2 * BRIEF MODULE DESCRIPTION
3 * Au1000 interrupt routines.
5 * Copyright 2001 MontaVista Software Inc.
6 * Author: MontaVista Software, Inc.
7 * ppopov@mvista.com or source@mvista.com
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
15 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
17 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
20 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
21 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 675 Mass Ave, Cambridge, MA 02139, USA.
29 #include <linux/config.h>
30 #include <linux/errno.h>
31 #include <linux/init.h>
32 #include <linux/irq.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/module.h>
35 #include <linux/signal.h>
36 #include <linux/sched.h>
37 #include <linux/types.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
40 #include <linux/timex.h>
41 #include <linux/slab.h>
42 #include <linux/random.h>
43 #include <linux/delay.h>
44 #include <linux/bitops.h>
46 #include <asm/bootinfo.h>
48 #include <asm/mipsregs.h>
49 #include <asm/system.h>
50 #include <asm/mach-au1x00/au1000.h>
51 #ifdef CONFIG_MIPS_PB1000
52 #include <asm/mach-pb1x00/pb1000.h>
57 /* note: prints function name for you */
58 #define DPRINTK(fmt, args...) printk("%s: " fmt, __FUNCTION__ , ## args)
60 #define DPRINTK(fmt, args...)
63 #define EXT_INTC0_REQ0 2 /* IP 2 */
64 #define EXT_INTC0_REQ1 3 /* IP 3 */
65 #define EXT_INTC1_REQ0 4 /* IP 4 */
66 #define EXT_INTC1_REQ1 5 /* IP 5 */
67 #define MIPS_TIMER_IP 7 /* IP 7 */
69 extern asmlinkage void au1000_IRQ(void);
70 extern void set_debug_traps(void);
71 extern irq_cpustat_t irq_stat [NR_CPUS];
73 static void setup_local_irq(unsigned int irq, int type, int int_req);
74 static unsigned int startup_irq(unsigned int irq);
75 static void end_irq(unsigned int irq_nr);
76 static inline void mask_and_ack_level_irq(unsigned int irq_nr);
77 static inline void mask_and_ack_rise_edge_irq(unsigned int irq_nr);
78 static inline void mask_and_ack_fall_edge_irq(unsigned int irq_nr);
79 static inline void mask_and_ack_either_edge_irq(unsigned int irq_nr);
80 inline void local_enable_irq(unsigned int irq_nr);
81 inline void local_disable_irq(unsigned int irq_nr);
83 void (*board_init_irq)(void);
86 extern void counter0_irq(int irq, void *dev_id, struct pt_regs *regs);
89 static DEFINE_SPINLOCK(irq_lock);
92 static unsigned int startup_irq(unsigned int irq_nr)
94 local_enable_irq(irq_nr);
99 static void shutdown_irq(unsigned int irq_nr)
101 local_disable_irq(irq_nr);
106 inline void local_enable_irq(unsigned int irq_nr)
108 if (irq_nr > AU1000_LAST_INTC0_INT) {
109 au_writel(1<<(irq_nr-32), IC1_MASKSET);
110 au_writel(1<<(irq_nr-32), IC1_WAKESET);
113 au_writel(1<<irq_nr, IC0_MASKSET);
114 au_writel(1<<irq_nr, IC0_WAKESET);
120 inline void local_disable_irq(unsigned int irq_nr)
122 if (irq_nr > AU1000_LAST_INTC0_INT) {
123 au_writel(1<<(irq_nr-32), IC1_MASKCLR);
124 au_writel(1<<(irq_nr-32), IC1_WAKECLR);
127 au_writel(1<<irq_nr, IC0_MASKCLR);
128 au_writel(1<<irq_nr, IC0_WAKECLR);
134 static inline void mask_and_ack_rise_edge_irq(unsigned int irq_nr)
136 if (irq_nr > AU1000_LAST_INTC0_INT) {
137 au_writel(1<<(irq_nr-32), IC1_RISINGCLR);
138 au_writel(1<<(irq_nr-32), IC1_MASKCLR);
141 au_writel(1<<irq_nr, IC0_RISINGCLR);
142 au_writel(1<<irq_nr, IC0_MASKCLR);
148 static inline void mask_and_ack_fall_edge_irq(unsigned int irq_nr)
150 if (irq_nr > AU1000_LAST_INTC0_INT) {
151 au_writel(1<<(irq_nr-32), IC1_FALLINGCLR);
152 au_writel(1<<(irq_nr-32), IC1_MASKCLR);
155 au_writel(1<<irq_nr, IC0_FALLINGCLR);
156 au_writel(1<<irq_nr, IC0_MASKCLR);
162 static inline void mask_and_ack_either_edge_irq(unsigned int irq_nr)
164 /* This may assume that we don't get interrupts from
165 * both edges at once, or if we do, that we don't care.
