Merge branch 'topic/hda' into for-linus
[linux-2.6] / sound / soc / fsl / fsl_dma.c
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
7  * under the terms of the GNU General Public License version 2.  This
8  * program is licensed "as is" without any warranty of any kind, whether
9  * express or implied.
10  *
11  * This driver implements ASoC support for the Elo DMA controller, which is
12  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13  * the PCM driver is what handles the DMA buffer.
14  */
15
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22
23 #include <sound/core.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27
28 #include <asm/io.h>
29
30 #include "fsl_dma.h"
31
32 /*
33  * The formats that the DMA controller supports, which is anything
34  * that is 8, 16, or 32 bits.
35  */
36 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8         | \
37                             SNDRV_PCM_FMTBIT_U8         | \
38                             SNDRV_PCM_FMTBIT_S16_LE     | \
39                             SNDRV_PCM_FMTBIT_S16_BE     | \
40                             SNDRV_PCM_FMTBIT_U16_LE     | \
41                             SNDRV_PCM_FMTBIT_U16_BE     | \
42                             SNDRV_PCM_FMTBIT_S24_LE     | \
43                             SNDRV_PCM_FMTBIT_S24_BE     | \
44                             SNDRV_PCM_FMTBIT_U24_LE     | \
45                             SNDRV_PCM_FMTBIT_U24_BE     | \
46                             SNDRV_PCM_FMTBIT_S32_LE     | \
47                             SNDRV_PCM_FMTBIT_S32_BE     | \
48                             SNDRV_PCM_FMTBIT_U32_LE     | \
49                             SNDRV_PCM_FMTBIT_U32_BE)
50
51 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
52                           SNDRV_PCM_RATE_CONTINUOUS)
53
54 /* DMA global data.  This structure is used by fsl_dma_open() to determine
55  * which DMA channels to assign to a substream.  Unfortunately, ASoC V1 does
56  * not allow the machine driver to provide this information to the PCM
57  * driver in advance, and there's no way to differentiate between the two
58  * DMA controllers.  So for now, this driver only supports one SSI device
59  * using two DMA channels.  We cannot support multiple DMA devices.
60  *
61  * ssi_stx_phys: bus address of SSI STX register
62  * ssi_srx_phys: bus address of SSI SRX register
63  * dma_channel: pointer to the DMA channel's registers
64  * irq: IRQ for this DMA channel
65  * assigned: set to 1 if that DMA channel is assigned to a substream
66  */
67 static struct {
68         dma_addr_t ssi_stx_phys;
69         dma_addr_t ssi_srx_phys;
70         struct ccsr_dma_channel __iomem *dma_channel[2];
71         unsigned int irq[2];
72         unsigned int assigned[2];
73 } dma_global_data;
74
75 /*
76  * The number of DMA links to use.  Two is the bare minimum, but if you
77  * have really small links you might need more.
78  */
79 #define NUM_DMA_LINKS   2
80
81 /** fsl_dma_private: p-substream DMA data
82  *
83  * Each substream has a 1-to-1 association with a DMA channel.
84  *
85  * The link[] array is first because it needs to be aligned on a 32-byte
86  * boundary, so putting it first will ensure alignment without padding the
87  * structure.
88  *
89  * @link[]: array of link descriptors
90  * @controller_id: which DMA controller (0, 1, ...)
91  * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
92  * @dma_channel: pointer to the DMA channel's registers
93  * @irq: IRQ for this DMA channel
94  * @substream: pointer to the substream object, needed by the ISR
95  * @ssi_sxx_phys: bus address of the STX or SRX register to use
96  * @ld_buf_phys: physical address of the LD buffer
97  * @current_link: index into link[] of the link currently being processed
98  * @dma_buf_phys: physical address of the DMA buffer
99  * @dma_buf_next: physical address of the next period to process
100  * @dma_buf_end: physical address of the byte after the end of the DMA
101  * @buffer period_size: the size of a single period
102  * @num_periods: the number of periods in the DMA buffer
103  */
104 struct fsl_dma_private {
105         struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
106         unsigned int controller_id;
107         unsigned int channel_id;
108         struct ccsr_dma_channel __iomem *dma_channel;
109         unsigned int irq;
110         struct snd_pcm_substream *substream;
111         dma_addr_t ssi_sxx_phys;
112         dma_addr_t ld_buf_phys;
113         unsigned int current_link;
114         dma_addr_t dma_buf_phys;
115         dma_addr_t dma_buf_next;
116         dma_addr_t dma_buf_end;
117         size_t period_size;
118         unsigned int num_periods;
119 };
120
121 /**
122  * fsl_dma_hardare: define characteristics of the PCM hardware.
