2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
6 * - privileged instructions
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
36 #include <xen/hvc-console.h>
38 #include <asm/paravirt.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/msr-index.h>
45 #include <asm/setup.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/reboot.h>
53 #include "multicalls.h"
55 EXPORT_SYMBOL_GPL(hypercall_page);
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
61 * Identity map, in addition to plain kernel map. This needs to be
62 * large enough to allocate page table pages to allocate the rest.
63 * Each page can map 2MB.
65 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
68 /* l3 pud for userspace vsyscall mapping */
69 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
70 #endif /* CONFIG_X86_64 */
73 * Note about cr3 (pagetable base) values:
75 * xen_cr3 contains the current logical cr3 value; it contains the
76 * last set cr3. This may not be the current effective cr3, because
77 * its update may be being lazily deferred. However, a vcpu looking
78 * at its own cr3 can use this value knowing that it everything will
81 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
82 * hypercall to set the vcpu cr3 is complete (so it may be a little
83 * out of date, but it will never be set early). If one vcpu is
84 * looking at another vcpu's cr3 value, it should use this variable.
86 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
87 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
89 struct start_info *xen_start_info;
90 EXPORT_SYMBOL_GPL(xen_start_info);
92 struct shared_info xen_dummy_shared_info;
95 * Point at some empty memory to start with. We map the real shared_info
96 * page as soon as fixmap is up and running.
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
101 * Flag to determine whether vcpu info placement is available on all
102 * VCPUs. We assume it is to start with, and then set it to zero on
103 * the first failure. This is because it can succeed on some VCPUs
104 * and not others, since it can involve hypervisor memory allocation,
105 * or because the guest failed to guarantee all the appropriate
106 * constraints on all VCPUs (ie buffer can't cross a page boundary).
108 * Note that any particular CPU may be using a placed vcpu structure,
109 * but we can only optimise if the all are.
111 * 0: not available, 1: available
113 static int have_vcpu_info_placement = 1;
115 static void xen_vcpu_setup(int cpu)
117 struct vcpu_register_vcpu_info info;
119 struct vcpu_info *vcpup;
121 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
122 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
124 if (!have_vcpu_info_placement)
125 return; /* already tested, not available */
127 vcpup = &per_cpu(xen_vcpu_info, cpu);
129 info.mfn = virt_to_mfn(vcpup);
130 info.offset = offset_in_page(vcpup);
132 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
133 cpu, vcpup, info.mfn, info.offset);
135 /* Check to see if the hypervisor will put the vcpu_info
136 structure where we want it, which allows direct access via
137 a percpu-variable. */
138 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
141 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
142 have_vcpu_info_placement = 0;
144 /* This cpu is using the registered vcpu info, even if
145 later ones fail to. */
146 per_cpu(xen_vcpu, cpu) = vcpup;
148 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
154 * On restore, set the vcpu placement up again.
155 * If it fails, then we're in a bad state, since
156 * we can't back out from using it...
158 void xen_vcpu_restore(void)
160 if (have_vcpu_info_placement) {
163 for_each_online_cpu(cpu) {
164 bool other_cpu = (cpu != smp_processor_id());
167 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
173 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
177 BUG_ON(!have_vcpu_info_placement);
181 static void __init xen_banner(void)
183 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
184 struct xen_extraversion extra;
185 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
187 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
189 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
190 version >> 16, version & 0xffff, extra.extraversion,
191 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
194 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
195 unsigned int *cx, unsigned int *dx)
197 unsigned maskedx = ~0;
200 * Mask out inconvenient features, to try and disable as many
201 * unsupported kernel subsystems as possible.
