
3179 asmlinkage void __sched schedule(void)
3182 task_t *prev, *next;
3184 prio_array_t *array;
3185 struct list_head *queue;
3186 unsigned long long now;
3187 unsigned long run_time;
3188 int cpu, idx, new_prio;
3191 * Test if we are atomic. Since do_exit() needs to call into
3192 * schedule() atomically, we ignore that path for now.
3193 * Otherwise, whine if we are scheduling when we should not be.
3195 if (unlikely(in_atomic() && !current->exit_state)) {
3196 printk(KERN_ERR "BUG: scheduling while atomic: "
3198 current->comm, preempt_count(), current->pid);
3201 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3206 release_kernel_lock(prev);
3207 need_resched_nonpreemptible:
3211 * The idle thread is not allowed to schedule!
3212 * Remove this check after it has been exercised a bit.
3214 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3215 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3219 schedstat_inc(rq, sched_cnt);
3220 now = sched_clock();
3221 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3222 run_time = now - prev->timestamp;
3223 if (unlikely((long long)(now - prev->timestamp) < 0))
3226 run_time = NS_MAX_SLEEP_AVG;
3229 * Tasks charged proportionately less run_time at high sleep_avg to
3230 * delay them losing their interactive status
3232 run_time /= (CURRENT_BONUS(prev) ? : 1);
3234 spin_lock_irq(&rq->lock);
3236 if (unlikely(prev->flags & PF_DEAD))
3237 prev->state = EXIT_DEAD;
3239 switch_count = &prev->nivcsw;
3240 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3241 switch_count = &prev->nvcsw;
3242 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3243 unlikely(signal_pending(prev))))
3244 prev->state = TASK_RUNNING;
3246 if (prev->state == TASK_UNINTERRUPTIBLE)
3247 rq->nr_uninterruptible++;
3248 deactivate_task(prev, rq);
3252 cpu = smp_processor_id();
3253 if (unlikely(!rq->nr_running)) {
3254 idle_balance(cpu, rq);
3255 if (!rq->nr_running) {
3257 rq->expired_timestamp = 0;
3258 wake_sleeping_dependent(cpu);
3264 if (unlikely(!array->nr_active)) {
3266 * Switch the active and expired arrays.
3268 schedstat_inc(rq, sched_switch);
3269 rq->active = rq->expired;
3270 rq->expired = array;
3272 rq->expired_timestamp = 0;
3273 rq->best_expired_prio = MAX_PRIO;
3276 idx = sched_find_first_bit(array->bitmap);
3277 queue = array->queue + idx;
3278 next = list_entry(queue->next, task_t, run_list);
3280 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3281 unsigned long long delta = now - next->timestamp;
3282 if (unlikely((long long)(now - next->timestamp) < 0))
3285 if (next->sleep_type == SLEEP_INTERACTIVE)
3286 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3288 array = next->array;
3289 new_prio = recalc_task_prio(next, next->timestamp + delta);
3291 if (unlikely(next->prio != new_prio)) {
3292 dequeue_task(next, array);
3293 next->prio = new_prio;
3294 enqueue_task(next, array);
3297 next->sleep_type = SLEEP_NORMAL;
3298 if (dependent_sleeper(cpu, rq, next))
3301 if (next == rq->idle)
3302 schedstat_inc(rq, sched_goidle);
3304 prefetch_stack(next);
3305 clear_tsk_need_resched(prev);
3306 rcu_qsctr_inc(task_cpu(prev));
3308 update_cpu_clock(prev, rq, now);
3310 prev->sleep_avg -= run_time;
3311 if ((long)prev->sleep_avg <= 0)
3312 prev->sleep_avg = 0;
3313 prev->timestamp = prev->last_ran = now;
3315 sched_info_switch(prev, next);
3316 if (likely(prev != next)) {
3317 next->timestamp = now;
3322 prepare_task_switch(rq, next);
3323 prev = context_switch(rq, prev, next);
3326 * this_rq must be evaluated again because prev may have moved
3327 * CPUs since it called schedule(), thus the 'rq' on its stack
3328 * frame will be invalid.
3330 finish_task_switch(this_rq(), prev);
3332 spin_unlock_irq(&rq->lock);
3335 if (unlikely(reacquire_kernel_lock(prev) < 0))
3336 goto need_resched_nonpreemptible;
3337 preempt_enable_no_resched();
3338 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3342 EXPORT_SYMBOL(schedule);
3344 #ifdef CONFIG_PREEMPT
3346 * this is is the entry point to schedule() from in-kernel preemption
3347 * off of preempt_enable. Kernel preemptions off return from interrupt
3348 * occur there and call schedule directly.
3350 asmlinkage void __sched preempt_schedule(void)
3352 struct thread_info *ti = current_thread_info();
3353 #ifdef CONFIG_PREEMPT_BKL
3354 struct task_struct *task = current;
3355 int saved_lock_depth;
3358 * If there is a non-zero preempt_count or interrupts are disabled,
3359 * we do not want to preempt the current task. Just return..
3361 if (unlikely(ti->preempt_count || irqs_disabled()))
3365 add_preempt_count(PREEMPT_ACTIVE);
3367 * We keep the big kernel semaphore locked, but we
3368 * clear ->lock_depth so that schedule() doesnt
3369 * auto-release the semaphore:
3371 #ifdef CONFIG_PREEMPT_BKL
3372 saved_lock_depth = task->lock_depth;
3373 task->lock_depth = -1;
3376 #ifdef CONFIG_PREEMPT_BKL
3377 task->lock_depth = saved_lock_depth;
3379 sub_preempt_count(PREEMPT_ACTIVE);
3381 /* we could miss a preemption opportunity between schedule and now */
3383 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3387 EXPORT_SYMBOL(preempt_schedule);
3390 * this is is the entry point to schedule() from kernel preemption
3391 * off of irq context.
3392 * Note, that this is called and return with irqs disabled. This will
3393 * protect us against recursive calling from irq.
3395 asmlinkage void __sched preempt_schedule_irq(void)
3397 struct thread_info *ti = current_thread_info();
3398 #ifdef CONFIG_PREEMPT_BKL
3399 struct task_struct *task = current;
3400 int saved_lock_depth;
3402 /* Catch callers which need to be fixed*/
3403 BUG_ON(ti->preempt_count || !irqs_disabled());
3406 add_preempt_count(PREEMPT_ACTIVE);
3408 * We keep the big kernel semaphore locked, but we
3409 * clear ->lock_depth so that schedule() doesnt
3410 * auto-release the semaphore:
3412 #ifdef CONFIG_PREEMPT_BKL
3413 saved_lock_depth = task->lock_depth;
3414 task->lock_depth = -1;
3418 local_irq_disable();
3419 #ifdef CONFIG_PREEMPT_BKL
3420 task->lock_depth = saved_lock_depth;
3422 sub_preempt_count(PREEMPT_ACTIVE);
3424 /* we could miss a preemption opportunity between schedule and now */
3426 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3430 #endif /* CONFIG_PREEMPT */
3432 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3435 task_t *p = curr->private;
3436 return try_to_wake_up(p, mode, sync);
3439 EXPORT_SYMBOL(default_wake_function);
3442 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3443 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3444 * number) then we wake all the non-exclusive tasks and one exclusive task.
3446 * There are circumstances in which we can try to wake a task which has already
3447 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3448 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3450 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3451 int nr_exclusive, int sync, void *key)
3453 struct list_head *tmp, *next;
3455 list_for_each_safe(tmp, next, &q->task_list) {
3458 curr = list_entry(tmp, wait_queue_t, task_list);
3459 flags = curr->flags;
3460 if (curr->func(curr, mode, sync, key) &&
3461 (flags & WQ_FLAG_EXCLUSIVE) &&
3468 * __wake_up - wake up threads blocked on a waitqueue.
3470 * @mode: which threads
3471 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3472 * @key: is directly passed to the wakeup function
3474 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3475 int nr_exclusive, void *key)
3477 unsigned long flags;
3479 spin_lock_irqsave(&q->lock, flags);
3480 __wake_up_common(q, mode, nr_exclusive, 0, key);
3481 spin_unlock_irqrestore(&q->lock, flags);
3484 EXPORT_SYMBOL(__wake_up);
3487 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3489 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3491 __wake_up_common(q, mode, 1, 0, NULL);
3495 * __wake_up_sync - wake up threads blocked on a waitqueue.
3497 * @mode: which threads
3498 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3500 * The sync wakeup differs that the waker knows that it will schedule
3501 * away soon, so while the target thread will be woken up, it will not
3502 * be migrated to another CPU - ie. the two threads are 'synchronized'
3503 * with each other. This can prevent needless bouncing between CPUs.
3505 * On UP it can prevent extra preemption.
