fs: fix nobh error handling
[linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58         struct block_device *bd;
59         struct buffer_head *bh
60                 = container_of(word, struct buffer_head, b_state);
61
62         smp_mb();
63         bd = bh->b_bdev;
64         if (bd)
65                 blk_run_address_space(bd->bd_inode->i_mapping);
66         io_schedule();
67         return 0;
68 }
69
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79         smp_mb__before_clear_bit();
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * End-of-IO handler helper function which does not touch the bh after
114  * unlocking it.
115  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116  * a race there is benign: unlock_buffer() only use the bh's address for
117  * hashing after unlocking the buffer, so it doesn't actually touch the bh
118  * itself.
119  */
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
121 {
122         if (uptodate) {
123                 set_buffer_uptodate(bh);
124         } else {
125                 /* This happens, due to failed READA attempts. */
126                 clear_buffer_uptodate(bh);
127         }
128         unlock_buffer(bh);
129 }
130
131 /*
132  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
133  * unlock the buffer. This is what ll_rw_block uses too.
134  */
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136 {
137         __end_buffer_read_notouch(bh, uptodate);
138         put_bh(bh);
139 }
140
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142 {
143         char b[BDEVNAME_SIZE];
144
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149                         buffer_io_error(bh);
150                         printk(KERN_WARNING "lost page write due to "
151                                         "I/O error on %s\n",
152                                        bdevname(bh->b_bdev, b));
153                 }
154                 set_buffer_write_io_error(bh);
155                 clear_buffer_uptodate(bh);
156         }
157         unlock_buffer(bh);
158         put_bh(bh);
159 }
160
161 /*
162  * Write out and wait upon all the dirty data associated with a block
163  * device via its mapping.  Does not take the superblock lock.
164  */
165 int sync_blockdev(struct block_device *bdev)
166 {
167         int ret = 0;
168
169         if (bdev)
170                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
171         return ret;
172 }
173 EXPORT_SYMBOL(sync_blockdev);
174
175 /*
176  * Write out and wait upon all dirty data associated with this
177  * device.   Filesystem data as well as the underlying block
178  * device.  Takes the superblock lock.
179  */
180 int fsync_bdev(struct block_device *bdev)
181 {
182         struct super_block *sb = get_super(bdev);
183         if (sb) {
184                 int res = fsync_super(sb);
185                 drop_super(sb);
186                 return res;
187         }
188         return sync_blockdev(bdev);
189 }
190
191 /**
192  * freeze_bdev  --  lock a filesystem and force it into a consistent state
193  * @bdev:       blockdevice to lock
194  *
195  * This takes the block device bd_mount_sem to make sure no new mounts
196  * happen on bdev until thaw_bdev() is called.
197  * If a superblock is found on this device, we take the s_umount semaphore
198  * on it to make sure nobody unmounts until the snapshot creation is done.
199  */
200 struct super_block *freeze_bdev(struct block_device *bdev)
201 {
202         struct super_block *sb;
203
204         down(&bdev->bd_mount_sem);
205         sb = get_super(bdev);
206         if (sb && !(sb->s_flags & MS_RDONLY)) {
207                 sb->s_frozen = SB_FREEZE_WRITE;
208                 smp_wmb();
209
210                 __fsync_super(sb);
211
212                 sb->s_frozen = SB_FREEZE_TRANS;
213                 smp_wmb();
214
215                 sync_blockdev(sb->s_bdev);
216
217                 if (sb->s_op->write_super_lockfs)
218                         sb->s_op->write_super_lockfs(sb);
219         }
220
221         sync_blockdev(bdev);
222         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
223 }
224 EXPORT_SYMBOL(freeze_bdev);
225
226 /**
227  * thaw_bdev  -- unlock filesystem
228  * @bdev:       blockdevice to unlock
229  * @sb:         associated superblock
230  *
231  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232  */
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234 {
235         if (sb) {
236                 BUG_ON(sb->s_bdev != bdev);
237
238                 if (sb->s_op->unlockfs)
239                         sb->s_op->unlockfs(sb);
240                 sb->s_frozen = SB_UNFROZEN;
241                 smp_wmb();
242                 wake_up(&sb->s_wait_unfrozen);
243                 drop_super(sb);
244         }
245
246         up(&bdev->bd_mount_sem);
247 }
248 EXPORT_SYMBOL(thaw_bdev);
249
250 /*
251  * Various filesystems appear to want __find_get_block to be non-blocking.
252  * But it's the page lock which protects the buffers.  To get around this,
253  * we get exclusion from try_to_free_buffers with the blockdev mapping's
254  * private_lock.
255  *
256  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257  * may be quite high.  This code could TryLock the page, and if that
258  * succeeds, there is no need to take private_lock. (But if
259  * private_lock is contended then so is mapping->tree_lock).
260  */
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
263 {
264         struct inode *bd_inode = bdev->bd_inode;
265         struct address_space *bd_mapping = bd_inode->i_mapping;
266         struct buffer_head *ret = NULL;
267         pgoff_t index;
268         struct buffer_head *bh;
269         struct buffer_head *head;
270         struct page *page;
271         int all_mapped = 1;
272
273         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274         page = find_get_page(bd_mapping, index);
275         if (!page)
276                 goto out;
277
278         spin_lock(&bd_mapping->private_lock);
279         if (!page_has_buffers(page))
280                 goto out_unlock;
281         head = page_buffers(page);
282         bh = head;
283         do {
284                 if (bh->b_blocknr == block) {
285                         ret = bh;
286                         get_bh(bh);
287                         goto out_unlock;
288                 }
289                 if (!buffer_mapped(bh))
290                         all_mapped = 0;
291                 bh = bh->b_this_page;
292         } while (bh != head);
293
294         /* we might be here because some of the buffers on this page are
295          * not mapped.  This is due to various races between
296          * file io on the block device and getblk.  It gets dealt with
297          * elsewhere, don't buffer_error if we had some unmapped buffers
298          */
299         if (all_mapped) {
300                 printk("__find_get_block_slow() failed. "
301                         "block=%llu, b_blocknr=%llu\n",
302                         (unsigned long long)block,
303                         (unsigned long long)bh->b_blocknr);
304                 printk("b_state=0x%08lx, b_size=%zu\n",
305                         bh->b_state, bh->b_size);
306                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307         }
308 out_unlock:
309         spin_unlock(&bd_mapping->private_lock);
310         page_cache_release(page);
311 out:
312         return ret;
313 }
314
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316    of fs corruption is going on. Trashing dirty data always imply losing
317    information that was supposed to be just stored on the physical layer
318    by the user.