204 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
205 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
206 (1 << X86_FEATURE_MCE) | /* disable MCE */
207 (1 << X86_FEATURE_MCA) | /* disable MCA */
208 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
210 asm(XEN_EMULATE_PREFIX "cpuid"
215 : "0" (*ax), "2" (*cx));
219 static void xen_set_debugreg(int reg, unsigned long val)
221 HYPERVISOR_set_debugreg(reg, val);
224 static unsigned long xen_get_debugreg(int reg)
226 return HYPERVISOR_get_debugreg(reg);
229 static unsigned long xen_save_fl(void)
231 struct vcpu_info *vcpu;
234 vcpu = x86_read_percpu(xen_vcpu);
236 /* flag has opposite sense of mask */
237 flags = !vcpu->evtchn_upcall_mask;
239 /* convert to IF type flag
243 return (-flags) & X86_EFLAGS_IF;
246 static void xen_restore_fl(unsigned long flags)
248 struct vcpu_info *vcpu;
250 /* convert from IF type flag */
251 flags = !(flags & X86_EFLAGS_IF);
253 /* There's a one instruction preempt window here. We need to
254 make sure we're don't switch CPUs between getting the vcpu
255 pointer and updating the mask. */
257 vcpu = x86_read_percpu(xen_vcpu);
258 vcpu->evtchn_upcall_mask = flags;
259 preempt_enable_no_resched();
261 /* Doesn't matter if we get preempted here, because any
262 pending event will get dealt with anyway. */
265 preempt_check_resched();
266 barrier(); /* unmask then check (avoid races) */
267 if (unlikely(vcpu->evtchn_upcall_pending))
268 force_evtchn_callback();
272 static void xen_irq_disable(void)
274 /* There's a one instruction preempt window here. We need to
275 make sure we're don't switch CPUs between getting the vcpu
276 pointer and updating the mask. */
278 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
279 preempt_enable_no_resched();
282 static void xen_irq_enable(void)
284 struct vcpu_info *vcpu;
286 /* We don't need to worry about being preempted here, since
287 either a) interrupts are disabled, so no preemption, or b)
288 the caller is confused and is trying to re-enable interrupts
289 on an indeterminate processor. */
291 vcpu = x86_read_percpu(xen_vcpu);
292 vcpu->evtchn_upcall_mask = 0;
294 /* Doesn't matter if we get preempted here, because any
295 pending event will get dealt with anyway. */
297 barrier(); /* unmask then check (avoid races) */
298 if (unlikely(vcpu->evtchn_upcall_pending))
299 force_evtchn_callback();
302 static void xen_safe_halt(void)
304 /* Blocking includes an implicit local_irq_enable(). */
305 if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
309 static void xen_halt(void)
312 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
317 static void xen_leave_lazy(void)
319 paravirt_leave_lazy(paravirt_get_lazy_mode());
323 static unsigned long xen_store_tr(void)
329 * If 'v' is a vmalloc mapping, then find the linear mapping of the
330 * page (if any) and also set its protections to match:
332 static void set_aliased_prot(void *v, pgprot_t prot)
340 ptep = lookup_address((unsigned long)v, &level);
341 BUG_ON(ptep == NULL);
343 pfn = pte_pfn(*ptep);
344 page = pfn_to_page(pfn);
346 pte = pfn_pte(pfn, prot);
348 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
351 if (!PageHighMem(page)) {
352 void *av = __va(PFN_PHYS(pfn));
355 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
361 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
363 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
366 for(i = 0; i < entries; i += entries_per_page)
367 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
370 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
372 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
375 for(i = 0; i < entries; i += entries_per_page)
376 set_aliased_prot(ldt + i, PAGE_KERNEL);
379 static void xen_set_ldt(const void *addr, unsigned entries)
381 struct mmuext_op *op;
382 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
385 op->cmd = MMUEXT_SET_LDT;
386 op->arg1.linear_addr = (unsigned long)addr;
387 op->arg2.nr_ents = entries;
389 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
391 xen_mc_issue(PARAVIRT_LAZY_CPU);
394 static void xen_load_gdt(const struct desc_ptr *dtr)
396 unsigned long *frames;
397 unsigned long va = dtr->address;
398 unsigned int size = dtr->size + 1;
399 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
401 struct multicall_space mcs;
403 /* A GDT can be up to 64k in size, which corresponds to 8192
404 8-byte entries, or 16 4k pages.. */
406 BUG_ON(size > 65536);
407 BUG_ON(va & ~PAGE_MASK);
409 mcs = xen_mc_entry(sizeof(*frames) * pages);
412 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
413 frames[f] = virt_to_mfn(va);
414 make_lowmem_page_readonly((void *)va);
417 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
419 xen_mc_issue(PARAVIRT_LAZY_CPU);
422 static void load_TLS_descriptor(struct thread_struct *t,
423 unsigned int cpu, unsigned int i)
425 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
426 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
427 struct multicall_space mc = __xen_mc_entry(0);
429 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
432 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
435 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
436 * it means we're in a context switch, and %gs has just been
437 * saved. This means we can zero it out to prevent faults on
438 * exit from the hypervisor if the next process has no %gs.
439 * Either way, it has been saved, and the new value will get
440 * loaded properly. This will go away as soon as Xen has been
441 * modified to not save/restore %gs for normal hypercalls.
443 * On x86_64, this hack is not used for %gs, because gs points
444 * to KERNEL_GS_BASE (and uses it for PDA references), so we
445 * must not zero %gs on x86_64
447 * For x86_64, we need to zero %fs, otherwise we may get an
448 * exception between the new %fs descriptor being loaded and
449 * %fs being effectively cleared at __switch_to().
