Merge branch 'agp-next' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[linux-2.6] / include / linux / cpumask.h
1 #ifndef __LINUX_CPUMASK_H
2 #define __LINUX_CPUMASK_H
3
4 /*
5  * Cpumasks provide a bitmap suitable for representing the
6  * set of CPU's in a system, one bit position per CPU number.
7  *
8  * See detailed comments in the file linux/bitmap.h describing the
9  * data type on which these cpumasks are based.
10  *
11  * For details of cpumask_scnprintf() and cpumask_parse_user(),
12  * see bitmap_scnprintf() and bitmap_parse_user() in lib/bitmap.c.
13  * For details of cpulist_scnprintf() and cpulist_parse(), see
14  * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
15  * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c
16  * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c.
17  * For details of cpus_onto(), see bitmap_onto in lib/bitmap.c.
18  * For details of cpus_fold(), see bitmap_fold in lib/bitmap.c.
19  *
20  * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21  * Note: The alternate operations with the suffix "_nr" are used
22  *       to limit the range of the loop to nr_cpu_ids instead of
23  *       NR_CPUS when NR_CPUS > 64 for performance reasons.
24  *       If NR_CPUS is <= 64 then most assembler bitmask
25  *       operators execute faster with a constant range, so
26  *       the operator will continue to use NR_CPUS.
27  *
28  *       Another consideration is that nr_cpu_ids is initialized
29  *       to NR_CPUS and isn't lowered until the possible cpus are
30  *       discovered (including any disabled cpus).  So early uses
31  *       will span the entire range of NR_CPUS.
32  * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33  *
34  * The available cpumask operations are:
35  *
36  * void cpu_set(cpu, mask)              turn on bit 'cpu' in mask
37  * void cpu_clear(cpu, mask)            turn off bit 'cpu' in mask
38  * void cpus_setall(mask)               set all bits
39  * void cpus_clear(mask)                clear all bits
40  * int cpu_isset(cpu, mask)             true iff bit 'cpu' set in mask
41  * int cpu_test_and_set(cpu, mask)      test and set bit 'cpu' in mask
42  *
43  * void cpus_and(dst, src1, src2)       dst = src1 & src2  [intersection]
44  * void cpus_or(dst, src1, src2)        dst = src1 | src2  [union]
45  * void cpus_xor(dst, src1, src2)       dst = src1 ^ src2
46  * void cpus_andnot(dst, src1, src2)    dst = src1 & ~src2
47  * void cpus_complement(dst, src)       dst = ~src
48  *
49  * int cpus_equal(mask1, mask2)         Does mask1 == mask2?
50  * int cpus_intersects(mask1, mask2)    Do mask1 and mask2 intersect?
51  * int cpus_subset(mask1, mask2)        Is mask1 a subset of mask2?
52  * int cpus_empty(mask)                 Is mask empty (no bits sets)?
53  * int cpus_full(mask)                  Is mask full (all bits sets)?
54  * int cpus_weight(mask)                Hamming weigh - number of set bits
55  * int cpus_weight_nr(mask)             Same using nr_cpu_ids instead of NR_CPUS
56  *
57  * void cpus_shift_right(dst, src, n)   Shift right
58  * void cpus_shift_left(dst, src, n)    Shift left
59  *
60  * int first_cpu(mask)                  Number lowest set bit, or NR_CPUS
61  * int next_cpu(cpu, mask)              Next cpu past 'cpu', or NR_CPUS
62  * int next_cpu_nr(cpu, mask)           Next cpu past 'cpu', or nr_cpu_ids
63  *
64  * cpumask_t cpumask_of_cpu(cpu)        Return cpumask with bit 'cpu' set
65  *                                      (can be used as an lvalue)
66  * CPU_MASK_ALL                         Initializer - all bits set
67  * CPU_MASK_NONE                        Initializer - no bits set
68  * unsigned long *cpus_addr(mask)       Array of unsigned long's in mask
69  *
70  * CPUMASK_ALLOC kmalloc's a structure that is a composite of many cpumask_t
71  * variables, and CPUMASK_PTR provides pointers to each field.
72  *
73  * The structure should be defined something like this:
74  * struct my_cpumasks {
75  *      cpumask_t mask1;
76  *      cpumask_t mask2;
77  * };
78  *
79  * Usage is then:
80  *      CPUMASK_ALLOC(my_cpumasks);
81  *      CPUMASK_PTR(mask1, my_cpumasks);
82  *      CPUMASK_PTR(mask2, my_cpumasks);
83  *
84  *      --- DO NOT reference cpumask_t pointers until this check ---
85  *      if (my_cpumasks == NULL)
86  *              "kmalloc failed"...