123  *
124  * The PCM hardware is the Freescale DMA controller.  This structure defines
125  * the capabilities of that hardware.
126  *
127  * Since the sampling rate and data format are not controlled by the DMA
128  * controller, we specify no limits for those values.  The only exception is
129  * period_bytes_min, which is set to a reasonably low value to prevent the
130  * DMA controller from generating too many interrupts per second.
131  *
132  * Since each link descriptor has a 32-bit byte count field, we set
133  * period_bytes_max to the largest 32-bit number.  We also have no maximum
134  * number of periods.
135  *
136  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
137  * limitation in the SSI driver requires the sample rates for playback and
138  * capture to be the same.
139  */
140 static const struct snd_pcm_hardware fsl_dma_hardware = {
141
142         .info                   = SNDRV_PCM_INFO_INTERLEAVED |
143                                   SNDRV_PCM_INFO_MMAP |
144                                   SNDRV_PCM_INFO_MMAP_VALID |
145                                   SNDRV_PCM_INFO_JOINT_DUPLEX,
146         .formats                = FSLDMA_PCM_FORMATS,
147         .rates                  = FSLDMA_PCM_RATES,
148         .rate_min               = 5512,
149         .rate_max               = 192000,
150         .period_bytes_min       = 512,          /* A reasonable limit */
151         .period_bytes_max       = (u32) -1,
152         .periods_min            = NUM_DMA_LINKS,
153         .periods_max            = (unsigned int) -1,
154         .buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
155 };
156
157 /**
158  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
159  *
160  * This function should be called by the ISR whenever the DMA controller
161  * halts data transfer.
162  */
163 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
164 {
165         unsigned long flags;
166
167         snd_pcm_stream_lock_irqsave(substream, flags);
168
169         if (snd_pcm_running(substream))
170                 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
171
172         snd_pcm_stream_unlock_irqrestore(substream, flags);
173 }
174
175 /**
176  * fsl_dma_update_pointers - update LD pointers to point to the next period
177  *
178  * As each period is completed, this function changes the the link
179  * descriptor pointers for that period to point to the next period.
180  */
181 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
182 {
183         struct fsl_dma_link_descriptor *link =
184                 &dma_private->link[dma_private->current_link];
185
186         /* Update our link descriptors to point to the next period */
187         if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
188                 link->source_addr =
189                         cpu_to_be32(dma_private->dma_buf_next);
190         else
191                 link->dest_addr =
192                         cpu_to_be32(dma_private->dma_buf_next);
193
194         /* Update our variables for next time */
195         dma_private->dma_buf_next += dma_private->period_size;
196
197         if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
198                 dma_private->dma_buf_next = dma_private->dma_buf_phys;
199
200         if (++dma_private->current_link >= NUM_DMA_LINKS)
201                 dma_private->current_link = 0;
202 }
203
204 /**
205  * fsl_dma_isr: interrupt handler for the DMA controller
206  *
207  * @irq: IRQ of the DMA channel
208  * @dev_id: pointer to the dma_private structure for this DMA channel
209  */
210 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
211 {
212         struct fsl_dma_private *dma_private = dev_id;
213         struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
214         irqreturn_t ret = IRQ_NONE;
215         u32 sr, sr2 = 0;
216
217         /* We got an interrupt, so read the status register to see what we
218            were interrupted for.