319
320    Thus invalidate_buffers in general usage is not allwowed to trash
321    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322    be preserved.  These buffers are simply skipped.
323   
324    We also skip buffers which are still in use.  For example this can
325    happen if a userspace program is reading the block device.
326
327    NOTE: In the case where the user removed a removable-media-disk even if
328    there's still dirty data not synced on disk (due a bug in the device driver
329    or due an error of the user), by not destroying the dirty buffers we could
330    generate corruption also on the next media inserted, thus a parameter is
331    necessary to handle this case in the most safe way possible (trying
332    to not corrupt also the new disk inserted with the data belonging to
333    the old now corrupted disk). Also for the ramdisk the natural thing
334    to do in order to release the ramdisk memory is to destroy dirty buffers.
335
336    These are two special cases. Normal usage imply the device driver
337    to issue a sync on the device (without waiting I/O completion) and
338    then an invalidate_buffers call that doesn't trash dirty buffers.
339
340    For handling cache coherency with the blkdev pagecache the 'update' case
341    is been introduced. It is needed to re-read from disk any pinned
342    buffer. NOTE: re-reading from disk is destructive so we can do it only
343    when we assume nobody is changing the buffercache under our I/O and when
344    we think the disk contains more recent information than the buffercache.
345    The update == 1 pass marks the buffers we need to update, the update == 2
346    pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
348 {
349         struct address_space *mapping = bdev->bd_inode->i_mapping;
350
351         if (mapping->nrpages == 0)
352                 return;
353
354         invalidate_bh_lrus();
355         invalidate_mapping_pages(mapping, 0, -1);
356 }
357
358 /*
359  * Kick pdflush then try to free up some ZONE_NORMAL memory.
360  */
361 static void free_more_memory(void)
362 {
363         struct zone **zones;
364         pg_data_t *pgdat;
365
366         wakeup_pdflush(1024);
367         yield();
368
369         for_each_online_pgdat(pgdat) {
370                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
371                 if (*zones)
372                         try_to_free_pages(zones, 0, GFP_NOFS);
373         }
374 }
375
376 /*
377  * I/O completion handler for block_read_full_page() - pages
378  * which come unlocked at the end of I/O.
379  */
380 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
381 {
382         unsigned long flags;
383         struct buffer_head *first;
384         struct buffer_head *tmp;
385         struct page *page;
386         int page_uptodate = 1;
387
388         BUG_ON(!buffer_async_read(bh));
389
390         page = bh->b_page;
391         if (uptodate) {
392                 set_buffer_uptodate(bh);
393         } else {
394                 clear_buffer_uptodate(bh);
395                 if (printk_ratelimit())
396                         buffer_io_error(bh);
397                 SetPageError(page);
398         }
399
400         /*
401          * Be _very_ careful from here on. Bad things can happen if
402          * two buffer heads end IO at almost the same time and both
403          * decide that the page is now completely done.
404          */
405         first = page_buffers(page);
406         local_irq_save(flags);
407         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
408         clear_buffer_async_read(bh);
409         unlock_buffer(bh);
410         tmp = bh;
411         do {
412                 if (!buffer_uptodate(tmp))
413                         page_uptodate = 0;
414                 if (buffer_async_read(tmp)) {
415                         BUG_ON(!buffer_locked(tmp));
416                         goto still_busy;
417                 }
418                 tmp = tmp->b_this_page;
419         } while (tmp != bh);
420         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421         local_irq_restore(flags);
422
423         /*
424          * If none of the buffers had errors and they are all
425          * uptodate then we can set the page uptodate.
426          */
427         if (page_uptodate && !PageError(page))
428                 SetPageUptodate(page);
429         unlock_page(page);
430         return;
431
432 still_busy:
433         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
434         local_irq_restore(flags);
435         return;
436 }
437
438 /*
439  * Completion handler for block_write_full_page() - pages which are unlocked
440  * during I/O, and which have PageWriteback cleared upon I/O completion.
441  */
442 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
443 {
444         char b[BDEVNAME_SIZE];
445         unsigned long flags;
446         struct buffer_head *first;
447         struct buffer_head *tmp;
448         struct page *page;
449
450         BUG_ON(!buffer_async_write(bh));
451
452         page = bh->b_page;
453         if (uptodate) {
454                 set_buffer_uptodate(bh);
455         } else {
456                 if (printk_ratelimit()) {
457                         buffer_io_error(bh);
458                         printk(KERN_WARNING "lost page write due to "
459                                         "I/O error on %s\n",
460                                bdevname(bh->b_bdev, b));
461                 }
462                 set_bit(AS_EIO, &page->mapping->flags);
463                 set_buffer_write_io_error(bh);
464                 clear_buffer_uptodate(bh);
465                 SetPageError(page);
466         }
467
468         first = page_buffers(page);
469         local_irq_save(flags);
470         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
471
472         clear_buffer_async_write(bh);
473         unlock_buffer(bh);
474         tmp = bh->b_this_page;
475         while (tmp != bh) {
476                 if (buffer_async_write(tmp)) {
477                         BUG_ON(!buffer_locked(tmp));
478                         goto still_busy;
479                 }
480                 tmp = tmp->b_this_page;
481         }
482         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483         local_irq_restore(flags);
484         end_page_writeback(page);
485         return;
486
487 still_busy:
488         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
489         local_irq_restore(flags);
490         return;
491 }
492
493 /*
494  * If a page's buffers are under async readin (end_buffer_async_read
495  * completion) then there is a possibility that another thread of
496  * control could lock one of the buffers after it has completed
497  * but while some of the other buffers have not completed.  This
498  * locked buffer would confuse end_buffer_async_read() into not unlocking
499  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
500  * that this buffer is not under async I/O.
501  *
502  * The page comes unlocked when it has no locked buffer_async buffers
503  * left.
504  *
505  * PageLocked prevents anyone starting new async I/O reads any of
506  * the buffers.
507  *
508  * PageWriteback is used to prevent simultaneous writeout of the same
509  * page.
510  *
511  * PageLocked prevents anyone from starting writeback of a page which is
512  * under read I/O (PageWriteback is only ever set against a locked page).
513  */
514 static void mark_buffer_async_read(struct buffer_head *bh)
515 {
516         bh->b_end_io = end_buffer_async_read;
517         set_buffer_async_read(bh);
518 }
519
520 void mark_buffer_async_write(struct buffer_head *bh)
521 {
522         bh->b_end_io = end_buffer_async_write;
523         set_buffer_async_write(bh);
524 }
525 EXPORT_SYMBOL(mark_buffer_async_write);
526
527
528 /*
529  * fs/buffer.c contains helper functions for buffer-backed address space's
530  * fsync functions.  A common requirement for buffer-based filesystems is
531  * that certain data from the backing blockdev needs to be written out for
532  * a successful fsync().  For example, ext2 indirect blocks need to be
533  * written back and waited upon before fsync() returns.
