sgi-xp: isolate additional sn2 specific code
[linux-2.6] / drivers / misc / sgi-xp / xpc_sn2.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8
9 /*
10  * Cross Partition Communication (XPC) sn2-based functions.
11  *
12  *     Architecture specific implementation of common functions.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <asm/uncached.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
21
22 static struct xpc_vars_sn2 *xpc_vars;   /* >>> Add _sn2 suffix? */
23 static struct xpc_vars_part_sn2 *xpc_vars_part; /* >>> Add _sn2 suffix? */
24
25 /* SH_IPI_ACCESS shub register value on startup */
26 static u64 xpc_sh1_IPI_access;
27 static u64 xpc_sh2_IPI_access0;
28 static u64 xpc_sh2_IPI_access1;
29 static u64 xpc_sh2_IPI_access2;
30 static u64 xpc_sh2_IPI_access3;
31
32 /*
33  * Change protections to allow IPI operations.
34  */
35 static void
36 xpc_allow_IPI_ops_sn2(void)
37 {
38         int node;
39         int nasid;
40
41         /* >>> The following should get moved into SAL. */
42         if (is_shub2()) {
43                 xpc_sh2_IPI_access0 =
44                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
45                 xpc_sh2_IPI_access1 =
46                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
47                 xpc_sh2_IPI_access2 =
48                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
49                 xpc_sh2_IPI_access3 =
50                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
51
52                 for_each_online_node(node) {
53                         nasid = cnodeid_to_nasid(node);
54                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
55                               -1UL);
56                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
57                               -1UL);
58                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
59                               -1UL);
60                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
61                               -1UL);
62                 }
63         } else {
64                 xpc_sh1_IPI_access =
65                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
66
67                 for_each_online_node(node) {
68                         nasid = cnodeid_to_nasid(node);
69                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
70                               -1UL);
71                 }
72         }
73 }
74
75 /*
76  * Restrict protections to disallow IPI operations.
77  */
78 static void
79 xpc_disallow_IPI_ops_sn2(void)
80 {
81         int node;
82         int nasid;
83
84         /* >>> The following should get moved into SAL. */
85         if (is_shub2()) {
86                 for_each_online_node(node) {
87                         nasid = cnodeid_to_nasid(node);
88                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
89                               xpc_sh2_IPI_access0);
90                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
91                               xpc_sh2_IPI_access1);
92                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
93                               xpc_sh2_IPI_access2);
94                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
95                               xpc_sh2_IPI_access3);
96                 }
97         } else {
98                 for_each_online_node(node) {
99                         nasid = cnodeid_to_nasid(node);
100                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
101                               xpc_sh1_IPI_access);
102                 }
103         }
104 }
105
106 /*
107  * The following set of macros and functions are used for the sending and
108  * receiving of IPIs (also known as IRQs). There are two flavors of IPIs,
109  * one that is associated with partition activity (SGI_XPC_ACTIVATE) and
110  * the other that is associated with channel activity (SGI_XPC_NOTIFY).
111  */
112
113 static u64
114 xpc_IPI_receive_sn2(AMO_t *amo)
115 {
116         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
117 }
118
119 static enum xp_retval
120 xpc_IPI_send_sn2(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector)
121 {
122         int ret = 0;
123         unsigned long irq_flags;
124
125         local_irq_save(irq_flags);
126
127         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
128         sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
129
130         /*
131          * We must always use the nofault function regardless of whether we
132          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
133          * didn't, we'd never know that the other partition is down and would
134          * keep sending IPIs and AMOs to it until the heartbeat times out.
135          */
136         ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
137                                                      xp_nofault_PIOR_target));
138
139         local_irq_restore(irq_flags);
140
141         return ((ret == 0) ? xpSuccess : xpPioReadError);
142 }
143
144 static AMO_t *
145 xpc_IPI_init_sn2(int index)
146 {
147         AMO_t *amo = xpc_vars->amos_page + index;
148
149         (void)xpc_IPI_receive_sn2(amo); /* clear AMO variable */
150         return amo;
151 }
152
153 /*
154  * IPIs associated with SGI_XPC_ACTIVATE IRQ.
155  */
156
157 /*
158  * Notify the heartbeat check thread that an activate IRQ has been received.
159  */
160 static irqreturn_t
161 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
162 {
163         atomic_inc(&xpc_activate_IRQ_rcvd);
164         wake_up_interruptible(&xpc_activate_IRQ_wq);
165         return IRQ_HANDLED;
166 }
167
168 /*
169  * Flag the appropriate AMO variable and send an IPI to the specified node.
170  */
171 static void
172 xpc_activate_IRQ_send_sn2(u64 amos_page_pa, int from_nasid, int to_nasid,
173                       int to_phys_cpuid)
174 {
175         int w_index = XPC_NASID_W_INDEX(from_nasid);
176         int b_index = XPC_NASID_B_INDEX(from_nasid);
177         AMO_t *amos = (AMO_t *)__va(amos_page_pa +
178                                     (XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t)));
179
180         (void)xpc_IPI_send_sn2(&amos[w_index], (1UL << b_index), to_nasid,
181                                to_phys_cpuid, SGI_XPC_ACTIVATE);
182 }
183
184 static void
185 xpc_activate_IRQ_send_local_sn2(int from_nasid)
186 {
187         int w_index = XPC_NASID_W_INDEX(from_nasid);
188         int b_index = XPC_NASID_B_INDEX(from_nasid);
189         AMO_t *amos = (AMO_t *)__va(xpc_vars->amos_page_pa +
190                                     (XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t)));
191
192         /* fake the sending and receipt of an activate IRQ from remote nasid */
193         FETCHOP_STORE_OP(TO_AMO((u64)&amos[w_index].variable), FETCHOP_OR,
194                          (1UL << b_index));
195         atomic_inc(&xpc_activate_IRQ_rcvd);
196         wake_up_interruptible(&xpc_activate_IRQ_wq);
197 }
198
199 /*
200  * IPIs associated with SGI_XPC_NOTIFY IRQ.
201  */
202
203 /*
204  * Check to see if there is any channel activity to/from the specified
205  * partition.
206  */
207 static void
208 xpc_check_for_channel_activity_sn2(struct xpc_partition *part)
209 {
210         u64 IPI_amo;
211         unsigned long irq_flags;
212
213         IPI_amo = xpc_IPI_receive_sn2(part->sn.sn2.local_IPI_amo_va);
214         if (IPI_amo == 0)
215                 return;
216
217         spin_lock_irqsave(&part->IPI_lock, irq_flags);
218         part->local_IPI_amo |= IPI_amo;
219         spin_unlock_irqrestore(&part->IPI_lock, irq_flags);
220
221         dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n",
222                 XPC_PARTID(part), IPI_amo);
223
224         xpc_wakeup_channel_mgr(part);
225 }
226
227 /*
228  * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
229  * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
230  * than one partition, we use an AMO_t structure per partition to indicate
231  * whether a partition has sent an IPI or not.  If it has, then wake up the
232  * associated kthread to handle it.
233  *
234  * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IPIs sent by XPC
235  * running on other partitions.
236  *
237  * Noteworthy Arguments:
238  *
239  *      irq - Interrupt ReQuest number. NOT USED.
240  *
241  *      dev_id - partid of IPI's potential sender.
242  */
243 static irqreturn_t
244 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
245 {
246         short partid = (short)(u64)dev_id;
247         struct xpc_partition *part = &xpc_partitions[partid];
248
249         DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
250
251         if (xpc_part_ref(part)) {
252                 xpc_check_for_channel_activity_sn2(part);
253
254                 xpc_part_deref(part);
255         }
256         return IRQ_HANDLED;
257 }
258
259 /*
260  * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IPIs on the floor
261  * because the write to their associated IPI amo completed after the IRQ/IPI
262  * was received.
263  */
264 static void
265 xpc_dropped_notify_IRQ_check_sn2(struct xpc_partition *part)
266 {
267         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
268
269         if (xpc_part_ref(part)) {
270                 xpc_check_for_channel_activity_sn2(part);
271
272                 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
273                     XPC_P_DROPPED_IPI_WAIT_INTERVAL;
274                 add_timer(&part_sn2->dropped_notify_IRQ_timer);
275                 xpc_part_deref(part);
276         }
277 }
278
279 /*
280  * Send an IPI to the remote partition that is associated with the
281  * specified channel.
282  */
283 static void
284 xpc_notify_IRQ_send_sn2(struct xpc_channel *ch, u8 ipi_flag,
285                         char *ipi_flag_string, unsigned long *irq_flags)
286 {
287         struct xpc_partition *part = &xpc_partitions[ch->partid];
288         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
289         enum xp_retval ret;
290
291         if (likely(part->act_state != XPC_P_DEACTIVATING)) {
292                 ret = xpc_IPI_send_sn2(part_sn2->remote_IPI_amo_va,
293                                        (u64)ipi_flag << (ch->number * 8),
294                                        part_sn2->remote_IPI_nasid,
295                                        part_sn2->remote_IPI_phys_cpuid,
296                                        SGI_XPC_NOTIFY);
297                 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
298                         ipi_flag_string, ch->partid, ch->number, ret);
299                 if (unlikely(ret != xpSuccess)) {
300                         if (irq_flags != NULL)
301                                 spin_unlock_irqrestore(&ch->lock, *irq_flags);
302                         XPC_DEACTIVATE_PARTITION(part, ret);
303                         if (irq_flags != NULL)
304                                 spin_lock_irqsave(&ch->lock, *irq_flags);
305                 }
306         }
307 }
308
309 #define XPC_NOTIFY_IRQ_SEND_SN2(_ch, _ipi_f, _irq_f) \
310                 xpc_notify_IRQ_send_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
311
312 /*
313  * Make it look like the remote partition, which is associated with the
314  * specified channel, sent us an IPI. This faked IPI will be handled
315  * by xpc_dropped_notify_IRQ_check_sn2().