219          */
220         sr = in_be32(&dma_channel->sr);
221
222         if (sr & CCSR_DMA_SR_TE) {
223                 dev_err(dma_private->substream->pcm->card->dev,
224                         "DMA transmit error (controller=%u channel=%u irq=%u\n",
225                         dma_private->controller_id,
226                         dma_private->channel_id, irq);
227                 fsl_dma_abort_stream(dma_private->substream);
228                 sr2 |= CCSR_DMA_SR_TE;
229                 ret = IRQ_HANDLED;
230         }
231
232         if (sr & CCSR_DMA_SR_CH)
233                 ret = IRQ_HANDLED;
234
235         if (sr & CCSR_DMA_SR_PE) {
236                 dev_err(dma_private->substream->pcm->card->dev,
237                         "DMA%u programming error (channel=%u irq=%u)\n",
238                         dma_private->controller_id,
239                         dma_private->channel_id, irq);
240                 fsl_dma_abort_stream(dma_private->substream);
241                 sr2 |= CCSR_DMA_SR_PE;
242                 ret = IRQ_HANDLED;
243         }
244
245         if (sr & CCSR_DMA_SR_EOLNI) {
246                 sr2 |= CCSR_DMA_SR_EOLNI;
247                 ret = IRQ_HANDLED;
248         }
249
250         if (sr & CCSR_DMA_SR_CB)
251                 ret = IRQ_HANDLED;
252
253         if (sr & CCSR_DMA_SR_EOSI) {
254                 struct snd_pcm_substream *substream = dma_private->substream;
255
256                 /* Tell ALSA we completed a period. */
257                 snd_pcm_period_elapsed(substream);
258
259                 /*
260                  * Update our link descriptors to point to the next period. We
261                  * only need to do this if the number of periods is not equal to
262                  * the number of links.
263                  */
264                 if (dma_private->num_periods != NUM_DMA_LINKS)
265                         fsl_dma_update_pointers(dma_private);
266
267                 sr2 |= CCSR_DMA_SR_EOSI;
268                 ret = IRQ_HANDLED;
269         }
270
271         if (sr & CCSR_DMA_SR_EOLSI) {
272                 sr2 |= CCSR_DMA_SR_EOLSI;
273                 ret = IRQ_HANDLED;
274         }
275
276         /* Clear the bits that we set */
277         if (sr2)
278                 out_be32(&dma_channel->sr, sr2);
279
280         return ret;
281 }
282
283 /**
284  * fsl_dma_new: initialize this PCM driver.
285  *
286  * This function is called when the codec driver calls snd_soc_new_pcms(),
287  * once for each .dai_link in the machine driver's snd_soc_card
288  * structure.
289  */
290 static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
291         struct snd_pcm *pcm)
292 {
293         static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
294         int ret;
295
296         if (!card->dev->dma_mask)
297                 card->dev->dma_mask = &fsl_dma_dmamask;
298
299         if (!card->dev->coherent_dma_mask)
300                 card->dev->coherent_dma_mask = fsl_dma_dmamask;
301
302         ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
303                 fsl_dma_hardware.buffer_bytes_max,
304                 &pcm->streams[0].substream->dma_buffer);
305         if (ret) {
306                 dev_err(card->dev,
307                         "Can't allocate playback DMA buffer (size=%u)\n",
308                         fsl_dma_hardware.buffer_bytes_max);
309                 return -ENOMEM;
310         }
311
312         ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
313                 fsl_dma_hardware.buffer_bytes_max,
314                 &pcm->streams[1].substream->dma_buffer);
315         if (ret) {
316                 snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
317                 dev_err(card->dev,
318                         "Can't allocate capture DMA buffer (size=%u)\n",
319                         fsl_dma_hardware.buffer_bytes_max);
320                 return -ENOMEM;
321         }
322
323         return 0;
324 }
325
326 /**
327  * fsl_dma_open: open a new substream.
328  *
329  * Each substream has its own DMA buffer.
330  *
331  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
332  * descriptors that ping-pong from one period to the next.  For example, if
333  * there are six periods and two link descriptors, this is how they look
334  * before playback starts:
335  *
336  *                 The last link descriptor
337  *   ____________  points back to the first
338  *  |            |
339  *  V            |
340  *  ___    ___   |
341  * |   |->|   |->|
342  * |___|  |___|
343  *   |      |
344  *   |      |
345  *   V      V
346  *  _________________________________________
347  * |      |      |      |      |      |      |  The DMA buffer is
348  * |      |      |      |      |      |      |    divided into 6 parts
349  * |______|______|______|______|______|______|
350  *
351  * and here's how they look after the first period is finished playing:
352  *
353  *   ____________
354  *  |            |
355  *  V            |
356  *  ___    ___   |
357  * |   |->|   |->|
358  * |___|  |___|
359  *   |      |
360  *   |______________
361  *          |       |
362  *          V       V
363  *  _________________________________________
364  * |      |      |      |      |      |      |
365  * |      |      |      |      |      |      |
366  * |______|______|______|______|______|______|
367  *
368  * The first link descriptor now points to the third period.  The DMA
369  * controller is currently playing the second period.  When it finishes, it
370  * will jump back to the first descriptor and play the third period.