3508 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3510 unsigned long flags;
3516 if (unlikely(!nr_exclusive))
3519 spin_lock_irqsave(&q->lock, flags);
3520 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3521 spin_unlock_irqrestore(&q->lock, flags);
3523 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3525 void fastcall complete(struct completion *x)
3527 unsigned long flags;
3529 spin_lock_irqsave(&x->wait.lock, flags);
3531 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3533 spin_unlock_irqrestore(&x->wait.lock, flags);
3535 EXPORT_SYMBOL(complete);
3537 void fastcall complete_all(struct completion *x)
3539 unsigned long flags;
3541 spin_lock_irqsave(&x->wait.lock, flags);
3542 x->done += UINT_MAX/2;
3543 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3545 spin_unlock_irqrestore(&x->wait.lock, flags);
3547 EXPORT_SYMBOL(complete_all);
3549 void fastcall __sched wait_for_completion(struct completion *x)
3552 spin_lock_irq(&x->wait.lock);
3554 DECLARE_WAITQUEUE(wait, current);
3556 wait.flags |= WQ_FLAG_EXCLUSIVE;
3557 __add_wait_queue_tail(&x->wait, &wait);
3559 __set_current_state(TASK_UNINTERRUPTIBLE);
3560 spin_unlock_irq(&x->wait.lock);
3562 spin_lock_irq(&x->wait.lock);
3564 __remove_wait_queue(&x->wait, &wait);
3567 spin_unlock_irq(&x->wait.lock);
3569 EXPORT_SYMBOL(wait_for_completion);
3571 unsigned long fastcall __sched
3572 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3576 spin_lock_irq(&x->wait.lock);
3578 DECLARE_WAITQUEUE(wait, current);
3580 wait.flags |= WQ_FLAG_EXCLUSIVE;
3581 __add_wait_queue_tail(&x->wait, &wait);
3583 __set_current_state(TASK_UNINTERRUPTIBLE);
3584 spin_unlock_irq(&x->wait.lock);
3585 timeout = schedule_timeout(timeout);
3586 spin_lock_irq(&x->wait.lock);
3588 __remove_wait_queue(&x->wait, &wait);
3592 __remove_wait_queue(&x->wait, &wait);
3596 spin_unlock_irq(&x->wait.lock);
3599 EXPORT_SYMBOL(wait_for_completion_timeout);
3601 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3607 spin_lock_irq(&x->wait.lock);
3609 DECLARE_WAITQUEUE(wait, current);
3611 wait.flags |= WQ_FLAG_EXCLUSIVE;
3612 __add_wait_queue_tail(&x->wait, &wait);
3614 if (signal_pending(current)) {
3616 __remove_wait_queue(&x->wait, &wait);
3619 __set_current_state(TASK_INTERRUPTIBLE);
3620 spin_unlock_irq(&x->wait.lock);
3622 spin_lock_irq(&x->wait.lock);
3624 __remove_wait_queue(&x->wait, &wait);
3628 spin_unlock_irq(&x->wait.lock);
3632 EXPORT_SYMBOL(wait_for_completion_interruptible);
3634 unsigned long fastcall __sched
3635 wait_for_completion_interruptible_timeout(struct completion *x,
3636 unsigned long timeout)
3640 spin_lock_irq(&x->wait.lock);
3642 DECLARE_WAITQUEUE(wait, current);
3644 wait.flags |= WQ_FLAG_EXCLUSIVE;
3645 __add_wait_queue_tail(&x->wait, &wait);
3647 if (signal_pending(current)) {
3648 timeout = -ERESTARTSYS;
3649 __remove_wait_queue(&x->wait, &wait);
3652 __set_current_state(TASK_INTERRUPTIBLE);
3653 spin_unlock_irq(&x->wait.lock);
3654 timeout = schedule_timeout(timeout);
3655 spin_lock_irq(&x->wait.lock);
3657 __remove_wait_queue(&x->wait, &wait);
3661 __remove_wait_queue(&x->wait, &wait);
3665 spin_unlock_irq(&x->wait.lock);
3668 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3671 #define SLEEP_ON_VAR \
3672 unsigned long flags; \
3673 wait_queue_t wait; \
3674 init_waitqueue_entry(&wait, current);
3676 #define SLEEP_ON_HEAD \
3677 spin_lock_irqsave(&q->lock,flags); \
3678 __add_wait_queue(q, &wait); \
3679 spin_unlock(&q->lock);
3681 #define SLEEP_ON_TAIL \
3682 spin_lock_irq(&q->lock); \
3683 __remove_wait_queue(q, &wait); \
3684 spin_unlock_irqrestore(&q->lock, flags);
3686 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3690 current->state = TASK_INTERRUPTIBLE;
3697 EXPORT_SYMBOL(interruptible_sleep_on);
3699 long fastcall __sched
3700 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3704 current->state = TASK_INTERRUPTIBLE;
3707 timeout = schedule_timeout(timeout);
3713 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3715 void fastcall __sched sleep_on(wait_queue_head_t *q)
3719 current->state = TASK_UNINTERRUPTIBLE;
3726 EXPORT_SYMBOL(sleep_on);
3728 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3732 current->state = TASK_UNINTERRUPTIBLE;
3735 timeout = schedule_timeout(timeout);
3741 EXPORT_SYMBOL(sleep_on_timeout);
3743 #ifdef CONFIG_RT_MUTEXES
3746 * rt_mutex_setprio - set the current priority of a task
3748 * @prio: prio value (kernel-internal form)
3750 * This function changes the 'effective' priority of a task. It does
3751 * not touch ->normal_prio like __setscheduler().
3753 * Used by the rt_mutex code to implement priority inheritance logic.
3755 void rt_mutex_setprio(task_t *p, int prio)
3757 unsigned long flags;
3758 prio_array_t *array;
3762 BUG_ON(prio < 0 || prio > MAX_PRIO);
3764 rq = task_rq_lock(p, &flags);
3769 dequeue_task(p, array);
3774 * If changing to an RT priority then queue it
3775 * in the active array!
3779 enqueue_task(p, array);
3781 * Reschedule if we are currently running on this runqueue and
3782 * our priority decreased, or if we are not currently running on
3783 * this runqueue and our priority is higher than the current's
3785 if (task_running(rq, p)) {
3786 if (p->prio > oldprio)
3787 resched_task(rq->curr);
3788 } else if (TASK_PREEMPTS_CURR(p, rq))
3789 resched_task(rq->curr);
3791 task_rq_unlock(rq, &flags);
3796 void set_user_nice(task_t *p, long nice)
3798 unsigned long flags;
3799 prio_array_t *array;
3801 int old_prio, delta;
3803 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3806 * We have to be careful, if called from sys_setpriority(),
3807 * the task might be in the middle of scheduling on another CPU.
3809 rq = task_rq_lock(p, &flags);
3811 * The RT priorities are set via sched_setscheduler(), but we still
3812 * allow the 'normal' nice value to be set - but as expected
3813 * it wont have any effect on scheduling until the task is
3814 * not SCHED_NORMAL/SCHED_BATCH:
3816 if (has_rt_policy(p)) {
3817 p->static_prio = NICE_TO_PRIO(nice);
3822 dequeue_task(p, array);
3823 dec_raw_weighted_load(rq, p);
3826 p->static_prio = NICE_TO_PRIO(nice);
3829 p->prio = effective_prio(p);
3830 delta = p->prio - old_prio;
3833 enqueue_task(p, array);
3834 inc_raw_weighted_load(rq, p);
3836 * If the task increased its priority or is running and
3837 * lowered its priority, then reschedule its CPU:
3839 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3840 resched_task(rq->curr);
3843 task_rq_unlock(rq, &flags);
3845 EXPORT_SYMBOL(set_user_nice);
3848 * can_nice - check if a task can reduce its nice value
3852 int can_nice(const task_t *p, const int nice)
3854 /* convert nice value [19,-20] to rlimit style value [1,40] */
3855 int nice_rlim = 20 - nice;
3856 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3857 capable(CAP_SYS_NICE));
3860 #ifdef __ARCH_WANT_SYS_NICE
3863 * sys_nice - change the priority of the current process.
3864 * @increment: priority increment
3866 * sys_setpriority is a more generic, but much slower function that
3867 * does similar things.
3869 asmlinkage long sys_nice(int increment)
3875 * Setpriority might change our priority at the same moment.
3876 * We don't have to worry. Conceptually one call occurs first
3877 * and we have a single winner.
3879 if (increment < -40)
3884 nice = PRIO_TO_NICE(current->static_prio) + increment;
3890 if (increment < 0 && !can_nice(current, nice))
3893 retval = security_task_setnice(current, nice);
3897 set_user_nice(current, nice);
3904 * task_prio - return the priority value of a given task.
3905 * @p: the task in question.
3907 * This is the priority value as seen by users in /proc.
3908 * RT tasks are offset by -200. Normal tasks are centered
3909 * around 0, value goes from -16 to +15.
3911 int task_prio(const task_t *p)
3913 return p->prio - MAX_RT_PRIO;
3917 * task_nice - return the nice value of a given task.
3918 * @p: the task in question.
3920 int task_nice(const task_t *p)
3922 return TASK_NICE(p);
3924 EXPORT_SYMBOL_GPL(task_nice);
3927 * idle_cpu - is a given cpu idle currently?
3928 * @cpu: the processor in question.
3930 int idle_cpu(int cpu)
3932 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3936 * idle_task - return the idle task for a given cpu.
3937 * @cpu: the processor in question.
3939 task_t *idle_task(int cpu)
3941 return cpu_rq(cpu)->idle;
3945 * find_process_by_pid - find a process with a matching PID value.
3946 * @pid: the pid in question.
3948 static inline task_t *find_process_by_pid(pid_t pid)
3950 return pid ? find_task_by_pid(pid) : current;
3953 /* Actually do priority change: must hold rq lock. */
3954 static void __setscheduler(struct task_struct *p, int policy, int prio)
3958 p->rt_priority = prio;
3959 p->normal_prio = normal_prio(p);
3960 /* we are holding p->pi_lock already */
3961 p->prio = rt_mutex_getprio(p);
3963 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3965 if (policy == SCHED_BATCH)
3971 * sched_setscheduler - change the scheduling policy and/or RT priority of
3973 * @p: the task in question.
3974 * @policy: new policy.
3975 * @param: structure containing the new RT priority.
3977 int sched_setscheduler(struct task_struct *p, int policy,
3978 struct sched_param *param)
3981 int oldprio, oldpolicy = -1;
3982 prio_array_t *array;
3983 unsigned long flags;
3986 /* may grab non-irq protected spin_locks */
3987 BUG_ON(in_interrupt());
3989 /* double check policy once rq lock held */
3991 policy = oldpolicy = p->policy;
3992 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3993 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3996 * Valid priorities for SCHED_FIFO and SCHED_RR are
3997 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4000 if (param->sched_priority < 0 ||
4001 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4002 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4004 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
4005 != (param->sched_priority == 0))
4009 * Allow unprivileged RT tasks to decrease priority:
4011 if (!capable(CAP_SYS_NICE)) {
4013 * can't change policy, except between SCHED_NORMAL
4016 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
4017 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
4018 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4020 /* can't increase priority */
4021 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
4022 param->sched_priority > p->rt_priority &&
4023 param->sched_priority >
4024 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4026 /* can't change other user's priorities */
4027 if ((current->euid != p->euid) &&
4028 (current->euid != p->uid))
4032 retval = security_task_setscheduler(p, policy, param);
4036 * make sure no PI-waiters arrive (or leave) while we are
4037 * changing the priority of the task:
4039 spin_lock_irqsave(&p->pi_lock, flags);
4041 * To be able to change p->policy safely, the apropriate
4042 * runqueue lock must be held.
4044 rq = __task_rq_lock(p);
4045 /* recheck policy now with rq lock held */
4046 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4047 policy = oldpolicy = -1;
4048 __task_rq_unlock(rq);
4049 spin_unlock_irqrestore(&p->pi_lock, flags);
4054 deactivate_task(p, rq);
4056 __setscheduler(p, policy, param->sched_priority);
4058 __activate_task(p, rq);
4060 * Reschedule if we are currently running on this runqueue and
4061 * our priority decreased, or if we are not currently running on
4062 * this runqueue and our priority is higher than the current's
4064 if (task_running(rq, p)) {
4065 if (p->prio > oldprio)
4066 resched_task(rq->curr);
4067 } else if (TASK_PREEMPTS_CURR(p, rq))
4068 resched_task(rq->curr);
4070 __task_rq_unlock(rq);
4071 spin_unlock_irqrestore(&p->pi_lock, flags);
4073 rt_mutex_adjust_pi(p);
4077 EXPORT_SYMBOL_GPL(sched_setscheduler);
4080 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4083 struct sched_param lparam;
4084 struct task_struct *p;
4086 if (!param || pid < 0)
4088 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4090 read_lock_irq(&tasklist_lock);
4091 p = find_process_by_pid(pid);
4093 read_unlock_irq(&tasklist_lock);
4097 read_unlock_irq(&tasklist_lock);
4098 retval = sched_setscheduler(p, policy, &lparam);
4104 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4105 * @pid: the pid in question.