316  */
317 static void
318 xpc_notify_IRQ_send_local_sn2(struct xpc_channel *ch, u8 ipi_flag,
319                               char *ipi_flag_string)
320 {
321         struct xpc_partition *part = &xpc_partitions[ch->partid];
322
323         FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_IPI_amo_va->variable),
324                          FETCHOP_OR, ((u64)ipi_flag << (ch->number * 8)));
325         dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
326                 ipi_flag_string, ch->partid, ch->number);
327 }
328
329 #define XPC_NOTIFY_IRQ_SEND_LOCAL_SN2(_ch, _ipi_f) \
330                 xpc_notify_IRQ_send_local_sn2(_ch, _ipi_f, #_ipi_f)
331
332 static void
333 xpc_send_channel_closerequest_sn2(struct xpc_channel *ch,
334                                   unsigned long *irq_flags)
335 {
336         struct xpc_openclose_args *args = ch->local_openclose_args;
337
338         args->reason = ch->reason;
339         XPC_NOTIFY_IRQ_SEND_SN2(ch, XPC_IPI_CLOSEREQUEST, irq_flags);
340 }
341
342 static void
343 xpc_send_channel_closereply_sn2(struct xpc_channel *ch,
344                                 unsigned long *irq_flags)
345 {
346         XPC_NOTIFY_IRQ_SEND_SN2(ch, XPC_IPI_CLOSEREPLY, irq_flags);
347 }
348
349 static void
350 xpc_send_channel_openrequest_sn2(struct xpc_channel *ch,
351                                  unsigned long *irq_flags)
352 {
353         struct xpc_openclose_args *args = ch->local_openclose_args;
354
355         args->msg_size = ch->msg_size;
356         args->local_nentries = ch->local_nentries;
357         XPC_NOTIFY_IRQ_SEND_SN2(ch, XPC_IPI_OPENREQUEST, irq_flags);
358 }
359
360 static void
361 xpc_send_channel_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
362 {
363         struct xpc_openclose_args *args = ch->local_openclose_args;
364
365         args->remote_nentries = ch->remote_nentries;
366         args->local_nentries = ch->local_nentries;
367         args->local_msgqueue_pa = __pa(ch->local_msgqueue);
368         XPC_NOTIFY_IRQ_SEND_SN2(ch, XPC_IPI_OPENREPLY, irq_flags);
369 }
370
371 static void
372 xpc_send_channel_msgrequest_sn2(struct xpc_channel *ch)
373 {
374         XPC_NOTIFY_IRQ_SEND_SN2(ch, XPC_IPI_MSGREQUEST, NULL);
375 }
376
377 static void
378 xpc_send_channel_local_msgrequest_sn2(struct xpc_channel *ch)
379 {
380         XPC_NOTIFY_IRQ_SEND_LOCAL_SN2(ch, XPC_IPI_MSGREQUEST);
381 }
382
383 /*
384  * This next set of functions are used to keep track of when a partition is
385  * potentially engaged in accessing memory belonging to another partition.
386  */
387
388 static void
389 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
390 {
391         unsigned long irq_flags;
392         AMO_t *amo = (AMO_t *)__va(part->sn.sn2.remote_amos_page_pa +
393                                    (XPC_ENGAGED_PARTITIONS_AMO *
394                                     sizeof(AMO_t)));
395
396         local_irq_save(irq_flags);
397
398         /* set bit corresponding to our partid in remote partition's AMO */
399         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
400                          (1UL << sn_partition_id));
401         /*
402          * We must always use the nofault function regardless of whether we
403          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
404          * didn't, we'd never know that the other partition is down and would
405          * keep sending IPIs and AMOs to it until the heartbeat times out.
406          */
407         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
408                                                                variable),
409                                                      xp_nofault_PIOR_target));
410
411         local_irq_restore(irq_flags);
412 }
413
414 static void
415 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
416 {
417         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
418         unsigned long irq_flags;
419         AMO_t *amo = (AMO_t *)__va(part_sn2->remote_amos_page_pa +
420                                    (XPC_ENGAGED_PARTITIONS_AMO *
421                                     sizeof(AMO_t)));
422
423         local_irq_save(irq_flags);
424
425         /* clear bit corresponding to our partid in remote partition's AMO */
426         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
427                          ~(1UL << sn_partition_id));
428         /*
429          * We must always use the nofault function regardless of whether we
430          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
431          * didn't, we'd never know that the other partition is down and would
432          * keep sending IPIs and AMOs to it until the heartbeat times out.
433          */
434         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
435                                                                variable),
436                                                      xp_nofault_PIOR_target));
437
438         local_irq_restore(irq_flags);
439
440         /*
441          * Send activate IRQ to get other side to see that we've cleared our
442          * bit in their engaged partitions AMO.
443          */
444         xpc_activate_IRQ_send_sn2(part_sn2->remote_amos_page_pa,
445                                   cnodeid_to_nasid(0),
446                                   part_sn2->activate_IRQ_nasid,
447                                   part_sn2->activate_IRQ_phys_cpuid);
448 }
449
450 static int
451 xpc_partition_engaged_sn2(short partid)
452 {
453         AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
454
455         /* our partition's AMO variable ANDed with partid mask */
456         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
457                 (1UL << partid)) != 0;
458 }
459
460 static int
461 xpc_any_partition_engaged_sn2(void)
462 {
463         AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
464
465         /* our partition's AMO variable */
466         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
467 }
468
469 static void
470 xpc_assume_partition_disengaged_sn2(short partid)
471 {
472         AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
473
474         /* clear bit(s) based on partid mask in our partition's AMO */
475         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
476                          ~(1UL << partid));
477 }
478
479 /* original protection values for each node */
480 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
481
482 /*
483  * Change protections to allow AMO operations on non-Shub 1.1 systems.
484  */
485 static enum xp_retval
486 xpc_allow_AMO_ops_sn2(AMO_t *amos_page)
487 {
488         u64 nasid_array = 0;
489         int ret;
490
491         /*
492          * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
493          * collides with memory operations. On those systems we call
494          * xpc_allow_AMO_ops_shub_wars_1_1_sn2() instead.
495          */
496         if (!enable_shub_wars_1_1()) {
497                 ret = sn_change_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE,
498                                            SN_MEMPROT_ACCESS_CLASS_1,
499                                            &nasid_array);
500                 if (ret != 0)
501                         return xpSalError;
502         }
503         return xpSuccess;
504 }
505
506 /*
507  * Change protections to allow AMO operations on Shub 1.1 systems.
508  */
509 static void
510 xpc_allow_AMO_ops_shub_wars_1_1_sn2(void)
511 {
512         int node;
513         int nasid;
514
515         if (!enable_shub_wars_1_1())
516                 return;
517
518         for_each_online_node(node) {
519                 nasid = cnodeid_to_nasid(node);
520                 /* save current protection values */
521                 xpc_prot_vec_sn2[node] =
522                     (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
523                                                   SH1_MD_DQLP_MMR_DIR_PRIVEC0));
524                 /* open up everything */
525                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
526                                              SH1_MD_DQLP_MMR_DIR_PRIVEC0),
527                       -1UL);
528                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
529                                              SH1_MD_DQRP_MMR_DIR_PRIVEC0),
530                       -1UL);
531         }
532 }
533
534 static enum xp_retval
535 xpc_rsvd_page_init_sn2(struct xpc_rsvd_page *rp)
536 {
537         AMO_t *amos_page;
538         int i;
539         int ret;
540
541         xpc_vars = XPC_RP_VARS(rp);
542
543         rp->sn.vars_pa = __pa(xpc_vars);
544
545         /* vars_part array follows immediately after vars */
546         xpc_vars_part = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
547                                                      XPC_RP_VARS_SIZE);
548
549         /*
550          * Before clearing xpc_vars, see if a page of AMOs had been previously
551          * allocated. If not we'll need to allocate one and set permissions
552          * so that cross-partition AMOs are allowed.
553          *
554          * The allocated AMO page needs MCA reporting to remain disabled after
555          * XPC has unloaded.  To make this work, we keep a copy of the pointer
556          * to this page (i.e., amos_page) in the struct xpc_vars structure,
557          * which is pointed to by the reserved page, and re-use that saved copy
558          * on subsequent loads of XPC. This AMO page is never freed, and its
559          * memory protections are never restricted.
560          */
561         amos_page = xpc_vars->amos_page;
562         if (amos_page == NULL) {
563                 amos_page = (AMO_t *)TO_AMO(uncached_alloc_page(0, 1));
564                 if (amos_page == NULL) {
565                         dev_err(xpc_part, "can't allocate page of AMOs\n");
566                         return xpNoMemory;
567                 }
568
569                 /*
570                  * Open up AMO-R/W to cpu.  This is done on Shub 1.1 systems
571                  * when xpc_allow_AMO_ops_shub_wars_1_1_sn2() is called.
