KVM: Avoid useless memory write when possible
[linux-2.6] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/vmalloc.h>
20 #include <linux/highmem.h>
21 #include <linux/profile.h>
22 #include <linux/sched.h>
23 #include <asm/desc.h>
24
25 #include "kvm_svm.h"
26 #include "x86_emulate.h"
27
28 MODULE_AUTHOR("Qumranet");
29 MODULE_LICENSE("GPL");
30
31 #define IOPM_ALLOC_ORDER 2
32 #define MSRPM_ALLOC_ORDER 1
33
34 #define DB_VECTOR 1
35 #define UD_VECTOR 6
36 #define GP_VECTOR 13
37
38 #define DR7_GD_MASK (1 << 13)
39 #define DR6_BD_MASK (1 << 13)
40 #define CR4_DE_MASK (1UL << 3)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define KVM_EFER_LMA (1 << 10)
46 #define KVM_EFER_LME (1 << 8)
47
48 #define SVM_FEATURE_NPT  (1 << 0)
49 #define SVM_FEATURE_LBRV (1 << 1)
50 #define SVM_DEATURE_SVML (1 << 2)
51
52 unsigned long iopm_base;
53 unsigned long msrpm_base;
54
55 struct kvm_ldttss_desc {
56         u16 limit0;
57         u16 base0;
58         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
59         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
60         u32 base3;
61         u32 zero1;
62 } __attribute__((packed));
63
64 struct svm_cpu_data {
65         int cpu;
66
67         u64 asid_generation;
68         u32 max_asid;
69         u32 next_asid;
70         struct kvm_ldttss_desc *tss_desc;
71
72         struct page *save_area;
73 };
74
75 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
76 static uint32_t svm_features;
77
78 struct svm_init_data {
79         int cpu;
80         int r;
81 };
82
83 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
84
85 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
86 #define MSRS_RANGE_SIZE 2048
87 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
88
89 #define MAX_INST_SIZE 15
90
91 static inline u32 svm_has(u32 feat)
92 {
93         return svm_features & feat;
94 }
95
96 static unsigned get_addr_size(struct kvm_vcpu *vcpu)
97 {
98         struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
99         u16 cs_attrib;
100
101         if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
102                 return 2;
103
104         cs_attrib = sa->cs.attrib;
105
106         return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
107                                 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
108 }
109
110 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
111 {
112         int word_index = __ffs(vcpu->irq_summary);
113         int bit_index = __ffs(vcpu->irq_pending[word_index]);
114         int irq = word_index * BITS_PER_LONG + bit_index;
115
116         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
117         if (!vcpu->irq_pending[word_index])
118                 clear_bit(word_index, &vcpu->irq_summary);
119         return irq;
120 }
121
122 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
123 {
124         set_bit(irq, vcpu->irq_pending);
125         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
126 }
127
128 static inline void clgi(void)
129 {
130         asm volatile (SVM_CLGI);
131 }
132
133 static inline void stgi(void)
134 {
135         asm volatile (SVM_STGI);
136 }
137
138 static inline void invlpga(unsigned long addr, u32 asid)
139 {
140         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
141 }
142
143 static inline unsigned long kvm_read_cr2(void)
144 {
145         unsigned long cr2;
146
147         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
148         return cr2;
149 }
150
151 static inline void kvm_write_cr2(unsigned long val)
152 {
153         asm volatile ("mov %0, %%cr2" :: "r" (val));
154 }
155
156 static inline unsigned long read_dr6(void)
157 {
158         unsigned long dr6;
159
160         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
161         return dr6;
162 }
163
164 static inline void write_dr6(unsigned long val)
165 {
166         asm volatile ("mov %0, %%dr6" :: "r" (val));
167 }
168
169 static inline unsigned long read_dr7(void)
170 {
171         unsigned long dr7;
172
173         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
174         return dr7;
175 }
176
177 static inline void write_dr7(unsigned long val)
178 {
179         asm volatile ("mov %0, %%dr7" :: "r" (val));
180 }
181
182 static inline void force_new_asid(struct kvm_vcpu *vcpu)
183 {
184         vcpu->svm->asid_generation--;
185 }
186
187 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
188 {
189         force_new_asid(vcpu);
190 }
191
192 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
193 {
194         if (!(efer & KVM_EFER_LMA))
195                 efer &= ~KVM_EFER_LME;
196
197         vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
198         vcpu->shadow_efer = efer;
199 }
200
201 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
202 {
203         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
204                                                 SVM_EVTINJ_VALID_ERR |
205                                                 SVM_EVTINJ_TYPE_EXEPT |
206                                                 GP_VECTOR;
207         vcpu->svm->vmcb->control.event_inj_err = error_code;
208 }
209
210 static void inject_ud(struct kvm_vcpu *vcpu)
211 {
212         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
213                                                 SVM_EVTINJ_TYPE_EXEPT |
214                                                 UD_VECTOR;
215 }
216
217 static int is_page_fault(uint32_t info)
218 {
219         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
220         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
221 }
222
223 static int is_external_interrupt(u32 info)
224 {
225         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
226         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
227 }
228
229 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
230 {
231         if (!vcpu->svm->next_rip) {
232                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
233                 return;
234         }
235         if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
236                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
237                        __FUNCTION__,
238                        vcpu->svm->vmcb->save.rip,
239                        vcpu->svm->next_rip);
240         }
241
242         vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
243         vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
244
245         vcpu->interrupt_window_open = 1;
246 }
247
248 static int has_svm(void)
249 {
250         uint32_t eax, ebx, ecx, edx;
251
252         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
253                 printk(KERN_INFO "has_svm: not amd\n");
254                 return 0;
255         }
256
257         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
258         if (eax < SVM_CPUID_FUNC) {
259                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
260                 return 0;
261         }
262
263         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
264         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
265                 printk(KERN_DEBUG "has_svm: svm not available\n");
266                 return 0;
267         }
268         return 1;
269 }
270
271 static void svm_hardware_disable(void *garbage)
272 {
273         struct svm_cpu_data *svm_data
274                 = per_cpu(svm_data, raw_smp_processor_id());
275
276         if (svm_data) {
277                 uint64_t efer;
278
279                 wrmsrl(MSR_VM_HSAVE_PA, 0);
280                 rdmsrl(MSR_EFER, efer);
281                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
282                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
283                 __free_page(svm_data->save_area);
284                 kfree(svm_data);
285         }
286 }
287
288 static void svm_hardware_enable(void *garbage)
289 {
290
291         struct svm_cpu_data *svm_data;
292         uint64_t efer;
293 #ifdef CONFIG_X86_64
294         struct desc_ptr gdt_descr;
295 #else
296         struct Xgt_desc_struct gdt_descr;
297 #endif
298         struct desc_struct *gdt;
299         int me = raw_smp_processor_id();
300
301         if (!has_svm()) {
302                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
303                 return;
304         }
305         svm_data = per_cpu(svm_data, me);
306
307         if (!svm_data) {
308                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
309                        me);
310                 return;
311         }
312
313         svm_data->asid_generation = 1;
314         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
315         svm_data->next_asid = svm_data->max_asid + 1;
316         svm_features = cpuid_edx(SVM_CPUID_FUNC);
317