4106 * @policy: new policy.
4107 * @param: structure containing the new RT priority.
4109 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4110 struct sched_param __user *param)
4112 /* negative values for policy are not valid */
4116 return do_sched_setscheduler(pid, policy, param);
4120 * sys_sched_setparam - set/change the RT priority of a thread
4121 * @pid: the pid in question.
4122 * @param: structure containing the new RT priority.
4124 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4126 return do_sched_setscheduler(pid, -1, param);
4130 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4131 * @pid: the pid in question.
4133 asmlinkage long sys_sched_getscheduler(pid_t pid)
4135 int retval = -EINVAL;
4142 read_lock(&tasklist_lock);
4143 p = find_process_by_pid(pid);
4145 retval = security_task_getscheduler(p);
4149 read_unlock(&tasklist_lock);
4156 * sys_sched_getscheduler - get the RT priority of a thread
4157 * @pid: the pid in question.
4158 * @param: structure containing the RT priority.
4160 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4162 struct sched_param lp;
4163 int retval = -EINVAL;
4166 if (!param || pid < 0)
4169 read_lock(&tasklist_lock);
4170 p = find_process_by_pid(pid);
4175 retval = security_task_getscheduler(p);
4179 lp.sched_priority = p->rt_priority;
4180 read_unlock(&tasklist_lock);
4183 * This one might sleep, we cannot do it with a spinlock held ...
4185 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4191 read_unlock(&tasklist_lock);
4195 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4199 cpumask_t cpus_allowed;
4202 read_lock(&tasklist_lock);
4204 p = find_process_by_pid(pid);
4206 read_unlock(&tasklist_lock);
4207 unlock_cpu_hotplug();
4212 * It is not safe to call set_cpus_allowed with the
4213 * tasklist_lock held. We will bump the task_struct's
4214 * usage count and then drop tasklist_lock.
4217 read_unlock(&tasklist_lock);
4220 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4221 !capable(CAP_SYS_NICE))
4224 retval = security_task_setscheduler(p, 0, NULL);
4228 cpus_allowed = cpuset_cpus_allowed(p);
4229 cpus_and(new_mask, new_mask, cpus_allowed);
4230 retval = set_cpus_allowed(p, new_mask);
4234 unlock_cpu_hotplug();
4238 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4239 cpumask_t *new_mask)
4241 if (len < sizeof(cpumask_t)) {
4242 memset(new_mask, 0, sizeof(cpumask_t));
4243 } else if (len > sizeof(cpumask_t)) {
4244 len = sizeof(cpumask_t);
4246 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4250 * sys_sched_setaffinity - set the cpu affinity of a process
4251 * @pid: pid of the process
4252 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4253 * @user_mask_ptr: user-space pointer to the new cpu mask
4255 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4256 unsigned long __user *user_mask_ptr)
4261 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4265 return sched_setaffinity(pid, new_mask);
4269 * Represents all cpu's present in the system
4270 * In systems capable of hotplug, this map could dynamically grow
4271 * as new cpu's are detected in the system via any platform specific
4272 * method, such as ACPI for e.g.
4275 cpumask_t cpu_present_map __read_mostly;
4276 EXPORT_SYMBOL(cpu_present_map);
4279 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4280 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4283 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4289 read_lock(&tasklist_lock);
4292 p = find_process_by_pid(pid);
4296 retval = security_task_getscheduler(p);
4300 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4303 read_unlock(&tasklist_lock);
4304 unlock_cpu_hotplug();
4312 * sys_sched_getaffinity - get the cpu affinity of a process
4313 * @pid: pid of the process
4314 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4315 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4317 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4318 unsigned long __user *user_mask_ptr)
4323 if (len < sizeof(cpumask_t))
4326 ret = sched_getaffinity(pid, &mask);
4330 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4333 return sizeof(cpumask_t);
4337 * sys_sched_yield - yield the current processor to other threads.
4339 * this function yields the current CPU by moving the calling thread
4340 * to the expired array. If there are no other threads running on this
4341 * CPU then this function will return.
4343 asmlinkage long sys_sched_yield(void)
4345 runqueue_t *rq = this_rq_lock();
4346 prio_array_t *array = current->array;
4347 prio_array_t *target = rq->expired;
4349 schedstat_inc(rq, yld_cnt);
4351 * We implement yielding by moving the task into the expired
4354 * (special rule: RT tasks will just roundrobin in the active
4357 if (rt_task(current))
4358 target = rq->active;
4360 if (array->nr_active == 1) {
4361 schedstat_inc(rq, yld_act_empty);
4362 if (!rq->expired->nr_active)
4363 schedstat_inc(rq, yld_both_empty);
4364 } else if (!rq->expired->nr_active)
4365 schedstat_inc(rq, yld_exp_empty);
4367 if (array != target) {
4368 dequeue_task(current, array);
4369 enqueue_task(current, target);
4372 * requeue_task is cheaper so perform that if possible.
4374 requeue_task(current, array);
4377 * Since we are going to call schedule() anyway, there's
4378 * no need to preempt or enable interrupts:
4380 __release(rq->lock);
4381 _raw_spin_unlock(&rq->lock);
4382 preempt_enable_no_resched();
4389 static inline void __cond_resched(void)
4391 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4392 __might_sleep(__FILE__, __LINE__);
4395 * The BKS might be reacquired before we have dropped
4396 * PREEMPT_ACTIVE, which could trigger a second
4397 * cond_resched() call.
4399 if (unlikely(preempt_count()))
4401 if (unlikely(system_state != SYSTEM_RUNNING))
4404 add_preempt_count(PREEMPT_ACTIVE);
4406 sub_preempt_count(PREEMPT_ACTIVE);
4407 } while (need_resched());
4410 int __sched cond_resched(void)
4412 if (need_resched()) {
4419 EXPORT_SYMBOL(cond_resched);
4422 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4423 * call schedule, and on return reacquire the lock.
4425 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4426 * operations here to prevent schedule() from being called twice (once via
4427 * spin_unlock(), once by hand).
4429 int cond_resched_lock(spinlock_t *lock)
4433 if (need_lockbreak(lock)) {
4439 if (need_resched()) {
4440 _raw_spin_unlock(lock);
4441 preempt_enable_no_resched();
4449 EXPORT_SYMBOL(cond_resched_lock);
4451 int __sched cond_resched_softirq(void)
4453 BUG_ON(!in_softirq());
4455 if (need_resched()) {
4456 __local_bh_enable();
4464 EXPORT_SYMBOL(cond_resched_softirq);
4468 * yield - yield the current processor to other threads.
4470 * this is a shortcut for kernel-space yielding - it marks the
4471 * thread runnable and calls sys_sched_yield().
4473 void __sched yield(void)
4475 set_current_state(TASK_RUNNING);
4479 EXPORT_SYMBOL(yield);
4482 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4483 * that process accounting knows that this is a task in IO wait state.
4485 * But don't do that if it is a deliberate, throttling IO wait (this task
4486 * has set its backing_dev_info: the queue against which it should throttle)
4488 void __sched io_schedule(void)
4490 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4492 atomic_inc(&rq->nr_iowait);
4494 atomic_dec(&rq->nr_iowait);
4497 EXPORT_SYMBOL(io_schedule);
4499 long __sched io_schedule_timeout(long timeout)
4501 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4504 atomic_inc(&rq->nr_iowait);
4505 ret = schedule_timeout(timeout);
4506 atomic_dec(&rq->nr_iowait);
4511 * sys_sched_get_priority_max - return maximum RT priority.
4512 * @policy: scheduling class.
4514 * this syscall returns the maximum rt_priority that can be used
4515 * by a given scheduling class.
4517 asmlinkage long sys_sched_get_priority_max(int policy)
4524 ret = MAX_USER_RT_PRIO-1;
4535 * sys_sched_get_priority_min - return minimum RT priority.
4536 * @policy: scheduling class.
4538 * this syscall returns the minimum rt_priority that can be used
4539 * by a given scheduling class.
4541 asmlinkage long sys_sched_get_priority_min(int policy)
4558 * sys_sched_rr_get_interval - return the default timeslice of a process.
4559 * @pid: pid of the process.
4560 * @interval: userspace pointer to the timeslice value.
4562 * this syscall writes the default timeslice value of a given process
4563 * into the user-space timespec buffer. A value of '0' means infinity.
4566 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4568 int retval = -EINVAL;
4576 read_lock(&tasklist_lock);
4577 p = find_process_by_pid(pid);
4581 retval = security_task_getscheduler(p);
4585 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4586 0 : task_timeslice(p), &t);
4587 read_unlock(&tasklist_lock);
4588 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4592 read_unlock(&tasklist_lock);
4596 static inline struct task_struct *eldest_child(struct task_struct *p)
4598 if (list_empty(&p->children)) return NULL;
4599 return list_entry(p->children.next,struct task_struct,sibling);
4602 static inline struct task_struct *older_sibling(struct task_struct *p)
4604 if (p->sibling.prev==&p->parent->children) return NULL;
4605 return list_entry(p->sibling.prev,struct task_struct,sibling);
4608 static inline struct task_struct *younger_sibling(struct task_struct *p)
4610 if (p->sibling.next==&p->parent->children) return NULL;
4611 return list_entry(p->sibling.next,struct task_struct,sibling);
4614 static void show_task(task_t *p)
4618 unsigned long free = 0;
4619 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4621 printk("%-13.13s ", p->comm);
4622 state = p->state ? __ffs(p->state) + 1 : 0;
4623 if (state < ARRAY_SIZE(stat_nam))
4624 printk(stat_nam[state]);
4627 #if (BITS_PER_LONG == 32)
4628 if (state == TASK_RUNNING)
4629 printk(" running ");
4631 printk(" %08lX ", thread_saved_pc(p));
4633 if (state == TASK_RUNNING)
4634 printk(" running task ");
4636 printk(" %016lx ", thread_saved_pc(p));
4638 #ifdef CONFIG_DEBUG_STACK_USAGE
4640 unsigned long *n = end_of_stack(p);
4643 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4646 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4647 if ((relative = eldest_child(p)))
4648 printk("%5d ", relative->pid);
4651 if ((relative = younger_sibling(p)))
4652 printk("%7d", relative->pid);
4655 if ((relative = older_sibling(p)))
4656 printk(" %5d", relative->pid);
4660 printk(" (L-TLB)\n");
4662 printk(" (NOTLB)\n");
4664 if (state != TASK_RUNNING)
4665 show_stack(p, NULL);
4668 void show_state(void)
4672 #if (BITS_PER_LONG == 32)
4675 printk(" task PC pid father child younger older\n");
4679 printk(" task PC pid father child younger older\n");
4681 read_lock(&tasklist_lock);
4682 do_each_thread(g, p) {
4684 * reset the NMI-timeout, listing all files on a slow
4685 * console might take alot of time:
4687 touch_nmi_watchdog();
4689 } while_each_thread(g, p);
4691 read_unlock(&tasklist_lock);
4692 mutex_debug_show_all_locks();
4696 * init_idle - set up an idle thread for a given CPU
4697 * @idle: task in question
4698 * @cpu: cpu the idle task belongs to
4700 * NOTE: this function does not set the idle thread's NEED_RESCHED
4701 * flag, to make booting more robust.