87  *
88  * References are now pointers to the cpumask_t variables (*mask1, ...)
89  *
90  *if NR_CPUS > BITS_PER_LONG
91  *   CPUMASK_ALLOC(m)                   Declares and allocates struct m *m =
92  *                                              kmalloc(sizeof(*m), GFP_KERNEL)
93  *   CPUMASK_FREE(m)                    Macro for kfree(m)
94  *else
95  *   CPUMASK_ALLOC(m)                   Declares struct m _m, *m = &_m
96  *   CPUMASK_FREE(m)                    Nop
97  *endif
98  *   CPUMASK_PTR(v, m)                  Declares cpumask_t *v = &(m->v)
99  * ------------------------------------------------------------------------
100  *
101  * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
102  * int cpumask_parse_user(ubuf, ulen, mask)     Parse ascii string as cpumask
103  * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
104  * int cpulist_parse(buf, map)          Parse ascii string as cpulist
105  * int cpu_remap(oldbit, old, new)      newbit = map(old, new)(oldbit)
106  * void cpus_remap(dst, src, old, new)  *dst = map(old, new)(src)
107  * void cpus_onto(dst, orig, relmap)    *dst = orig relative to relmap
108  * void cpus_fold(dst, orig, sz)        dst bits = orig bits mod sz
109  *
110  * for_each_cpu_mask(cpu, mask)         for-loop cpu over mask using NR_CPUS
111  * for_each_cpu_mask_nr(cpu, mask)      for-loop cpu over mask using nr_cpu_ids
112  *
113  * int num_online_cpus()                Number of online CPUs
114  * int num_possible_cpus()              Number of all possible CPUs
115  * int num_present_cpus()               Number of present CPUs
116  *
117  * int cpu_online(cpu)                  Is some cpu online?
118  * int cpu_possible(cpu)                Is some cpu possible?
119  * int cpu_present(cpu)                 Is some cpu present (can schedule)?
120  *
121  * int any_online_cpu(mask)             First online cpu in mask
122  *
123  * for_each_possible_cpu(cpu)           for-loop cpu over cpu_possible_map
124  * for_each_online_cpu(cpu)             for-loop cpu over cpu_online_map
125  * for_each_present_cpu(cpu)            for-loop cpu over cpu_present_map
126  *
127  * Subtlety:
128  * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
129  *    to generate slightly worse code.  Note for example the additional
130  *    40 lines of assembly code compiling the "for each possible cpu"
131  *    loops buried in the disk_stat_read() macros calls when compiling
132  *    drivers/block/genhd.c (arch i386, CONFIG_SMP=y).  So use a simple
133  *    one-line #define for cpu_isset(), instead of wrapping an inline
134  *    inside a macro, the way we do the other calls.
135  */
136
137 #include <linux/kernel.h>
138 #include <linux/threads.h>
139 #include <linux/bitmap.h>
140
141 typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
142 extern cpumask_t _unused_cpumask_arg_;
143
144 #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
145 static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
146 {
147         set_bit(cpu, dstp->bits);
148 }
149
150 #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
151 static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
152 {
153         clear_bit(cpu, dstp->bits);
154 }
155
156 #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
157 static inline void __cpus_setall(cpumask_t *dstp, int nbits)
158 {
159         bitmap_fill(dstp->bits, nbits);
160 }
161
162 #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
163 static inline void __cpus_clear(cpumask_t *dstp, int nbits)
164 {
165         bitmap_zero(dstp->bits, nbits);
166 }
167
168 /* No static inline type checking - see Subtlety (1) above. */
169 #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
170
171 #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
172 static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
173 {
174         return test_and_set_bit(cpu, addr->bits);
175 }
176
177 #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
178 static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
179                                         const cpumask_t *src2p, int nbits)
180 {
181         bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
182 }
183
184 #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
185 static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
186                                         const cpumask_t *src2p, int nbits)
187 {
188         bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
189 }
190
191 #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
192 static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
193                                         const cpumask_t *src2p, int nbits)
194 {
195         bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
196 }
197
198 #define cpus_andnot(dst, src1, src2) \
199                                 __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