318         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
319         gdt = (struct desc_struct *)gdt_descr.address;
320         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
321
322         rdmsrl(MSR_EFER, efer);
323         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
324
325         wrmsrl(MSR_VM_HSAVE_PA,
326                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
327 }
328
329 static int svm_cpu_init(int cpu)
330 {
331         struct svm_cpu_data *svm_data;
332         int r;
333
334         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
335         if (!svm_data)
336                 return -ENOMEM;
337         svm_data->cpu = cpu;
338         svm_data->save_area = alloc_page(GFP_KERNEL);
339         r = -ENOMEM;
340         if (!svm_data->save_area)
341                 goto err_1;
342
343         per_cpu(svm_data, cpu) = svm_data;
344
345         return 0;
346
347 err_1:
348         kfree(svm_data);
349         return r;
350
351 }
352
353 static int set_msr_interception(u32 *msrpm, unsigned msr,
354                                 int read, int write)
355 {
356         int i;
357
358         for (i = 0; i < NUM_MSR_MAPS; i++) {
359                 if (msr >= msrpm_ranges[i] &&
360                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
361                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
362                                           msrpm_ranges[i]) * 2;
363
364                         u32 *base = msrpm + (msr_offset / 32);
365                         u32 msr_shift = msr_offset % 32;
366                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
367                         *base = (*base & ~(0x3 << msr_shift)) |
368                                 (mask << msr_shift);
369                         return 1;
370                 }
371         }
372         printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
373         return 0;
374 }
375
376 static __init int svm_hardware_setup(void)
377 {
378         int cpu;
379         struct page *iopm_pages;
380         struct page *msrpm_pages;
381         void *iopm_va, *msrpm_va;
382         int r;
383
384         kvm_emulator_want_group7_invlpg();
385
386         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
387
388         if (!iopm_pages)
389                 return -ENOMEM;
390
391         iopm_va = page_address(iopm_pages);
392         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
393         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
394         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
395
396
397         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
398
399         r = -ENOMEM;
400         if (!msrpm_pages)
401                 goto err_1;
402
403         msrpm_va = page_address(msrpm_pages);
404         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
405         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
406
407 #ifdef CONFIG_X86_64
408         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
409         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
410         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
411         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
412         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
413         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
414 #endif
415         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
416         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
417         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
418         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
419
420         for_each_online_cpu(cpu) {
421                 r = svm_cpu_init(cpu);
422                 if (r)
423                         goto err_2;
424         }
425         return 0;
426
427 err_2:
428         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
429         msrpm_base = 0;
430 err_1:
431         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
432         iopm_base = 0;
433         return r;
434 }
435
436 static __exit void svm_hardware_unsetup(void)
437 {
438         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
439         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
440         iopm_base = msrpm_base = 0;
441 }
442
443 static void init_seg(struct vmcb_seg *seg)
444 {
445         seg->selector = 0;
446         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
447                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
448         seg->limit = 0xffff;
449         seg->base = 0;
450 }
451
452 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
453 {
454         seg->selector = 0;
455         seg->attrib = SVM_SELECTOR_P_MASK | type;
456         seg->limit = 0xffff;
457         seg->base = 0;
458 }
459
460 static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
461 {
462         return 0;
463 }
464
465 static void init_vmcb(struct vmcb *vmcb)
466 {
467         struct vmcb_control_area *control = &vmcb->control;
468         struct vmcb_save_area *save = &vmcb->save;
469
470         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
471                                         INTERCEPT_CR3_MASK |
472                                         INTERCEPT_CR4_MASK;
473
474         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
475                                         INTERCEPT_CR3_MASK |
476                                         INTERCEPT_CR4_MASK;
477
478         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
479                                         INTERCEPT_DR1_MASK |
480                                         INTERCEPT_DR2_MASK |
481                                         INTERCEPT_DR3_MASK;
482
483         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
484                                         INTERCEPT_DR1_MASK |
485                                         INTERCEPT_DR2_MASK |
486                                         INTERCEPT_DR3_MASK |
487                                         INTERCEPT_DR5_MASK |
488                                         INTERCEPT_DR7_MASK;
489
490         control->intercept_exceptions = 1 << PF_VECTOR;
491
492
493         control->intercept =    (1ULL << INTERCEPT_INTR) |
494                                 (1ULL << INTERCEPT_NMI) |
495                                 (1ULL << INTERCEPT_SMI) |
496                 /*
497                  * selective cr0 intercept bug?
498                  *      0:   0f 22 d8                mov    %eax,%cr3
499                  *      3:   0f 20 c0                mov    %cr0,%eax
500                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
501                  *      b:   0f 22 c0                mov    %eax,%cr0
502                  * set cr3 ->interception
503                  * get cr0 ->interception
504                  * set cr0 -> no interception
505                  */
506                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
507                                 (1ULL << INTERCEPT_CPUID) |
508                                 (1ULL << INTERCEPT_HLT) |
509                                 (1ULL << INTERCEPT_INVLPGA) |
510                                 (1ULL << INTERCEPT_IOIO_PROT) |
511                                 (1ULL << INTERCEPT_MSR_PROT) |
512                                 (1ULL << INTERCEPT_TASK_SWITCH) |
513                                 (1ULL << INTERCEPT_SHUTDOWN) |
514                                 (1ULL << INTERCEPT_VMRUN) |
515                                 (1ULL << INTERCEPT_VMMCALL) |
516                                 (1ULL << INTERCEPT_VMLOAD) |
517                                 (1ULL << INTERCEPT_VMSAVE) |
518                                 (1ULL << INTERCEPT_STGI) |
519                                 (1ULL << INTERCEPT_CLGI) |
520                                 (1ULL << INTERCEPT_SKINIT) |
521                                 (1ULL << INTERCEPT_MONITOR) |
522                                 (1ULL << INTERCEPT_MWAIT);
523
524         control->iopm_base_pa = iopm_base;
525         control->msrpm_base_pa = msrpm_base;
526         control->tsc_offset = 0;
527         control->int_ctl = V_INTR_MASKING_MASK;
528
529         init_seg(&save->es);
530         init_seg(&save->ss);
531         init_seg(&save->ds);
532         init_seg(&save->fs);
533         init_seg(&save->gs);
534
535         save->cs.selector = 0xf000;
536         /* Executable/Readable Code Segment */
537         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
538                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
539         save->cs.limit = 0xffff;
540         /*
541          * cs.base should really be 0xffff0000, but vmx can't handle that, so
542          * be consistent with it.