572                  */
573                 ret = xpc_allow_AMO_ops_sn2(amos_page);
574                 if (ret != xpSuccess) {
575                         dev_err(xpc_part, "can't allow AMO operations\n");
576                         uncached_free_page(__IA64_UNCACHED_OFFSET |
577                                            TO_PHYS((u64)amos_page), 1);
578                         return ret;
579                 }
580         }
581
582         /* clear xpc_vars */
583         memset(xpc_vars, 0, sizeof(struct xpc_vars_sn2));
584
585         xpc_vars->version = XPC_V_VERSION;
586         xpc_vars->activate_IRQ_nasid = cpuid_to_nasid(0);
587         xpc_vars->activate_IRQ_phys_cpuid = cpu_physical_id(0);
588         xpc_vars->vars_part_pa = __pa(xpc_vars_part);
589         xpc_vars->amos_page_pa = ia64_tpa((u64)amos_page);
590         xpc_vars->amos_page = amos_page;        /* save for next load of XPC */
591
592         /* clear xpc_vars_part */
593         memset((u64 *)xpc_vars_part, 0, sizeof(struct xpc_vars_part_sn2) *
594                xp_max_npartitions);
595
596         /* initialize the activate IRQ related AMO variables */
597         for (i = 0; i < xp_nasid_mask_words; i++)
598                 (void)xpc_IPI_init_sn2(XPC_ACTIVATE_IRQ_AMOS + i);
599
600         /* initialize the engaged remote partitions related AMO variables */
601         (void)xpc_IPI_init_sn2(XPC_ENGAGED_PARTITIONS_AMO);
602         (void)xpc_IPI_init_sn2(XPC_DEACTIVATE_REQUEST_AMO);
603
604         return xpSuccess;
605 }
606
607 static void
608 xpc_increment_heartbeat_sn2(void)
609 {
610         xpc_vars->heartbeat++;
611 }
612
613 static void
614 xpc_offline_heartbeat_sn2(void)
615 {
616         xpc_increment_heartbeat_sn2();
617         xpc_vars->heartbeat_offline = 1;
618 }
619
620 static void
621 xpc_online_heartbeat_sn2(void)
622 {
623         xpc_increment_heartbeat_sn2();
624         xpc_vars->heartbeat_offline = 0;
625 }
626
627 static void
628 xpc_heartbeat_init_sn2(void)
629 {
630         DBUG_ON(xpc_vars == NULL);
631
632         bitmap_zero(xpc_vars->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
633         xpc_heartbeating_to_mask = &xpc_vars->heartbeating_to_mask[0];
634         xpc_online_heartbeat_sn2();
635 }
636
637 static void
638 xpc_heartbeat_exit_sn2(void)
639 {
640         xpc_offline_heartbeat_sn2();
641 }
642
643 /*
644  * At periodic intervals, scan through all active partitions and ensure
645  * their heartbeat is still active.  If not, the partition is deactivated.
646  */
647 static void
648 xpc_check_remote_hb_sn2(void)
649 {
650         struct xpc_vars_sn2 *remote_vars;
651         struct xpc_partition *part;
652         short partid;
653         enum xp_retval ret;
654
655         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer;
656
657         for (partid = 0; partid < xp_max_npartitions; partid++) {
658
659                 if (xpc_exiting)
660                         break;
661
662                 if (partid == sn_partition_id)
663                         continue;
664
665                 part = &xpc_partitions[partid];
666
667                 if (part->act_state == XPC_P_INACTIVE ||
668                     part->act_state == XPC_P_DEACTIVATING) {
669                         continue;
670                 }
671
672                 /* pull the remote_hb cache line */
673                 ret = xp_remote_memcpy(remote_vars,
674                                        (void *)part->sn.sn2.remote_vars_pa,
675                                        XPC_RP_VARS_SIZE);
676                 if (ret != xpSuccess) {
677                         XPC_DEACTIVATE_PARTITION(part, ret);
678                         continue;
679                 }
680
681                 dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat"
682                         " = %ld, heartbeat_offline = %ld, HB_mask[0] = 0x%lx\n",
683                         partid, remote_vars->heartbeat, part->last_heartbeat,
684                         remote_vars->heartbeat_offline,
685                         remote_vars->heartbeating_to_mask[0]);
686
687                 if (((remote_vars->heartbeat == part->last_heartbeat) &&
688                      (remote_vars->heartbeat_offline == 0)) ||
689                     !xpc_hb_allowed(sn_partition_id,
690                                     &remote_vars->heartbeating_to_mask)) {
691
692                         XPC_DEACTIVATE_PARTITION(part, xpNoHeartbeat);
693                         continue;
694                 }
695
696                 part->last_heartbeat = remote_vars->heartbeat;
697         }
698 }
699
700 /*
701  * Get a copy of the remote partition's XPC variables from the reserved page.
702  *
703  * remote_vars points to a buffer that is cacheline aligned for BTE copies and
704  * assumed to be of size XPC_RP_VARS_SIZE.
705  */
706 static enum xp_retval
707 xpc_get_remote_vars_sn2(u64 remote_vars_pa, struct xpc_vars_sn2 *remote_vars)
708 {
709         enum xp_retval ret;
710
711         if (remote_vars_pa == 0)
712                 return xpVarsNotSet;
713
714         /* pull over the cross partition variables */
715         ret = xp_remote_memcpy(remote_vars, (void *)remote_vars_pa,
716                                XPC_RP_VARS_SIZE);
717         if (ret != xpSuccess)
718                 return ret;
719
720         if (XPC_VERSION_MAJOR(remote_vars->version) !=
721             XPC_VERSION_MAJOR(XPC_V_VERSION)) {
722                 return xpBadVersion;
723         }
724
725         return xpSuccess;
726 }
727
728 static void
729 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
730                                      u64 remote_rp_pa, int nasid)
731 {
732         xpc_activate_IRQ_send_local_sn2(nasid);
733 }
734
735 static void
736 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
737 {
738         xpc_activate_IRQ_send_local_sn2(part->sn.sn2.activate_IRQ_nasid);
739 }
740
741 static void
742 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
743 {
744         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
745         unsigned long irq_flags;
746         AMO_t *amo = (AMO_t *)__va(part_sn2->remote_amos_page_pa +
747                                   (XPC_DEACTIVATE_REQUEST_AMO * sizeof(AMO_t)));
748
749         local_irq_save(irq_flags);
750
751         /* set bit corresponding to our partid in remote partition's AMO */
752         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
753                          (1UL << sn_partition_id));
754         /*
755          * We must always use the nofault function regardless of whether we
756          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
757          * didn't, we'd never know that the other partition is down and would
758          * keep sending IPIs and AMOs to it until the heartbeat times out.
759          */
760         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
761                                                                variable),
762                                                      xp_nofault_PIOR_target));
763
764         local_irq_restore(irq_flags);
765
766         /*
767          * Send activate IRQ to get other side to see that we've set our
768          * bit in their deactivate request AMO.
769          */
770         xpc_activate_IRQ_send_sn2(part_sn2->remote_amos_page_pa,
771                                   cnodeid_to_nasid(0),
772                                   part_sn2->activate_IRQ_nasid,
773                                   part_sn2->activate_IRQ_phys_cpuid);
774 }
775
776 static void
777 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
778 {
779         unsigned long irq_flags;
780         AMO_t *amo = (AMO_t *)__va(part->sn.sn2.remote_amos_page_pa +
781                                   (XPC_DEACTIVATE_REQUEST_AMO * sizeof(AMO_t)));
782
783         local_irq_save(irq_flags);
784
785         /* clear bit corresponding to our partid in remote partition's AMO */
786         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
787                          ~(1UL << sn_partition_id));
788         /*
789          * We must always use the nofault function regardless of whether we
790          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
791          * didn't, we'd never know that the other partition is down and would
792          * keep sending IPIs and AMOs to it until the heartbeat times out.
793          */
794         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
795                                                                variable),
796                                                      xp_nofault_PIOR_target));
797
798         local_irq_restore(irq_flags);
799 }
800
801 static int
802 xpc_partition_deactivation_requested_sn2(short partid)
803 {
804         AMO_t *amo = xpc_vars->amos_page + XPC_DEACTIVATE_REQUEST_AMO;
805
806         /* our partition's AMO variable ANDed with partid mask */
807         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
808                 (1UL << partid)) != 0;
809 }
810
811 /*
812  * Update the remote partition's info.