200 static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
201                                         const cpumask_t *src2p, int nbits)
202 {
203         bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
204 }
205
206 #define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
207 static inline void __cpus_complement(cpumask_t *dstp,
208                                         const cpumask_t *srcp, int nbits)
209 {
210         bitmap_complement(dstp->bits, srcp->bits, nbits);
211 }
212
213 #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
214 static inline int __cpus_equal(const cpumask_t *src1p,
215                                         const cpumask_t *src2p, int nbits)
216 {
217         return bitmap_equal(src1p->bits, src2p->bits, nbits);
218 }
219
220 #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
221 static inline int __cpus_intersects(const cpumask_t *src1p,
222                                         const cpumask_t *src2p, int nbits)
223 {
224         return bitmap_intersects(src1p->bits, src2p->bits, nbits);
225 }
226
227 #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
228 static inline int __cpus_subset(const cpumask_t *src1p,
229                                         const cpumask_t *src2p, int nbits)
230 {
231         return bitmap_subset(src1p->bits, src2p->bits, nbits);
232 }
233
234 #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
235 static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
236 {
237         return bitmap_empty(srcp->bits, nbits);
238 }
239
240 #define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
241 static inline int __cpus_full(const cpumask_t *srcp, int nbits)
242 {
243         return bitmap_full(srcp->bits, nbits);
244 }
245
246 #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
247 static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
248 {
249         return bitmap_weight(srcp->bits, nbits);
250 }
251
252 #define cpus_shift_right(dst, src, n) \
253                         __cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
254 static inline void __cpus_shift_right(cpumask_t *dstp,
255                                         const cpumask_t *srcp, int n, int nbits)
256 {
257         bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
258 }
259
260 #define cpus_shift_left(dst, src, n) \
261                         __cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
262 static inline void __cpus_shift_left(cpumask_t *dstp,
263                                         const cpumask_t *srcp, int n, int nbits)
264 {
265         bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
266 }
267
268 /*
269  * Special-case data structure for "single bit set only" constant CPU masks.
270  *
271  * We pre-generate all the 64 (or 32) possible bit positions, with enough
272  * padding to the left and the right, and return the constant pointer
273  * appropriately offset.
274  */
275 extern const unsigned long
276         cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
277
278 static inline const cpumask_t *get_cpu_mask(unsigned int cpu)
279 {
280         const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
281         p -= cpu / BITS_PER_LONG;
282         return (const cpumask_t *)p;
283 }
284
285 /*
286  * In cases where we take the address of the cpumask immediately,
287  * gcc optimizes it out (it's a constant) and there's no huge stack
288  * variable created:
289  */
290 #define cpumask_of_cpu(cpu) (*get_cpu_mask(cpu))
291
292
293 #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
294
295 #if NR_CPUS <= BITS_PER_LONG
296
297 #define CPU_MASK_ALL                                                    \
298 (cpumask_t) { {                                                         \
299         [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD                 \
300 } }
301
302 #define CPU_MASK_ALL_PTR        (&CPU_MASK_ALL)
303
304 #else
305
306 #define CPU_MASK_ALL                                                    \
307 (cpumask_t) { {                                                         \
308         [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL,                        \
309         [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD                 \
310 } }
311
312 /* cpu_mask_all is in init/main.c */
313 extern cpumask_t cpu_mask_all;
314 #define CPU_MASK_ALL_PTR        (&cpu_mask_all)
315
316 #endif
317
318 #define CPU_MASK_NONE                                                   \
319 (cpumask_t) { {                                                         \
320         [0 ... BITS_TO_LONGS(NR_CPUS)-1] =  0UL                         \
321 } }
322
323 #define CPU_MASK_CPU0                                                   \
324 (cpumask_t) { {                                                         \