4703 void __devinit init_idle(task_t *idle, int cpu)
4705 runqueue_t *rq = cpu_rq(cpu);
4706 unsigned long flags;
4708 idle->timestamp = sched_clock();
4709 idle->sleep_avg = 0;
4711 idle->prio = idle->normal_prio = MAX_PRIO;
4712 idle->state = TASK_RUNNING;
4713 idle->cpus_allowed = cpumask_of_cpu(cpu);
4714 set_task_cpu(idle, cpu);
4716 spin_lock_irqsave(&rq->lock, flags);
4717 rq->curr = rq->idle = idle;
4718 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4721 spin_unlock_irqrestore(&rq->lock, flags);
4723 /* Set the preempt count _outside_ the spinlocks! */
4724 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4725 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4727 task_thread_info(idle)->preempt_count = 0;
4732 * In a system that switches off the HZ timer nohz_cpu_mask
4733 * indicates which cpus entered this state. This is used
4734 * in the rcu update to wait only for active cpus. For system
4735 * which do not switch off the HZ timer nohz_cpu_mask should
4736 * always be CPU_MASK_NONE.
4738 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4742 * This is how migration works:
4744 * 1) we queue a migration_req_t structure in the source CPU's
4745 * runqueue and wake up that CPU's migration thread.
4746 * 2) we down() the locked semaphore => thread blocks.
4747 * 3) migration thread wakes up (implicitly it forces the migrated
4748 * thread off the CPU)
4749 * 4) it gets the migration request and checks whether the migrated
4750 * task is still in the wrong runqueue.
4751 * 5) if it's in the wrong runqueue then the migration thread removes
4752 * it and puts it into the right queue.
4753 * 6) migration thread up()s the semaphore.
4754 * 7) we wake up and the migration is done.
4758 * Change a given task's CPU affinity. Migrate the thread to a
4759 * proper CPU and schedule it away if the CPU it's executing on
4760 * is removed from the allowed bitmask.
4762 * NOTE: the caller must have a valid reference to the task, the
4763 * task must not exit() & deallocate itself prematurely. The
4764 * call is not atomic; no spinlocks may be held.
4766 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4768 unsigned long flags;
4770 migration_req_t req;
4773 rq = task_rq_lock(p, &flags);
4774 if (!cpus_intersects(new_mask, cpu_online_map)) {
4779 p->cpus_allowed = new_mask;
4780 /* Can the task run on the task's current CPU? If so, we're done */
4781 if (cpu_isset(task_cpu(p), new_mask))
4784 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4785 /* Need help from migration thread: drop lock and wait. */
4786 task_rq_unlock(rq, &flags);
4787 wake_up_process(rq->migration_thread);
4788 wait_for_completion(&req.done);
4789 tlb_migrate_finish(p->mm);
4793 task_rq_unlock(rq, &flags);
4797 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4800 * Move (not current) task off this cpu, onto dest cpu. We're doing
4801 * this because either it can't run here any more (set_cpus_allowed()
4802 * away from this CPU, or CPU going down), or because we're
4803 * attempting to rebalance this task on exec (sched_exec).
4805 * So we race with normal scheduler movements, but that's OK, as long
4806 * as the task is no longer on this CPU.
4808 * Returns non-zero if task was successfully migrated.
4810 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4812 runqueue_t *rq_dest, *rq_src;
4815 if (unlikely(cpu_is_offline(dest_cpu)))
4818 rq_src = cpu_rq(src_cpu);
4819 rq_dest = cpu_rq(dest_cpu);
4821 double_rq_lock(rq_src, rq_dest);
4822 /* Already moved. */
4823 if (task_cpu(p) != src_cpu)
4825 /* Affinity changed (again). */
4826 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4829 set_task_cpu(p, dest_cpu);
4832 * Sync timestamp with rq_dest's before activating.
4833 * The same thing could be achieved by doing this step
4834 * afterwards, and pretending it was a local activate.
4835 * This way is cleaner and logically correct.
4837 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4838 + rq_dest->timestamp_last_tick;
4839 deactivate_task(p, rq_src);
4840 activate_task(p, rq_dest, 0);
4841 if (TASK_PREEMPTS_CURR(p, rq_dest))
4842 resched_task(rq_dest->curr);
4846 double_rq_unlock(rq_src, rq_dest);
4851 * migration_thread - this is a highprio system thread that performs
4852 * thread migration by bumping thread off CPU then 'pushing' onto
4855 static int migration_thread(void *data)
4858 int cpu = (long)data;
4861 BUG_ON(rq->migration_thread != current);
4863 set_current_state(TASK_INTERRUPTIBLE);
4864 while (!kthread_should_stop()) {
4865 struct list_head *head;
4866 migration_req_t *req;
4870 spin_lock_irq(&rq->lock);
4872 if (cpu_is_offline(cpu)) {
4873 spin_unlock_irq(&rq->lock);
4877 if (rq->active_balance) {
4878 active_load_balance(rq, cpu);
4879 rq->active_balance = 0;
4882 head = &rq->migration_queue;
4884 if (list_empty(head)) {
4885 spin_unlock_irq(&rq->lock);
4887 set_current_state(TASK_INTERRUPTIBLE);
4890 req = list_entry(head->next, migration_req_t, list);
4891 list_del_init(head->next);
4893 spin_unlock(&rq->lock);
4894 __migrate_task(req->task, cpu, req->dest_cpu);
4897 complete(&req->done);
4899 __set_current_state(TASK_RUNNING);
4903 /* Wait for kthread_stop */
4904 set_current_state(TASK_INTERRUPTIBLE);
4905 while (!kthread_should_stop()) {
4907 set_current_state(TASK_INTERRUPTIBLE);
4909 __set_current_state(TASK_RUNNING);
4913 #ifdef CONFIG_HOTPLUG_CPU
4914 /* Figure out where task on dead CPU should go, use force if neccessary. */
4915 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4918 unsigned long flags;
4924 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4925 cpus_and(mask, mask, tsk->cpus_allowed);
4926 dest_cpu = any_online_cpu(mask);
4928 /* On any allowed CPU? */
4929 if (dest_cpu == NR_CPUS)
4930 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4932 /* No more Mr. Nice Guy. */
4933 if (dest_cpu == NR_CPUS) {
4934 rq = task_rq_lock(tsk, &flags);
4935 cpus_setall(tsk->cpus_allowed);
4936 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4937 task_rq_unlock(rq, &flags);
4940 * Don't tell them about moving exiting tasks or
4941 * kernel threads (both mm NULL), since they never
4944 if (tsk->mm && printk_ratelimit())
4945 printk(KERN_INFO "process %d (%s) no "
4946 "longer affine to cpu%d\n",
4947 tsk->pid, tsk->comm, dead_cpu);
4949 if (!__migrate_task(tsk, dead_cpu, dest_cpu))
4954 * While a dead CPU has no uninterruptible tasks queued at this point,
4955 * it might still have a nonzero ->nr_uninterruptible counter, because
4956 * for performance reasons the counter is not stricly tracking tasks to
4957 * their home CPUs. So we just add the counter to another CPU's counter,
4958 * to keep the global sum constant after CPU-down:
4960 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4962 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4963 unsigned long flags;
4965 local_irq_save(flags);
4966 double_rq_lock(rq_src, rq_dest);
4967 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4968 rq_src->nr_uninterruptible = 0;
4969 double_rq_unlock(rq_src, rq_dest);
4970 local_irq_restore(flags);
4973 /* Run through task list and migrate tasks from the dead cpu. */
4974 static void migrate_live_tasks(int src_cpu)
4976 struct task_struct *tsk, *t;
4978 write_lock_irq(&tasklist_lock);
4980 do_each_thread(t, tsk) {
4984 if (task_cpu(tsk) == src_cpu)
4985 move_task_off_dead_cpu(src_cpu, tsk);
4986 } while_each_thread(t, tsk);
4988 write_unlock_irq(&tasklist_lock);
4991 /* Schedules idle task to be the next runnable task on current CPU.
4992 * It does so by boosting its priority to highest possible and adding it to
4993 * the _front_ of runqueue. Used by CPU offline code.
4995 void sched_idle_next(void)
4997 int cpu = smp_processor_id();
4998 runqueue_t *rq = this_rq();
4999 struct task_struct *p = rq->idle;
5000 unsigned long flags;
5002 /* cpu has to be offline */
5003 BUG_ON(cpu_online(cpu));
5005 /* Strictly not necessary since rest of the CPUs are stopped by now
5006 * and interrupts disabled on current cpu.