534  *
535  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537  * management of a list of dependent buffers at ->i_mapping->private_list.
538  *
539  * Locking is a little subtle: try_to_free_buffers() will remove buffers
540  * from their controlling inode's queue when they are being freed.  But
541  * try_to_free_buffers() will be operating against the *blockdev* mapping
542  * at the time, not against the S_ISREG file which depends on those buffers.
543  * So the locking for private_list is via the private_lock in the address_space
544  * which backs the buffers.  Which is different from the address_space 
545  * against which the buffers are listed.  So for a particular address_space,
546  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
547  * mapping->private_list will always be protected by the backing blockdev's
548  * ->private_lock.
549  *
550  * Which introduces a requirement: all buffers on an address_space's
551  * ->private_list must be from the same address_space: the blockdev's.
552  *
553  * address_spaces which do not place buffers at ->private_list via these
554  * utility functions are free to use private_lock and private_list for
555  * whatever they want.  The only requirement is that list_empty(private_list)
556  * be true at clear_inode() time.
557  *
558  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
559  * filesystems should do that.  invalidate_inode_buffers() should just go
560  * BUG_ON(!list_empty).
561  *
562  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
563  * take an address_space, not an inode.  And it should be called
564  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
565  * queued up.
566  *
567  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568  * list if it is already on a list.  Because if the buffer is on a list,
569  * it *must* already be on the right one.  If not, the filesystem is being
570  * silly.  This will save a ton of locking.  But first we have to ensure
571  * that buffers are taken *off* the old inode's list when they are freed
572  * (presumably in truncate).  That requires careful auditing of all
573  * filesystems (do it inside bforget()).  It could also be done by bringing
574  * b_inode back.
575  */
576
577 /*
578  * The buffer's backing address_space's private_lock must be held
579  */
580 static inline void __remove_assoc_queue(struct buffer_head *bh)
581 {
582         list_del_init(&bh->b_assoc_buffers);
583         WARN_ON(!bh->b_assoc_map);
584         if (buffer_write_io_error(bh))
585                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
586         bh->b_assoc_map = NULL;
587 }
588
589 int inode_has_buffers(struct inode *inode)
590 {
591         return !list_empty(&inode->i_data.private_list);
592 }
593
594 /*
595  * osync is designed to support O_SYNC io.  It waits synchronously for
596  * all already-submitted IO to complete, but does not queue any new
597  * writes to the disk.
598  *
599  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600  * you dirty the buffers, and then use osync_inode_buffers to wait for
601  * completion.  Any other dirty buffers which are not yet queued for
602  * write will not be flushed to disk by the osync.
603  */
604 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
605 {
606         struct buffer_head *bh;
607         struct list_head *p;
608         int err = 0;
609
610         spin_lock(lock);
611 repeat:
612         list_for_each_prev(p, list) {
613                 bh = BH_ENTRY(p);
614                 if (buffer_locked(bh)) {
615                         get_bh(bh);
616                         spin_unlock(lock);
617                         wait_on_buffer(bh);
618                         if (!buffer_uptodate(bh))
619                                 err = -EIO;
620                         brelse(bh);
621                         spin_lock(lock);
622                         goto repeat;
623                 }
624         }
625         spin_unlock(lock);
626         return err;
627 }
628
629 /**
630  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
631  *                        buffers
632  * @mapping: the mapping which wants those buffers written
633  *
634  * Starts I/O against the buffers at mapping->private_list, and waits upon
635  * that I/O.
636  *
637  * Basically, this is a convenience function for fsync().
638  * @mapping is a file or directory which needs those buffers to be written for
639  * a successful fsync().
640  */
641 int sync_mapping_buffers(struct address_space *mapping)
642 {
643         struct address_space *buffer_mapping = mapping->assoc_mapping;
644
645         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
646                 return 0;
647
648         return fsync_buffers_list(&buffer_mapping->private_lock,
649                                         &mapping->private_list);
650 }
651 EXPORT_SYMBOL(sync_mapping_buffers);
652
653 /*
654  * Called when we've recently written block `bblock', and it is known that
655  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
656  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
657  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
658  */
659 void write_boundary_block(struct block_device *bdev,
660                         sector_t bblock, unsigned blocksize)
661 {
662         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663         if (bh) {
664                 if (buffer_dirty(bh))
665                         ll_rw_block(WRITE, 1, &bh);
666                 put_bh(bh);
667         }
668 }
669
670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671 {
672         struct address_space *mapping = inode->i_mapping;
673         struct address_space *buffer_mapping = bh->b_page->mapping;
674
675         mark_buffer_dirty(bh);
676         if (!mapping->assoc_mapping) {
677                 mapping->assoc_mapping = buffer_mapping;
678         } else {
679                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
680         }
681         if (list_empty(&bh->b_assoc_buffers)) {
682                 spin_lock(&buffer_mapping->private_lock);
683                 list_move_tail(&bh->b_assoc_buffers,
684                                 &mapping->private_list);
685                 bh->b_assoc_map = mapping;
686                 spin_unlock(&buffer_mapping->private_lock);
687         }
688 }
689 EXPORT_SYMBOL(mark_buffer_dirty_inode);
690
691 /*
692  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
693  * dirty.
694  *
695  * If warn is true, then emit a warning if the page is not uptodate and has
696  * not been truncated.
697  */
698 static int __set_page_dirty(struct page *page,
699                 struct address_space *mapping, int warn)
700 {
701         if (unlikely(!mapping))
702                 return !TestSetPageDirty(page);
703
704         if (TestSetPageDirty(page))
705                 return 0;
706
707         write_lock_irq(&mapping->tree_lock);
708         if (page->mapping) {    /* Race with truncate? */
709                 WARN_ON_ONCE(warn && !PageUptodate(page));
710
711                 if (mapping_cap_account_dirty(mapping)) {
712                         __inc_zone_page_state(page, NR_FILE_DIRTY);
713                         task_io_account_write(PAGE_CACHE_SIZE);
714                 }
715                 radix_tree_tag_set(&mapping->page_tree,
716                                 page_index(page), PAGECACHE_TAG_DIRTY);
717         }
718         write_unlock_irq(&mapping->tree_lock);
719         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
720
721         return 1;
722 }
723
724 /*
725  * Add a page to the dirty page list.