813  */
814 static void
815 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
816                               unsigned long *remote_rp_stamp, u64 remote_rp_pa,
817                               u64 remote_vars_pa,
818                               struct xpc_vars_sn2 *remote_vars)
819 {
820         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
821
822         part->remote_rp_version = remote_rp_version;
823         dev_dbg(xpc_part, "  remote_rp_version = 0x%016x\n",
824                 part->remote_rp_version);
825
826         part->remote_rp_stamp = *remote_rp_stamp;
827         dev_dbg(xpc_part, "  remote_rp_stamp = 0x%016lx\n",
828                 part->remote_rp_stamp);
829
830         part->remote_rp_pa = remote_rp_pa;
831         dev_dbg(xpc_part, "  remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
832
833         part_sn2->remote_vars_pa = remote_vars_pa;
834         dev_dbg(xpc_part, "  remote_vars_pa = 0x%016lx\n",
835                 part_sn2->remote_vars_pa);
836
837         part->last_heartbeat = remote_vars->heartbeat;
838         dev_dbg(xpc_part, "  last_heartbeat = 0x%016lx\n",
839                 part->last_heartbeat);
840
841         part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
842         dev_dbg(xpc_part, "  remote_vars_part_pa = 0x%016lx\n",
843                 part_sn2->remote_vars_part_pa);
844
845         part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
846         dev_dbg(xpc_part, "  activate_IRQ_nasid = 0x%x\n",
847                 part_sn2->activate_IRQ_nasid);
848
849         part_sn2->activate_IRQ_phys_cpuid =
850             remote_vars->activate_IRQ_phys_cpuid;
851         dev_dbg(xpc_part, "  activate_IRQ_phys_cpuid = 0x%x\n",
852                 part_sn2->activate_IRQ_phys_cpuid);
853
854         part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
855         dev_dbg(xpc_part, "  remote_amos_page_pa = 0x%lx\n",
856                 part_sn2->remote_amos_page_pa);
857
858         part_sn2->remote_vars_version = remote_vars->version;
859         dev_dbg(xpc_part, "  remote_vars_version = 0x%x\n",
860                 part_sn2->remote_vars_version);
861 }
862
863 /*
864  * Prior code has determined the nasid which generated an IPI.  Inspect
865  * that nasid to determine if its partition needs to be activated or
866  * deactivated.
867  *
868  * A partition is consider "awaiting activation" if our partition
869  * flags indicate it is not active and it has a heartbeat.  A
870  * partition is considered "awaiting deactivation" if our partition
871  * flags indicate it is active but it has no heartbeat or it is not
872  * sending its heartbeat to us.
873  *
874  * To determine the heartbeat, the remote nasid must have a properly
875  * initialized reserved page.
876  */
877 static void
878 xpc_identify_activate_IRQ_req_sn2(int nasid)
879 {
880         struct xpc_rsvd_page *remote_rp;
881         struct xpc_vars_sn2 *remote_vars;
882         u64 remote_rp_pa;
883         u64 remote_vars_pa;
884         int remote_rp_version;
885         int reactivate = 0;
886         unsigned long remote_rp_stamp = 0;
887         short partid;
888         struct xpc_partition *part;
889         struct xpc_partition_sn2 *part_sn2;
890         enum xp_retval ret;
891
892         /* pull over the reserved page structure */
893
894         remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer;
895
896         ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
897         if (ret != xpSuccess) {
898                 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
899                          "which sent interrupt, reason=%d\n", nasid, ret);
900                 return;
901         }
902
903         remote_vars_pa = remote_rp->sn.vars_pa;
904         remote_rp_version = remote_rp->version;
905         remote_rp_stamp = remote_rp->stamp;
906
907         partid = remote_rp->SAL_partid;
908         part = &xpc_partitions[partid];
909         part_sn2 = &part->sn.sn2;
910
911         /* pull over the cross partition variables */
912
913         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer;
914
915         ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
916         if (ret != xpSuccess) {
917                 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
918                          "which sent interrupt, reason=%d\n", nasid, ret);
919
920                 XPC_DEACTIVATE_PARTITION(part, ret);
921                 return;
922         }
923
924         part->activate_IRQ_rcvd++;
925
926         dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
927                 "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
928                 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
929
930         if (xpc_partition_disengaged(part) &&
931             part->act_state == XPC_P_INACTIVE) {
932
933                 xpc_update_partition_info_sn2(part, remote_rp_version,
934                                               &remote_rp_stamp, remote_rp_pa,
935                                               remote_vars_pa, remote_vars);
936
937                 if (xpc_partition_deactivation_requested_sn2(partid)) {
938                         /*
939                          * Other side is waiting on us to deactivate even though
940                          * we already have.
941                          */
942                         return;
943                 }
944
945                 xpc_activate_partition(part);
946                 return;
947         }
948
949         DBUG_ON(part->remote_rp_version == 0);
950         DBUG_ON(part_sn2->remote_vars_version == 0);
951
952         if (remote_rp_stamp != part->remote_rp_stamp) {
953
954                 /* the other side rebooted */
955
956                 DBUG_ON(xpc_partition_engaged_sn2(partid));
957                 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
958
959                 xpc_update_partition_info_sn2(part, remote_rp_version,
960                                               &remote_rp_stamp, remote_rp_pa,
961                                               remote_vars_pa, remote_vars);
962                 reactivate = 1;
963         }
964
965         if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
966                 /* still waiting on other side to disengage from us */
967                 return;
968         }
969
970         if (reactivate)
971                 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
972         else if (xpc_partition_deactivation_requested_sn2(partid))
973                 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
974 }
975
976 /*
977  * Loop through the activation AMO variables and process any bits
978  * which are set.  Each bit indicates a nasid sending a partition
979  * activation or deactivation request.
980  *
981  * Return #of IRQs detected.
982  */
983 int
984 xpc_identify_activate_IRQ_sender_sn2(void)
985 {
986         int word, bit;
987         u64 nasid_mask;
988         u64 nasid;              /* remote nasid */
989         int n_IRQs_detected = 0;
990         AMO_t *act_amos;
991
992         act_amos = xpc_vars->amos_page + XPC_ACTIVATE_IRQ_AMOS;
993
994         /* scan through act AMO variable looking for non-zero entries */
995         for (word = 0; word < xp_nasid_mask_words; word++) {
996
997                 if (xpc_exiting)
998                         break;
999
1000                 nasid_mask = xpc_IPI_receive_sn2(&act_amos[word]);
1001                 if (nasid_mask == 0) {
1002                         /* no IRQs from nasids in this variable */
1003                         continue;
1004                 }
1005
1006                 dev_dbg(xpc_part, "AMO[%d] gave back 0x%lx\n", word,
1007                         nasid_mask);
1008
1009                 /*
1010                  * If this nasid has been added to the machine since
1011                  * our partition was reset, this will retain the
1012                  * remote nasid in our reserved pages machine mask.
1013                  * This is used in the event of module reload.
1014                  */
1015                 xpc_mach_nasids[word] |= nasid_mask;
1016
1017                 /* locate the nasid(s) which sent interrupts */
1018
1019                 for (bit = 0; bit < (8 * sizeof(u64)); bit++) {
1020                         if (nasid_mask & (1UL << bit)) {
1021                                 n_IRQs_detected++;
1022                                 nasid = XPC_NASID_FROM_W_B(word, bit);
1023                                 dev_dbg(xpc_part, "interrupt from nasid %ld\n",
1024                                         nasid);
1025                                 xpc_identify_activate_IRQ_req_sn2(nasid);
1026                         }
1027                 }
1028         }
1029         return n_IRQs_detected;
1030 }
1031
1032 static void
1033 xpc_process_activate_IRQ_rcvd_sn2(int n_IRQs_expected)
1034 {
1035         int n_IRQs_detected;
1036
1037         n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1038         if (n_IRQs_detected < n_IRQs_expected) {
1039                 /* retry once to help avoid missing AMO */
1040                 (void)xpc_identify_activate_IRQ_sender_sn2();
1041         }
1042 }
1043
1044 /*
1045  * Setup the infrastructure necessary to support XPartition Communication
1046  * between the specified remote partition and the local one.
1047  */
1048 static enum xp_retval
1049 xpc_setup_infrastructure_sn2(struct xpc_partition *part)
1050 {
1051         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1052         enum xp_retval retval;
1053         int ret;
1054         int cpuid;
1055         int ch_number;
1056         struct xpc_channel *ch;
1057         struct timer_list *timer;
1058         short partid = XPC_PARTID(part);
1059
1060         /*
1061          * Allocate all of the channel structures as a contiguous chunk of
1062          * memory.