5008 spin_lock_irqsave(&rq->lock, flags);
5010 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5011 /* Add idle task to _front_ of it's priority queue */
5012 __activate_idle_task(p, rq);
5014 spin_unlock_irqrestore(&rq->lock, flags);
5017 /* Ensures that the idle task is using init_mm right before its cpu goes
5020 void idle_task_exit(void)
5022 struct mm_struct *mm = current->active_mm;
5024 BUG_ON(cpu_online(smp_processor_id()));
5027 switch_mm(mm, &init_mm, current);
5031 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
5033 struct runqueue *rq = cpu_rq(dead_cpu);
5035 /* Must be exiting, otherwise would be on tasklist. */
5036 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
5038 /* Cannot have done final schedule yet: would have vanished. */
5039 BUG_ON(tsk->flags & PF_DEAD);
5041 get_task_struct(tsk);
5044 * Drop lock around migration; if someone else moves it,
5045 * that's OK. No task can be added to this CPU, so iteration is
5048 spin_unlock_irq(&rq->lock);
5049 move_task_off_dead_cpu(dead_cpu, tsk);
5050 spin_lock_irq(&rq->lock);
5052 put_task_struct(tsk);
5055 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5056 static void migrate_dead_tasks(unsigned int dead_cpu)
5059 struct runqueue *rq = cpu_rq(dead_cpu);
5061 for (arr = 0; arr < 2; arr++) {
5062 for (i = 0; i < MAX_PRIO; i++) {
5063 struct list_head *list = &rq->arrays[arr].queue[i];
5064 while (!list_empty(list))
5065 migrate_dead(dead_cpu,
5066 list_entry(list->next, task_t,
5071 #endif /* CONFIG_HOTPLUG_CPU */
5074 * migration_call - callback that gets triggered when a CPU is added.
5075 * Here we can start up the necessary migration thread for the new CPU.
5077 static int __cpuinit migration_call(struct notifier_block *nfb,
5078 unsigned long action,
5081 int cpu = (long)hcpu;
5082 struct task_struct *p;
5083 struct runqueue *rq;
5084 unsigned long flags;
5087 case CPU_UP_PREPARE:
5088 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5091 p->flags |= PF_NOFREEZE;
5092 kthread_bind(p, cpu);
5093 /* Must be high prio: stop_machine expects to yield to it. */
5094 rq = task_rq_lock(p, &flags);
5095 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5096 task_rq_unlock(rq, &flags);
5097 cpu_rq(cpu)->migration_thread = p;
5100 /* Strictly unneccessary, as first user will wake it. */
5101 wake_up_process(cpu_rq(cpu)->migration_thread);
5103 #ifdef CONFIG_HOTPLUG_CPU
5104 case CPU_UP_CANCELED:
5105 if (!cpu_rq(cpu)->migration_thread)
5107 /* Unbind it from offline cpu so it can run. Fall thru. */
5108 kthread_bind(cpu_rq(cpu)->migration_thread,
5109 any_online_cpu(cpu_online_map));
5110 kthread_stop(cpu_rq(cpu)->migration_thread);
5111 cpu_rq(cpu)->migration_thread = NULL;
5114 migrate_live_tasks(cpu);
5116 kthread_stop(rq->migration_thread);
5117 rq->migration_thread = NULL;
5118 /* Idle task back to normal (off runqueue, low prio) */
5119 rq = task_rq_lock(rq->idle, &flags);
5120 deactivate_task(rq->idle, rq);
5121 rq->idle->static_prio = MAX_PRIO;
5122 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5123 migrate_dead_tasks(cpu);
5124 task_rq_unlock(rq, &flags);
5125 migrate_nr_uninterruptible(rq);
5126 BUG_ON(rq->nr_running != 0);
5128 /* No need to migrate the tasks: it was best-effort if
5129 * they didn't do lock_cpu_hotplug(). Just wake up
5130 * the requestors. */
5131 spin_lock_irq(&rq->lock);
5132 while (!list_empty(&rq->migration_queue)) {
5133 migration_req_t *req;
5134 req = list_entry(rq->migration_queue.next,
5135 migration_req_t, list);
5136 list_del_init(&req->list);
5137 complete(&req->done);
5139 spin_unlock_irq(&rq->lock);
5146 /* Register at highest priority so that task migration (migrate_all_tasks)
5147 * happens before everything else.
5149 static struct notifier_block __cpuinitdata migration_notifier = {
5150 .notifier_call = migration_call,
5154 int __init migration_init(void)
5156 void *cpu = (void *)(long)smp_processor_id();
5157 /* Start one for boot CPU. */
5158 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5159 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5160 register_cpu_notifier(&migration_notifier);
5166 #undef SCHED_DOMAIN_DEBUG
5167 #ifdef SCHED_DOMAIN_DEBUG
5168 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5173 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5177 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5182 struct sched_group *group = sd->groups;
5183 cpumask_t groupmask;
5185 cpumask_scnprintf(str, NR_CPUS, sd->span);
5186 cpus_clear(groupmask);
5189 for (i = 0; i < level + 1; i++)
5191 printk("domain %d: ", level);
5193 if (!(sd->flags & SD_LOAD_BALANCE)) {
5194 printk("does not load-balance\n");
5196 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5200 printk("span %s\n", str);
5202 if (!cpu_isset(cpu, sd->span))
5203 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5204 if (!cpu_isset(cpu, group->cpumask))
5205 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5208 for (i = 0; i < level + 2; i++)
5214 printk(KERN_ERR "ERROR: group is NULL\n");
5218 if (!group->cpu_power) {
5220 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5223 if (!cpus_weight(group->cpumask)) {
5225 printk(KERN_ERR "ERROR: empty group\n");
5228 if (cpus_intersects(groupmask, group->cpumask)) {
5230 printk(KERN_ERR "ERROR: repeated CPUs\n");
5233 cpus_or(groupmask, groupmask, group->cpumask);
5235 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5238 group = group->next;
5239 } while (group != sd->groups);
5242 if (!cpus_equal(sd->span, groupmask))
5243 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5249 if (!cpus_subset(groupmask, sd->span))
5250 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5256 #define sched_domain_debug(sd, cpu) {}
5259 static int sd_degenerate(struct sched_domain *sd)
5261 if (cpus_weight(sd->span) == 1)
5264 /* Following flags need at least 2 groups */
5265 if (sd->flags & (SD_LOAD_BALANCE |
5266 SD_BALANCE_NEWIDLE |
5269 if (sd->groups != sd->groups->next)
5273 /* Following flags don't use groups */
5274 if (sd->flags & (SD_WAKE_IDLE |
5282 static int sd_parent_degenerate(struct sched_domain *sd,
5283 struct sched_domain *parent)
5285 unsigned long cflags = sd->flags, pflags = parent->flags;
5287 if (sd_degenerate(parent))
5290 if (!cpus_equal(sd->span, parent->span))
5293 /* Does parent contain flags not in child? */
5294 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5295 if (cflags & SD_WAKE_AFFINE)
5296 pflags &= ~SD_WAKE_BALANCE;
5297 /* Flags needing groups don't count if only 1 group in parent */
5298 if (parent->groups == parent->groups->next) {
5299 pflags &= ~(SD_LOAD_BALANCE |
5300 SD_BALANCE_NEWIDLE |
5304 if (~cflags & pflags)
5311 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5312 * hold the hotplug lock.
5314 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5316 runqueue_t *rq = cpu_rq(cpu);
5317 struct sched_domain *tmp;
5319 /* Remove the sched domains which do not contribute to scheduling. */
5320 for (tmp = sd; tmp; tmp = tmp->parent) {
5321 struct sched_domain *parent = tmp->parent;
5324 if (sd_parent_degenerate(tmp, parent))
5325 tmp->parent = parent->parent;
5328 if (sd && sd_degenerate(sd))
5331 sched_domain_debug(sd, cpu);
5333 rcu_assign_pointer(rq->sd, sd);
5336 /* cpus with isolated domains */
5337 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5339 /* Setup the mask of cpus configured for isolated domains */
5340 static int __init isolated_cpu_setup(char *str)
5342 int ints[NR_CPUS], i;
5344 str = get_options(str, ARRAY_SIZE(ints), ints);
5345 cpus_clear(cpu_isolated_map);
5346 for (i = 1; i <= ints[0]; i++)
5347 if (ints[i] < NR_CPUS)
5348 cpu_set(ints[i], cpu_isolated_map);
5352 __setup ("isolcpus=", isolated_cpu_setup);
5355 * init_sched_build_groups takes an array of groups, the cpumask we wish
5356 * to span, and a pointer to a function which identifies what group a CPU
5357 * belongs to. The return value of group_fn must be a valid index into the
5358 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5359 * keep track of groups covered with a cpumask_t).
5361 * init_sched_build_groups will build a circular linked list of the groups
5362 * covered by the given span, and will set each group's ->cpumask correctly,
5363 * and ->cpu_power to 0.
5365 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5366 int (*group_fn)(int cpu))
5368 struct sched_group *first = NULL, *last = NULL;
5369 cpumask_t covered = CPU_MASK_NONE;
5372 for_each_cpu_mask(i, span) {
5373 int group = group_fn(i);
5374 struct sched_group *sg = &groups[group];
5377 if (cpu_isset(i, covered))
5380 sg->cpumask = CPU_MASK_NONE;
5383 for_each_cpu_mask(j, span) {
5384 if (group_fn(j) != group)
5387 cpu_set(j, covered);
5388 cpu_set(j, sg->cpumask);
5399 #define SD_NODES_PER_DOMAIN 16
5402 * Self-tuning task migration cost measurement between source and target CPUs.
5404 * This is done by measuring the cost of manipulating buffers of varying
5405 * sizes. For a given buffer-size here are the steps that are taken:
5407 * 1) the source CPU reads+dirties a shared buffer
5408 * 2) the target CPU reads+dirties the same shared buffer
5410 * We measure how long they take, in the following 4 scenarios:
5412 * - source: CPU1, target: CPU2 | cost1
5413 * - source: CPU2, target: CPU1 | cost2
5414 * - source: CPU1, target: CPU1 | cost3
5415 * - source: CPU2, target: CPU2 | cost4
5417 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5418 * the cost of migration.
5420 * We then start off from a small buffer-size and iterate up to larger
5421 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5422 * doing a maximum search for the cost. (The maximum cost for a migration
5423 * normally occurs when the working set size is around the effective cache
5426 #define SEARCH_SCOPE 2
5427 #define MIN_CACHE_SIZE (64*1024U)
5428 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5429 #define ITERATIONS 1
5430 #define SIZE_THRESH 130
5431 #define COST_THRESH 130
5434 * The migration cost is a function of 'domain distance'. Domain
5435 * distance is the number of steps a CPU has to iterate down its
5436 * domain tree to share a domain with the other CPU. The farther
5437 * two CPUs are from each other, the larger the distance gets.
5439 * Note that we use the distance only to cache measurement results,
5440 * the distance value is not used numerically otherwise. When two
5441 * CPUs have the same distance it is assumed that the migration
5442 * cost is the same. (this is a simplification but quite practical)
5444 #define MAX_DOMAIN_DISTANCE 32
5446 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5447 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5449 * Architectures may override the migration cost and thus avoid
5450 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5451 * virtualized hardware:
5453 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5454 CONFIG_DEFAULT_MIGRATION_COST
5461 * Allow override of migration cost - in units of microseconds.