726  *
727  * It is a sad fact of life that this function is called from several places
728  * deeply under spinlocking.  It may not sleep.
729  *
730  * If the page has buffers, the uptodate buffers are set dirty, to preserve
731  * dirty-state coherency between the page and the buffers.  It the page does
732  * not have buffers then when they are later attached they will all be set
733  * dirty.
734  *
735  * The buffers are dirtied before the page is dirtied.  There's a small race
736  * window in which a writepage caller may see the page cleanness but not the
737  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
738  * before the buffers, a concurrent writepage caller could clear the page dirty
739  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
740  * page on the dirty page list.
741  *
742  * We use private_lock to lock against try_to_free_buffers while using the
743  * page's buffer list.  Also use this to protect against clean buffers being
744  * added to the page after it was set dirty.
745  *
746  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
747  * address_space though.
748  */
749 int __set_page_dirty_buffers(struct page *page)
750 {
751         struct address_space *mapping = page_mapping(page);
752
753         if (unlikely(!mapping))
754                 return !TestSetPageDirty(page);
755
756         spin_lock(&mapping->private_lock);
757         if (page_has_buffers(page)) {
758                 struct buffer_head *head = page_buffers(page);
759                 struct buffer_head *bh = head;
760
761                 do {
762                         set_buffer_dirty(bh);
763                         bh = bh->b_this_page;
764                 } while (bh != head);
765         }
766         spin_unlock(&mapping->private_lock);
767
768         return __set_page_dirty(page, mapping, 1);
769 }
770 EXPORT_SYMBOL(__set_page_dirty_buffers);
771
772 /*
773  * Write out and wait upon a list of buffers.
774  *
775  * We have conflicting pressures: we want to make sure that all
776  * initially dirty buffers get waited on, but that any subsequently
777  * dirtied buffers don't.  After all, we don't want fsync to last
778  * forever if somebody is actively writing to the file.
779  *
780  * Do this in two main stages: first we copy dirty buffers to a
781  * temporary inode list, queueing the writes as we go.  Then we clean
782  * up, waiting for those writes to complete.
783  * 
784  * During this second stage, any subsequent updates to the file may end
785  * up refiling the buffer on the original inode's dirty list again, so
786  * there is a chance we will end up with a buffer queued for write but
787  * not yet completed on that list.  So, as a final cleanup we go through
788  * the osync code to catch these locked, dirty buffers without requeuing
789  * any newly dirty buffers for write.
790  */
791 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
792 {
793         struct buffer_head *bh;
794         struct list_head tmp;
795         int err = 0, err2;
796
797         INIT_LIST_HEAD(&tmp);
798
799         spin_lock(lock);
800         while (!list_empty(list)) {
801                 bh = BH_ENTRY(list->next);
802                 __remove_assoc_queue(bh);
803                 if (buffer_dirty(bh) || buffer_locked(bh)) {
804                         list_add(&bh->b_assoc_buffers, &tmp);
805                         if (buffer_dirty(bh)) {
806                                 get_bh(bh);
807                                 spin_unlock(lock);
808                                 /*
809                                  * Ensure any pending I/O completes so that
810                                  * ll_rw_block() actually writes the current
811                                  * contents - it is a noop if I/O is still in
812                                  * flight on potentially older contents.
813                                  */
814                                 ll_rw_block(SWRITE, 1, &bh);
815                                 brelse(bh);
816                                 spin_lock(lock);
817                         }
818                 }
819         }
820
821         while (!list_empty(&tmp)) {
822                 bh = BH_ENTRY(tmp.prev);
823                 list_del_init(&bh->b_assoc_buffers);
824                 get_bh(bh);
825                 spin_unlock(lock);
826                 wait_on_buffer(bh);
827                 if (!buffer_uptodate(bh))
828                         err = -EIO;
829                 brelse(bh);
830                 spin_lock(lock);
831         }
832         
833         spin_unlock(lock);
834         err2 = osync_buffers_list(lock, list);
835         if (err)
836                 return err;
837         else
838                 return err2;
839 }
840
841 /*
842  * Invalidate any and all dirty buffers on a given inode.  We are
843  * probably unmounting the fs, but that doesn't mean we have already
844  * done a sync().  Just drop the buffers from the inode list.
845  *
846  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
847  * assumes that all the buffers are against the blockdev.  Not true
848  * for reiserfs.
849  */
850 void invalidate_inode_buffers(struct inode *inode)
851 {
852         if (inode_has_buffers(inode)) {
853                 struct address_space *mapping = &inode->i_data;
854                 struct list_head *list = &mapping->private_list;
855                 struct address_space *buffer_mapping = mapping->assoc_mapping;
856
857                 spin_lock(&buffer_mapping->private_lock);
858                 while (!list_empty(list))
859                         __remove_assoc_queue(BH_ENTRY(list->next));
860                 spin_unlock(&buffer_mapping->private_lock);
861         }
862 }
863
864 /*
865  * Remove any clean buffers from the inode's buffer list.  This is called
866  * when we're trying to free the inode itself.  Those buffers can pin it.
867  *
868  * Returns true if all buffers were removed.
869  */
870 int remove_inode_buffers(struct inode *inode)
871 {
872         int ret = 1;
873
874         if (inode_has_buffers(inode)) {
875                 struct address_space *mapping = &inode->i_data;
876                 struct list_head *list = &mapping->private_list;
877                 struct address_space *buffer_mapping = mapping->assoc_mapping;
878
879                 spin_lock(&buffer_mapping->private_lock);
880                 while (!list_empty(list)) {
881                         struct buffer_head *bh = BH_ENTRY(list->next);
882                         if (buffer_dirty(bh)) {
883                                 ret = 0;
884                                 break;
885                         }
886                         __remove_assoc_queue(bh);
887                 }
888                 spin_unlock(&buffer_mapping->private_lock);
889         }
890         return ret;
891 }
892
893 /*
894  * Create the appropriate buffers when given a page for data area and
895  * the size of each buffer.. Use the bh->b_this_page linked list to
896  * follow the buffers created.  Return NULL if unable to create more
897  * buffers.
898  *
899  * The retry flag is used to differentiate async IO (paging, swapping)
900  * which may not fail from ordinary buffer allocations.