1063          */
1064         DBUG_ON(part->channels != NULL);
1065         part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
1066                                  GFP_KERNEL);
1067         if (part->channels == NULL) {
1068                 dev_err(xpc_chan, "can't get memory for channels\n");
1069                 return xpNoMemory;
1070         }
1071
1072         /* allocate all the required GET/PUT values */
1073
1074         part_sn2->local_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE,
1075                                                             GFP_KERNEL,
1076                                                             &part_sn2->
1077                                                             local_GPs_base);
1078         if (part_sn2->local_GPs == NULL) {
1079                 dev_err(xpc_chan, "can't get memory for local get/put "
1080                         "values\n");
1081                 retval = xpNoMemory;
1082                 goto out_1;
1083         }
1084
1085         part_sn2->remote_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE,
1086                                                              GFP_KERNEL,
1087                                                              &part_sn2->
1088                                                              remote_GPs_base);
1089         if (part_sn2->remote_GPs == NULL) {
1090                 dev_err(xpc_chan, "can't get memory for remote get/put "
1091                         "values\n");
1092                 retval = xpNoMemory;
1093                 goto out_2;
1094         }
1095
1096         part_sn2->remote_GPs_pa = 0;
1097
1098         /* allocate all the required open and close args */
1099
1100         part->local_openclose_args =
1101             xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL,
1102                                           &part->local_openclose_args_base);
1103         if (part->local_openclose_args == NULL) {
1104                 dev_err(xpc_chan, "can't get memory for local connect args\n");
1105                 retval = xpNoMemory;
1106                 goto out_3;
1107         }
1108
1109         part->remote_openclose_args =
1110             xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL,
1111                                           &part->remote_openclose_args_base);
1112         if (part->remote_openclose_args == NULL) {
1113                 dev_err(xpc_chan, "can't get memory for remote connect args\n");
1114                 retval = xpNoMemory;
1115                 goto out_4;
1116         }
1117
1118         part_sn2->remote_openclose_args_pa = 0;
1119
1120         part_sn2->local_IPI_amo_va = xpc_IPI_init_sn2(partid);
1121         part->local_IPI_amo = 0;
1122         spin_lock_init(&part->IPI_lock);
1123
1124         part_sn2->remote_IPI_nasid = 0;
1125         part_sn2->remote_IPI_phys_cpuid = 0;
1126         part_sn2->remote_IPI_amo_va = NULL;
1127
1128         atomic_set(&part->channel_mgr_requests, 1);
1129         init_waitqueue_head(&part->channel_mgr_wq);
1130
1131         sprintf(part_sn2->IPI_owner, "xpc%02d", partid);
1132         ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1133                           IRQF_SHARED, part_sn2->IPI_owner,
1134                           (void *)(u64)partid);
1135         if (ret != 0) {
1136                 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1137                         "errno=%d\n", -ret);
1138                 retval = xpLackOfResources;
1139                 goto out_5;
1140         }
1141
1142         /* Setup a timer to check for dropped IPIs */
1143         timer = &part_sn2->dropped_notify_IRQ_timer;
1144         init_timer(timer);
1145         timer->function =
1146             (void (*)(unsigned long))xpc_dropped_notify_IRQ_check_sn2;
1147         timer->data = (unsigned long)part;
1148         timer->expires = jiffies + XPC_P_DROPPED_IPI_WAIT_INTERVAL;
1149         add_timer(timer);
1150
1151         part->nchannels = XPC_MAX_NCHANNELS;
1152
1153         atomic_set(&part->nchannels_active, 0);
1154         atomic_set(&part->nchannels_engaged, 0);
1155
1156         for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1157                 ch = &part->channels[ch_number];
1158
1159                 ch->partid = partid;
1160                 ch->number = ch_number;
1161                 ch->flags = XPC_C_DISCONNECTED;
1162
1163                 ch->sn.sn2.local_GP = &part_sn2->local_GPs[ch_number];
1164                 ch->local_openclose_args =
1165                     &part->local_openclose_args[ch_number];
1166
1167                 atomic_set(&ch->kthreads_assigned, 0);
1168                 atomic_set(&ch->kthreads_idle, 0);
1169                 atomic_set(&ch->kthreads_active, 0);
1170
1171                 atomic_set(&ch->references, 0);
1172                 atomic_set(&ch->n_to_notify, 0);
1173
1174                 spin_lock_init(&ch->lock);
1175                 mutex_init(&ch->sn.sn2.msg_to_pull_mutex);
1176                 init_completion(&ch->wdisconnect_wait);
1177
1178                 atomic_set(&ch->n_on_msg_allocate_wq, 0);
1179                 init_waitqueue_head(&ch->msg_allocate_wq);
1180                 init_waitqueue_head(&ch->idle_wq);
1181         }
1182
1183         /*
1184          * With the setting of the partition setup_state to XPC_P_SETUP, we're
1185          * declaring that this partition is ready to go.
1186          */
1187         part->setup_state = XPC_P_SETUP;
1188
1189         /*
1190          * Setup the per partition specific variables required by the
1191          * remote partition to establish channel connections with us.
1192          *
1193          * The setting of the magic # indicates that these per partition
1194          * specific variables are ready to be used.
1195          */
1196         xpc_vars_part[partid].GPs_pa = __pa(part_sn2->local_GPs);
1197         xpc_vars_part[partid].openclose_args_pa =
1198             __pa(part->local_openclose_args);
1199         xpc_vars_part[partid].IPI_amo_pa = __pa(part_sn2->local_IPI_amo_va);
1200         cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1201         xpc_vars_part[partid].IPI_nasid = cpuid_to_nasid(cpuid);
1202         xpc_vars_part[partid].IPI_phys_cpuid = cpu_physical_id(cpuid);
1203         xpc_vars_part[partid].nchannels = part->nchannels;
1204         xpc_vars_part[partid].magic = XPC_VP_MAGIC1;
1205
1206         return xpSuccess;
1207
1208         /* setup of infrastructure failed */
1209 out_5:
1210         kfree(part->remote_openclose_args_base);
1211         part->remote_openclose_args = NULL;
1212 out_4:
1213         kfree(part->local_openclose_args_base);
1214         part->local_openclose_args = NULL;
1215 out_3:
1216         kfree(part_sn2->remote_GPs_base);
1217         part_sn2->remote_GPs = NULL;
1218 out_2:
1219         kfree(part_sn2->local_GPs_base);
1220         part_sn2->local_GPs = NULL;
1221 out_1:
1222         kfree(part->channels);
1223         part->channels = NULL;
1224         return retval;
1225 }
1226
1227 /*
1228  * Teardown the infrastructure necessary to support XPartition Communication
1229  * between the specified remote partition and the local one.
1230  */
1231 static void
1232 xpc_teardown_infrastructure_sn2(struct xpc_partition *part)
1233 {
1234         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1235         short partid = XPC_PARTID(part);
1236
1237         /*
1238          * We start off by making this partition inaccessible to local
1239          * processes by marking it as no longer setup. Then we make it
1240          * inaccessible to remote processes by clearing the XPC per partition
1241          * specific variable's magic # (which indicates that these variables
1242          * are no longer valid) and by ignoring all XPC notify IPIs sent to
1243          * this partition.
1244          */
1245
1246         DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
1247         DBUG_ON(atomic_read(&part->nchannels_active) != 0);
1248         DBUG_ON(part->setup_state != XPC_P_SETUP);
1249         part->setup_state = XPC_P_WTEARDOWN;
1250
1251         xpc_vars_part[partid].magic = 0;
1252
1253         free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1254
1255         /*
1256          * Before proceeding with the teardown we have to wait until all
1257          * existing references cease.
1258          */
1259         wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
1260
1261         /* now we can begin tearing down the infrastructure */
1262
1263         part->setup_state = XPC_P_TORNDOWN;
1264
1265         /* in case we've still got outstanding timers registered... */
1266         del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1267
1268         kfree(part->remote_openclose_args_base);
1269         part->remote_openclose_args = NULL;
1270         kfree(part->local_openclose_args_base);
1271         part->local_openclose_args = NULL;
1272         kfree(part_sn2->remote_GPs_base);
1273         part_sn2->remote_GPs = NULL;
1274         kfree(part_sn2->local_GPs_base);
1275         part_sn2->local_GPs = NULL;
1276         kfree(part->channels);
1277         part->channels = NULL;
1278         part_sn2->local_IPI_amo_va = NULL;
1279 }
1280
1281 /*
1282  * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1283  * (or multiple cachelines) from a remote partition.
1284  *
1285  * src must be a cacheline aligned physical address on the remote partition.
1286  * dst must be a cacheline aligned virtual address on this partition.
1287  * cnt must be cacheline sized
1288  */
1289 /* >>> Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1290 static enum xp_retval
1291 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1292                                const void *src, size_t cnt)
1293 {
1294         enum xp_retval ret;
1295
1296         DBUG_ON((u64)src != L1_CACHE_ALIGN((u64)src));
1297         DBUG_ON((u64)dst != L1_CACHE_ALIGN((u64)dst));
1298         DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1299
1300         if (part->act_state == XPC_P_DEACTIVATING)
1301                 return part->reason;
1302
1303         ret = xp_remote_memcpy(dst, src, cnt);
1304         if (ret != xpSuccess) {
1305                 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1306                         " ret=%d\n", XPC_PARTID(part), ret);
1307         }
1308         return ret;
1309 }
1310
1311 /*
1312  * Pull the remote per partition specific variables from the specified
1313  * partition.