451 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
461 load_TLS_descriptor(t, cpu, 0);
462 load_TLS_descriptor(t, cpu, 1);
463 load_TLS_descriptor(t, cpu, 2);
465 xen_mc_issue(PARAVIRT_LAZY_CPU);
469 static void xen_load_gs_index(unsigned int idx)
471 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
476 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
479 unsigned long lp = (unsigned long)&dt[entrynum];
480 xmaddr_t mach_lp = arbitrary_virt_to_machine(lp);
481 u64 entry = *(u64 *)ptr;
486 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
492 static int cvt_gate_to_trap(int vector, const gate_desc *val,
493 struct trap_info *info)
495 if (val->type != 0xf && val->type != 0xe)
498 info->vector = vector;
499 info->address = gate_offset(*val);
500 info->cs = gate_segment(*val);
501 info->flags = val->dpl;
502 /* interrupt gates clear IF */
503 if (val->type == 0xe)
509 /* Locations of each CPU's IDT */
510 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
512 /* Set an IDT entry. If the entry is part of the current IDT, then
514 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
516 unsigned long p = (unsigned long)&dt[entrynum];
517 unsigned long start, end;
521 start = __get_cpu_var(idt_desc).address;
522 end = start + __get_cpu_var(idt_desc).size + 1;
526 native_write_idt_entry(dt, entrynum, g);
528 if (p >= start && (p + 8) <= end) {
529 struct trap_info info[2];
533 if (cvt_gate_to_trap(entrynum, g, &info[0]))
534 if (HYPERVISOR_set_trap_table(info))
541 static void xen_convert_trap_info(const struct desc_ptr *desc,
542 struct trap_info *traps)
544 unsigned in, out, count;
546 count = (desc->size+1) / sizeof(gate_desc);
549 for (in = out = 0; in < count; in++) {
550 gate_desc *entry = (gate_desc*)(desc->address) + in;
552 if (cvt_gate_to_trap(in, entry, &traps[out]))
555 traps[out].address = 0;
558 void xen_copy_trap_info(struct trap_info *traps)
560 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
562 xen_convert_trap_info(desc, traps);
565 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
566 hold a spinlock to protect the static traps[] array (static because
567 it avoids allocation, and saves stack space). */
568 static void xen_load_idt(const struct desc_ptr *desc)
570 static DEFINE_SPINLOCK(lock);
571 static struct trap_info traps[257];
575 __get_cpu_var(idt_desc) = *desc;
577 xen_convert_trap_info(desc, traps);
580 if (HYPERVISOR_set_trap_table(traps))
586 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
587 they're handled differently. */
588 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
589 const void *desc, int type)
600 xmaddr_t maddr = virt_to_machine(&dt[entry]);
603 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
612 static void xen_load_sp0(struct tss_struct *tss,
613 struct thread_struct *thread)
615 struct multicall_space mcs = xen_mc_entry(0);
616 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
617 xen_mc_issue(PARAVIRT_LAZY_CPU);
620 static void xen_set_iopl_mask(unsigned mask)
622 struct physdev_set_iopl set_iopl;
624 /* Force the change at ring 0. */
625 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
626 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
629 static void xen_io_delay(void)
633 #ifdef CONFIG_X86_LOCAL_APIC
634 static u32 xen_apic_read(unsigned long reg)
639 static void xen_apic_write(unsigned long reg, u32 val)
641 /* Warn to see if there's any stray references */
646 static void xen_flush_tlb(void)
648 struct mmuext_op *op;
649 struct multicall_space mcs;
653 mcs = xen_mc_entry(sizeof(*op));
656 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
657 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
659 xen_mc_issue(PARAVIRT_LAZY_MMU);
664 static void xen_flush_tlb_single(unsigned long addr)
666 struct mmuext_op *op;
667 struct multicall_space mcs;
671 mcs = xen_mc_entry(sizeof(*op));
673 op->cmd = MMUEXT_INVLPG_LOCAL;
674 op->arg1.linear_addr = addr & PAGE_MASK;
675 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
677 xen_mc_issue(PARAVIRT_LAZY_MMU);
682 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
689 cpumask_t cpumask = *cpus;
690 struct multicall_space mcs;
693 * A couple of (to be removed) sanity checks:
695 * - current CPU must not be in mask
696 * - mask must exist :)
698 BUG_ON(cpus_empty(cpumask));
699 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
702 /* If a CPU which we ran on has gone down, OK. */
703 cpus_and(cpumask, cpumask, cpu_online_map);
704 if (cpus_empty(cpumask))
707 mcs = xen_mc_entry(sizeof(*args));
709 args->mask = cpumask;
710 args->op.arg2.vcpumask = &args->mask;
712 if (va == TLB_FLUSH_ALL) {
713 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
715 args->op.cmd = MMUEXT_INVLPG_MULTI;
716 args->op.arg1.linear_addr = va;