167 if (irq_nr > AU1000_LAST_INTC0_INT) {
168 au_writel(1<<(irq_nr-32), IC1_FALLINGCLR);
169 au_writel(1<<(irq_nr-32), IC1_RISINGCLR);
170 au_writel(1<<(irq_nr-32), IC1_MASKCLR);
173 au_writel(1<<irq_nr, IC0_FALLINGCLR);
174 au_writel(1<<irq_nr, IC0_RISINGCLR);
175 au_writel(1<<irq_nr, IC0_MASKCLR);
181 static inline void mask_and_ack_level_irq(unsigned int irq_nr)
184 local_disable_irq(irq_nr);
186 #if defined(CONFIG_MIPS_PB1000)
187 if (irq_nr == AU1000_GPIO_15) {
188 au_writel(0x8000, PB1000_MDR); /* ack int */
196 static void end_irq(unsigned int irq_nr)
198 if (!(irq_desc[irq_nr].status & (IRQ_DISABLED|IRQ_INPROGRESS))) {
199 local_enable_irq(irq_nr);
201 #if defined(CONFIG_MIPS_PB1000)
202 if (irq_nr == AU1000_GPIO_15) {
203 au_writel(0x4000, PB1000_MDR); /* enable int */
209 unsigned long save_local_and_disable(int controller)
212 unsigned long flags, mask;
214 spin_lock_irqsave(&irq_lock, flags);
216 mask = au_readl(IC1_MASKSET);
217 for (i=32; i<64; i++) {
218 local_disable_irq(i);
222 mask = au_readl(IC0_MASKSET);
223 for (i=0; i<32; i++) {
224 local_disable_irq(i);
227 spin_unlock_irqrestore(&irq_lock, flags);
232 void restore_local_and_enable(int controller, unsigned long mask)
235 unsigned long flags, new_mask;
237 spin_lock_irqsave(&irq_lock, flags);
238 for (i=0; i<32; i++) {
241 local_enable_irq(i+32);
247 new_mask = au_readl(IC1_MASKSET);
249 new_mask = au_readl(IC0_MASKSET);
251 spin_unlock_irqrestore(&irq_lock, flags);
255 static struct hw_interrupt_type rise_edge_irq_type = {
256 .typename = "Au1000 Rise Edge",
257 .startup = startup_irq,
258 .shutdown = shutdown_irq,
259 .enable = local_enable_irq,
260 .disable = local_disable_irq,
261 .ack = mask_and_ack_rise_edge_irq,
265 static struct hw_interrupt_type fall_edge_irq_type = {
266 .typename = "Au1000 Fall Edge",
267 .startup = startup_irq,
268 .shutdown = shutdown_irq,
269 .enable = local_enable_irq,
270 .disable = local_disable_irq,
271 .ack = mask_and_ack_fall_edge_irq,
275 static struct hw_interrupt_type either_edge_irq_type = {
276 .typename = "Au1000 Rise or Fall Edge",
277 .startup = startup_irq,
278 .shutdown = shutdown_irq,
279 .enable = local_enable_irq,
280 .disable = local_disable_irq,
281 .ack = mask_and_ack_either_edge_irq,
285 static struct hw_interrupt_type level_irq_type = {
286 .typename = "Au1000 Level",
287 .startup = startup_irq,
288 .shutdown = shutdown_irq,
289 .enable = local_enable_irq,
290 .disable = local_disable_irq,
291 .ack = mask_and_ack_level_irq,