5462 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5463 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5465 static int __init migration_cost_setup(char *str)
5467 int ints[MAX_DOMAIN_DISTANCE+1], i;
5469 str = get_options(str, ARRAY_SIZE(ints), ints);
5471 printk("#ints: %d\n", ints[0]);
5472 for (i = 1; i <= ints[0]; i++) {
5473 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5474 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5479 __setup ("migration_cost=", migration_cost_setup);
5482 * Global multiplier (divisor) for migration-cutoff values,
5483 * in percentiles. E.g. use a value of 150 to get 1.5 times
5484 * longer cache-hot cutoff times.
5486 * (We scale it from 100 to 128 to long long handling easier.)
5489 #define MIGRATION_FACTOR_SCALE 128
5491 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5493 static int __init setup_migration_factor(char *str)
5495 get_option(&str, &migration_factor);
5496 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5500 __setup("migration_factor=", setup_migration_factor);
5503 * Estimated distance of two CPUs, measured via the number of domains
5504 * we have to pass for the two CPUs to be in the same span:
5506 static unsigned long domain_distance(int cpu1, int cpu2)
5508 unsigned long distance = 0;
5509 struct sched_domain *sd;
5511 for_each_domain(cpu1, sd) {
5512 WARN_ON(!cpu_isset(cpu1, sd->span));
5513 if (cpu_isset(cpu2, sd->span))
5517 if (distance >= MAX_DOMAIN_DISTANCE) {
5519 distance = MAX_DOMAIN_DISTANCE-1;
5525 static unsigned int migration_debug;
5527 static int __init setup_migration_debug(char *str)
5529 get_option(&str, &migration_debug);
5533 __setup("migration_debug=", setup_migration_debug);
5536 * Maximum cache-size that the scheduler should try to measure.
5537 * Architectures with larger caches should tune this up during
5538 * bootup. Gets used in the domain-setup code (i.e. during SMP
5541 unsigned int max_cache_size;
5543 static int __init setup_max_cache_size(char *str)
5545 get_option(&str, &max_cache_size);
5549 __setup("max_cache_size=", setup_max_cache_size);
5552 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5553 * is the operation that is timed, so we try to generate unpredictable
5554 * cachemisses that still end up filling the L2 cache:
5556 static void touch_cache(void *__cache, unsigned long __size)
5558 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5560 unsigned long *cache = __cache;
5563 for (i = 0; i < size/6; i += 8) {
5566 case 1: cache[size-1-i]++;
5567 case 2: cache[chunk1-i]++;
5568 case 3: cache[chunk1+i]++;
5569 case 4: cache[chunk2-i]++;
5570 case 5: cache[chunk2+i]++;
5576 * Measure the cache-cost of one task migration. Returns in units of nsec.
5578 static unsigned long long measure_one(void *cache, unsigned long size,
5579 int source, int target)
5581 cpumask_t mask, saved_mask;
5582 unsigned long long t0, t1, t2, t3, cost;
5584 saved_mask = current->cpus_allowed;
5587 * Flush source caches to RAM and invalidate them:
5592 * Migrate to the source CPU:
5594 mask = cpumask_of_cpu(source);
5595 set_cpus_allowed(current, mask);
5596 WARN_ON(smp_processor_id() != source);
5599 * Dirty the working set:
5602 touch_cache(cache, size);
5606 * Migrate to the target CPU, dirty the L2 cache and access
5607 * the shared buffer. (which represents the working set
5608 * of a migrated task.)
5610 mask = cpumask_of_cpu(target);
5611 set_cpus_allowed(current, mask);
5612 WARN_ON(smp_processor_id() != target);
5615 touch_cache(cache, size);
5618 cost = t1-t0 + t3-t2;
5620 if (migration_debug >= 2)
5621 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5622 source, target, t1-t0, t1-t0, t3-t2, cost);
5624 * Flush target caches to RAM and invalidate them:
5628 set_cpus_allowed(current, saved_mask);
5634 * Measure a series of task migrations and return the average
5635 * result. Since this code runs early during bootup the system
5636 * is 'undisturbed' and the average latency makes sense.
5638 * The algorithm in essence auto-detects the relevant cache-size,
5639 * so it will properly detect different cachesizes for different
5640 * cache-hierarchies, depending on how the CPUs are connected.
5642 * Architectures can prime the upper limit of the search range via
5643 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5645 static unsigned long long
5646 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5648 unsigned long long cost1, cost2;
5652 * Measure the migration cost of 'size' bytes, over an
5653 * average of 10 runs:
5655 * (We perturb the cache size by a small (0..4k)
5656 * value to compensate size/alignment related artifacts.
5657 * We also subtract the cost of the operation done on
5663 * dry run, to make sure we start off cache-cold on cpu1,
5664 * and to get any vmalloc pagefaults in advance:
5666 measure_one(cache, size, cpu1, cpu2);
5667 for (i = 0; i < ITERATIONS; i++)
5668 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5670 measure_one(cache, size, cpu2, cpu1);
5671 for (i = 0; i < ITERATIONS; i++)
5672 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5675 * (We measure the non-migrating [cached] cost on both
5676 * cpu1 and cpu2, to handle CPUs with different speeds)
5680 measure_one(cache, size, cpu1, cpu1);
5681 for (i = 0; i < ITERATIONS; i++)
5682 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5684 measure_one(cache, size, cpu2, cpu2);
5685 for (i = 0; i < ITERATIONS; i++)
5686 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5689 * Get the per-iteration migration cost:
5691 do_div(cost1, 2*ITERATIONS);
5692 do_div(cost2, 2*ITERATIONS);
5694 return cost1 - cost2;
5697 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5699 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5700 unsigned int max_size, size, size_found = 0;
5701 long long cost = 0, prev_cost;
5705 * Search from max_cache_size*5 down to 64K - the real relevant
5706 * cachesize has to lie somewhere inbetween.
5708 if (max_cache_size) {
5709 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5710 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5713 * Since we have no estimation about the relevant
5716 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5717 size = MIN_CACHE_SIZE;
5720 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5721 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5726 * Allocate the working set:
5728 cache = vmalloc(max_size);
5730 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5731 return 1000000; // return 1 msec on very small boxen
5734 while (size <= max_size) {
5736 cost = measure_cost(cpu1, cpu2, cache, size);
5742 if (max_cost < cost) {
5748 * Calculate average fluctuation, we use this to prevent
5749 * noise from triggering an early break out of the loop:
5751 fluct = abs(cost - prev_cost);
5752 avg_fluct = (avg_fluct + fluct)/2;
5754 if (migration_debug)
5755 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5757 (long)cost / 1000000,
5758 ((long)cost / 100000) % 10,
5759 (long)max_cost / 1000000,
5760 ((long)max_cost / 100000) % 10,
5761 domain_distance(cpu1, cpu2),
5765 * If we iterated at least 20% past the previous maximum,
5766 * and the cost has dropped by more than 20% already,
5767 * (taking fluctuations into account) then we assume to
5768 * have found the maximum and break out of the loop early:
5770 if (size_found && (size*100 > size_found*SIZE_THRESH))
5771 if (cost+avg_fluct <= 0 ||
5772 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5774 if (migration_debug)
5775 printk("-> found max.\n");
5779 * Increase the cachesize in 10% steps:
5781 size = size * 10 / 9;
5784 if (migration_debug)
5785 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5786 cpu1, cpu2, size_found, max_cost);
5791 * A task is considered 'cache cold' if at least 2 times
5792 * the worst-case cost of migration has passed.
5794 * (this limit is only listened to if the load-balancing
5795 * situation is 'nice' - if there is a large imbalance we
5796 * ignore it for the sake of CPU utilization and
5797 * processing fairness.)
5799 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5802 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5804 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5805 unsigned long j0, j1, distance, max_distance = 0;
5806 struct sched_domain *sd;
5811 * First pass - calculate the cacheflush times:
5813 for_each_cpu_mask(cpu1, *cpu_map) {
5814 for_each_cpu_mask(cpu2, *cpu_map) {
5817 distance = domain_distance(cpu1, cpu2);
5818 max_distance = max(max_distance, distance);
5820 * No result cached yet?
5822 if (migration_cost[distance] == -1LL)
5823 migration_cost[distance] =
5824 measure_migration_cost(cpu1, cpu2);
5828 * Second pass - update the sched domain hierarchy with
5829 * the new cache-hot-time estimations:
5831 for_each_cpu_mask(cpu, *cpu_map) {
5833 for_each_domain(cpu, sd) {
5834 sd->cache_hot_time = migration_cost[distance];
5841 if (migration_debug)
5842 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5850 if (system_state == SYSTEM_BOOTING) {
5851 printk("migration_cost=");
5852 for (distance = 0; distance <= max_distance; distance++) {
5855 printk("%ld", (long)migration_cost[distance] / 1000);
5860 if (migration_debug)
5861 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5864 * Move back to the original CPU. NUMA-Q gets confused
5865 * if we migrate to another quad during bootup.
5867 if (raw_smp_processor_id() != orig_cpu) {
5868 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5869 saved_mask = current->cpus_allowed;
5871 set_cpus_allowed(current, mask);
5872 set_cpus_allowed(current, saved_mask);
5879 * find_next_best_node - find the next node to include in a sched_domain
5880 * @node: node whose sched_domain we're building
5881 * @used_nodes: nodes already in the sched_domain
5883 * Find the next node to include in a given scheduling domain. Simply
5884 * finds the closest node not already in the @used_nodes map.
5886 * Should use nodemask_t.
5888 static int find_next_best_node(int node, unsigned long *used_nodes)
5890 int i, n, val, min_val, best_node = 0;
5894 for (i = 0; i < MAX_NUMNODES; i++) {
5895 /* Start at @node */
5896 n = (node + i) % MAX_NUMNODES;
5898 if (!nr_cpus_node(n))
5901 /* Skip already used nodes */
5902 if (test_bit(n, used_nodes))
5905 /* Simple min distance search */
5906 val = node_distance(node, n);
5908 if (val < min_val) {
5914 set_bit(best_node, used_nodes);
5919 * sched_domain_node_span - get a cpumask for a node's sched_domain
5920 * @node: node whose cpumask we're constructing
5921 * @size: number of nodes to include in this span
5923 * Given a node, construct a good cpumask for its sched_domain to span. It
5924 * should be one that prevents unnecessary balancing, but also spreads tasks
5927 static cpumask_t sched_domain_node_span(int node)
5930 cpumask_t span, nodemask;
5931 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5934 bitmap_zero(used_nodes, MAX_NUMNODES);
5936 nodemask = node_to_cpumask(node);
5937 cpus_or(span, span, nodemask);
5938 set_bit(node, used_nodes);
5940 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5941 int next_node = find_next_best_node(node, used_nodes);
5942 nodemask = node_to_cpumask(next_node);
5943 cpus_or(span, span, nodemask);
5950 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5952 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5953 * can switch it on easily if needed.