543          *
544          * Replace when we have real mode working for vmx.
545          */
546         save->cs.base = 0xf0000;
547
548         save->gdtr.limit = 0xffff;
549         save->idtr.limit = 0xffff;
550
551         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
552         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
553
554         save->efer = MSR_EFER_SVME_MASK;
555
556         save->dr6 = 0xffff0ff0;
557         save->dr7 = 0x400;
558         save->rflags = 2;
559         save->rip = 0x0000fff0;
560
561         /*
562          * cr0 val on cpu init should be 0x60000010, we enable cpu
563          * cache by default. the orderly way is to enable cache in bios.
564          */
565         save->cr0 = 0x00000010 | CR0_PG_MASK | CR0_WP_MASK;
566         save->cr4 = CR4_PAE_MASK;
567         /* rdx = ?? */
568 }
569
570 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
571 {
572         struct page *page;
573         int r;
574
575         r = -ENOMEM;
576         vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
577         if (!vcpu->svm)
578                 goto out1;
579         page = alloc_page(GFP_KERNEL);
580         if (!page)
581                 goto out2;
582
583         vcpu->svm->vmcb = page_address(page);
584         clear_page(vcpu->svm->vmcb);
585         vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
586         vcpu->svm->asid_generation = 0;
587         memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
588         init_vmcb(vcpu->svm->vmcb);
589
590         fx_init(vcpu);
591         vcpu->fpu_active = 1;
592         vcpu->apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
593         if (vcpu == &vcpu->kvm->vcpus[0])
594                 vcpu->apic_base |= MSR_IA32_APICBASE_BSP;
595
596         return 0;
597
598 out2:
599         kfree(vcpu->svm);
600 out1:
601         return r;
602 }
603
604 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
605 {
606         if (!vcpu->svm)
607                 return;
608         if (vcpu->svm->vmcb)
609                 __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
610         kfree(vcpu->svm);
611 }
612
613 static void svm_vcpu_load(struct kvm_vcpu *vcpu)
614 {
615         int cpu, i;
616
617         cpu = get_cpu();
618         if (unlikely(cpu != vcpu->cpu)) {
619                 u64 tsc_this, delta;
620
621                 /*
622                  * Make sure that the guest sees a monotonically
623                  * increasing TSC.
624                  */
625                 rdtscll(tsc_this);
626                 delta = vcpu->host_tsc - tsc_this;
627                 vcpu->svm->vmcb->control.tsc_offset += delta;
628                 vcpu->cpu = cpu;
629         }
630
631         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
632                 rdmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
633 }
634
635 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
636 {
637         int i;
638
639         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
640                 wrmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
641
642         rdtscll(vcpu->host_tsc);
643         put_cpu();
644 }
645
646 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
647 {
648 }
649
650 static void svm_cache_regs(struct kvm_vcpu *vcpu)
651 {
652         vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
653         vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
654         vcpu->rip = vcpu->svm->vmcb->save.rip;
655 }
656
657 static void svm_decache_regs(struct kvm_vcpu *vcpu)
658 {
659         vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
660         vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
661         vcpu->svm->vmcb->save.rip = vcpu->rip;
662 }
663
664 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
665 {
666         return vcpu->svm->vmcb->save.rflags;
667 }
668
669 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
670 {
671         vcpu->svm->vmcb->save.rflags = rflags;
672 }
673
674 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
675 {
676         struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
677
678         switch (seg) {
679         case VCPU_SREG_CS: return &save->cs;
680         case VCPU_SREG_DS: return &save->ds;
681         case VCPU_SREG_ES: return &save->es;
682         case VCPU_SREG_FS: return &save->fs;
683         case VCPU_SREG_GS: return &save->gs;
684         case VCPU_SREG_SS: return &save->ss;
685         case VCPU_SREG_TR: return &save->tr;
686         case VCPU_SREG_LDTR: return &save->ldtr;
687         }
688         BUG();
689         return NULL;
690 }
691
692 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
693 {
694         struct vmcb_seg *s = svm_seg(vcpu, seg);
695
696         return s->base;
697 }
698
699 static void svm_get_segment(struct kvm_vcpu *vcpu,
700                             struct kvm_segment *var, int seg)
701 {
702         struct vmcb_seg *s = svm_seg(vcpu, seg);
703
704         var->base = s->base;
705         var->limit = s->limit;
706         var->selector = s->selector;
707         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
708         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
709         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
710         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
711         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
712         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
713         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
714         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
715         var->unusable = !var->present;
716 }
717
718 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
719 {
720         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
721
722         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
723         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
724 }
725
726 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
727 {
728         dt->limit = vcpu->svm->vmcb->save.idtr.limit;
729         dt->base = vcpu->svm->vmcb->save.idtr.base;
730 }
731
732 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
733 {
734         vcpu->svm->vmcb->save.idtr.limit = dt->limit;
735         vcpu->svm->vmcb->save.idtr.base = dt->base ;
736 }
737
738 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
739 {
740         dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
741         dt->base = vcpu->svm->vmcb->save.gdtr.base;
742 }
743
744 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
745 {
746         vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
747         vcpu->svm->vmcb->save.gdtr.base = dt->base ;
748 }
749
750 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
751 {
752 }
753
754 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
755 {
756 #ifdef CONFIG_X86_64
757         if (vcpu->shadow_efer & KVM_EFER_LME) {