325         [0] =  1UL                                                      \
326 } }
327
328 #define cpus_addr(src) ((src).bits)
329
330 #if NR_CPUS > BITS_PER_LONG
331 #define CPUMASK_ALLOC(m)        struct m *m = kmalloc(sizeof(*m), GFP_KERNEL)
332 #define CPUMASK_FREE(m)         kfree(m)
333 #else
334 #define CPUMASK_ALLOC(m)        struct m _m, *m = &_m
335 #define CPUMASK_FREE(m)
336 #endif
337 #define CPUMASK_PTR(v, m)       cpumask_t *v = &(m->v)
338
339 #define cpumask_scnprintf(buf, len, src) \
340                         __cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
341 static inline int __cpumask_scnprintf(char *buf, int len,
342                                         const cpumask_t *srcp, int nbits)
343 {
344         return bitmap_scnprintf(buf, len, srcp->bits, nbits);
345 }
346
347 #define cpumask_parse_user(ubuf, ulen, dst) \
348                         __cpumask_parse_user((ubuf), (ulen), &(dst), NR_CPUS)
349 static inline int __cpumask_parse_user(const char __user *buf, int len,
350                                         cpumask_t *dstp, int nbits)
351 {
352         return bitmap_parse_user(buf, len, dstp->bits, nbits);
353 }
354
355 #define cpulist_scnprintf(buf, len, src) \
356                         __cpulist_scnprintf((buf), (len), &(src), NR_CPUS)
357 static inline int __cpulist_scnprintf(char *buf, int len,
358                                         const cpumask_t *srcp, int nbits)
359 {
360         return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);
361 }
362
363 #define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)
364 static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits)
365 {
366         return bitmap_parselist(buf, dstp->bits, nbits);
367 }
368
369 #define cpu_remap(oldbit, old, new) \
370                 __cpu_remap((oldbit), &(old), &(new), NR_CPUS)
371 static inline int __cpu_remap(int oldbit,
372                 const cpumask_t *oldp, const cpumask_t *newp, int nbits)
373 {
374         return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
375 }
376
377 #define cpus_remap(dst, src, old, new) \
378                 __cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS)
379 static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp,
380                 const cpumask_t *oldp, const cpumask_t *newp, int nbits)
381 {
382         bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
383 }
384
385 #define cpus_onto(dst, orig, relmap) \
386                 __cpus_onto(&(dst), &(orig), &(relmap), NR_CPUS)
387 static inline void __cpus_onto(cpumask_t *dstp, const cpumask_t *origp,
388                 const cpumask_t *relmapp, int nbits)
389 {
390         bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits);
391 }
392
393 #define cpus_fold(dst, orig, sz) \
394                 __cpus_fold(&(dst), &(orig), sz, NR_CPUS)
395 static inline void __cpus_fold(cpumask_t *dstp, const cpumask_t *origp,
396                 int sz, int nbits)
397 {
398         bitmap_fold(dstp->bits, origp->bits, sz, nbits);
399 }
400
401 #if NR_CPUS == 1
402
403 #define nr_cpu_ids              1
404 #define first_cpu(src)          ({ (void)(src); 0; })
405 #define next_cpu(n, src)        ({ (void)(src); 1; })
406 #define any_online_cpu(mask)    0
407 #define for_each_cpu_mask(cpu, mask)    \
408         for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
409
410 #else /* NR_CPUS > 1 */
411
412 extern int nr_cpu_ids;
413 int __first_cpu(const cpumask_t *srcp);
414 int __next_cpu(int n, const cpumask_t *srcp);
415 int __any_online_cpu(const cpumask_t *mask);
416
417 #define first_cpu(src)          __first_cpu(&(src))
418 #define next_cpu(n, src)        __next_cpu((n), &(src))
419 #define any_online_cpu(mask) __any_online_cpu(&(mask))
420 #define for_each_cpu_mask(cpu, mask)                    \
421         for ((cpu) = -1;                                \
422                 (cpu) = next_cpu((cpu), (mask)),        \
423                 (cpu) < NR_CPUS; )
424 #endif
425
426 #if NR_CPUS <= 64
427
428 #define next_cpu_nr(n, src)             next_cpu(n, src)
429 #define cpus_weight_nr(cpumask)         cpus_weight(cpumask)
430 #define for_each_cpu_mask_nr(cpu, mask) for_each_cpu_mask(cpu, mask)
431
432 #else /* NR_CPUS > 64 */
433
434 int __next_cpu_nr(int n, const cpumask_t *srcp);
435 #define next_cpu_nr(n, src)     __next_cpu_nr((n), &(src))
436 #define cpus_weight_nr(cpumask) __cpus_weight(&(cpumask), nr_cpu_ids)
437 #define for_each_cpu_mask_nr(cpu, mask)                 \
438         for ((cpu) = -1;                                \
439                 (cpu) = next_cpu_nr((cpu), (mask)),     \
440                 (cpu) < nr_cpu_ids; )
441
442 #endif /* NR_CPUS > 64 */
443
444 /*
445  * The following particular system cpumasks and operations manage
446  * possible, present, active and online cpus.  Each of them is a fixed size
447  * bitmap of size NR_CPUS.