1314  */
1315 static enum xp_retval
1316 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1317 {
1318         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1319         u8 buffer[L1_CACHE_BYTES * 2];
1320         struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1321             (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1322         struct xpc_vars_part_sn2 *pulled_entry;
1323         u64 remote_entry_cacheline_pa, remote_entry_pa;
1324         short partid = XPC_PARTID(part);
1325         enum xp_retval ret;
1326
1327         /* pull the cacheline that contains the variables we're interested in */
1328
1329         DBUG_ON(part_sn2->remote_vars_part_pa !=
1330                 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1331         DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1332
1333         remote_entry_pa = part_sn2->remote_vars_part_pa +
1334             sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1335
1336         remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1337
1338         pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1339                                                     + (remote_entry_pa &
1340                                                     (L1_CACHE_BYTES - 1)));
1341
1342         ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1343                                              (void *)remote_entry_cacheline_pa,
1344                                              L1_CACHE_BYTES);
1345         if (ret != xpSuccess) {
1346                 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1347                         "partition %d, ret=%d\n", partid, ret);
1348                 return ret;
1349         }
1350
1351         /* see if they've been set up yet */
1352
1353         if (pulled_entry->magic != XPC_VP_MAGIC1 &&
1354             pulled_entry->magic != XPC_VP_MAGIC2) {
1355
1356                 if (pulled_entry->magic != 0) {
1357                         dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1358                                 "partition %d has bad magic value (=0x%lx)\n",
1359                                 partid, sn_partition_id, pulled_entry->magic);
1360                         return xpBadMagic;
1361                 }
1362
1363                 /* they've not been initialized yet */
1364                 return xpRetry;
1365         }
1366
1367         if (xpc_vars_part[partid].magic == XPC_VP_MAGIC1) {
1368
1369                 /* validate the variables */
1370
1371                 if (pulled_entry->GPs_pa == 0 ||
1372                     pulled_entry->openclose_args_pa == 0 ||
1373                     pulled_entry->IPI_amo_pa == 0) {
1374
1375                         dev_err(xpc_chan, "partition %d's XPC vars_part for "
1376                                 "partition %d are not valid\n", partid,
1377                                 sn_partition_id);
1378                         return xpInvalidAddress;
1379                 }
1380
1381                 /* the variables we imported look to be valid */
1382
1383                 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1384                 part_sn2->remote_openclose_args_pa =
1385                     pulled_entry->openclose_args_pa;
1386                 part_sn2->remote_IPI_amo_va =
1387                     (AMO_t *)__va(pulled_entry->IPI_amo_pa);
1388                 part_sn2->remote_IPI_nasid = pulled_entry->IPI_nasid;
1389                 part_sn2->remote_IPI_phys_cpuid = pulled_entry->IPI_phys_cpuid;
1390
1391                 if (part->nchannels > pulled_entry->nchannels)
1392                         part->nchannels = pulled_entry->nchannels;
1393
1394                 /* let the other side know that we've pulled their variables */
1395
1396                 xpc_vars_part[partid].magic = XPC_VP_MAGIC2;
1397         }
1398
1399         if (pulled_entry->magic == XPC_VP_MAGIC1)
1400                 return xpRetry;
1401
1402         return xpSuccess;
1403 }
1404
1405 /*
1406  * Establish first contact with the remote partititon. This involves pulling
1407  * the XPC per partition variables from the remote partition and waiting for
1408  * the remote partition to pull ours.
1409  */
1410 static enum xp_retval
1411 xpc_make_first_contact_sn2(struct xpc_partition *part)
1412 {
1413         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1414         enum xp_retval ret;
1415
1416         /*
1417          * Register the remote partition's AMOs with SAL so it can handle
1418          * and cleanup errors within that address range should the remote
1419          * partition go down. We don't unregister this range because it is
1420          * difficult to tell when outstanding writes to the remote partition
1421          * are finished and thus when it is safe to unregister. This should
1422          * not result in wasted space in the SAL xp_addr_region table because
1423          * we should get the same page for remote_amos_page_pa after module
1424          * reloads and system reboots.
1425          */
1426         if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1427                                        PAGE_SIZE, 1) < 0) {
1428                 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1429                          "xp_addr region\n", XPC_PARTID(part));
1430
1431                 ret = xpPhysAddrRegFailed;
1432                 XPC_DEACTIVATE_PARTITION(part, ret);
1433                 return ret;
1434         }
1435
1436         /*
1437          * Send activate IRQ to get other side to activate if they've not
1438          * already begun to do so.
1439          */
1440         xpc_activate_IRQ_send_sn2(part_sn2->remote_amos_page_pa,
1441                                   cnodeid_to_nasid(0),
1442                                   part_sn2->activate_IRQ_nasid,
1443                                   part_sn2->activate_IRQ_phys_cpuid);
1444
1445         while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1446                 if (ret != xpRetry) {
1447                         XPC_DEACTIVATE_PARTITION(part, ret);
1448                         return ret;
1449                 }
1450
1451                 dev_dbg(xpc_part, "waiting to make first contact with "
1452                         "partition %d\n", XPC_PARTID(part));
1453
1454                 /* wait a 1/4 of a second or so */
1455                 (void)msleep_interruptible(250);
1456
1457                 if (part->act_state == XPC_P_DEACTIVATING)
1458                         return part->reason;
1459         }
1460
1461         return xpSuccess;
1462 }
1463
1464 /*
1465  * Get the IPI flags and pull the openclose args and/or remote GPs as needed.
1466  */
1467 static u64
1468 xpc_get_IPI_flags_sn2(struct xpc_partition *part)
1469 {
1470         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1471         unsigned long irq_flags;
1472         u64 IPI_amo;
1473         enum xp_retval ret;
1474
1475         /*
1476          * See if there are any IPI flags to be handled.
1477          */
1478
1479         spin_lock_irqsave(&part->IPI_lock, irq_flags);
1480         IPI_amo = part->local_IPI_amo;
1481         if (IPI_amo != 0)
1482                 part->local_IPI_amo = 0;
1483
1484         spin_unlock_irqrestore(&part->IPI_lock, irq_flags);
1485
1486         if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_amo)) {
1487                 ret = xpc_pull_remote_cachelines_sn2(part, part->
1488                                                      remote_openclose_args,
1489                                                      (void *)part_sn2->
1490                                                      remote_openclose_args_pa,
1491                                                      XPC_OPENCLOSE_ARGS_SIZE);
1492                 if (ret != xpSuccess) {
1493                         XPC_DEACTIVATE_PARTITION(part, ret);
1494
1495                         dev_dbg(xpc_chan, "failed to pull openclose args from "
1496                                 "partition %d, ret=%d\n", XPC_PARTID(part),
1497                                 ret);
1498
1499                         /* don't bother processing IPIs anymore */
1500                         IPI_amo = 0;
1501                 }
1502         }
1503
1504         if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_amo)) {
1505                 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1506                                                 (void *)part_sn2->remote_GPs_pa,
1507                                                      XPC_GP_SIZE);
1508                 if (ret != xpSuccess) {
1509                         XPC_DEACTIVATE_PARTITION(part, ret);
1510
1511                         dev_dbg(xpc_chan, "failed to pull GPs from partition "
1512                                 "%d, ret=%d\n", XPC_PARTID(part), ret);
1513
1514                         /* don't bother processing IPIs anymore */
1515                         IPI_amo = 0;
1516                 }
1517         }
1518
1519         return IPI_amo;
1520 }
1521
1522 /*
1523  * Notify those who wanted to be notified upon delivery of their message.
1524  */
1525 static void
1526 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1527 {
1528         struct xpc_notify *notify;
1529         u8 notify_type;
1530         s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1531
1532         while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1533
1534                 notify = &ch->notify_queue[get % ch->local_nentries];
1535
1536                 /*
1537                  * See if the notify entry indicates it was associated with
1538                  * a message who's sender wants to be notified. It is possible
1539                  * that it is, but someone else is doing or has done the
1540                  * notification.
1541                  */
1542                 notify_type = notify->type;
1543                 if (notify_type == 0 ||
1544                     cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1545                         continue;
1546                 }
1547
1548                 DBUG_ON(notify_type != XPC_N_CALL);
1549
1550                 atomic_dec(&ch->n_to_notify);
1551
1552                 if (notify->func != NULL) {
1553                         dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, "
1554                                 "msg_number=%ld, partid=%d, channel=%d\n",
1555                                 (void *)notify, get, ch->partid, ch->number);
1556
1557                         notify->func(reason, ch->partid, ch->number,
1558                                      notify->key);
1559
1560                         dev_dbg(xpc_chan, "notify->func() returned, "
1561                                 "notify=0x%p, msg_number=%ld, partid=%d, "
1562                                 "channel=%d\n", (void *)notify, get,
1563                                 ch->partid, ch->number);
1564                 }
1565         }
1566 }
1567
1568 static void
1569 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1570 {
1571         xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1572 }
1573
1574 /*
1575  * Clear some of the msg flags in the local message queue.
1576  */
1577 static inline void
1578 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1579 {
1580         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1581         struct xpc_msg *msg;
1582         s64 get;
1583
1584         get = ch_sn2->w_remote_GP.get;
1585         do {
1586                 msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
1587                                          (get % ch->local_nentries) *
1588                                          ch->msg_size);
1589                 msg->flags = 0;
1590         } while (++get < ch_sn2->remote_GP.get);
1591 }
1592
1593 /*
1594  * Clear some of the msg flags in the remote message queue.
1595  */
1596 static inline void
1597 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1598 {
1599         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1600         struct xpc_msg *msg;
1601         s64 put;
1602
1603         put = ch_sn2->w_remote_GP.put;
1604         do {
1605                 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
1606                                          (put % ch->remote_nentries) *
1607                                          ch->msg_size);
1608                 msg->flags = 0;
1609         } while (++put < ch_sn2->remote_GP.put);
1610 }
1611
1612 static void
1613 xpc_process_msg_IPI_sn2(struct xpc_partition *part, int ch_number)
1614 {
1615         struct xpc_channel *ch = &part->channels[ch_number];
1616         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1617         int nmsgs_sent;
1618
1619         ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1620
1621         /* See what, if anything, has changed for each connected channel */
1622
1623         xpc_msgqueue_ref(ch);
1624
1625         if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1626             ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1627                 /* nothing changed since GPs were last pulled */
1628                 xpc_msgqueue_deref(ch);
1629                 return;
1630         }
1631
1632         if (!(ch->flags & XPC_C_CONNECTED)) {
1633                 xpc_msgqueue_deref(ch);
1634                 return;
1635         }
1636
1637         /*
1638          * First check to see if messages recently sent by us have been
1639          * received by the other side. (The remote GET value will have
1640          * changed since we last looked at it.)