758                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
759                         vcpu->shadow_efer |= KVM_EFER_LMA;
760                         vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
761                 }
762
763                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
764                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
765                         vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
766                 }
767         }
768 #endif
769         if ((vcpu->cr0 & CR0_TS_MASK) && !(cr0 & CR0_TS_MASK)) {
770                 vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
771                 vcpu->fpu_active = 1;
772         }
773
774         vcpu->cr0 = cr0;
775         cr0 |= CR0_PG_MASK | CR0_WP_MASK;
776         cr0 &= ~(CR0_CD_MASK | CR0_NW_MASK);
777         vcpu->svm->vmcb->save.cr0 = cr0;
778 }
779
780 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
781 {
782        vcpu->cr4 = cr4;
783        vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
784 }
785
786 static void svm_set_segment(struct kvm_vcpu *vcpu,
787                             struct kvm_segment *var, int seg)
788 {
789         struct vmcb_seg *s = svm_seg(vcpu, seg);
790
791         s->base = var->base;
792         s->limit = var->limit;
793         s->selector = var->selector;
794         if (var->unusable)
795                 s->attrib = 0;
796         else {
797                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
798                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
799                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
800                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
801                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
802                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
803                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
804                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
805         }
806         if (seg == VCPU_SREG_CS)
807                 vcpu->svm->vmcb->save.cpl
808                         = (vcpu->svm->vmcb->save.cs.attrib
809                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
810
811 }
812
813 /* FIXME:
814
815         vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
816         vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
817
818 */
819
820 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
821 {
822         return -EOPNOTSUPP;
823 }
824
825 static void load_host_msrs(struct kvm_vcpu *vcpu)
826 {
827 #ifdef CONFIG_X86_64
828         wrmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
829 #endif
830 }
831
832 static void save_host_msrs(struct kvm_vcpu *vcpu)
833 {
834 #ifdef CONFIG_X86_64
835         rdmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
836 #endif
837 }
838
839 static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
840 {
841         if (svm_data->next_asid > svm_data->max_asid) {
842                 ++svm_data->asid_generation;
843                 svm_data->next_asid = 1;
844                 vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
845         }
846
847         vcpu->cpu = svm_data->cpu;
848         vcpu->svm->asid_generation = svm_data->asid_generation;
849         vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
850 }
851
852 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
853 {
854         invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
855 }
856
857 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
858 {
859         return vcpu->svm->db_regs[dr];
860 }
861
862 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
863                        int *exception)
864 {
865         *exception = 0;
866
867         if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
868                 vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
869                 vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
870                 *exception = DB_VECTOR;
871                 return;
872         }
873
874         switch (dr) {
875         case 0 ... 3:
876                 vcpu->svm->db_regs[dr] = value;
877                 return;
878         case 4 ... 5:
879                 if (vcpu->cr4 & CR4_DE_MASK) {
880                         *exception = UD_VECTOR;
881                         return;
882                 }
883         case 7: {
884                 if (value & ~((1ULL << 32) - 1)) {
885                         *exception = GP_VECTOR;
886                         return;
887                 }
888                 vcpu->svm->vmcb->save.dr7 = value;
889                 return;
890         }
891         default:
892                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
893                        __FUNCTION__, dr);
894                 *exception = UD_VECTOR;
895                 return;
896         }
897 }
898
899 static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
900 {
901         u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
902         u64 fault_address;
903         u32 error_code;
904         enum emulation_result er;
905         int r;
906
907         if (is_external_interrupt(exit_int_info))
908                 push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
909
910         spin_lock(&vcpu->kvm->lock);
911
912         fault_address  = vcpu->svm->vmcb->control.exit_info_2;
913         error_code = vcpu->svm->vmcb->control.exit_info_1;
914         r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
915         if (r < 0) {
916                 spin_unlock(&vcpu->kvm->lock);
917                 return r;
918         }
919         if (!r) {
920                 spin_unlock(&vcpu->kvm->lock);
921                 return 1;
922         }
923         er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
924         spin_unlock(&vcpu->kvm->lock);
925
926         switch (er) {
927         case EMULATE_DONE:
928                 return 1;
929         case EMULATE_DO_MMIO:
930                 ++vcpu->stat.mmio_exits;
931                 kvm_run->exit_reason = KVM_EXIT_MMIO;
932                 return 0;
933         case EMULATE_FAIL:
934                 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
935                 break;
936         default:
937                 BUG();
938         }
939
940         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
941         return 0;
942 }
943
944 static int nm_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
945 {
946        vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
947        if (!(vcpu->cr0 & CR0_TS_MASK))
948                vcpu->svm->vmcb->save.cr0 &= ~CR0_TS_MASK;
949        vcpu->fpu_active = 1;
950
951        return 1;
952 }
953
954 static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
955 {
956         /*
957          * VMCB is undefined after a SHUTDOWN intercept
958          * so reinitialize it.