448  *
449  *  #ifdef CONFIG_HOTPLUG_CPU
450  *     cpu_possible_map - has bit 'cpu' set iff cpu is populatable
451  *     cpu_present_map  - has bit 'cpu' set iff cpu is populated
452  *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler
453  *     cpu_active_map   - has bit 'cpu' set iff cpu available to migration
454  *  #else
455  *     cpu_possible_map - has bit 'cpu' set iff cpu is populated
456  *     cpu_present_map  - copy of cpu_possible_map
457  *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler
458  *  #endif
459  *
460  *  In either case, NR_CPUS is fixed at compile time, as the static
461  *  size of these bitmaps.  The cpu_possible_map is fixed at boot
462  *  time, as the set of CPU id's that it is possible might ever
463  *  be plugged in at anytime during the life of that system boot.
464  *  The cpu_present_map is dynamic(*), representing which CPUs
465  *  are currently plugged in.  And cpu_online_map is the dynamic
466  *  subset of cpu_present_map, indicating those CPUs available
467  *  for scheduling.
468  *
469  *  If HOTPLUG is enabled, then cpu_possible_map is forced to have
470  *  all NR_CPUS bits set, otherwise it is just the set of CPUs that
471  *  ACPI reports present at boot.
472  *
473  *  If HOTPLUG is enabled, then cpu_present_map varies dynamically,
474  *  depending on what ACPI reports as currently plugged in, otherwise
475  *  cpu_present_map is just a copy of cpu_possible_map.
476  *
477  *  (*) Well, cpu_present_map is dynamic in the hotplug case.  If not
478  *      hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
479  *
480  * Subtleties:
481  * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
482  *    assumption that their single CPU is online.  The UP
483  *    cpu_{online,possible,present}_maps are placebos.  Changing them
484  *    will have no useful affect on the following num_*_cpus()
485  *    and cpu_*() macros in the UP case.  This ugliness is a UP
486  *    optimization - don't waste any instructions or memory references
487  *    asking if you're online or how many CPUs there are if there is
488  *    only one CPU.
489  * 2) Most SMP arch's #define some of these maps to be some
490  *    other map specific to that arch.  Therefore, the following
491  *    must be #define macros, not inlines.  To see why, examine
492  *    the assembly code produced by the following.  Note that
493  *    set1() writes phys_x_map, but set2() writes x_map:
494  *        int x_map, phys_x_map;
495  *        #define set1(a) x_map = a
496  *        inline void set2(int a) { x_map = a; }
497  *        #define x_map phys_x_map
498  *        main(){ set1(3); set2(5); }
499  */
500
501 extern cpumask_t cpu_possible_map;
502 extern cpumask_t cpu_online_map;
503 extern cpumask_t cpu_present_map;
504 extern cpumask_t cpu_active_map;
505
506 #if NR_CPUS > 1
507 #define num_online_cpus()       cpus_weight_nr(cpu_online_map)
508 #define num_possible_cpus()     cpus_weight_nr(cpu_possible_map)
509 #define num_present_cpus()      cpus_weight_nr(cpu_present_map)
510 #define cpu_online(cpu)         cpu_isset((cpu), cpu_online_map)
511 #define cpu_possible(cpu)       cpu_isset((cpu), cpu_possible_map)
512 #define cpu_present(cpu)        cpu_isset((cpu), cpu_present_map)
513 #define cpu_active(cpu)         cpu_isset((cpu), cpu_active_map)
514 #else
515 #define num_online_cpus()       1
516 #define num_possible_cpus()     1
517 #define num_present_cpus()      1
518 #define cpu_online(cpu)         ((cpu) == 0)
519 #define cpu_possible(cpu)       ((cpu) == 0)
520 #define cpu_present(cpu)        ((cpu) == 0)
521 #define cpu_active(cpu)         ((cpu) == 0)
522 #endif
523
524 #define cpu_is_offline(cpu)     unlikely(!cpu_online(cpu))
525
526 #define for_each_possible_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_possible_map)
527 #define for_each_online_cpu(cpu)   for_each_cpu_mask_nr((cpu), cpu_online_map)
528 #define for_each_present_cpu(cpu)  for_each_cpu_mask_nr((cpu), cpu_present_map)
529
530 #endif /* __LINUX_CPUMASK_H */