719 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
721 xen_mc_issue(PARAVIRT_LAZY_MMU);
724 static void xen_clts(void)
726 struct multicall_space mcs;
728 mcs = xen_mc_entry(0);
730 MULTI_fpu_taskswitch(mcs.mc, 0);
732 xen_mc_issue(PARAVIRT_LAZY_CPU);
735 static void xen_write_cr0(unsigned long cr0)
737 struct multicall_space mcs;
739 /* Only pay attention to cr0.TS; everything else is
741 mcs = xen_mc_entry(0);
743 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
745 xen_mc_issue(PARAVIRT_LAZY_CPU);
748 static void xen_write_cr2(unsigned long cr2)
750 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
753 static unsigned long xen_read_cr2(void)
755 return x86_read_percpu(xen_vcpu)->arch.cr2;
758 static unsigned long xen_read_cr2_direct(void)
760 return x86_read_percpu(xen_vcpu_info.arch.cr2);
763 static void xen_write_cr4(unsigned long cr4)
768 native_write_cr4(cr4);
771 static unsigned long xen_read_cr3(void)
773 return x86_read_percpu(xen_cr3);
776 static void set_current_cr3(void *v)
778 x86_write_percpu(xen_current_cr3, (unsigned long)v);
781 static void __xen_write_cr3(bool kernel, unsigned long cr3)
783 struct mmuext_op *op;
784 struct multicall_space mcs;
788 mfn = pfn_to_mfn(PFN_DOWN(cr3));
792 WARN_ON(mfn == 0 && kernel);
794 mcs = __xen_mc_entry(sizeof(*op));
797 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
800 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
803 x86_write_percpu(xen_cr3, cr3);
805 /* Update xen_current_cr3 once the batch has actually
807 xen_mc_callback(set_current_cr3, (void *)cr3);
811 static void xen_write_cr3(unsigned long cr3)
813 BUG_ON(preemptible());
815 xen_mc_batch(); /* disables interrupts */
817 /* Update while interrupts are disabled, so its atomic with
819 x86_write_percpu(xen_cr3, cr3);
821 __xen_write_cr3(true, cr3);
825 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
827 __xen_write_cr3(false, __pa(user_pgd));
829 __xen_write_cr3(false, 0);
833 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
836 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
847 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
848 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
849 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
852 base = ((u64)high << 32) | low;
853 if (HYPERVISOR_set_segment_base(which, base) != 0)
858 ret = native_write_msr_safe(msr, low, high);
864 /* Early in boot, while setting up the initial pagetable, assume
865 everything is pinned. */
866 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
868 #ifdef CONFIG_FLATMEM
869 BUG_ON(mem_map); /* should only be used early */
871 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
874 /* Early release_pte assumes that all pts are pinned, since there's
875 only init_mm and anything attached to that is pinned. */
876 static void xen_release_pte_init(u32 pfn)
878 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
881 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
885 op.arg1.mfn = pfn_to_mfn(pfn);
886 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
890 /* This needs to make sure the new pte page is pinned iff its being
891 attached to a pinned pagetable. */
892 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
894 struct page *page = pfn_to_page(pfn);
896 if (PagePinned(virt_to_page(mm->pgd))) {
899 if (!PageHighMem(page)) {
900 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
902 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
904 /* make sure there are no stray mappings of
910 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
912 xen_alloc_ptpage(mm, pfn, PT_PTE);
915 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
917 xen_alloc_ptpage(mm, pfn, PT_PMD);
920 static int xen_pgd_alloc(struct mm_struct *mm)
922 pgd_t *pgd = mm->pgd;
925 BUG_ON(PagePinned(virt_to_page(pgd)));
929 struct page *page = virt_to_page(pgd);
932 BUG_ON(page->private != 0);
936 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
937 page->private = (unsigned long)user_pgd;
939 if (user_pgd != NULL) {
940 user_pgd[pgd_index(VSYSCALL_START)] =
941 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
945 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
952 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
955 pgd_t *user_pgd = xen_get_user_pgd(pgd);
958 free_page((unsigned long)user_pgd);
962 /* This should never happen until we're OK to use struct page */
963 static void xen_release_ptpage(u32 pfn, unsigned level)
965 struct page *page = pfn_to_page(pfn);
967 if (PagePinned(page)) {
968 if (!PageHighMem(page)) {
970 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
971 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
973 ClearPagePinned(page);
977 static void xen_release_pte(u32 pfn)