959          */
960         clear_page(vcpu->svm->vmcb);
961         init_vmcb(vcpu->svm->vmcb);
962
963         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
964         return 0;
965 }
966
967 static int io_get_override(struct kvm_vcpu *vcpu,
968                           struct vmcb_seg **seg,
969                           int *addr_override)
970 {
971         u8 inst[MAX_INST_SIZE];
972         unsigned ins_length;
973         gva_t rip;
974         int i;
975
976         rip =  vcpu->svm->vmcb->save.rip;
977         ins_length = vcpu->svm->next_rip - rip;
978         rip += vcpu->svm->vmcb->save.cs.base;
979
980         if (ins_length > MAX_INST_SIZE)
981                 printk(KERN_DEBUG
982                        "%s: inst length err, cs base 0x%llx rip 0x%llx "
983                        "next rip 0x%llx ins_length %u\n",
984                        __FUNCTION__,
985                        vcpu->svm->vmcb->save.cs.base,
986                        vcpu->svm->vmcb->save.rip,
987                        vcpu->svm->vmcb->control.exit_info_2,
988                        ins_length);
989
990         if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
991                 /* #PF */
992                 return 0;
993
994         *addr_override = 0;
995         *seg = NULL;
996         for (i = 0; i < ins_length; i++)
997                 switch (inst[i]) {
998                 case 0xf0:
999                 case 0xf2:
1000                 case 0xf3:
1001                 case 0x66:
1002                         continue;
1003                 case 0x67:
1004                         *addr_override = 1;
1005                         continue;
1006                 case 0x2e:
1007                         *seg = &vcpu->svm->vmcb->save.cs;
1008                         continue;
1009                 case 0x36:
1010                         *seg = &vcpu->svm->vmcb->save.ss;
1011                         continue;
1012                 case 0x3e:
1013                         *seg = &vcpu->svm->vmcb->save.ds;
1014                         continue;
1015                 case 0x26:
1016                         *seg = &vcpu->svm->vmcb->save.es;
1017                         continue;
1018                 case 0x64:
1019                         *seg = &vcpu->svm->vmcb->save.fs;
1020                         continue;
1021                 case 0x65:
1022                         *seg = &vcpu->svm->vmcb->save.gs;
1023                         continue;
1024                 default:
1025                         return 1;
1026                 }
1027         printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
1028         return 0;
1029 }
1030
1031 static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
1032 {
1033         unsigned long addr_mask;
1034         unsigned long *reg;
1035         struct vmcb_seg *seg;
1036         int addr_override;
1037         struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
1038         u16 cs_attrib = save_area->cs.attrib;
1039         unsigned addr_size = get_addr_size(vcpu);
1040
1041         if (!io_get_override(vcpu, &seg, &addr_override))
1042                 return 0;
1043
1044         if (addr_override)
1045                 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
1046
1047         if (ins) {
1048                 reg = &vcpu->regs[VCPU_REGS_RDI];
1049                 seg = &vcpu->svm->vmcb->save.es;
1050         } else {
1051                 reg = &vcpu->regs[VCPU_REGS_RSI];
1052                 seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
1053         }
1054
1055         addr_mask = ~0ULL >> (64 - (addr_size * 8));
1056
1057         if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
1058             !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
1059                 *address = (*reg & addr_mask);
1060                 return addr_mask;
1061         }
1062
1063         if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
1064                 svm_inject_gp(vcpu, 0);
1065                 return 0;
1066         }
1067
1068         *address = (*reg & addr_mask) + seg->base;
1069         return addr_mask;
1070 }
1071
1072 static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1073 {
1074         u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
1075         int size, down, in, string, rep;
1076         unsigned port;
1077         unsigned long count;
1078         gva_t address = 0;
1079
1080         ++vcpu->stat.io_exits;
1081
1082         vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
1083
1084         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1085         port = io_info >> 16;
1086         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1087         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1088         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1089         count = 1;
1090         down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1091
1092         if (string) {
1093                 unsigned addr_mask;
1094
1095                 addr_mask = io_adress(vcpu, in, &address);
1096                 if (!addr_mask) {
1097                         printk(KERN_DEBUG "%s: get io address failed\n",
1098                                __FUNCTION__);
1099                         return 1;
1100                 }
1101
1102                 if (rep)
1103                         count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
1104         }
1105         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1106                              address, rep, port);
1107 }
1108
1109 static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1110 {
1111         return 1;
1112 }
1113
1114 static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1115 {
1116         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
1117         skip_emulated_instruction(vcpu);
1118         return kvm_emulate_halt(vcpu);
1119 }
1120
1121 static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1122 {
1123         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 3;
1124         skip_emulated_instruction(vcpu);
1125         return kvm_hypercall(vcpu, kvm_run);
1126 }
1127
1128 static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1129 {
1130         inject_ud(vcpu);
1131         return 1;
1132 }
1133
1134 static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1135 {
1136         printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1137         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1138         return 0;
1139 }
1140
1141 static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1142 {
1143         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1144         kvm_emulate_cpuid(vcpu);
1145         return 1;
1146 }
1147
1148 static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1149 {
1150         if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
1151                 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1152         return 1;
1153 }
1154
1155 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1156 {
1157         switch (ecx) {
1158         case MSR_IA32_TIME_STAMP_COUNTER: {
1159                 u64 tsc;
1160
1161                 rdtscll(tsc);
1162                 *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
1163                 break;
1164         }
1165         case MSR_K6_STAR:
1166                 *data = vcpu->svm->vmcb->save.star;
1167                 break;
1168 #ifdef CONFIG_X86_64
1169         case MSR_LSTAR:
1170                 *data = vcpu->svm->vmcb->save.lstar;
1171                 break;
1172         case MSR_CSTAR:
1173                 *data = vcpu->svm->vmcb->save.cstar;
1174                 break;
1175         case MSR_KERNEL_GS_BASE:
1176                 *data = vcpu->svm->vmcb->save.kernel_gs_base;
1177                 break;
1178         case MSR_SYSCALL_MASK:
1179                 *data = vcpu->svm->vmcb->save.sfmask;
1180                 break;
1181 #endif
1182         case MSR_IA32_SYSENTER_CS:
1183                 *data = vcpu->svm->vmcb->save.sysenter_cs;
1184                 break;
1185         case MSR_IA32_SYSENTER_EIP:
1186                 *data = vcpu->svm->vmcb->save.sysenter_eip;
1187                 break;
1188         case MSR_IA32_SYSENTER_ESP:
1189                 *data = vcpu->svm->vmcb->save.sysenter_esp;
1190                 break;
1191         default:
1192                 return kvm_get_msr_common(vcpu, ecx, data);
1193         }
1194         return 0;
1195 }
1196
1197 static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1198 {
1199         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1200         u64 data;
1201
1202         if (svm_get_msr(vcpu, ecx, &data))
1203                 svm_inject_gp(vcpu, 0);
1204         else {
1205                 vcpu->svm->vmcb->save.rax = data & 0xffffffff;
1206                 vcpu->regs[VCPU_REGS_RDX] = data >> 32;
1207                 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1208                 skip_emulated_instruction(vcpu);
1209         }
1210         return 1;
1211 }
1212
1213 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1214 {
1215         switch (ecx) {
1216         case MSR_IA32_TIME_STAMP_COUNTER: {
1217                 u64 tsc;
1218
1219                 rdtscll(tsc);
1220                 vcpu->svm->vmcb->control.tsc_offset = data - tsc;
1221                 break;
1222         }
1223         case MSR_K6_STAR:
1224                 vcpu->svm->vmcb->save.star = data;
1225                 break;