371  *
372  * There are four reasons we do this:
373  *
374  * 1. The only way to get the DMA controller to automatically restart the
375  *    transfer when it gets to the end of the buffer is to use chaining
376  *    mode.  Basic direct mode doesn't offer that feature.
377  * 2. We need to receive an interrupt at the end of every period.  The DMA
378  *    controller can generate an interrupt at the end of every link transfer
379  *    (aka segment).  Making each period into a DMA segment will give us the
380  *    interrupts we need.
381  * 3. By creating only two link descriptors, regardless of the number of
382  *    periods, we do not need to reallocate the link descriptors if the
383  *    number of periods changes.
384  * 4. All of the audio data is still stored in a single, contiguous DMA
385  *    buffer, which is what ALSA expects.  We're just dividing it into
386  *    contiguous parts, and creating a link descriptor for each one.
387  */
388 static int fsl_dma_open(struct snd_pcm_substream *substream)
389 {
390         struct snd_pcm_runtime *runtime = substream->runtime;
391         struct fsl_dma_private *dma_private;
392         struct ccsr_dma_channel __iomem *dma_channel;
393         dma_addr_t ld_buf_phys;
394         u64 temp_link;          /* Pointer to next link descriptor */
395         u32 mr;
396         unsigned int channel;
397         int ret = 0;
398         unsigned int i;
399
400         /*
401          * Reject any DMA buffer whose size is not a multiple of the period
402          * size.  We need to make sure that the DMA buffer can be evenly divided
403          * into periods.
404          */
405         ret = snd_pcm_hw_constraint_integer(runtime,
406                 SNDRV_PCM_HW_PARAM_PERIODS);
407         if (ret < 0) {
408                 dev_err(substream->pcm->card->dev, "invalid buffer size\n");
409                 return ret;
410         }
411
412         channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
413
414         if (dma_global_data.assigned[channel]) {
415                 dev_err(substream->pcm->card->dev,
416                         "DMA channel already assigned\n");
417                 return -EBUSY;
418         }
419
420         dma_private = dma_alloc_coherent(substream->pcm->dev,
421                 sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
422         if (!dma_private) {
423                 dev_err(substream->pcm->card->dev,
424                         "can't allocate DMA private data\n");
425                 return -ENOMEM;
426         }
427         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
428                 dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
429         else
430                 dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
431
432         dma_private->dma_channel = dma_global_data.dma_channel[channel];
433         dma_private->irq = dma_global_data.irq[channel];
434         dma_private->substream = substream;
435         dma_private->ld_buf_phys = ld_buf_phys;
436         dma_private->dma_buf_phys = substream->dma_buffer.addr;
437
438         /* We only support one DMA controller for now */
439         dma_private->controller_id = 0;
440         dma_private->channel_id = channel;
441
442         ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
443         if (ret) {
444                 dev_err(substream->pcm->card->dev,
445                         "can't register ISR for IRQ %u (ret=%i)\n",
446                         dma_private->irq, ret);
447                 dma_free_coherent(substream->pcm->dev,
448                         sizeof(struct fsl_dma_private),
449                         dma_private, dma_private->ld_buf_phys);
450                 return ret;
451         }
452
453         dma_global_data.assigned[channel] = 1;
454
455         snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
456         snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
457         runtime->private_data = dma_private;
458
459         /* Program the fixed DMA controller parameters */
460
461         dma_channel = dma_private->dma_channel;
462
463         temp_link = dma_private->ld_buf_phys +
464                 sizeof(struct fsl_dma_link_descriptor);
465
466         for (i = 0; i < NUM_DMA_LINKS; i++) {
467                 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
468
469                 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
470                 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
471                 link->next = cpu_to_be64(temp_link);
472
473                 temp_link += sizeof(struct fsl_dma_link_descriptor);
474         }
475         /* The last link descriptor points to the first */
476         dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
477
478         /* Tell the DMA controller where the first link descriptor is */
479         out_be32(&dma_channel->clndar,
480                 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
481         out_be32(&dma_channel->eclndar,
482                 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
483
484         /* The manual says the BCR must be clear before enabling EMP */
485         out_be32(&dma_channel->bcr, 0);
486
487         /*
488          * Program the mode register for interrupts, external master control,
489          * and source/destination hold.  Also clear the Channel Abort bit.