1641          */
1642
1643         if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1644
1645                 /*
1646                  * We need to notify any senders that want to be notified
1647                  * that their sent messages have been received by their
1648                  * intended recipients. We need to do this before updating
1649                  * w_remote_GP.get so that we don't allocate the same message
1650                  * queue entries prematurely (see xpc_allocate_msg()).
1651                  */
1652                 if (atomic_read(&ch->n_to_notify) > 0) {
1653                         /*
1654                          * Notify senders that messages sent have been
1655                          * received and delivered by the other side.
1656                          */
1657                         xpc_notify_senders_sn2(ch, xpMsgDelivered,
1658                                                ch_sn2->remote_GP.get);
1659                 }
1660
1661                 /*
1662                  * Clear msg->flags in previously sent messages, so that
1663                  * they're ready for xpc_allocate_msg().
1664                  */
1665                 xpc_clear_local_msgqueue_flags_sn2(ch);
1666
1667                 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1668
1669                 dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
1670                         "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1671                         ch->number);
1672
1673                 /*
1674                  * If anyone was waiting for message queue entries to become
1675                  * available, wake them up.
1676                  */
1677                 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1678                         wake_up(&ch->msg_allocate_wq);
1679         }
1680
1681         /*
1682          * Now check for newly sent messages by the other side. (The remote
1683          * PUT value will have changed since we last looked at it.)
1684          */
1685
1686         if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1687                 /*
1688                  * Clear msg->flags in previously received messages, so that
1689                  * they're ready for xpc_get_deliverable_msg().
1690                  */
1691                 xpc_clear_remote_msgqueue_flags_sn2(ch);
1692
1693                 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1694
1695                 dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
1696                         "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1697                         ch->number);
1698
1699                 nmsgs_sent = ch_sn2->w_remote_GP.put - ch_sn2->w_local_GP.get;
1700                 if (nmsgs_sent > 0) {
1701                         dev_dbg(xpc_chan, "msgs waiting to be copied and "
1702                                 "delivered=%d, partid=%d, channel=%d\n",
1703                                 nmsgs_sent, ch->partid, ch->number);
1704
1705                         if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1706                                 xpc_activate_kthreads(ch, nmsgs_sent);
1707                 }
1708         }
1709
1710         xpc_msgqueue_deref(ch);
1711 }
1712
1713 static struct xpc_msg *
1714 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1715 {
1716         struct xpc_partition *part = &xpc_partitions[ch->partid];
1717         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1718         struct xpc_msg *remote_msg, *msg;
1719         u32 msg_index, nmsgs;
1720         u64 msg_offset;
1721         enum xp_retval ret;
1722
1723         if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1724                 /* we were interrupted by a signal */
1725                 return NULL;
1726         }
1727
1728         while (get >= ch_sn2->next_msg_to_pull) {
1729
1730                 /* pull as many messages as are ready and able to be pulled */
1731
1732                 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1733
1734                 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1735                 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1736                 if (msg_index + nmsgs > ch->remote_nentries) {
1737                         /* ignore the ones that wrap the msg queue for now */
1738                         nmsgs = ch->remote_nentries - msg_index;
1739                 }
1740
1741                 msg_offset = msg_index * ch->msg_size;
1742                 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
1743                 remote_msg = (struct xpc_msg *)(ch->remote_msgqueue_pa +
1744                                                 msg_offset);
1745
1746                 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg,
1747                                                      nmsgs * ch->msg_size);
1748                 if (ret != xpSuccess) {
1749
1750                         dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1751                                 " msg %ld from partition %d, channel=%d, "
1752                                 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1753                                 ch->partid, ch->number, ret);
1754
1755                         XPC_DEACTIVATE_PARTITION(part, ret);
1756
1757                         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1758                         return NULL;
1759                 }
1760
1761                 ch_sn2->next_msg_to_pull += nmsgs;
1762         }
1763
1764         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1765
1766         /* return the message we were looking for */
1767         msg_offset = (get % ch->remote_nentries) * ch->msg_size;
1768         msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
1769
1770         return msg;
1771 }
1772
1773 static int
1774 xpc_n_of_deliverable_msgs_sn2(struct xpc_channel *ch)
1775 {
1776         return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1777 }
1778
1779 /*
1780  * Get a message to be delivered.
1781  */
1782 static struct xpc_msg *
1783 xpc_get_deliverable_msg_sn2(struct xpc_channel *ch)
1784 {
1785         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1786         struct xpc_msg *msg = NULL;
1787         s64 get;
1788
1789         do {
1790                 if (ch->flags & XPC_C_DISCONNECTING)
1791                         break;
1792
1793                 get = ch_sn2->w_local_GP.get;
1794                 rmb();  /* guarantee that .get loads before .put */
1795                 if (get == ch_sn2->w_remote_GP.put)
1796                         break;
1797
1798                 /* There are messages waiting to be pulled and delivered.
1799                  * We need to try to secure one for ourselves. We'll do this
1800                  * by trying to increment w_local_GP.get and hope that no one
1801                  * else beats us to it. If they do, we'll we'll simply have
1802                  * to try again for the next one.
1803                  */
1804
1805                 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1806                         /* we got the entry referenced by get */
1807
1808                         dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
1809                                 "partid=%d, channel=%d\n", get + 1,
1810                                 ch->partid, ch->number);
1811
1812                         /* pull the message from the remote partition */
1813
1814                         msg = xpc_pull_remote_msg_sn2(ch, get);
1815
1816                         DBUG_ON(msg != NULL && msg->number != get);
1817                         DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE));
1818                         DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY));
1819
1820                         break;
1821                 }
1822
1823         } while (1);
1824
1825         return msg;
1826 }
1827
1828 /*
1829  * Now we actually send the messages that are ready to be sent by advancing
1830  * the local message queue's Put value and then send an IPI to the recipient
1831  * partition.
1832  */
1833 static void
1834 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
1835 {
1836         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1837         struct xpc_msg *msg;
1838         s64 put = initial_put + 1;
1839         int send_IPI = 0;
1840
1841         while (1) {
1842
1843                 while (1) {
1844                         if (put == ch_sn2->w_local_GP.put)
1845                                 break;
1846
1847                         msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
1848                                                  (put % ch->local_nentries) *
1849                                                  ch->msg_size);
1850
1851                         if (!(msg->flags & XPC_M_READY))
1852                                 break;
1853
1854                         put++;
1855                 }
1856
1857                 if (put == initial_put) {
1858                         /* nothing's changed */
1859                         break;
1860                 }
1861
1862                 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
1863                     initial_put) {
1864                         /* someone else beat us to it */
1865                         DBUG_ON(ch_sn2->local_GP->put < initial_put);
1866                         break;
1867                 }
1868
1869                 /* we just set the new value of local_GP->put */
1870
1871                 dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
1872                         "channel=%d\n", put, ch->partid, ch->number);
1873
1874                 send_IPI = 1;
1875
1876                 /*
1877                  * We need to ensure that the message referenced by
1878                  * local_GP->put is not XPC_M_READY or that local_GP->put
1879                  * equals w_local_GP.put, so we'll go have a look.
1880                  */
1881                 initial_put = put;
1882         }
1883
1884         if (send_IPI)
1885                 xpc_send_channel_msgrequest_sn2(ch);
1886 }
1887
1888 /*
1889  * Allocate an entry for a message from the message queue associated with the
1890  * specified channel.
1891  */
1892 static enum xp_retval
1893 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
1894                      struct xpc_msg **address_of_msg)
1895 {
1896         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1897         struct xpc_msg *msg;
1898         enum xp_retval ret;
1899         s64 put;
1900
1901         /*
1902          * Get the next available message entry from the local message queue.
1903          * If none are available, we'll make sure that we grab the latest
1904          * GP values.
1905          */
1906         ret = xpTimeout;
1907
1908         while (1) {
1909
1910                 put = ch_sn2->w_local_GP.put;
1911                 rmb();  /* guarantee that .put loads before .get */
1912                 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
1913
1914                         /* There are available message entries. We need to try
1915                          * to secure one for ourselves. We'll do this by trying
1916                          * to increment w_local_GP.put as long as someone else
1917                          * doesn't beat us to it. If they do, we'll have to
1918                          * try again.
1919                          */
1920                         if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
1921                             put) {
1922                                 /* we got the entry referenced by put */
1923                                 break;
1924                         }
1925                         continue;       /* try again */
1926                 }
1927
1928                 /*
1929                  * There aren't any available msg entries at this time.
1930                  *
1931                  * In waiting for a message entry to become available,
1932                  * we set a timeout in case the other side is not
1933                  * sending completion IPIs. This lets us fake an IPI
1934                  * that will cause the IPI handler to fetch the latest
1935                  * GP values as if an IPI was sent by the other side.
1936                  */
1937                 if (ret == xpTimeout)
1938                         xpc_send_channel_local_msgrequest_sn2(ch);
1939
1940                 if (flags & XPC_NOWAIT)
1941                         return xpNoWait;
1942
1943                 ret = xpc_allocate_msg_wait(ch);
1944                 if (ret != xpInterrupted && ret != xpTimeout)
1945                         return ret;
1946         }
1947
1948         /* get the message's address and initialize it */
1949         msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
1950                                  (put % ch->local_nentries) * ch->msg_size);
1951
1952         DBUG_ON(msg->flags != 0);
1953         msg->number = put;
1954
1955         dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
1956                 "msg_number=%ld, partid=%d, channel=%d\n", put + 1,
1957                 (void *)msg, msg->number, ch->partid, ch->number);
1958
1959         *address_of_msg = msg;
1960         return xpSuccess;
1961 }
1962
1963 /*
1964  * Common code that does the actual sending of the message by advancing the
1965  * local message queue's Put value and sends an IPI to the partition the
1966  * message is being sent to.