296 void startup_match20_interrupt(void (*handler)(int, void *, struct pt_regs *))
298 static struct irqaction action;
299 /* This is a big problem.... since we didn't use request_irq
300 when kernel/irq.c calls probe_irq_xxx this interrupt will
301 be probed for usage. This will end up disabling the device :(
303 Give it a bogus "action" pointer -- this will keep it from
306 By setting the status to match that of request_irq() we
307 can avoid it. --cgray
309 action.dev_id = handler;
312 action.name = "Au1xxx TOY";
313 action.handler = handler;
316 irq_desc[AU1000_TOY_MATCH2_INT].action = &action;
317 irq_desc[AU1000_TOY_MATCH2_INT].status
318 &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING | IRQ_INPROGRESS);
320 local_enable_irq(AU1000_TOY_MATCH2_INT);
324 static void setup_local_irq(unsigned int irq_nr, int type, int int_req)
326 if (irq_nr > AU1000_MAX_INTR) return;
327 /* Config2[n], Config1[n], Config0[n] */
328 if (irq_nr > AU1000_LAST_INTC0_INT) {
330 case INTC_INT_RISE_EDGE: /* 0:0:1 */
331 au_writel(1<<(irq_nr-32), IC1_CFG2CLR);
332 au_writel(1<<(irq_nr-32), IC1_CFG1CLR);
333 au_writel(1<<(irq_nr-32), IC1_CFG0SET);
334 irq_desc[irq_nr].handler = &rise_edge_irq_type;
336 case INTC_INT_FALL_EDGE: /* 0:1:0 */
337 au_writel(1<<(irq_nr-32), IC1_CFG2CLR);
338 au_writel(1<<(irq_nr-32), IC1_CFG1SET);
339 au_writel(1<<(irq_nr-32), IC1_CFG0CLR);
340 irq_desc[irq_nr].handler = &fall_edge_irq_type;
342 case INTC_INT_RISE_AND_FALL_EDGE: /* 0:1:1 */
343 au_writel(1<<(irq_nr-32), IC1_CFG2CLR);
344 au_writel(1<<(irq_nr-32), IC1_CFG1SET);
345 au_writel(1<<(irq_nr-32), IC1_CFG0SET);
346 irq_desc[irq_nr].handler = &either_edge_irq_type;
348 case INTC_INT_HIGH_LEVEL: /* 1:0:1 */
349 au_writel(1<<(irq_nr-32), IC1_CFG2SET);
350 au_writel(1<<(irq_nr-32), IC1_CFG1CLR);
351 au_writel(1<<(irq_nr-32), IC1_CFG0SET);
352 irq_desc[irq_nr].handler = &level_irq_type;
354 case INTC_INT_LOW_LEVEL: /* 1:1:0 */
355 au_writel(1<<(irq_nr-32), IC1_CFG2SET);
356 au_writel(1<<(irq_nr-32), IC1_CFG1SET);
357 au_writel(1<<(irq_nr-32), IC1_CFG0CLR);
358 irq_desc[irq_nr].handler = &level_irq_type;
360 case INTC_INT_DISABLED: /* 0:0:0 */
361 au_writel(1<<(irq_nr-32), IC1_CFG0CLR);
362 au_writel(1<<(irq_nr-32), IC1_CFG1CLR);
363 au_writel(1<<(irq_nr-32), IC1_CFG2CLR);
365 default: /* disable the interrupt */
366 printk("unexpected int type %d (irq %d)\n", type, irq_nr);
367 au_writel(1<<(irq_nr-32), IC1_CFG0CLR);
368 au_writel(1<<(irq_nr-32), IC1_CFG1CLR);
369 au_writel(1<<(irq_nr-32), IC1_CFG2CLR);