901  */
902 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
903                 int retry)
904 {
905         struct buffer_head *bh, *head;
906         long offset;
907
908 try_again:
909         head = NULL;
910         offset = PAGE_SIZE;
911         while ((offset -= size) >= 0) {
912                 bh = alloc_buffer_head(GFP_NOFS);
913                 if (!bh)
914                         goto no_grow;
915
916                 bh->b_bdev = NULL;
917                 bh->b_this_page = head;
918                 bh->b_blocknr = -1;
919                 head = bh;
920
921                 bh->b_state = 0;
922                 atomic_set(&bh->b_count, 0);
923                 bh->b_private = NULL;
924                 bh->b_size = size;
925
926                 /* Link the buffer to its page */
927                 set_bh_page(bh, page, offset);
928
929                 init_buffer(bh, NULL, NULL);
930         }
931         return head;
932 /*
933  * In case anything failed, we just free everything we got.
934  */
935 no_grow:
936         if (head) {
937                 do {
938                         bh = head;
939                         head = head->b_this_page;
940                         free_buffer_head(bh);
941                 } while (head);
942         }
943
944         /*
945          * Return failure for non-async IO requests.  Async IO requests
946          * are not allowed to fail, so we have to wait until buffer heads
947          * become available.  But we don't want tasks sleeping with 
948          * partially complete buffers, so all were released above.
949          */
950         if (!retry)
951                 return NULL;
952
953         /* We're _really_ low on memory. Now we just
954          * wait for old buffer heads to become free due to
955          * finishing IO.  Since this is an async request and
956          * the reserve list is empty, we're sure there are 
957          * async buffer heads in use.
958          */
959         free_more_memory();
960         goto try_again;
961 }
962 EXPORT_SYMBOL_GPL(alloc_page_buffers);
963
964 static inline void
965 link_dev_buffers(struct page *page, struct buffer_head *head)
966 {
967         struct buffer_head *bh, *tail;
968
969         bh = head;
970         do {
971                 tail = bh;
972                 bh = bh->b_this_page;
973         } while (bh);
974         tail->b_this_page = head;
975         attach_page_buffers(page, head);
976 }
977
978 /*
979  * Initialise the state of a blockdev page's buffers.
980  */ 
981 static void
982 init_page_buffers(struct page *page, struct block_device *bdev,
983                         sector_t block, int size)
984 {
985         struct buffer_head *head = page_buffers(page);
986         struct buffer_head *bh = head;
987         int uptodate = PageUptodate(page);
988
989         do {
990                 if (!buffer_mapped(bh)) {
991                         init_buffer(bh, NULL, NULL);
992                         bh->b_bdev = bdev;
993                         bh->b_blocknr = block;
994                         if (uptodate)
995                                 set_buffer_uptodate(bh);
996                         set_buffer_mapped(bh);
997                 }
998                 block++;
999                 bh = bh->b_this_page;
1000         } while (bh != head);
1001 }
1002
1003 /*
1004  * Create the page-cache page that contains the requested block.
1005  *
1006  * This is user purely for blockdev mappings.
1007  */
1008 static struct page *
1009 grow_dev_page(struct block_device *bdev, sector_t block,
1010                 pgoff_t index, int size)
1011 {
1012         struct inode *inode = bdev->bd_inode;
1013         struct page *page;
1014         struct buffer_head *bh;
1015
1016         page = find_or_create_page(inode->i_mapping, index,
1017                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1018         if (!page)
1019                 return NULL;
1020
1021         BUG_ON(!PageLocked(page));
1022
1023         if (page_has_buffers(page)) {
1024                 bh = page_buffers(page);
1025                 if (bh->b_size == size) {
1026                         init_page_buffers(page, bdev, block, size);
1027                         return page;
1028                 }
1029                 if (!try_to_free_buffers(page))
1030                         goto failed;
1031         }
1032
1033         /*
1034          * Allocate some buffers for this page
1035          */
1036         bh = alloc_page_buffers(page, size, 0);
1037         if (!bh)
1038                 goto failed;
1039
1040         /*
1041          * Link the page to the buffers and initialise them.  Take the
1042          * lock to be atomic wrt __find_get_block(), which does not
1043          * run under the page lock.
1044          */
1045         spin_lock(&inode->i_mapping->private_lock);
1046         link_dev_buffers(page, bh);
1047         init_page_buffers(page, bdev, block, size);
1048         spin_unlock(&inode->i_mapping->private_lock);
1049         return page;
1050
1051 failed:
1052         BUG();
1053         unlock_page(page);
1054         page_cache_release(page);
1055         return NULL;
1056 }
1057
1058 /*
1059  * Create buffers for the specified block device block's page.  If
1060  * that page was dirty, the buffers are set dirty also.
1061  */
1062 static int
1063 grow_buffers(struct block_device *bdev, sector_t block, int size)
1064 {
1065         struct page *page;
1066         pgoff_t index;
1067         int sizebits;
1068
1069         sizebits = -1;
1070         do {
1071                 sizebits++;
1072         } while ((size << sizebits) < PAGE_SIZE);
1073
1074         index = block >> sizebits;
1075
1076         /*
1077          * Check for a block which wants to lie outside our maximum possible
1078          * pagecache index.  (this comparison is done using sector_t types).
1079          */
1080         if (unlikely(index != block >> sizebits)) {
1081                 char b[BDEVNAME_SIZE];
1082
1083                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1084                         "device %s\n",
1085                         __FUNCTION__, (unsigned long long)block,
1086                         bdevname(bdev, b));
1087                 return -EIO;
1088         }
1089         block = index << sizebits;
1090         /* Create a page with the proper size buffers.. */
1091         page = grow_dev_page(bdev, block, index, size);
1092         if (!page)
1093                 return 0;
1094         unlock_page(page);
1095         page_cache_release(page);
1096         return 1;
1097 }
1098
1099 static struct buffer_head *
1100 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1101 {
1102         /* Size must be multiple of hard sectorsize */
1103         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1104                         (size < 512 || size > PAGE_SIZE))) {
1105                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1106                                         size);
1107                 printk(KERN_ERR "hardsect size: %d\n",
1108                                         bdev_hardsect_size(bdev));
1109
1110                 dump_stack();
1111                 return NULL;
1112         }
1113
1114         for (;;) {
1115                 struct buffer_head * bh;
1116                 int ret;
1117
1118                 bh = __find_get_block(bdev, block, size);
1119                 if (bh)
1120                         return bh;
1121
1122                 ret = grow_buffers(bdev, block, size);
1123                 if (ret < 0)
1124                         return NULL;
1125                 if (ret == 0)
1126                         free_more_memory();
1127         }
1128 }
1129
1130 /*
1131  * The relationship between dirty buffers and dirty pages:
1132  *
1133  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1134  * the page is tagged dirty in its radix tree.