1226 #ifdef CONFIG_X86_64
1227         case MSR_LSTAR:
1228                 vcpu->svm->vmcb->save.lstar = data;
1229                 break;
1230         case MSR_CSTAR:
1231                 vcpu->svm->vmcb->save.cstar = data;
1232                 break;
1233         case MSR_KERNEL_GS_BASE:
1234                 vcpu->svm->vmcb->save.kernel_gs_base = data;
1235                 break;
1236         case MSR_SYSCALL_MASK:
1237                 vcpu->svm->vmcb->save.sfmask = data;
1238                 break;
1239 #endif
1240         case MSR_IA32_SYSENTER_CS:
1241                 vcpu->svm->vmcb->save.sysenter_cs = data;
1242                 break;
1243         case MSR_IA32_SYSENTER_EIP:
1244                 vcpu->svm->vmcb->save.sysenter_eip = data;
1245                 break;
1246         case MSR_IA32_SYSENTER_ESP:
1247                 vcpu->svm->vmcb->save.sysenter_esp = data;
1248                 break;
1249         default:
1250                 return kvm_set_msr_common(vcpu, ecx, data);
1251         }
1252         return 0;
1253 }
1254
1255 static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1256 {
1257         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1258         u64 data = (vcpu->svm->vmcb->save.rax & -1u)
1259                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1260         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1261         if (svm_set_msr(vcpu, ecx, data))
1262                 svm_inject_gp(vcpu, 0);
1263         else
1264                 skip_emulated_instruction(vcpu);
1265         return 1;
1266 }
1267
1268 static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1269 {
1270         if (vcpu->svm->vmcb->control.exit_info_1)
1271                 return wrmsr_interception(vcpu, kvm_run);
1272         else
1273                 return rdmsr_interception(vcpu, kvm_run);
1274 }
1275
1276 static int interrupt_window_interception(struct kvm_vcpu *vcpu,
1277                                    struct kvm_run *kvm_run)
1278 {
1279         /*
1280          * If the user space waits to inject interrupts, exit as soon as
1281          * possible
1282          */
1283         if (kvm_run->request_interrupt_window &&
1284             !vcpu->irq_summary) {
1285                 ++vcpu->stat.irq_window_exits;
1286                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1287                 return 0;
1288         }
1289
1290         return 1;
1291 }
1292
1293 static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
1294                                       struct kvm_run *kvm_run) = {
1295         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1296         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1297         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1298         /* for now: */
1299         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1300         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1301         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1302         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1303         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1304         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1305         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1306         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1307         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1308         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1309         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1310         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1311         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1312         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1313         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1314         [SVM_EXIT_INTR]                         = nop_on_interception,
1315         [SVM_EXIT_NMI]                          = nop_on_interception,
1316         [SVM_EXIT_SMI]                          = nop_on_interception,
1317         [SVM_EXIT_INIT]                         = nop_on_interception,
1318         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1319         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1320         [SVM_EXIT_CPUID]                        = cpuid_interception,
1321         [SVM_EXIT_HLT]                          = halt_interception,
1322         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1323         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1324         [SVM_EXIT_IOIO]                         = io_interception,
1325         [SVM_EXIT_MSR]                          = msr_interception,
1326         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1327         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1328         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1329         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1330         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1331         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1332         [SVM_EXIT_STGI]                         = invalid_op_interception,
1333         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1334         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1335         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1336         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1337 };
1338
1339
1340 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1341 {
1342         u32 exit_code = vcpu->svm->vmcb->control.exit_code;
1343
1344         if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
1345             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1346                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1347                        "exit_code 0x%x\n",
1348                        __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
1349                        exit_code);
1350
1351         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1352             || svm_exit_handlers[exit_code] == 0) {
1353                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1354                 kvm_run->hw.hardware_exit_reason = exit_code;
1355                 return 0;
1356         }
1357
1358         return svm_exit_handlers[exit_code](vcpu, kvm_run);
1359 }
1360
1361 static void reload_tss(struct kvm_vcpu *vcpu)
1362 {
1363         int cpu = raw_smp_processor_id();
1364
1365         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1366         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1367         load_TR_desc();
1368 }
1369
1370 static void pre_svm_run(struct kvm_vcpu *vcpu)
1371 {
1372         int cpu = raw_smp_processor_id();
1373
1374         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1375
1376         vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1377         if (vcpu->cpu != cpu ||
1378             vcpu->svm->asid_generation != svm_data->asid_generation)
1379                 new_asid(vcpu, svm_data);
1380 }
1381
1382
1383 static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1384 {
1385         struct vmcb_control_area *control;
1386
1387         control = &vcpu->svm->vmcb->control;
1388         control->int_vector = pop_irq(vcpu);
1389         control->int_ctl &= ~V_INTR_PRIO_MASK;
1390         control->int_ctl |= V_IRQ_MASK |
1391                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1392 }
1393
1394 static void kvm_reput_irq(struct kvm_vcpu *vcpu)
1395 {
1396         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1397
1398         if (control->int_ctl & V_IRQ_MASK) {
1399                 control->int_ctl &= ~V_IRQ_MASK;
1400                 push_irq(vcpu, control->int_vector);
1401         }
1402
1403         vcpu->interrupt_window_open =
1404                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1405 }
1406
1407 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1408                                        struct kvm_run *kvm_run)
1409 {
1410         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1411
1412         vcpu->interrupt_window_open =
1413                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1414                  (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1415
1416         if (vcpu->interrupt_window_open && vcpu->irq_summary)
1417                 /*
1418                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1419                  */
1420                 kvm_do_inject_irq(vcpu);
1421
1422         /*
1423          * Interrupts blocked.  Wait for unblock.
1424          */
1425         if (!vcpu->interrupt_window_open &&
1426             (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
1427                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1428         } else
1429                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1430 }
1431
1432 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1433                               struct kvm_run *kvm_run)
1434 {
1435         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1436                                                   vcpu->irq_summary == 0);
1437         kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1438         kvm_run->cr8 = vcpu->cr8;
1439         kvm_run->apic_base = vcpu->apic_base;
1440 }
1441
1442 /*
1443  * Check if userspace requested an interrupt window, and that the
1444  * interrupt window is open.
1445  *
1446  * No need to exit to userspace if we already have an interrupt queued.