979 xen_release_ptpage(pfn, PT_PTE);
982 static void xen_release_pmd(u32 pfn)
984 xen_release_ptpage(pfn, PT_PMD);
987 #if PAGETABLE_LEVELS == 4
988 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
990 xen_alloc_ptpage(mm, pfn, PT_PUD);
993 static void xen_release_pud(u32 pfn)
995 xen_release_ptpage(pfn, PT_PUD);
999 #ifdef CONFIG_HIGHPTE
1000 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
1002 pgprot_t prot = PAGE_KERNEL;
1004 if (PagePinned(page))
1005 prot = PAGE_KERNEL_RO;
1007 if (0 && PageHighMem(page))
1008 printk("mapping highpte %lx type %d prot %s\n",
1009 page_to_pfn(page), type,
1010 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
1012 return kmap_atomic_prot(page, type, prot);
1016 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1018 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1019 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1020 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1026 /* Init-time set_pte while constructing initial pagetables, which
1027 doesn't allow RO pagetable pages to be remapped RW */
1028 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1030 pte = mask_rw_pte(ptep, pte);
1032 xen_set_pte(ptep, pte);
1035 static __init void xen_pagetable_setup_start(pgd_t *base)
1039 void xen_setup_shared_info(void)
1041 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1042 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1043 xen_start_info->shared_info);
1045 HYPERVISOR_shared_info =
1046 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1048 HYPERVISOR_shared_info =
1049 (struct shared_info *)__va(xen_start_info->shared_info);
1052 /* In UP this is as good a place as any to set up shared info */
1053 xen_setup_vcpu_info_placement();
1056 xen_setup_mfn_list_list();
1059 static __init void xen_pagetable_setup_done(pgd_t *base)
1061 xen_setup_shared_info();
1064 static __init void xen_post_allocator_init(void)
1066 pv_mmu_ops.set_pte = xen_set_pte;
1067 pv_mmu_ops.set_pmd = xen_set_pmd;
1068 pv_mmu_ops.set_pud = xen_set_pud;
1069 #if PAGETABLE_LEVELS == 4
1070 pv_mmu_ops.set_pgd = xen_set_pgd;
1073 /* This will work as long as patching hasn't happened yet
1074 (which it hasn't) */
1075 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1076 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1077 pv_mmu_ops.release_pte = xen_release_pte;
1078 pv_mmu_ops.release_pmd = xen_release_pmd;
1079 #if PAGETABLE_LEVELS == 4
1080 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1081 pv_mmu_ops.release_pud = xen_release_pud;
1084 #ifdef CONFIG_X86_64
1085 SetPagePinned(virt_to_page(level3_user_vsyscall));
1087 xen_mark_init_mm_pinned();
1090 /* This is called once we have the cpu_possible_map */
1091 void xen_setup_vcpu_info_placement(void)
1095 for_each_possible_cpu(cpu)
1096 xen_vcpu_setup(cpu);
1098 /* xen_vcpu_setup managed to place the vcpu_info within the
1099 percpu area for all cpus, so make use of it */
1100 #ifdef CONFIG_X86_32
1101 if (have_vcpu_info_placement) {
1102 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1104 pv_irq_ops.save_fl = xen_save_fl_direct;
1105 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1106 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1107 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1108 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1113 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1114 unsigned long addr, unsigned len)
1116 char *start, *end, *reloc;
1119 start = end = reloc = NULL;
1121 #define SITE(op, x) \
1122 case PARAVIRT_PATCH(op.x): \
1123 if (have_vcpu_info_placement) { \
1124 start = (char *)xen_##x##_direct; \
1125 end = xen_##x##_direct_end; \
1126 reloc = xen_##x##_direct_reloc; \
1131 #ifdef CONFIG_X86_32
1132 SITE(pv_irq_ops, irq_enable);
1133 SITE(pv_irq_ops, irq_disable);
1134 SITE(pv_irq_ops, save_fl);
1135 SITE(pv_irq_ops, restore_fl);
1136 #endif /* CONFIG_X86_32 */
1140 if (start == NULL || (end-start) > len)
1143 ret = paravirt_patch_insns(insnbuf, len, start, end);
1145 /* Note: because reloc is assigned from something that
1146 appears to be an array, gcc assumes it's non-null,
1147 but doesn't know its relationship with start and
1149 if (reloc > start && reloc < end) {
1150 int reloc_off = reloc - start;
1151 long *relocp = (long *)(insnbuf + reloc_off);
1152 long delta = start - (char *)addr;
1160 ret = paravirt_patch_default(type, clobbers, insnbuf,
1168 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1172 phys >>= PAGE_SHIFT;
1175 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1176 #ifdef CONFIG_X86_F00F_BUG
1179 #ifdef CONFIG_X86_32
1182 # ifdef CONFIG_HIGHMEM
1183 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1186 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1188 #ifdef CONFIG_X86_LOCAL_APIC