5955 #ifdef CONFIG_SCHED_SMT
5956 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5957 static struct sched_group sched_group_cpus[NR_CPUS];
5958 static int cpu_to_cpu_group(int cpu)
5964 #ifdef CONFIG_SCHED_MC
5965 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5966 static struct sched_group *sched_group_core_bycpu[NR_CPUS];
5969 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5970 static int cpu_to_core_group(int cpu)
5972 return first_cpu(cpu_sibling_map[cpu]);
5974 #elif defined(CONFIG_SCHED_MC)
5975 static int cpu_to_core_group(int cpu)
5981 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5982 static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
5983 static int cpu_to_phys_group(int cpu)
5985 #if defined(CONFIG_SCHED_MC)
5986 cpumask_t mask = cpu_coregroup_map(cpu);
5987 return first_cpu(mask);
5988 #elif defined(CONFIG_SCHED_SMT)
5989 return first_cpu(cpu_sibling_map[cpu]);
5997 * The init_sched_build_groups can't handle what we want to do with node
5998 * groups, so roll our own. Now each node has its own list of groups which
5999 * gets dynamically allocated.
6001 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6002 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6004 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6005 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
6007 static int cpu_to_allnodes_group(int cpu)
6009 return cpu_to_node(cpu);
6011 static void init_numa_sched_groups_power(struct sched_group *group_head)
6013 struct sched_group *sg = group_head;
6019 for_each_cpu_mask(j, sg->cpumask) {
6020 struct sched_domain *sd;
6022 sd = &per_cpu(phys_domains, j);
6023 if (j != first_cpu(sd->groups->cpumask)) {
6025 * Only add "power" once for each
6031 sg->cpu_power += sd->groups->cpu_power;
6034 if (sg != group_head)
6039 /* Free memory allocated for various sched_group structures */
6040 static void free_sched_groups(const cpumask_t *cpu_map)
6046 for_each_cpu_mask(cpu, *cpu_map) {
6047 struct sched_group *sched_group_allnodes
6048 = sched_group_allnodes_bycpu[cpu];
6049 struct sched_group **sched_group_nodes
6050 = sched_group_nodes_bycpu[cpu];
6052 if (sched_group_allnodes) {
6053 kfree(sched_group_allnodes);
6054 sched_group_allnodes_bycpu[cpu] = NULL;
6057 if (!sched_group_nodes)
6060 for (i = 0; i < MAX_NUMNODES; i++) {
6061 cpumask_t nodemask = node_to_cpumask(i);
6062 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6064 cpus_and(nodemask, nodemask, *cpu_map);
6065 if (cpus_empty(nodemask))
6075 if (oldsg != sched_group_nodes[i])
6078 kfree(sched_group_nodes);
6079 sched_group_nodes_bycpu[cpu] = NULL;
6082 for_each_cpu_mask(cpu, *cpu_map) {
6083 if (sched_group_phys_bycpu[cpu]) {
6084 kfree(sched_group_phys_bycpu[cpu]);
6085 sched_group_phys_bycpu[cpu] = NULL;
6087 #ifdef CONFIG_SCHED_MC
6088 if (sched_group_core_bycpu[cpu]) {
6089 kfree(sched_group_core_bycpu[cpu]);
6090 sched_group_core_bycpu[cpu] = NULL;
6097 * Build sched domains for a given set of cpus and attach the sched domains
6098 * to the individual cpus
6100 static int build_sched_domains(const cpumask_t *cpu_map)
6103 struct sched_group *sched_group_phys = NULL;
6104 #ifdef CONFIG_SCHED_MC
6105 struct sched_group *sched_group_core = NULL;
6108 struct sched_group **sched_group_nodes = NULL;
6109 struct sched_group *sched_group_allnodes = NULL;
6112 * Allocate the per-node list of sched groups
6114 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6116 if (!sched_group_nodes) {
6117 printk(KERN_WARNING "Can not alloc sched group node list\n");
6120 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6124 * Set up domains for cpus specified by the cpu_map.
6126 for_each_cpu_mask(i, *cpu_map) {
6128 struct sched_domain *sd = NULL, *p;
6129 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6131 cpus_and(nodemask, nodemask, *cpu_map);
6134 if (cpus_weight(*cpu_map)
6135 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6136 if (!sched_group_allnodes) {
6137 sched_group_allnodes
6138 = kmalloc(sizeof(struct sched_group)
6141 if (!sched_group_allnodes) {
6143 "Can not alloc allnodes sched group\n");
6146 sched_group_allnodes_bycpu[i]
6147 = sched_group_allnodes;
6149 sd = &per_cpu(allnodes_domains, i);
6150 *sd = SD_ALLNODES_INIT;
6151 sd->span = *cpu_map;
6152 group = cpu_to_allnodes_group(i);
6153 sd->groups = &sched_group_allnodes[group];
6158 sd = &per_cpu(node_domains, i);
6160 sd->span = sched_domain_node_span(cpu_to_node(i));
6162 cpus_and(sd->span, sd->span, *cpu_map);
6165 if (!sched_group_phys) {
6167 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6169 if (!sched_group_phys) {
6170 printk (KERN_WARNING "Can not alloc phys sched"
6174 sched_group_phys_bycpu[i] = sched_group_phys;
6178 sd = &per_cpu(phys_domains, i);
6179 group = cpu_to_phys_group(i);
6181 sd->span = nodemask;
6183 sd->groups = &sched_group_phys[group];
6185 #ifdef CONFIG_SCHED_MC
6186 if (!sched_group_core) {
6188 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6190 if (!sched_group_core) {
6191 printk (KERN_WARNING "Can not alloc core sched"
6195 sched_group_core_bycpu[i] = sched_group_core;
6199 sd = &per_cpu(core_domains, i);
6200 group = cpu_to_core_group(i);
6202 sd->span = cpu_coregroup_map(i);
6203 cpus_and(sd->span, sd->span, *cpu_map);
6205 sd->groups = &sched_group_core[group];
6208 #ifdef CONFIG_SCHED_SMT
6210 sd = &per_cpu(cpu_domains, i);
6211 group = cpu_to_cpu_group(i);
6212 *sd = SD_SIBLING_INIT;
6213 sd->span = cpu_sibling_map[i];
6214 cpus_and(sd->span, sd->span, *cpu_map);
6216 sd->groups = &sched_group_cpus[group];
6220 #ifdef CONFIG_SCHED_SMT
6221 /* Set up CPU (sibling) groups */
6222 for_each_cpu_mask(i, *cpu_map) {
6223 cpumask_t this_sibling_map = cpu_sibling_map[i];
6224 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6225 if (i != first_cpu(this_sibling_map))
6228 init_sched_build_groups(sched_group_cpus, this_sibling_map,
6233 #ifdef CONFIG_SCHED_MC
6234 /* Set up multi-core groups */
6235 for_each_cpu_mask(i, *cpu_map) {
6236 cpumask_t this_core_map = cpu_coregroup_map(i);
6237 cpus_and(this_core_map, this_core_map, *cpu_map);
6238 if (i != first_cpu(this_core_map))
6240 init_sched_build_groups(sched_group_core, this_core_map,
6241 &cpu_to_core_group);
6246 /* Set up physical groups */
6247 for (i = 0; i < MAX_NUMNODES; i++) {
6248 cpumask_t nodemask = node_to_cpumask(i);
6250 cpus_and(nodemask, nodemask, *cpu_map);
6251 if (cpus_empty(nodemask))
6254 init_sched_build_groups(sched_group_phys, nodemask,
6255 &cpu_to_phys_group);
6259 /* Set up node groups */
6260 if (sched_group_allnodes)
6261 init_sched_build_groups(sched_group_allnodes, *cpu_map,
6262 &cpu_to_allnodes_group);
6264 for (i = 0; i < MAX_NUMNODES; i++) {
6265 /* Set up node groups */
6266 struct sched_group *sg, *prev;
6267 cpumask_t nodemask = node_to_cpumask(i);
6268 cpumask_t domainspan;
6269 cpumask_t covered = CPU_MASK_NONE;
6272 cpus_and(nodemask, nodemask, *cpu_map);
6273 if (cpus_empty(nodemask)) {
6274 sched_group_nodes[i] = NULL;
6278 domainspan = sched_domain_node_span(i);
6279 cpus_and(domainspan, domainspan, *cpu_map);
6281 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6283 printk(KERN_WARNING "Can not alloc domain group for "
6287 sched_group_nodes[i] = sg;
6288 for_each_cpu_mask(j, nodemask) {
6289 struct sched_domain *sd;
6290 sd = &per_cpu(node_domains, j);
6294 sg->cpumask = nodemask;
6296 cpus_or(covered, covered, nodemask);
6299 for (j = 0; j < MAX_NUMNODES; j++) {
6300 cpumask_t tmp, notcovered;
6301 int n = (i + j) % MAX_NUMNODES;
6303 cpus_complement(notcovered, covered);
6304 cpus_and(tmp, notcovered, *cpu_map);
6305 cpus_and(tmp, tmp, domainspan);
6306 if (cpus_empty(tmp))
6309 nodemask = node_to_cpumask(n);
6310 cpus_and(tmp, tmp, nodemask);
6311 if (cpus_empty(tmp))
6314 sg = kmalloc_node(sizeof(struct sched_group),
6318 "Can not alloc domain group for node %d\n", j);
6323 sg->next = prev->next;
6324 cpus_or(covered, covered, tmp);
6331 /* Calculate CPU power for physical packages and nodes */
6332 #ifdef CONFIG_SCHED_SMT
6333 for_each_cpu_mask(i, *cpu_map) {
6334 struct sched_domain *sd;
6335 sd = &per_cpu(cpu_domains, i);
6336 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6339 #ifdef CONFIG_SCHED_MC
6340 for_each_cpu_mask(i, *cpu_map) {
6342 struct sched_domain *sd;
6343 sd = &per_cpu(core_domains, i);
6344 if (sched_smt_power_savings)
6345 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6347 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
6348 * SCHED_LOAD_SCALE / 10;
6349 sd->groups->cpu_power = power;
6353 for_each_cpu_mask(i, *cpu_map) {
6354 struct sched_domain *sd;
6355 #ifdef CONFIG_SCHED_MC
6356 sd = &per_cpu(phys_domains, i);
6357 if (i != first_cpu(sd->groups->cpumask))
6360 sd->groups->cpu_power = 0;
6361 if (sched_mc_power_savings || sched_smt_power_savings) {
6364 for_each_cpu_mask(j, sd->groups->cpumask) {
6365 struct sched_domain *sd1;
6366 sd1 = &per_cpu(core_domains, j);
6368 * for each core we will add once
6369 * to the group in physical domain
6371 if (j != first_cpu(sd1->groups->cpumask))
6374 if (sched_smt_power_savings)
6375 sd->groups->cpu_power += sd1->groups->cpu_power;
6377 sd->groups->cpu_power += SCHED_LOAD_SCALE;
6381 * This has to be < 2 * SCHED_LOAD_SCALE
6382 * Lets keep it SCHED_LOAD_SCALE, so that
6383 * while calculating NUMA group's cpu_power
6385 * numa_group->cpu_power += phys_group->cpu_power;
6387 * See "only add power once for each physical pkg"
6390 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6393 sd = &per_cpu(phys_domains, i);
6394 if (sched_smt_power_savings)
6395 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6397 power = SCHED_LOAD_SCALE;
6398 sd->groups->cpu_power = power;
6403 for (i = 0; i < MAX_NUMNODES; i++)
6404 init_numa_sched_groups_power(sched_group_nodes[i]);
6406 init_numa_sched_groups_power(sched_group_allnodes);
6409 /* Attach the domains */
6410 for_each_cpu_mask(i, *cpu_map) {
6411 struct sched_domain *sd;
6412 #ifdef CONFIG_SCHED_SMT
6413 sd = &per_cpu(cpu_domains, i);
6414 #elif defined(CONFIG_SCHED_MC)
6415 sd = &per_cpu(core_domains, i);
6417 sd = &per_cpu(phys_domains, i);
6419 cpu_attach_domain(sd, i);
6422 * Tune cache-hot values:
6424 calibrate_migration_costs(cpu_map);
6429 free_sched_groups(cpu_map);
6433 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6435 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6437 cpumask_t cpu_default_map;
6441 * Setup mask for cpus without special case scheduling requirements.