1447  */
1448 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1449                                           struct kvm_run *kvm_run)
1450 {
1451         return (!vcpu->irq_summary &&
1452                 kvm_run->request_interrupt_window &&
1453                 vcpu->interrupt_window_open &&
1454                 (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1455 }
1456
1457 static void save_db_regs(unsigned long *db_regs)
1458 {
1459         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1460         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1461         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1462         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1463 }
1464
1465 static void load_db_regs(unsigned long *db_regs)
1466 {
1467         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1468         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1469         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1470         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1471 }
1472
1473 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1474 {
1475         force_new_asid(vcpu);
1476 }
1477
1478 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1479 {
1480         u16 fs_selector;
1481         u16 gs_selector;
1482         u16 ldt_selector;
1483         int r;
1484
1485 again:
1486         r = kvm_mmu_reload(vcpu);
1487         if (unlikely(r))
1488                 return r;
1489
1490         if (!vcpu->mmio_read_completed)
1491                 do_interrupt_requests(vcpu, kvm_run);
1492
1493         clgi();
1494
1495         vcpu->guest_mode = 1;
1496         if (vcpu->requests)
1497                 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1498                     svm_flush_tlb(vcpu);
1499
1500         pre_svm_run(vcpu);
1501
1502         save_host_msrs(vcpu);
1503         fs_selector = read_fs();
1504         gs_selector = read_gs();
1505         ldt_selector = read_ldt();
1506         vcpu->svm->host_cr2 = kvm_read_cr2();
1507         vcpu->svm->host_dr6 = read_dr6();
1508         vcpu->svm->host_dr7 = read_dr7();
1509         vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
1510
1511         if (vcpu->svm->vmcb->save.dr7 & 0xff) {
1512                 write_dr7(0);
1513                 save_db_regs(vcpu->svm->host_db_regs);
1514                 load_db_regs(vcpu->svm->db_regs);
1515         }
1516
1517         if (vcpu->fpu_active) {
1518                 fx_save(vcpu->host_fx_image);
1519                 fx_restore(vcpu->guest_fx_image);
1520         }
1521
1522         asm volatile (
1523 #ifdef CONFIG_X86_64
1524                 "push %%rbx; push %%rcx; push %%rdx;"
1525                 "push %%rsi; push %%rdi; push %%rbp;"
1526                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1527                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1528 #else
1529                 "push %%ebx; push %%ecx; push %%edx;"
1530                 "push %%esi; push %%edi; push %%ebp;"
1531 #endif
1532
1533 #ifdef CONFIG_X86_64
1534                 "mov %c[rbx](%[vcpu]), %%rbx \n\t"
1535                 "mov %c[rcx](%[vcpu]), %%rcx \n\t"
1536                 "mov %c[rdx](%[vcpu]), %%rdx \n\t"
1537                 "mov %c[rsi](%[vcpu]), %%rsi \n\t"
1538                 "mov %c[rdi](%[vcpu]), %%rdi \n\t"
1539                 "mov %c[rbp](%[vcpu]), %%rbp \n\t"
1540                 "mov %c[r8](%[vcpu]),  %%r8  \n\t"
1541                 "mov %c[r9](%[vcpu]),  %%r9  \n\t"
1542                 "mov %c[r10](%[vcpu]), %%r10 \n\t"
1543                 "mov %c[r11](%[vcpu]), %%r11 \n\t"
1544                 "mov %c[r12](%[vcpu]), %%r12 \n\t"
1545                 "mov %c[r13](%[vcpu]), %%r13 \n\t"
1546                 "mov %c[r14](%[vcpu]), %%r14 \n\t"
1547                 "mov %c[r15](%[vcpu]), %%r15 \n\t"
1548 #else
1549                 "mov %c[rbx](%[vcpu]), %%ebx \n\t"
1550                 "mov %c[rcx](%[vcpu]), %%ecx \n\t"
1551                 "mov %c[rdx](%[vcpu]), %%edx \n\t"
1552                 "mov %c[rsi](%[vcpu]), %%esi \n\t"
1553                 "mov %c[rdi](%[vcpu]), %%edi \n\t"
1554                 "mov %c[rbp](%[vcpu]), %%ebp \n\t"
1555 #endif
1556
1557 #ifdef CONFIG_X86_64
1558                 /* Enter guest mode */
1559                 "push %%rax \n\t"
1560                 "mov %c[svm](%[vcpu]), %%rax \n\t"
1561                 "mov %c[vmcb](%%rax), %%rax \n\t"
1562                 SVM_VMLOAD "\n\t"
1563                 SVM_VMRUN "\n\t"
1564                 SVM_VMSAVE "\n\t"
1565                 "pop %%rax \n\t"
1566 #else
1567                 /* Enter guest mode */
1568                 "push %%eax \n\t"
1569                 "mov %c[svm](%[vcpu]), %%eax \n\t"
1570                 "mov %c[vmcb](%%eax), %%eax \n\t"
1571                 SVM_VMLOAD "\n\t"
1572                 SVM_VMRUN "\n\t"
1573                 SVM_VMSAVE "\n\t"
1574                 "pop %%eax \n\t"
1575 #endif
1576
1577                 /* Save guest registers, load host registers */
1578 #ifdef CONFIG_X86_64
1579                 "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
1580                 "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
1581                 "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
1582                 "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
1583                 "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
1584                 "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
1585                 "mov %%r8,  %c[r8](%[vcpu]) \n\t"
1586                 "mov %%r9,  %c[r9](%[vcpu]) \n\t"
1587                 "mov %%r10, %c[r10](%[vcpu]) \n\t"
1588                 "mov %%r11, %c[r11](%[vcpu]) \n\t"
1589                 "mov %%r12, %c[r12](%[vcpu]) \n\t"
1590                 "mov %%r13, %c[r13](%[vcpu]) \n\t"
1591                 "mov %%r14, %c[r14](%[vcpu]) \n\t"
1592                 "mov %%r15, %c[r15](%[vcpu]) \n\t"
1593
1594                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1595                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1596                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1597                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1598 #else
1599                 "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
1600                 "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
1601                 "mov %%edx, %c[rdx](%[vcpu]) \n\t"
1602                 "mov %%esi, %c[rsi](%[vcpu]) \n\t"
1603                 "mov %%edi, %c[rdi](%[vcpu]) \n\t"
1604                 "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
1605
1606                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1607                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1608 #endif
1609                 :
1610                 : [vcpu]"a"(vcpu),
1611                   [svm]"i"(offsetof(struct kvm_vcpu, svm)),
1612                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1613                   [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1614                   [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1615                   [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1616                   [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1617                   [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1618                   [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