1189 case FIX_APIC_BASE: /* maps dummy local APIC */
1191 pte = pfn_pte(phys, prot);
1195 pte = mfn_pte(phys, prot);
1199 __native_set_fixmap(idx, pte);
1201 #ifdef CONFIG_X86_64
1202 /* Replicate changes to map the vsyscall page into the user
1203 pagetable vsyscall mapping. */
1204 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1205 unsigned long vaddr = __fix_to_virt(idx);
1206 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1211 static const struct pv_info xen_info __initdata = {
1212 .paravirt_enabled = 1,
1213 .shared_kernel_pmd = 0,
1218 static const struct pv_init_ops xen_init_ops __initdata = {
1221 .banner = xen_banner,
1222 .memory_setup = xen_memory_setup,
1223 .arch_setup = xen_arch_setup,
1224 .post_allocator_init = xen_post_allocator_init,
1227 static const struct pv_time_ops xen_time_ops __initdata = {
1228 .time_init = xen_time_init,
1230 .set_wallclock = xen_set_wallclock,
1231 .get_wallclock = xen_get_wallclock,
1232 .get_tsc_khz = xen_tsc_khz,
1233 .sched_clock = xen_sched_clock,
1236 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1239 .set_debugreg = xen_set_debugreg,
1240 .get_debugreg = xen_get_debugreg,
1244 .read_cr0 = native_read_cr0,
1245 .write_cr0 = xen_write_cr0,
1247 .read_cr4 = native_read_cr4,
1248 .read_cr4_safe = native_read_cr4_safe,
1249 .write_cr4 = xen_write_cr4,
1251 .wbinvd = native_wbinvd,
1253 .read_msr = native_read_msr_safe,
1254 .write_msr = xen_write_msr_safe,
1255 .read_tsc = native_read_tsc,
1256 .read_pmc = native_read_pmc,
1259 .irq_enable_sysexit = xen_sysexit,
1260 #ifdef CONFIG_X86_64
1261 .usergs_sysret32 = xen_sysret32,
1262 .usergs_sysret64 = xen_sysret64,
1265 .load_tr_desc = paravirt_nop,
1266 .set_ldt = xen_set_ldt,
1267 .load_gdt = xen_load_gdt,
1268 .load_idt = xen_load_idt,
1269 .load_tls = xen_load_tls,
1270 #ifdef CONFIG_X86_64
1271 .load_gs_index = xen_load_gs_index,
1274 .alloc_ldt = xen_alloc_ldt,
1275 .free_ldt = xen_free_ldt,
1277 .store_gdt = native_store_gdt,
1278 .store_idt = native_store_idt,
1279 .store_tr = xen_store_tr,
1281 .write_ldt_entry = xen_write_ldt_entry,
1282 .write_gdt_entry = xen_write_gdt_entry,
1283 .write_idt_entry = xen_write_idt_entry,
1284 .load_sp0 = xen_load_sp0,
1286 .set_iopl_mask = xen_set_iopl_mask,
1287 .io_delay = xen_io_delay,
1289 /* Xen takes care of %gs when switching to usermode for us */
1290 .swapgs = paravirt_nop,
1293 .enter = paravirt_enter_lazy_cpu,
1294 .leave = xen_leave_lazy,
1298 static void __init __xen_init_IRQ(void)
1300 #ifdef CONFIG_X86_64
1303 /* Create identity vector->irq map */
1304 for(i = 0; i < NR_VECTORS; i++) {
1307 for_each_possible_cpu(cpu)
1308 per_cpu(vector_irq, cpu)[i] = i;
1310 #endif /* CONFIG_X86_64 */
1315 static const struct pv_irq_ops xen_irq_ops __initdata = {
1316 .init_IRQ = __xen_init_IRQ,
1317 .save_fl = xen_save_fl,
1318 .restore_fl = xen_restore_fl,
1319 .irq_disable = xen_irq_disable,
1320 .irq_enable = xen_irq_enable,
1321 .safe_halt = xen_safe_halt,
1323 #ifdef CONFIG_X86_64
1324 .adjust_exception_frame = xen_adjust_exception_frame,
1328 static const struct pv_apic_ops xen_apic_ops __initdata = {
1329 #ifdef CONFIG_X86_LOCAL_APIC
1330 .apic_write = xen_apic_write,
1331 .apic_read = xen_apic_read,
1332 .setup_boot_clock = paravirt_nop,
1333 .setup_secondary_clock = paravirt_nop,
1334 .startup_ipi_hook = paravirt_nop,
1338 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1339 .pagetable_setup_start = xen_pagetable_setup_start,
1340 .pagetable_setup_done = xen_pagetable_setup_done,
1342 .read_cr2 = xen_read_cr2,
1343 .write_cr2 = xen_write_cr2,
1345 .read_cr3 = xen_read_cr3,
1346 .write_cr3 = xen_write_cr3,
1348 .flush_tlb_user = xen_flush_tlb,
1349 .flush_tlb_kernel = xen_flush_tlb,
1350 .flush_tlb_single = xen_flush_tlb_single,
1351 .flush_tlb_others = xen_flush_tlb_others,
1353 .pte_update = paravirt_nop,
1354 .pte_update_defer = paravirt_nop,
1356 .pgd_alloc = xen_pgd_alloc,
1357 .pgd_free = xen_pgd_free,
1359 .alloc_pte = xen_alloc_pte_init,
1360 .release_pte = xen_release_pte_init,
1361 .alloc_pmd = xen_alloc_pte_init,
1362 .alloc_pmd_clone = paravirt_nop,
1363 .release_pmd = xen_release_pte_init,
1365 #ifdef CONFIG_HIGHPTE
1366 .kmap_atomic_pte = xen_kmap_atomic_pte,
1369 #ifdef CONFIG_X86_64
1370 .set_pte = xen_set_pte,
1372 .set_pte = xen_set_pte_init,
1374 .set_pte_at = xen_set_pte_at,
1375 .set_pmd = xen_set_pmd_hyper,
1377 .ptep_modify_prot_start = __ptep_modify_prot_start,
1378 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1380 .pte_val = xen_pte_val,
1381 .pte_flags = native_pte_flags,
1382 .pgd_val = xen_pgd_val,
1384 .make_pte = xen_make_pte,
1385 .make_pgd = xen_make_pgd,
1387 #ifdef CONFIG_X86_PAE
1388 .set_pte_atomic = xen_set_pte_atomic,