372 if (int_req) /* assign to interrupt request 1 */
373 au_writel(1<<(irq_nr-32), IC1_ASSIGNCLR);
374 else /* assign to interrupt request 0 */
375 au_writel(1<<(irq_nr-32), IC1_ASSIGNSET);
376 au_writel(1<<(irq_nr-32), IC1_SRCSET);
377 au_writel(1<<(irq_nr-32), IC1_MASKCLR);
378 au_writel(1<<(irq_nr-32), IC1_WAKECLR);
382 case INTC_INT_RISE_EDGE: /* 0:0:1 */
383 au_writel(1<<irq_nr, IC0_CFG2CLR);
384 au_writel(1<<irq_nr, IC0_CFG1CLR);
385 au_writel(1<<irq_nr, IC0_CFG0SET);
386 irq_desc[irq_nr].handler = &rise_edge_irq_type;
388 case INTC_INT_FALL_EDGE: /* 0:1:0 */
389 au_writel(1<<irq_nr, IC0_CFG2CLR);
390 au_writel(1<<irq_nr, IC0_CFG1SET);
391 au_writel(1<<irq_nr, IC0_CFG0CLR);
392 irq_desc[irq_nr].handler = &fall_edge_irq_type;
394 case INTC_INT_RISE_AND_FALL_EDGE: /* 0:1:1 */
395 au_writel(1<<irq_nr, IC0_CFG2CLR);
396 au_writel(1<<irq_nr, IC0_CFG1SET);
397 au_writel(1<<irq_nr, IC0_CFG0SET);
398 irq_desc[irq_nr].handler = &either_edge_irq_type;
400 case INTC_INT_HIGH_LEVEL: /* 1:0:1 */
401 au_writel(1<<irq_nr, IC0_CFG2SET);
402 au_writel(1<<irq_nr, IC0_CFG1CLR);
403 au_writel(1<<irq_nr, IC0_CFG0SET);
404 irq_desc[irq_nr].handler = &level_irq_type;
406 case INTC_INT_LOW_LEVEL: /* 1:1:0 */
407 au_writel(1<<irq_nr, IC0_CFG2SET);
408 au_writel(1<<irq_nr, IC0_CFG1SET);
409 au_writel(1<<irq_nr, IC0_CFG0CLR);
410 irq_desc[irq_nr].handler = &level_irq_type;
412 case INTC_INT_DISABLED: /* 0:0:0 */
413 au_writel(1<<irq_nr, IC0_CFG0CLR);
414 au_writel(1<<irq_nr, IC0_CFG1CLR);
415 au_writel(1<<irq_nr, IC0_CFG2CLR);
417 default: /* disable the interrupt */
418 printk("unexpected int type %d (irq %d)\n", type, irq_nr);
419 au_writel(1<<irq_nr, IC0_CFG0CLR);
420 au_writel(1<<irq_nr, IC0_CFG1CLR);
421 au_writel(1<<irq_nr, IC0_CFG2CLR);
424 if (int_req) /* assign to interrupt request 1 */
425 au_writel(1<<irq_nr, IC0_ASSIGNCLR);
426 else /* assign to interrupt request 0 */
427 au_writel(1<<irq_nr, IC0_ASSIGNSET);
428 au_writel(1<<irq_nr, IC0_SRCSET);
429 au_writel(1<<irq_nr, IC0_MASKCLR);
430 au_writel(1<<irq_nr, IC0_WAKECLR);
436 void __init arch_init_irq(void)
439 unsigned long cp0_status;
440 au1xxx_irq_map_t *imp;
441 extern au1xxx_irq_map_t au1xxx_irq_map[];
442 extern au1xxx_irq_map_t au1xxx_ic0_map[];
443 extern int au1xxx_nr_irqs;
444 extern int au1xxx_ic0_nr_irqs;
446 cp0_status = read_c0_status();
447 memset(irq_desc, 0, sizeof(irq_desc));
448 set_except_vector(0, au1000_IRQ);
450 /* Initialize interrupt controllers to a safe state.