1619 #ifdef CONFIG_X86_64
1620                   ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1621                   [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1622                   [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1623                   [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1624                   [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1625                   [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1626                   [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1627                   [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
1628 #endif
1629                 : "cc", "memory" );
1630
1631         vcpu->guest_mode = 0;
1632
1633         if (vcpu->fpu_active) {
1634                 fx_save(vcpu->guest_fx_image);
1635                 fx_restore(vcpu->host_fx_image);
1636         }
1637
1638         if ((vcpu->svm->vmcb->save.dr7 & 0xff))
1639                 load_db_regs(vcpu->svm->host_db_regs);
1640
1641         vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
1642
1643         write_dr6(vcpu->svm->host_dr6);
1644         write_dr7(vcpu->svm->host_dr7);
1645         kvm_write_cr2(vcpu->svm->host_cr2);
1646
1647         load_fs(fs_selector);
1648         load_gs(gs_selector);
1649         load_ldt(ldt_selector);
1650         load_host_msrs(vcpu);
1651
1652         reload_tss(vcpu);
1653
1654         /*
1655          * Profile KVM exit RIPs:
1656          */
1657         if (unlikely(prof_on == KVM_PROFILING))
1658                 profile_hit(KVM_PROFILING,
1659                         (void *)(unsigned long)vcpu->svm->vmcb->save.rip);
1660
1661         stgi();
1662
1663         kvm_reput_irq(vcpu);
1664
1665         vcpu->svm->next_rip = 0;
1666
1667         if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1668                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1669                 kvm_run->fail_entry.hardware_entry_failure_reason
1670                         = vcpu->svm->vmcb->control.exit_code;
1671                 post_kvm_run_save(vcpu, kvm_run);
1672                 return 0;
1673         }
1674
1675         r = handle_exit(vcpu, kvm_run);
1676         if (r > 0) {
1677                 if (signal_pending(current)) {
1678                         ++vcpu->stat.signal_exits;
1679                         post_kvm_run_save(vcpu, kvm_run);
1680                         kvm_run->exit_reason = KVM_EXIT_INTR;
1681                         return -EINTR;
1682                 }
1683
1684                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1685                         ++vcpu->stat.request_irq_exits;
1686                         post_kvm_run_save(vcpu, kvm_run);
1687                         kvm_run->exit_reason = KVM_EXIT_INTR;
1688                         return -EINTR;
1689                 }
1690                 kvm_resched(vcpu);
1691                 goto again;
1692         }
1693         post_kvm_run_save(vcpu, kvm_run);
1694         return r;
1695 }
1696
1697 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1698 {
1699         vcpu->svm->vmcb->save.cr3 = root;
1700         force_new_asid(vcpu);
1701
1702         if (vcpu->fpu_active) {
1703                 vcpu->svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1704                 vcpu->svm->vmcb->save.cr0 |= CR0_TS_MASK;
1705                 vcpu->fpu_active = 0;
1706         }
1707 }
1708
1709 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1710                                   unsigned long  addr,
1711                                   uint32_t err_code)
1712 {
1713         uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
1714
1715         ++vcpu->stat.pf_guest;
1716
1717         if (is_page_fault(exit_int_info)) {
1718
1719                 vcpu->svm->vmcb->control.event_inj_err = 0;
1720                 vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1721                                                         SVM_EVTINJ_VALID_ERR |
1722                                                         SVM_EVTINJ_TYPE_EXEPT |
1723                                                         DF_VECTOR;
1724                 return;
1725         }
1726         vcpu->cr2 = addr;
1727         vcpu->svm->vmcb->save.cr2 = addr;
1728         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1729                                                 SVM_EVTINJ_VALID_ERR |
1730                                                 SVM_EVTINJ_TYPE_EXEPT |
1731                                                 PF_VECTOR;
1732         vcpu->svm->vmcb->control.event_inj_err = err_code;
1733 }
1734
1735
1736 static int is_disabled(void)
1737 {
1738         return 0;
1739 }
1740
1741 static void
1742 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1743 {
1744         /*
1745          * Patch in the VMMCALL instruction:
1746          */
1747         hypercall[0] = 0x0f;
1748         hypercall[1] = 0x01;
1749         hypercall[2] = 0xd9;
1750         hypercall[3] = 0xc3;
1751 }
1752
1753 static struct kvm_arch_ops svm_arch_ops = {
1754         .cpu_has_kvm_support = has_svm,
1755         .disabled_by_bios = is_disabled,
1756         .hardware_setup = svm_hardware_setup,
1757         .hardware_unsetup = svm_hardware_unsetup,
1758         .hardware_enable = svm_hardware_enable,
1759         .hardware_disable = svm_hardware_disable,
1760
1761         .vcpu_create = svm_create_vcpu,
1762         .vcpu_free = svm_free_vcpu,
1763
1764         .vcpu_load = svm_vcpu_load,
1765         .vcpu_put = svm_vcpu_put,
1766         .vcpu_decache = svm_vcpu_decache,
1767
1768         .set_guest_debug = svm_guest_debug,
1769         .get_msr = svm_get_msr,
1770         .set_msr = svm_set_msr,
1771         .get_segment_base = svm_get_segment_base,
1772         .get_segment = svm_get_segment,
1773         .set_segment = svm_set_segment,
1774         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1775         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1776         .set_cr0 = svm_set_cr0,
1777         .set_cr3 = svm_set_cr3,
1778         .set_cr4 = svm_set_cr4,
1779         .set_efer = svm_set_efer,
1780         .get_idt = svm_get_idt,
1781         .set_idt = svm_set_idt,
1782         .get_gdt = svm_get_gdt,
1783         .set_gdt = svm_set_gdt,
1784         .get_dr = svm_get_dr,
1785         .set_dr = svm_set_dr,
1786         .cache_regs = svm_cache_regs,
1787         .decache_regs = svm_decache_regs,
1788         .get_rflags = svm_get_rflags,
1789         .set_rflags = svm_set_rflags,
1790
1791         .invlpg = svm_invlpg,
1792         .tlb_flush = svm_flush_tlb,
1793         .inject_page_fault = svm_inject_page_fault,
1794
1795         .inject_gp = svm_inject_gp,
1796
1797         .run = svm_vcpu_run,
1798         .skip_emulated_instruction = skip_emulated_instruction,
1799         .vcpu_setup = svm_vcpu_setup,
1800         .patch_hypercall = svm_patch_hypercall,
1801 };
1802
1803 static int __init svm_init(void)
1804 {
1805         return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1806 }
1807
1808 static void __exit svm_exit(void)
1809 {
1810         kvm_exit_arch();
1811 }
1812
1813 module_init(svm_init)
1814 module_exit(svm_exit)