1389 .set_pte_present = xen_set_pte_at,
1390 .pte_clear = xen_pte_clear,
1391 .pmd_clear = xen_pmd_clear,
1392 #endif /* CONFIG_X86_PAE */
1393 .set_pud = xen_set_pud_hyper,
1395 .make_pmd = xen_make_pmd,
1396 .pmd_val = xen_pmd_val,
1398 #if PAGETABLE_LEVELS == 4
1399 .pud_val = xen_pud_val,
1400 .make_pud = xen_make_pud,
1401 .set_pgd = xen_set_pgd_hyper,
1403 .alloc_pud = xen_alloc_pte_init,
1404 .release_pud = xen_release_pte_init,
1405 #endif /* PAGETABLE_LEVELS == 4 */
1407 .activate_mm = xen_activate_mm,
1408 .dup_mmap = xen_dup_mmap,
1409 .exit_mmap = xen_exit_mmap,
1412 .enter = paravirt_enter_lazy_mmu,
1413 .leave = xen_leave_lazy,
1416 .set_fixmap = xen_set_fixmap,
1419 static void xen_reboot(int reason)
1421 struct sched_shutdown r = { .reason = reason };
1427 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1431 static void xen_restart(char *msg)
1433 xen_reboot(SHUTDOWN_reboot);
1436 static void xen_emergency_restart(void)
1438 xen_reboot(SHUTDOWN_reboot);
1441 static void xen_machine_halt(void)
1443 xen_reboot(SHUTDOWN_poweroff);
1446 static void xen_crash_shutdown(struct pt_regs *regs)
1448 xen_reboot(SHUTDOWN_crash);
1451 static const struct machine_ops __initdata xen_machine_ops = {
1452 .restart = xen_restart,
1453 .halt = xen_machine_halt,
1454 .power_off = xen_machine_halt,
1455 .shutdown = xen_machine_halt,
1456 .crash_shutdown = xen_crash_shutdown,
1457 .emergency_restart = xen_emergency_restart,
1461 static void __init xen_reserve_top(void)
1463 #ifdef CONFIG_X86_32
1464 unsigned long top = HYPERVISOR_VIRT_START;
1465 struct xen_platform_parameters pp;
1467 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1468 top = pp.virt_start;
1470 reserve_top_address(-top + 2 * PAGE_SIZE);
1471 #endif /* CONFIG_X86_32 */
1475 * Like __va(), but returns address in the kernel mapping (which is
1476 * all we have until the physical memory mapping has been set up.
1478 static void *__ka(phys_addr_t paddr)
1480 #ifdef CONFIG_X86_64
1481 return (void *)(paddr + __START_KERNEL_map);
1487 /* Convert a machine address to physical address */
1488 static unsigned long m2p(phys_addr_t maddr)
1492 maddr &= PTE_PFN_MASK;
1493 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1498 /* Convert a machine address to kernel virtual */
1499 static void *m2v(phys_addr_t maddr)
1501 return __ka(m2p(maddr));
1504 #ifdef CONFIG_X86_64
1505 static void walk(pgd_t *pgd, unsigned long addr)
1507 unsigned l4idx = pgd_index(addr);
1508 unsigned l3idx = pud_index(addr);
1509 unsigned l2idx = pmd_index(addr);
1510 unsigned l1idx = pte_index(addr);
1516 xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1517 pgd, addr, l4idx, l3idx, l2idx, l1idx);
1520 xen_raw_printk(" l4: %016lx\n", l4.pgd);
1521 xen_raw_printk(" %016lx\n", pgd_val(l4));
1523 l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1524 xen_raw_printk(" l3: %016lx\n", l3.pud);
1525 xen_raw_printk(" %016lx\n", pud_val(l3));
1527 l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1528 xen_raw_printk(" l2: %016lx\n", l2.pmd);
1529 xen_raw_printk(" %016lx\n", pmd_val(l2));
1531 l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1532 xen_raw_printk(" l1: %016lx\n", l1.pte);
1533 xen_raw_printk(" %016lx\n", pte_val(l1));
1537 static void set_page_prot(void *addr, pgprot_t prot)
1539 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1540 pte_t pte = pfn_pte(pfn, prot);
1542 xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1543 addr, pfn, get_phys_to_machine(pfn),
1544 pgprot_val(prot), pte.pte);
1546 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1550 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1552 unsigned pmdidx, pteidx;
1558 for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1561 /* Reuse or allocate a page of ptes */
1562 if (pmd_present(pmd[pmdidx]))
1563 pte_page = m2v(pmd[pmdidx].pmd);
1565 /* Check for free pte pages */
1566 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1569 pte_page = &level1_ident_pgt[ident_pte];
1570 ident_pte += PTRS_PER_PTE;
1572 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1575 /* Install mappings */
1576 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1579 if (pfn > max_pfn_mapped)
1580 max_pfn_mapped = pfn;
1582 if (!pte_none(pte_page[pteidx]))
1585 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1586 pte_page[pteidx] = pte;
1590 for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1591 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1593 set_page_prot(pmd, PAGE_KERNEL_RO);
1596 #ifdef CONFIG_X86_64
1597 static void convert_pfn_mfn(void *v)
1602 /* All levels are converted the same way, so just treat them
1604 for(i = 0; i < PTRS_PER_PTE; i++)
1605 pte[i] = xen_make_pte(pte[i].pte);
1609 * Set up the inital kernel pagetable.