1135  *
1136  * At all times, the dirtiness of the buffers represents the dirtiness of
1137  * subsections of the page.  If the page has buffers, the page dirty bit is
1138  * merely a hint about the true dirty state.
1139  *
1140  * When a page is set dirty in its entirety, all its buffers are marked dirty
1141  * (if the page has buffers).
1142  *
1143  * When a buffer is marked dirty, its page is dirtied, but the page's other
1144  * buffers are not.
1145  *
1146  * Also.  When blockdev buffers are explicitly read with bread(), they
1147  * individually become uptodate.  But their backing page remains not
1148  * uptodate - even if all of its buffers are uptodate.  A subsequent
1149  * block_read_full_page() against that page will discover all the uptodate
1150  * buffers, will set the page uptodate and will perform no I/O.
1151  */
1152
1153 /**
1154  * mark_buffer_dirty - mark a buffer_head as needing writeout
1155  * @bh: the buffer_head to mark dirty
1156  *
1157  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1158  * backing page dirty, then tag the page as dirty in its address_space's radix
1159  * tree and then attach the address_space's inode to its superblock's dirty
1160  * inode list.
1161  *
1162  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1163  * mapping->tree_lock and the global inode_lock.
1164  */
1165 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1166 {
1167         WARN_ON_ONCE(!buffer_uptodate(bh));
1168         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1169                 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1170 }
1171
1172 /*
1173  * Decrement a buffer_head's reference count.  If all buffers against a page
1174  * have zero reference count, are clean and unlocked, and if the page is clean
1175  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1176  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1177  * a page but it ends up not being freed, and buffers may later be reattached).
1178  */
1179 void __brelse(struct buffer_head * buf)
1180 {
1181         if (atomic_read(&buf->b_count)) {
1182                 put_bh(buf);
1183                 return;
1184         }
1185         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1186         WARN_ON(1);
1187 }
1188
1189 /*
1190  * bforget() is like brelse(), except it discards any
1191  * potentially dirty data.
1192  */
1193 void __bforget(struct buffer_head *bh)
1194 {
1195         clear_buffer_dirty(bh);
1196         if (!list_empty(&bh->b_assoc_buffers)) {
1197                 struct address_space *buffer_mapping = bh->b_page->mapping;
1198
1199                 spin_lock(&buffer_mapping->private_lock);
1200                 list_del_init(&bh->b_assoc_buffers);
1201                 bh->b_assoc_map = NULL;
1202                 spin_unlock(&buffer_mapping->private_lock);
1203         }
1204         __brelse(bh);
1205 }
1206
1207 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1208 {
1209         lock_buffer(bh);
1210         if (buffer_uptodate(bh)) {
1211                 unlock_buffer(bh);
1212                 return bh;
1213         } else {
1214                 get_bh(bh);
1215                 bh->b_end_io = end_buffer_read_sync;
1216                 submit_bh(READ, bh);
1217                 wait_on_buffer(bh);
1218                 if (buffer_uptodate(bh))
1219                         return bh;
1220         }
1221         brelse(bh);
1222         return NULL;
1223 }
1224
1225 /*
1226  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1227  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1228  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1229  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1230  * CPU's LRUs at the same time.
1231  *
1232  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1233  * sb_find_get_block().
1234  *
1235  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1236  * a local interrupt disable for that.
1237  */
1238
1239 #define BH_LRU_SIZE     8
1240
1241 struct bh_lru {
1242         struct buffer_head *bhs[BH_LRU_SIZE];
1243 };
1244
1245 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1246
1247 #ifdef CONFIG_SMP
1248 #define bh_lru_lock()   local_irq_disable()
1249 #define bh_lru_unlock() local_irq_enable()
1250 #else
1251 #define bh_lru_lock()   preempt_disable()
1252 #define bh_lru_unlock() preempt_enable()
1253 #endif
1254
1255 static inline void check_irqs_on(void)
1256 {
1257 #ifdef irqs_disabled
1258         BUG_ON(irqs_disabled());
1259 #endif
1260 }
1261
1262 /*
1263  * The LRU management algorithm is dopey-but-simple.  Sorry.
1264  */
1265 static void bh_lru_install(struct buffer_head *bh)
1266 {
1267         struct buffer_head *evictee = NULL;
1268         struct bh_lru *lru;
1269
1270         check_irqs_on();
1271         bh_lru_lock();
1272         lru = &__get_cpu_var(bh_lrus);
1273         if (lru->bhs[0] != bh) {
1274                 struct buffer_head *bhs[BH_LRU_SIZE];
1275                 int in;
1276                 int out = 0;
1277
1278                 get_bh(bh);
1279                 bhs[out++] = bh;
1280                 for (in = 0; in < BH_LRU_SIZE; in++) {
1281                         struct buffer_head *bh2 = lru->bhs[in];
1282
1283                         if (bh2 == bh) {
1284                                 __brelse(bh2);
1285                         } else {
1286                                 if (out >= BH_LRU_SIZE) {
1287                                         BUG_ON(evictee != NULL);
1288                                         evictee = bh2;
1289                                 } else {
1290                                         bhs[out++] = bh2;
1291                                 }
1292                         }
1293                 }
1294                 while (out < BH_LRU_SIZE)
1295                         bhs[out++] = NULL;
1296                 memcpy(lru->bhs, bhs, sizeof(bhs));
1297         }
1298         bh_lru_unlock();
1299
1300         if (evictee)
1301                 __brelse(evictee);
1302 }
1303
1304 /*
1305  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1306  */
1307 static struct buffer_head *
1308 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1309 {
1310         struct buffer_head *ret = NULL;
1311         struct bh_lru *lru;
1312         unsigned int i;
1313
1314         check_irqs_on();
1315         bh_lru_lock();
1316         lru = &__get_cpu_var(bh_lrus);
1317         for (i = 0; i < BH_LRU_SIZE; i++) {
1318                 struct buffer_head *bh = lru->bhs[i];
1319
1320                 if (bh && bh->b_bdev == bdev &&
1321                                 bh->b_blocknr == block && bh->b_size == size) {
1322                         if (i) {
1323                                 while (i) {
1324                                         lru->bhs[i] = lru->bhs[i - 1];
1325                                         i--;
1326                                 }
1327                                 lru->bhs[0] = bh;
1328                         }
1329                         get_bh(bh);
1330                         ret = bh;
1331                         break;
1332                 }
1333         }
1334         bh_lru_unlock();
1335         return ret;
1336 }
1337
1338 /*
1339  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1340  * it in the LRU and mark it as accessed.  If it is not present then return
1341  * NULL
1342  */
1343 struct buffer_head *
1344 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1347
1348         if (bh == NULL) {
1349                 bh = __find_get_block_slow(bdev, block);
1350                 if (bh)
1351                         bh_lru_install(bh);
1352         }
1353         if (bh)
1354                 touch_buffer(bh);
1355         return bh;
1356 }
1357 EXPORT_SYMBOL(__find_get_block);
1358
1359 /*
1360  * __getblk will locate (and, if necessary, create) the buffer_head
1361  * which corresponds to the passed block_device, block and size. The
1362  * returned buffer has its reference count incremented.