6442 * For now this just excludes isolated cpus, but could be used to
6443 * exclude other special cases in the future.
6445 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6447 err = build_sched_domains(&cpu_default_map);
6452 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6454 free_sched_groups(cpu_map);
6458 * Detach sched domains from a group of cpus specified in cpu_map
6459 * These cpus will now be attached to the NULL domain
6461 static void detach_destroy_domains(const cpumask_t *cpu_map)
6465 for_each_cpu_mask(i, *cpu_map)
6466 cpu_attach_domain(NULL, i);
6467 synchronize_sched();
6468 arch_destroy_sched_domains(cpu_map);
6472 * Partition sched domains as specified by the cpumasks below.
6473 * This attaches all cpus from the cpumasks to the NULL domain,
6474 * waits for a RCU quiescent period, recalculates sched
6475 * domain information and then attaches them back to the
6476 * correct sched domains
6477 * Call with hotplug lock held
6479 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6481 cpumask_t change_map;
6484 cpus_and(*partition1, *partition1, cpu_online_map);
6485 cpus_and(*partition2, *partition2, cpu_online_map);
6486 cpus_or(change_map, *partition1, *partition2);
6488 /* Detach sched domains from all of the affected cpus */
6489 detach_destroy_domains(&change_map);
6490 if (!cpus_empty(*partition1))
6491 err = build_sched_domains(partition1);
6492 if (!err && !cpus_empty(*partition2))
6493 err = build_sched_domains(partition2);
6498 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6499 int arch_reinit_sched_domains(void)
6504 detach_destroy_domains(&cpu_online_map);
6505 err = arch_init_sched_domains(&cpu_online_map);
6506 unlock_cpu_hotplug();
6511 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6515 if (buf[0] != '0' && buf[0] != '1')
6519 sched_smt_power_savings = (buf[0] == '1');
6521 sched_mc_power_savings = (buf[0] == '1');
6523 ret = arch_reinit_sched_domains();
6525 return ret ? ret : count;
6528 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6531 #ifdef CONFIG_SCHED_SMT
6533 err = sysfs_create_file(&cls->kset.kobj,
6534 &attr_sched_smt_power_savings.attr);
6536 #ifdef CONFIG_SCHED_MC
6537 if (!err && mc_capable())
6538 err = sysfs_create_file(&cls->kset.kobj,
6539 &attr_sched_mc_power_savings.attr);
6545 #ifdef CONFIG_SCHED_MC
6546 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6548 return sprintf(page, "%u\n", sched_mc_power_savings);
6550 static ssize_t sched_mc_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6552 return sched_power_savings_store(buf, count, 0);
6554 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6555 sched_mc_power_savings_store);
6558 #ifdef CONFIG_SCHED_SMT
6559 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6561 return sprintf(page, "%u\n", sched_smt_power_savings);
6563 static ssize_t sched_smt_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6565 return sched_power_savings_store(buf, count, 1);
6567 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6568 sched_smt_power_savings_store);
6572 #ifdef CONFIG_HOTPLUG_CPU
6574 * Force a reinitialization of the sched domains hierarchy. The domains
6575 * and groups cannot be updated in place without racing with the balancing
6576 * code, so we temporarily attach all running cpus to the NULL domain
6577 * which will prevent rebalancing while the sched domains are recalculated.
6579 static int update_sched_domains(struct notifier_block *nfb,
6580 unsigned long action, void *hcpu)
6583 case CPU_UP_PREPARE:
6584 case CPU_DOWN_PREPARE:
6585 detach_destroy_domains(&cpu_online_map);
6588 case CPU_UP_CANCELED:
6589 case CPU_DOWN_FAILED:
6593 * Fall through and re-initialise the domains.
6600 /* The hotplug lock is already held by cpu_up/cpu_down */
6601 arch_init_sched_domains(&cpu_online_map);
6607 void __init sched_init_smp(void)
6610 arch_init_sched_domains(&cpu_online_map);
6611 unlock_cpu_hotplug();
6612 /* XXX: Theoretical race here - CPU may be hotplugged now */
6613 hotcpu_notifier(update_sched_domains, 0);
6616 void __init sched_init_smp(void)
6619 #endif /* CONFIG_SMP */
6621 int in_sched_functions(unsigned long addr)
6623 /* Linker adds these: start and end of __sched functions */
6624 extern char __sched_text_start[], __sched_text_end[];
6625 return in_lock_functions(addr) ||
6626 (addr >= (unsigned long)__sched_text_start
6627 && addr < (unsigned long)__sched_text_end);
6630 void __init sched_init(void)
6635 for_each_possible_cpu(i) {
6636 prio_array_t *array;
6639 spin_lock_init(&rq->lock);
6641 rq->active = rq->arrays;
6642 rq->expired = rq->arrays + 1;
6643 rq->best_expired_prio = MAX_PRIO;
6647 for (j = 1; j < 3; j++)
6648 rq->cpu_load[j] = 0;
6649 rq->active_balance = 0;
6651 rq->migration_thread = NULL;
6652 INIT_LIST_HEAD(&rq->migration_queue);
6654 atomic_set(&rq->nr_iowait, 0);
6656 for (j = 0; j < 2; j++) {
6657 array = rq->arrays + j;
6658 for (k = 0; k < MAX_PRIO; k++) {
6659 INIT_LIST_HEAD(array->queue + k);
6660 __clear_bit(k, array->bitmap);
6662 // delimiter for bitsearch
6663 __set_bit(MAX_PRIO, array->bitmap);
6667 set_load_weight(&init_task);
6669 * The boot idle thread does lazy MMU switching as well:
6671 atomic_inc(&init_mm.mm_count);
6672 enter_lazy_tlb(&init_mm, current);
6675 * Make us the idle thread. Technically, schedule() should not be
6676 * called from this thread, however somewhere below it might be,
6677 * but because we are the idle thread, we just pick up running again
6678 * when this runqueue becomes "idle".
6680 init_idle(current, smp_processor_id());
6683 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6684 void __might_sleep(char *file, int line)
6686 #if defined(in_atomic)
6687 static unsigned long prev_jiffy; /* ratelimiting */
6689 if ((in_atomic() || irqs_disabled()) &&
6690 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6691 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6693 prev_jiffy = jiffies;
6694 printk(KERN_ERR "BUG: sleeping function called from invalid"
6695 " context at %s:%d\n", file, line);
6696 printk("in_atomic():%d, irqs_disabled():%d\n",
6697 in_atomic(), irqs_disabled());
6702 EXPORT_SYMBOL(__might_sleep);
6705 #ifdef CONFIG_MAGIC_SYSRQ
6706 void normalize_rt_tasks(void)
6708 struct task_struct *p;
6709 prio_array_t *array;
6710 unsigned long flags;
6713 read_lock_irq(&tasklist_lock);
6714 for_each_process(p) {
6718 spin_lock_irqsave(&p->pi_lock, flags);
6719 rq = __task_rq_lock(p);
6723 deactivate_task(p, task_rq(p));
6724 __setscheduler(p, SCHED_NORMAL, 0);
6726 __activate_task(p, task_rq(p));
6727 resched_task(rq->curr);
6730 __task_rq_unlock(rq);
6731 spin_unlock_irqrestore(&p->pi_lock, flags);
6733 read_unlock_irq(&tasklist_lock);
6736 #endif /* CONFIG_MAGIC_SYSRQ */
6740 * These functions are only useful for the IA64 MCA handling.
6742 * They can only be called when the whole system has been
6743 * stopped - every CPU needs to be quiescent, and no scheduling
6744 * activity can take place. Using them for anything else would
6745 * be a serious bug, and as a result, they aren't even visible
6746 * under any other configuration.
6750 * curr_task - return the current task for a given cpu.
6751 * @cpu: the processor in question.
6753 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6755 task_t *curr_task(int cpu)
6757 return cpu_curr(cpu);
6761 * set_curr_task - set the current task for a given cpu.
6762 * @cpu: the processor in question.
6763 * @p: the task pointer to set.
6765 * Description: This function must only be used when non-maskable interrupts
6766 * are serviced on a separate stack. It allows the architecture to switch the
6767 * notion of the current task on a cpu in a non-blocking manner. This function
6768 * must be called with all CPU's synchronized, and interrupts disabled, the
6769 * and caller must save the original value of the current task (see
6770 * curr_task() above) and restore that value before reenabling interrupts and
6771 * re-starting the system.
6773 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6775 void set_curr_task(int cpu, task_t *p)