1611 * We can construct this by grafting the Xen provided pagetable into
1612 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1613 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1614 * means that only the kernel has a physical mapping to start with -
1615 * but that's enough to get __va working. We need to fill in the rest
1616 * of the physical mapping once some sort of allocator has been set
1619 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1624 /* Zap identity mapping */
1625 init_level4_pgt[0] = __pgd(0);
1627 /* Pre-constructed entries are in pfn, so convert to mfn */
1628 convert_pfn_mfn(init_level4_pgt);
1629 convert_pfn_mfn(level3_ident_pgt);
1630 convert_pfn_mfn(level3_kernel_pgt);
1632 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1633 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1635 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1636 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1638 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1639 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1640 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1642 /* Set up identity map */
1643 xen_map_identity_early(level2_ident_pgt, max_pfn);
1645 /* Make pagetable pieces RO */
1646 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1647 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1648 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1649 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1650 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1651 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1653 /* Pin down new L4 */
1654 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1655 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1657 /* Unpin Xen-provided one */
1658 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1661 pgd = init_level4_pgt;
1664 * At this stage there can be no user pgd, and no page
1665 * structure to attach it to, so make sure we just set kernel
1669 __xen_write_cr3(true, __pa(pgd));
1670 xen_mc_issue(PARAVIRT_LAZY_CPU);
1672 reserve_early(__pa(xen_start_info->pt_base),
1673 __pa(xen_start_info->pt_base +
1674 xen_start_info->nr_pt_frames * PAGE_SIZE),
1679 #else /* !CONFIG_X86_64 */
1680 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1682 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1686 init_pg_tables_start = __pa(pgd);
1687 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1688 max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1690 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1691 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1693 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1695 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1696 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1697 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1699 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1700 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1701 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1703 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1705 xen_write_cr3(__pa(swapper_pg_dir));
1707 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1709 return swapper_pg_dir;
1711 #endif /* CONFIG_X86_64 */
1713 /* First C function to be called on Xen boot */
1714 asmlinkage void __init xen_start_kernel(void)
1718 if (!xen_start_info)
1721 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1723 xen_setup_features();
1725 /* Install Xen paravirt ops */
1727 pv_init_ops = xen_init_ops;
1728 pv_time_ops = xen_time_ops;
1729 pv_cpu_ops = xen_cpu_ops;
1730 pv_irq_ops = xen_irq_ops;
1731 pv_apic_ops = xen_apic_ops;
1732 pv_mmu_ops = xen_mmu_ops;
1734 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1735 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1736 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1739 machine_ops = xen_machine_ops;
1741 #ifdef CONFIG_X86_64
1742 /* Disable until direct per-cpu data access. */
1743 have_vcpu_info_placement = 0;
1750 if (!xen_feature(XENFEAT_auto_translated_physmap))
1751 xen_build_dynamic_phys_to_machine();
1753 pgd = (pgd_t *)xen_start_info->pt_base;
1755 /* Prevent unwanted bits from being set in PTEs. */
1756 __supported_pte_mask &= ~_PAGE_GLOBAL;
1757 if (!is_initial_xendomain())
1758 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1760 /* Don't do the full vcpu_info placement stuff until we have a
1761 possible map and a non-dummy shared_info. */
1762 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1764 xen_raw_console_write("mapping kernel into physical memory\n");
1765 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1769 /* keep using Xen gdt for now; no urgent need to change it */
1771 pv_info.kernel_rpl = 1;
1772 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1773 pv_info.kernel_rpl = 0;
1775 /* set the limit of our address space */
1778 #ifdef CONFIG_X86_32
1779 /* set up basic CPUID stuff */
1780 cpu_detect(&new_cpu_data);
1781 new_cpu_data.hard_math = 1;
1782 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1785 /* Poke various useful things into boot_params */
1786 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1787 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1788 ? __pa(xen_start_info->mod_start) : 0;
1789 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1790 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1792 if (!is_initial_xendomain()) {
1793 add_preferred_console("xenboot", 0, NULL);
1794 add_preferred_console("tty", 0, NULL);
1795 add_preferred_console("hvc", 0, NULL);
1798 xen_raw_console_write("about to get started...\n");
1801 xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1802 &boot_params, __pa_symbol(&boot_params),
1803 __va(__pa_symbol(&boot_params)));
1805 walk(pgd, &boot_params);
1806 walk(pgd, __va(__pa(&boot_params)));
1809 /* Start the world */
1810 #ifdef CONFIG_X86_32
1811 i386_start_kernel();
1813 x86_64_start_reservations((char *)__pa_symbol(&boot_params));