1363  *
1364  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1365  * illegal block number, __getblk() will happily return a buffer_head
1366  * which represents the non-existent block.  Very weird.
1367  *
1368  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1369  * attempt is failing.  FIXME, perhaps?
1370  */
1371 struct buffer_head *
1372 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1373 {
1374         struct buffer_head *bh = __find_get_block(bdev, block, size);
1375
1376         might_sleep();
1377         if (bh == NULL)
1378                 bh = __getblk_slow(bdev, block, size);
1379         return bh;
1380 }
1381 EXPORT_SYMBOL(__getblk);
1382
1383 /*
1384  * Do async read-ahead on a buffer..
1385  */
1386 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1387 {
1388         struct buffer_head *bh = __getblk(bdev, block, size);
1389         if (likely(bh)) {
1390                 ll_rw_block(READA, 1, &bh);
1391                 brelse(bh);
1392         }
1393 }
1394 EXPORT_SYMBOL(__breadahead);
1395
1396 /**
1397  *  __bread() - reads a specified block and returns the bh
1398  *  @bdev: the block_device to read from
1399  *  @block: number of block
1400  *  @size: size (in bytes) to read
1401  * 
1402  *  Reads a specified block, and returns buffer head that contains it.
1403  *  It returns NULL if the block was unreadable.
1404  */
1405 struct buffer_head *
1406 __bread(struct block_device *bdev, sector_t block, unsigned size)
1407 {
1408         struct buffer_head *bh = __getblk(bdev, block, size);
1409
1410         if (likely(bh) && !buffer_uptodate(bh))
1411                 bh = __bread_slow(bh);
1412         return bh;
1413 }
1414 EXPORT_SYMBOL(__bread);
1415
1416 /*
1417  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1418  * This doesn't race because it runs in each cpu either in irq
1419  * or with preempt disabled.
1420  */
1421 static void invalidate_bh_lru(void *arg)
1422 {
1423         struct bh_lru *b = &get_cpu_var(bh_lrus);
1424         int i;
1425
1426         for (i = 0; i < BH_LRU_SIZE; i++) {
1427                 brelse(b->bhs[i]);
1428                 b->bhs[i] = NULL;
1429         }
1430         put_cpu_var(bh_lrus);
1431 }
1432         
1433 void invalidate_bh_lrus(void)
1434 {
1435         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1436 }
1437
1438 void set_bh_page(struct buffer_head *bh,
1439                 struct page *page, unsigned long offset)
1440 {
1441         bh->b_page = page;
1442         BUG_ON(offset >= PAGE_SIZE);
1443         if (PageHighMem(page))
1444                 /*
1445                  * This catches illegal uses and preserves the offset:
1446                  */
1447                 bh->b_data = (char *)(0 + offset);
1448         else
1449                 bh->b_data = page_address(page) + offset;
1450 }
1451 EXPORT_SYMBOL(set_bh_page);
1452
1453 /*
1454  * Called when truncating a buffer on a page completely.
1455  */
1456 static void discard_buffer(struct buffer_head * bh)
1457 {
1458         lock_buffer(bh);
1459         clear_buffer_dirty(bh);
1460         bh->b_bdev = NULL;
1461         clear_buffer_mapped(bh);
1462         clear_buffer_req(bh);
1463         clear_buffer_new(bh);
1464         clear_buffer_delay(bh);
1465         clear_buffer_unwritten(bh);
1466         unlock_buffer(bh);
1467 }
1468
1469 /**
1470  * block_invalidatepage - invalidate part of all of a buffer-backed page
1471  *
1472  * @page: the page which is affected
1473  * @offset: the index of the truncation point
1474  *
1475  * block_invalidatepage() is called when all or part of the page has become
1476  * invalidatedby a truncate operation.
1477  *
1478  * block_invalidatepage() does not have to release all buffers, but it must
1479  * ensure that no dirty buffer is left outside @offset and that no I/O
1480  * is underway against any of the blocks which are outside the truncation
1481  * point.  Because the caller is about to free (and possibly reuse) those
1482  * blocks on-disk.
1483  */
1484 void block_invalidatepage(struct page *page, unsigned long offset)
1485 {
1486         struct buffer_head *head, *bh, *next;
1487         unsigned int curr_off = 0;
1488
1489         BUG_ON(!PageLocked(page));
1490         if (!page_has_buffers(page))
1491                 goto out;
1492
1493         head = page_buffers(page);
1494         bh = head;
1495         do {
1496                 unsigned int next_off = curr_off + bh->b_size;
1497                 next = bh->b_this_page;
1498
1499                 /*
1500                  * is this block fully invalidated?
1501                  */
1502                 if (offset <= curr_off)
1503                         discard_buffer(bh);
1504                 curr_off = next_off;
1505                 bh = next;
1506         } while (bh != head);
1507
1508         /*
1509          * We release buffers only if the entire page is being invalidated.
1510          * The get_block cached value has been unconditionally invalidated,
1511          * so real IO is not possible anymore.
1512          */
1513         if (offset == 0)
1514                 try_to_release_page(page, 0);
1515 out:
1516         return;
1517 }
1518 EXPORT_SYMBOL(block_invalidatepage);
1519
1520 /*
1521  * We attach and possibly dirty the buffers atomically wrt
1522  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1523  * is already excluded via the page lock.