452 au_writel(0xffffffff, IC0_CFG0CLR);
453 au_writel(0xffffffff, IC0_CFG1CLR);
454 au_writel(0xffffffff, IC0_CFG2CLR);
455 au_writel(0xffffffff, IC0_MASKCLR);
456 au_writel(0xffffffff, IC0_ASSIGNSET);
457 au_writel(0xffffffff, IC0_WAKECLR);
458 au_writel(0xffffffff, IC0_SRCSET);
459 au_writel(0xffffffff, IC0_FALLINGCLR);
460 au_writel(0xffffffff, IC0_RISINGCLR);
461 au_writel(0x00000000, IC0_TESTBIT);
463 au_writel(0xffffffff, IC1_CFG0CLR);
464 au_writel(0xffffffff, IC1_CFG1CLR);
465 au_writel(0xffffffff, IC1_CFG2CLR);
466 au_writel(0xffffffff, IC1_MASKCLR);
467 au_writel(0xffffffff, IC1_ASSIGNSET);
468 au_writel(0xffffffff, IC1_WAKECLR);
469 au_writel(0xffffffff, IC1_SRCSET);
470 au_writel(0xffffffff, IC1_FALLINGCLR);
471 au_writel(0xffffffff, IC1_RISINGCLR);
472 au_writel(0x00000000, IC1_TESTBIT);
474 /* Initialize IC0, which is fixed per processor.
476 imp = au1xxx_ic0_map;
477 for (i=0; i<au1xxx_ic0_nr_irqs; i++) {
478 setup_local_irq(imp->im_irq, imp->im_type, imp->im_request);
482 /* Now set up the irq mapping for the board.
484 imp = au1xxx_irq_map;
485 for (i=0; i<au1xxx_nr_irqs; i++) {
486 setup_local_irq(imp->im_irq, imp->im_type, imp->im_request);
490 set_c0_status(ALLINTS);
492 /* Board specific IRQ initialization.
500 * Interrupts are nested. Even if an interrupt handler is registered
501 * as "fast", we might get another interrupt before we return from
502 * intcX_reqX_irqdispatch().
505 void intc0_req0_irqdispatch(struct pt_regs *regs)
508 static unsigned long intc0_req0 = 0;
510 intc0_req0 |= au_readl(IC0_REQ0INT);
512 if (!intc0_req0) return;
513 #ifdef AU1000_USB_DEV_REQ_INT
515 * Because of the tight timing of SETUP token to reply
516 * transactions, the USB devices-side packet complete
517 * interrupt needs the highest priority.
519 if ((intc0_req0 & (1<<AU1000_USB_DEV_REQ_INT))) {
520 intc0_req0 &= ~(1<<AU1000_USB_DEV_REQ_INT);
521 do_IRQ(AU1000_USB_DEV_REQ_INT, regs);
525 irq = au_ffs(intc0_req0) - 1;
526 intc0_req0 &= ~(1<<irq);
531 void intc0_req1_irqdispatch(struct pt_regs *regs)
534 static unsigned long intc0_req1 = 0;
536 intc0_req1 |= au_readl(IC0_REQ1INT);
538 if (!intc0_req1) return;
540 irq = au_ffs(intc0_req1) - 1;
541 intc0_req1 &= ~(1<<irq);
547 * Interrupt Controller 1:
550 void intc1_req0_irqdispatch(struct pt_regs *regs)
553 static unsigned long intc1_req0 = 0;
555 intc1_req0 |= au_readl(IC1_REQ0INT);
557 if (!intc1_req0) return;
559 irq = au_ffs(intc1_req0) - 1;
560 intc1_req0 &= ~(1<<irq);
566 void intc1_req1_irqdispatch(struct pt_regs *regs)
569 static unsigned long intc1_req1 = 0;
571 intc1_req1 |= au_readl(IC1_REQ1INT);
573 if (!intc1_req1) return;
575 irq = au_ffs(intc1_req1) - 1;
576 intc1_req1 &= ~(1<<irq);
583 /* Save/restore the interrupt controller state.