490          */
491         mr = in_be32(&dma_channel->mr) &
492                 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
493
494         /*
495          * We want External Master Start and External Master Pause enabled,
496          * because the SSI is controlling the DMA controller.  We want the DMA
497          * controller to be set up in advance, and then we signal only the SSI
498          * to start transferring.
499          *
500          * We want End-Of-Segment Interrupts enabled, because this will generate
501          * an interrupt at the end of each segment (each link descriptor
502          * represents one segment).  Each DMA segment is the same thing as an
503          * ALSA period, so this is how we get an interrupt at the end of every
504          * period.
505          *
506          * We want Error Interrupt enabled, so that we can get an error if
507          * the DMA controller is mis-programmed somehow.
508          */
509         mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
510                 CCSR_DMA_MR_EMS_EN;
511
512         /* For playback, we want the destination address to be held.  For
513            capture, set the source address to be held. */
514         mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
515                 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
516
517         out_be32(&dma_channel->mr, mr);
518
519         return 0;
520 }
521
522 /**
523  * fsl_dma_hw_params: continue initializing the DMA links
524  *
525  * This function obtains hardware parameters about the opened stream and
526  * programs the DMA controller accordingly.
527  *
528  * Note that due to a quirk of the SSI's STX register, the target address
529  * for the DMA operations depends on the sample size.  So we don't program
530  * the dest_addr (for playback -- source_addr for capture) fields in the
531  * link descriptors here.  We do that in fsl_dma_prepare()
532  */
533 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
534         struct snd_pcm_hw_params *hw_params)
535 {
536         struct snd_pcm_runtime *runtime = substream->runtime;
537         struct fsl_dma_private *dma_private = runtime->private_data;
538
539         dma_addr_t temp_addr;   /* Pointer to next period */
540
541         unsigned int i;
542
543         /* Get all the parameters we need */
544         size_t buffer_size = params_buffer_bytes(hw_params);
545         size_t period_size = params_period_bytes(hw_params);
546
547         /* Initialize our DMA tracking variables */
548         dma_private->period_size = period_size;
549         dma_private->num_periods = params_periods(hw_params);
550         dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
551         dma_private->dma_buf_next = dma_private->dma_buf_phys +
552                 (NUM_DMA_LINKS * period_size);
553         if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
554                 dma_private->dma_buf_next = dma_private->dma_buf_phys;
555
556         /*
557          * The actual address in STX0 (destination for playback, source for
558          * capture) is based on the sample size, but we don't know the sample
559          * size in this function, so we'll have to adjust that later.  See
560          * comments in fsl_dma_prepare().
561          *
562          * The DMA controller does not have a cache, so the CPU does not
563          * need to tell it to flush its cache.  However, the DMA
564          * controller does need to tell the CPU to flush its cache.
565          * That's what the SNOOP bit does.
566          *
567          * Also, even though the DMA controller supports 36-bit addressing, for
568          * simplicity we currently support only 32-bit addresses for the audio
569          * buffer itself.
570          */
571         temp_addr = substream->dma_buffer.addr;
572
573         for (i = 0; i < NUM_DMA_LINKS; i++) {
574                 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
575
576                 link->count = cpu_to_be32(period_size);
577
578                 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
579                         link->source_addr = cpu_to_be32(temp_addr);
580                 else
581                         link->dest_addr = cpu_to_be32(temp_addr);
582
583                 temp_addr += period_size;
584         }
585
586         return 0;
587 }
588
589 /**
590  * fsl_dma_prepare - prepare the DMA registers for playback.
591  *
592  * This function is called after the specifics of the audio data are known,
593  * i.e. snd_pcm_runtime is initialized.
594  *
595  * In this function, we finish programming the registers of the DMA
596  * controller that are dependent on the sample size.
597  *
598  * One of the drawbacks with big-endian is that when copying integers of
599  * different sizes to a fixed-sized register, the address to which the
600  * integer must be copied is dependent on the size of the integer.