1967  */
1968 static enum xp_retval
1969 xpc_send_msg_sn2(struct xpc_channel *ch, u32 flags, void *payload,
1970                  u16 payload_size, u8 notify_type, xpc_notify_func func,
1971                  void *key)
1972 {
1973         enum xp_retval ret = xpSuccess;
1974         struct xpc_msg *msg = msg;
1975         struct xpc_notify *notify = notify;
1976         s64 msg_number;
1977         s64 put;
1978
1979         DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
1980
1981         if (XPC_MSG_SIZE(payload_size) > ch->msg_size)
1982                 return xpPayloadTooBig;
1983
1984         xpc_msgqueue_ref(ch);
1985
1986         if (ch->flags & XPC_C_DISCONNECTING) {
1987                 ret = ch->reason;
1988                 goto out_1;
1989         }
1990         if (!(ch->flags & XPC_C_CONNECTED)) {
1991                 ret = xpNotConnected;
1992                 goto out_1;
1993         }
1994
1995         ret = xpc_allocate_msg_sn2(ch, flags, &msg);
1996         if (ret != xpSuccess)
1997                 goto out_1;
1998
1999         msg_number = msg->number;
2000
2001         if (notify_type != 0) {
2002                 /*
2003                  * Tell the remote side to send an ACK interrupt when the
2004                  * message has been delivered.
2005                  */
2006                 msg->flags |= XPC_M_INTERRUPT;
2007
2008                 atomic_inc(&ch->n_to_notify);
2009
2010                 notify = &ch->notify_queue[msg_number % ch->local_nentries];
2011                 notify->func = func;
2012                 notify->key = key;
2013                 notify->type = notify_type;
2014
2015                 /* >>> is a mb() needed here? */
2016
2017                 if (ch->flags & XPC_C_DISCONNECTING) {
2018                         /*
2019                          * An error occurred between our last error check and
2020                          * this one. We will try to clear the type field from
2021                          * the notify entry. If we succeed then
2022                          * xpc_disconnect_channel() didn't already process
2023                          * the notify entry.
2024                          */
2025                         if (cmpxchg(&notify->type, notify_type, 0) ==
2026                             notify_type) {
2027                                 atomic_dec(&ch->n_to_notify);
2028                                 ret = ch->reason;
2029                         }
2030                         goto out_1;
2031                 }
2032         }
2033
2034         memcpy(&msg->payload, payload, payload_size);
2035
2036         msg->flags |= XPC_M_READY;
2037
2038         /*
2039          * The preceding store of msg->flags must occur before the following
2040          * load of local_GP->put.
2041          */
2042         mb();
2043
2044         /* see if the message is next in line to be sent, if so send it */
2045
2046         put = ch->sn.sn2.local_GP->put;
2047         if (put == msg_number)
2048                 xpc_send_msgs_sn2(ch, put);
2049
2050 out_1:
2051         xpc_msgqueue_deref(ch);
2052         return ret;
2053 }
2054
2055 /*
2056  * Now we actually acknowledge the messages that have been delivered and ack'd
2057  * by advancing the cached remote message queue's Get value and if requested
2058  * send an IPI to the message sender's partition.
2059  */
2060 static void
2061 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2062 {
2063         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2064         struct xpc_msg *msg;
2065         s64 get = initial_get + 1;
2066         int send_IPI = 0;
2067
2068         while (1) {
2069
2070                 while (1) {
2071                         if (get == ch_sn2->w_local_GP.get)
2072                                 break;
2073
2074                         msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
2075                                                  (get % ch->remote_nentries) *
2076                                                  ch->msg_size);
2077
2078                         if (!(msg->flags & XPC_M_DONE))
2079                                 break;
2080
2081                         msg_flags |= msg->flags;
2082                         get++;
2083                 }
2084
2085                 if (get == initial_get) {
2086                         /* nothing's changed */
2087                         break;
2088                 }
2089
2090                 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2091                     initial_get) {
2092                         /* someone else beat us to it */
2093                         DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2094                         break;
2095                 }
2096
2097                 /* we just set the new value of local_GP->get */
2098
2099                 dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
2100                         "channel=%d\n", get, ch->partid, ch->number);
2101
2102                 send_IPI = (msg_flags & XPC_M_INTERRUPT);
2103
2104                 /*
2105                  * We need to ensure that the message referenced by
2106                  * local_GP->get is not XPC_M_DONE or that local_GP->get
2107                  * equals w_local_GP.get, so we'll go have a look.
2108                  */
2109                 initial_get = get;
2110         }
2111
2112         if (send_IPI)
2113                 xpc_send_channel_msgrequest_sn2(ch);
2114 }
2115
2116 static void
2117 xpc_received_msg_sn2(struct xpc_channel *ch, struct xpc_msg *msg)
2118 {
2119         s64 get;
2120         s64 msg_number = msg->number;
2121
2122         dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
2123                 (void *)msg, msg_number, ch->partid, ch->number);
2124
2125         DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->msg_size) !=
2126                 msg_number % ch->remote_nentries);
2127         DBUG_ON(msg->flags & XPC_M_DONE);
2128
2129         msg->flags |= XPC_M_DONE;
2130
2131         /*
2132          * The preceding store of msg->flags must occur before the following
2133          * load of local_GP->get.
2134          */
2135         mb();
2136
2137         /*
2138          * See if this message is next in line to be acknowledged as having
2139          * been delivered.
2140          */
2141         get = ch->sn.sn2.local_GP->get;
2142         if (get == msg_number)
2143                 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2144 }
2145
2146 int
2147 xpc_init_sn2(void)
2148 {
2149         int ret;
2150
2151         xpc_rsvd_page_init = xpc_rsvd_page_init_sn2;
2152         xpc_increment_heartbeat = xpc_increment_heartbeat_sn2;
2153         xpc_offline_heartbeat = xpc_offline_heartbeat_sn2;
2154         xpc_online_heartbeat = xpc_online_heartbeat_sn2;
2155         xpc_heartbeat_init = xpc_heartbeat_init_sn2;
2156         xpc_heartbeat_exit = xpc_heartbeat_exit_sn2;
2157         xpc_check_remote_hb = xpc_check_remote_hb_sn2;
2158
2159         xpc_request_partition_activation = xpc_request_partition_activation_sn2;
2160         xpc_request_partition_reactivation =
2161             xpc_request_partition_reactivation_sn2;
2162         xpc_request_partition_deactivation =
2163             xpc_request_partition_deactivation_sn2;
2164         xpc_cancel_partition_deactivation_request =
2165             xpc_cancel_partition_deactivation_request_sn2;
2166
2167         xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2;
2168         xpc_setup_infrastructure = xpc_setup_infrastructure_sn2;
2169         xpc_teardown_infrastructure = xpc_teardown_infrastructure_sn2;
2170         xpc_make_first_contact = xpc_make_first_contact_sn2;
2171         xpc_get_IPI_flags = xpc_get_IPI_flags_sn2;
2172         xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2;
2173         xpc_process_msg_IPI = xpc_process_msg_IPI_sn2;
2174         xpc_n_of_deliverable_msgs = xpc_n_of_deliverable_msgs_sn2;
2175         xpc_get_deliverable_msg = xpc_get_deliverable_msg_sn2;
2176
2177         xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2;
2178         xpc_partition_engaged = xpc_partition_engaged_sn2;
2179         xpc_any_partition_engaged = xpc_any_partition_engaged_sn2;
2180         xpc_indicate_partition_disengaged =
2181             xpc_indicate_partition_disengaged_sn2;
2182         xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2;
2183
2184         xpc_send_channel_closerequest = xpc_send_channel_closerequest_sn2;
2185         xpc_send_channel_closereply = xpc_send_channel_closereply_sn2;
2186         xpc_send_channel_openrequest = xpc_send_channel_openrequest_sn2;
2187         xpc_send_channel_openreply = xpc_send_channel_openreply_sn2;
2188
2189         xpc_send_msg = xpc_send_msg_sn2;
2190         xpc_received_msg = xpc_received_msg_sn2;
2191
2192         /* open up protections for IPI and [potentially] AMO operations */
2193         xpc_allow_IPI_ops_sn2();
2194         xpc_allow_AMO_ops_shub_wars_1_1_sn2();
2195
2196         /*
2197          * This is safe to do before the xpc_hb_checker thread has started
2198          * because the handler releases a wait queue.  If an interrupt is
2199          * received before the thread is waiting, it will not go to sleep,
2200          * but rather immediately process the interrupt.
2201          */
2202         ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2203                           "xpc hb", NULL);
2204         if (ret != 0) {
2205                 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2206                         "errno=%d\n", -ret);
2207                 xpc_disallow_IPI_ops_sn2();
2208         }
2209         return ret;
2210 }
2211
2212 void
2213 xpc_exit_sn2(void)
2214 {
2215         free_irq(SGI_XPC_ACTIVATE, NULL);
2216         xpc_disallow_IPI_ops_sn2();
2217 }