584 * Called from the save/restore core registers as part of the
585 * au_sleep function in power.c.....maybe I should just pm_register()
588 static uint sleep_intctl_config0[2];
589 static uint sleep_intctl_config1[2];
590 static uint sleep_intctl_config2[2];
591 static uint sleep_intctl_src[2];
592 static uint sleep_intctl_assign[2];
593 static uint sleep_intctl_wake[2];
594 static uint sleep_intctl_mask[2];
597 save_au1xxx_intctl(void)
599 sleep_intctl_config0[0] = au_readl(IC0_CFG0RD);
600 sleep_intctl_config1[0] = au_readl(IC0_CFG1RD);
601 sleep_intctl_config2[0] = au_readl(IC0_CFG2RD);
602 sleep_intctl_src[0] = au_readl(IC0_SRCRD);
603 sleep_intctl_assign[0] = au_readl(IC0_ASSIGNRD);
604 sleep_intctl_wake[0] = au_readl(IC0_WAKERD);
605 sleep_intctl_mask[0] = au_readl(IC0_MASKRD);
607 sleep_intctl_config0[1] = au_readl(IC1_CFG0RD);
608 sleep_intctl_config1[1] = au_readl(IC1_CFG1RD);
609 sleep_intctl_config2[1] = au_readl(IC1_CFG2RD);
610 sleep_intctl_src[1] = au_readl(IC1_SRCRD);
611 sleep_intctl_assign[1] = au_readl(IC1_ASSIGNRD);
612 sleep_intctl_wake[1] = au_readl(IC1_WAKERD);
613 sleep_intctl_mask[1] = au_readl(IC1_MASKRD);
616 /* For most restore operations, we clear the entire register and
617 * then set the bits we found during the save.
620 restore_au1xxx_intctl(void)
622 au_writel(0xffffffff, IC0_MASKCLR); au_sync();
624 au_writel(0xffffffff, IC0_CFG0CLR); au_sync();
625 au_writel(sleep_intctl_config0[0], IC0_CFG0SET); au_sync();
626 au_writel(0xffffffff, IC0_CFG1CLR); au_sync();
627 au_writel(sleep_intctl_config1[0], IC0_CFG1SET); au_sync();
628 au_writel(0xffffffff, IC0_CFG2CLR); au_sync();
629 au_writel(sleep_intctl_config2[0], IC0_CFG2SET); au_sync();
630 au_writel(0xffffffff, IC0_SRCCLR); au_sync();
631 au_writel(sleep_intctl_src[0], IC0_SRCSET); au_sync();
632 au_writel(0xffffffff, IC0_ASSIGNCLR); au_sync();
633 au_writel(sleep_intctl_assign[0], IC0_ASSIGNSET); au_sync();
634 au_writel(0xffffffff, IC0_WAKECLR); au_sync();
635 au_writel(sleep_intctl_wake[0], IC0_WAKESET); au_sync();
636 au_writel(0xffffffff, IC0_RISINGCLR); au_sync();
637 au_writel(0xffffffff, IC0_FALLINGCLR); au_sync();
638 au_writel(0x00000000, IC0_TESTBIT); au_sync();
640 au_writel(0xffffffff, IC1_MASKCLR); au_sync();
642 au_writel(0xffffffff, IC1_CFG0CLR); au_sync();
643 au_writel(sleep_intctl_config0[1], IC1_CFG0SET); au_sync();
644 au_writel(0xffffffff, IC1_CFG1CLR); au_sync();
645 au_writel(sleep_intctl_config1[1], IC1_CFG1SET); au_sync();
646 au_writel(0xffffffff, IC1_CFG2CLR); au_sync();
647 au_writel(sleep_intctl_config2[1], IC1_CFG2SET); au_sync();
648 au_writel(0xffffffff, IC1_SRCCLR); au_sync();
649 au_writel(sleep_intctl_src[1], IC1_SRCSET); au_sync();
650 au_writel(0xffffffff, IC1_ASSIGNCLR); au_sync();
651 au_writel(sleep_intctl_assign[1], IC1_ASSIGNSET); au_sync();
652 au_writel(0xffffffff, IC1_WAKECLR); au_sync();
653 au_writel(sleep_intctl_wake[1], IC1_WAKESET); au_sync();
654 au_writel(0xffffffff, IC1_RISINGCLR); au_sync();
655 au_writel(0xffffffff, IC1_FALLINGCLR); au_sync();
656 au_writel(0x00000000, IC1_TESTBIT); au_sync();
658 au_writel(sleep_intctl_mask[1], IC1_MASKSET); au_sync();
660 au_writel(sleep_intctl_mask[0], IC0_MASKSET); au_sync();
662 #endif /* CONFIG_PM */