601  *
602  * For example, if P is the address of a 32-bit register, and X is a 32-bit
603  * integer, then X should be copied to address P.  However, if X is a 16-bit
604  * integer, then it should be copied to P+2.  If X is an 8-bit register,
605  * then it should be copied to P+3.
606  *
607  * So for playback of 8-bit samples, the DMA controller must transfer single
608  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
609  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
610  *
611  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
612  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
613  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
614  * 24-bit data must be padded to 32 bits.
615  */
616 static int fsl_dma_prepare(struct snd_pcm_substream *substream)
617 {
618         struct snd_pcm_runtime *runtime = substream->runtime;
619         struct fsl_dma_private *dma_private = runtime->private_data;
620         struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
621         u32 mr;
622         unsigned int i;
623         dma_addr_t ssi_sxx_phys;        /* Bus address of SSI STX register */
624         unsigned int frame_size;        /* Number of bytes per frame */
625
626         ssi_sxx_phys = dma_private->ssi_sxx_phys;
627
628         mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
629                   CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
630
631         switch (runtime->sample_bits) {
632         case 8:
633                 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
634                 ssi_sxx_phys += 3;
635                 break;
636         case 16:
637                 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
638                 ssi_sxx_phys += 2;
639                 break;
640         case 32:
641                 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
642                 break;
643         default:
644                 dev_err(substream->pcm->card->dev,
645                         "unsupported sample size %u\n", runtime->sample_bits);
646                 return -EINVAL;
647         }
648
649         frame_size = runtime->frame_bits / 8;
650         /*
651          * BWC should always be a multiple of the frame size.  BWC determines
652          * how many bytes are sent/received before the DMA controller checks the
653          * SSI to see if it needs to stop.  For playback, the transmit FIFO can
654          * hold three frames, so we want to send two frames at a time. For
655          * capture, the receive FIFO is triggered when it contains one frame, so
656          * we want to receive one frame at a time.
657          */
658
659         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
660                 mr |= CCSR_DMA_MR_BWC(2 * frame_size);
661         else
662                 mr |= CCSR_DMA_MR_BWC(frame_size);
663
664         out_be32(&dma_channel->mr, mr);
665
666         /*
667          * Program the address of the DMA transfer to/from the SSI.
668          */
669         for (i = 0; i < NUM_DMA_LINKS; i++) {
670                 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
671
672                 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
673                         link->dest_addr = cpu_to_be32(ssi_sxx_phys);
674                 else
675                         link->source_addr = cpu_to_be32(ssi_sxx_phys);
676         }
677
678         return 0;
679 }
680
681 /**
682  * fsl_dma_pointer: determine the current position of the DMA transfer
683  *
684  * This function is called by ALSA when ALSA wants to know where in the
685  * stream buffer the hardware currently is.
686  *
687  * For playback, the SAR register contains the physical address of the most
688  * recent DMA transfer.  For capture, the value is in the DAR register.
689  *
690  * The base address of the buffer is stored in the source_addr field of the
691  * first link descriptor.
692  */
693 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
694 {
695         struct snd_pcm_runtime *runtime = substream->runtime;
696         struct fsl_dma_private *dma_private = runtime->private_data;
697         struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
698         dma_addr_t position;
699         snd_pcm_uframes_t frames;
700
701         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
702                 position = in_be32(&dma_channel->sar);
703         else
704                 position = in_be32(&dma_channel->dar);
705
706         frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
707
708         /*
709          * If the current address is just past the end of the buffer, wrap it
710          * around.
711          */
712         if (frames == runtime->buffer_size)
713                 frames = 0;
714
715         return frames;
716 }
717
718 /**
719  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
720  *
721  * Release the resources allocated in fsl_dma_hw_params() and de-program the
722  * registers.
723  *
724  * This function can be called multiple times.
725  */
726 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
727 {
728         struct snd_pcm_runtime *runtime = substream->runtime;
729         struct fsl_dma_private *dma_private = runtime->private_data;
730
731         if (dma_private) {
732                 struct ccsr_dma_channel __iomem *dma_channel;
733
734                 dma_channel = dma_private->dma_channel;
735
736                 /* Stop the DMA */
737                 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
738                 out_be32(&dma_channel->mr, 0);
739
740                 /* Reset all the other registers */
741                 out_be32(&dma_channel->sr, -1);
742                 out_be32(&dma_channel->clndar, 0);
743                 out_be32(&dma_channel->eclndar, 0);
744                 out_be32(&dma_channel->satr, 0);
745                 out_be32(&dma_channel->sar, 0);
746                 out_be32(&dma_channel->datr, 0);
747                 out_be32(&dma_channel->dar, 0);
748                 out_be32(&dma_channel->bcr, 0);
749                 out_be32(&dma_channel->nlndar, 0);
750                 out_be32(&dma_channel->enlndar, 0);
751         }
752
753         return 0;
754 }
755
756 /**
757  * fsl_dma_close: close the stream.
758  */
759 static int fsl_dma_close(struct snd_pcm_substream *substream)
760 {
761         struct snd_pcm_runtime *runtime = substream->runtime;
762         struct fsl_dma_private *dma_private = runtime->private_data;
763         int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
764
765         if (dma_private) {
766                 if (dma_private->irq)
767                         free_irq(dma_private->irq, dma_private);
768
769                 if (dma_private->ld_buf_phys) {
770                         dma_unmap_single(substream->pcm->dev,
771                                 dma_private->ld_buf_phys,
772                                 sizeof(dma_private->link), DMA_TO_DEVICE);
773                 }
774
775                 /* Deallocate the fsl_dma_private structure */
776                 dma_free_coherent(substream->pcm->dev,
777                         sizeof(struct fsl_dma_private),
778                         dma_private, dma_private->ld_buf_phys);
779                 substream->runtime->private_data = NULL;
780         }
781
782         dma_global_data.assigned[dir] = 0;
783
784         return 0;
785 }
786
787 /*
788  * Remove this PCM driver.
789  */
790 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
791 {
792         struct snd_pcm_substream *substream;
793         unsigned int i;
794
795         for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
796                 substream = pcm->streams[i].substream;
797                 if (substream) {
798                         snd_dma_free_pages(&substream->dma_buffer);
799                         substream->dma_buffer.area = NULL;
800                         substream->dma_buffer.addr = 0;
801                 }
802         }
803 }
804
805 static struct snd_pcm_ops fsl_dma_ops = {
806         .open           = fsl_dma_open,
807         .close          = fsl_dma_close,
808         .ioctl          = snd_pcm_lib_ioctl,
809         .hw_params      = fsl_dma_hw_params,
810         .hw_free        = fsl_dma_hw_free,
811         .prepare        = fsl_dma_prepare,
812         .pointer        = fsl_dma_pointer,
813 };
814
815 struct snd_soc_platform fsl_soc_platform = {
816         .name           = "fsl-dma",
817         .pcm_ops        = &fsl_dma_ops,
818         .pcm_new        = fsl_dma_new,
819         .pcm_free       = fsl_dma_free_dma_buffers,
820 };
821 EXPORT_SYMBOL_GPL(fsl_soc_platform);
822
823 /**
824  * fsl_dma_configure: store the DMA parameters from the fabric driver.
825  *
826  * This function is called by the ASoC fabric driver to give us the DMA and
827  * SSI channel information.
828  *
829  * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
830  * data when a substream is created, so for now we need to store this data
831  * into a global variable.  This means that we can only support one DMA
832  * controller, and hence only one SSI.
833  */
834 int fsl_dma_configure(struct fsl_dma_info *dma_info)
835 {
836         static int initialized;
837
838         /* We only support one DMA controller for now */
839         if (initialized)
840                 return 0;
841
842         dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
843         dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
844         dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
845         dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
846         dma_global_data.irq[0] = dma_info->dma_irq[0];
847         dma_global_data.irq[1] = dma_info->dma_irq[1];
848         dma_global_data.assigned[0] = 0;
849         dma_global_data.assigned[1] = 0;
850
851         initialized = 1;
852         return 1;
853 }
854 EXPORT_SYMBOL_GPL(fsl_dma_configure);
855
856 static int __init fsl_soc_platform_init(void)
857 {
858         return snd_soc_register_platform(&fsl_soc_platform);
859 }
860 module_init(fsl_soc_platform_init);
861
862 static void __exit fsl_soc_platform_exit(void)
863 {
864         snd_soc_unregister_platform(&fsl_soc_platform);
865 }
866 module_exit(fsl_soc_platform_exit);
867
868 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
869 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
870 MODULE_LICENSE("GPL");