1524  */
1525 void create_empty_buffers(struct page *page,
1526                         unsigned long blocksize, unsigned long b_state)
1527 {
1528         struct buffer_head *bh, *head, *tail;
1529
1530         head = alloc_page_buffers(page, blocksize, 1);
1531         bh = head;
1532         do {
1533                 bh->b_state |= b_state;
1534                 tail = bh;
1535                 bh = bh->b_this_page;
1536         } while (bh);
1537         tail->b_this_page = head;
1538
1539         spin_lock(&page->mapping->private_lock);
1540         if (PageUptodate(page) || PageDirty(page)) {
1541                 bh = head;
1542                 do {
1543                         if (PageDirty(page))
1544                                 set_buffer_dirty(bh);
1545                         if (PageUptodate(page))
1546                                 set_buffer_uptodate(bh);
1547                         bh = bh->b_this_page;
1548                 } while (bh != head);
1549         }
1550         attach_page_buffers(page, head);
1551         spin_unlock(&page->mapping->private_lock);
1552 }
1553 EXPORT_SYMBOL(create_empty_buffers);
1554
1555 /*
1556  * We are taking a block for data and we don't want any output from any
1557  * buffer-cache aliases starting from return from that function and
1558  * until the moment when something will explicitly mark the buffer
1559  * dirty (hopefully that will not happen until we will free that block ;-)
1560  * We don't even need to mark it not-uptodate - nobody can expect
1561  * anything from a newly allocated buffer anyway. We used to used
1562  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1563  * don't want to mark the alias unmapped, for example - it would confuse
1564  * anyone who might pick it with bread() afterwards...
1565  *
1566  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1567  * be writeout I/O going on against recently-freed buffers.  We don't
1568  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1569  * only if we really need to.  That happens here.
1570  */
1571 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1572 {
1573         struct buffer_head *old_bh;
1574
1575         might_sleep();
1576
1577         old_bh = __find_get_block_slow(bdev, block);
1578         if (old_bh) {
1579                 clear_buffer_dirty(old_bh);
1580                 wait_on_buffer(old_bh);
1581                 clear_buffer_req(old_bh);
1582                 __brelse(old_bh);
1583         }
1584 }
1585 EXPORT_SYMBOL(unmap_underlying_metadata);
1586
1587 /*
1588  * NOTE! All mapped/uptodate combinations are valid:
1589  *
1590  *      Mapped  Uptodate        Meaning
1591  *
1592  *      No      No              "unknown" - must do get_block()
1593  *      No      Yes             "hole" - zero-filled
1594  *      Yes     No              "allocated" - allocated on disk, not read in
1595  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1596  *
1597  * "Dirty" is valid only with the last case (mapped+uptodate).
1598  */
1599
1600 /*
1601  * While block_write_full_page is writing back the dirty buffers under
1602  * the page lock, whoever dirtied the buffers may decide to clean them
1603  * again at any time.  We handle that by only looking at the buffer
1604  * state inside lock_buffer().
1605  *
1606  * If block_write_full_page() is called for regular writeback
1607  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1608  * locked buffer.   This only can happen if someone has written the buffer
1609  * directly, with submit_bh().  At the address_space level PageWriteback
1610  * prevents this contention from occurring.
1611  */
1612 static int __block_write_full_page(struct inode *inode, struct page *page,
1613                         get_block_t *get_block, struct writeback_control *wbc)
1614 {
1615         int err;
1616         sector_t block;
1617         sector_t last_block;
1618         struct buffer_head *bh, *head;
1619         const unsigned blocksize = 1 << inode->i_blkbits;
1620         int nr_underway = 0;
1621
1622         BUG_ON(!PageLocked(page));
1623
1624         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1625
1626         if (!page_has_buffers(page)) {
1627                 create_empty_buffers(page, blocksize,
1628                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1629         }
1630
1631         /*
1632          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1633          * here, and the (potentially unmapped) buffers may become dirty at
1634          * any time.  If a buffer becomes dirty here after we've inspected it
1635          * then we just miss that fact, and the page stays dirty.
1636          *
1637          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1638          * handle that here by just cleaning them.
1639          */
1640
1641         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1642         head = page_buffers(page);
1643         bh = head;
1644
1645         /*
1646          * Get all the dirty buffers mapped to disk addresses and
1647          * handle any aliases from the underlying blockdev's mapping.
1648          */
1649         do {
1650                 if (block > last_block) {
1651                         /*
1652                          * mapped buffers outside i_size will occur, because
1653                          * this page can be outside i_size when there is a
1654                          * truncate in progress.
1655                          */
1656                         /*
1657                          * The buffer was zeroed by block_write_full_page()
1658                          */
1659                         clear_buffer_dirty(bh);
1660                         set_buffer_uptodate(bh);
1661                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1662                         WARN_ON(bh->b_size != blocksize);
1663                         err = get_block(inode, block, bh, 1);
1664                         if (err)
1665                                 goto recover;
1666                         if (buffer_new(bh)) {
1667                                 /* blockdev mappings never come here */
1668                                 clear_buffer_new(bh);
1669                                 unmap_underlying_metadata(bh->b_bdev,
1670                                                         bh->b_blocknr);
1671                         }
1672                 }
1673                 bh = bh->b_this_page;
1674                 block++;
1675         } while (bh != head);
1676
1677         do {
1678                 if (!buffer_mapped(bh))
1679                         continue;
1680                 /*
1681                  * If it's a fully non-blocking write attempt and we cannot
1682                  * lock the buffer then redirty the page.  Note that this can
1683                  * potentially cause a busy-wait loop from pdflush and kswapd
1684                  * activity, but those code paths have their own higher-level
1685                  * throttling.
1686                  */
1687                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1688                         lock_buffer(bh);
1689                 } else if (test_set_buffer_locked(bh)) {
1690                         redirty_page_for_writepage(wbc, page);
1691                         continue;
1692                 }
1693                 if (test_clear_buffer_dirty(bh)) {
1694                         mark_buffer_async_write(bh);
1695                 } else {
1696                         unlock_buffer(bh);
1697                 }
1698         } while ((bh = bh->b_this_page) != head);
1699
1700         /*
1701          * The page and its buffers are protected by PageWriteback(), so we can
1702          * drop the bh refcounts early.
1703          */
1704         BUG_ON(PageWriteback(page));
1705         set_page_writeback(page);
1706
1707         do {
1708                 struct buffer_head *next = bh->b_this_page;
1709                 if (buffer_async_write(bh)) {
1710                         submit_bh(WRITE, bh);
1711                         nr_underway++;
1712                 }
1713                 bh = next;
1714         } while (bh != head);
1715         unlock_page(page);
1716
1717         err = 0;
1718 done:
1719         if (nr_underway == 0) {
1720                 /*
1721                  * The page was marked dirty, but the buffers were
1722                  * clean.  Someone wrote them back by hand with
1723                  * ll_rw_block/submit_bh.  A rare case.
1724                  */
1725                 end_page_writeback(page);
1726
1727                 /*
1728                  * The page and buffer_heads can be released at any time from
1729                  * here on.
1730                  */
1731                 wbc->pages_skipped++;   /* We didn't write this page */
1732         }
1733         return err;
1734
1735 recover:
1736         /*
1737          * ENOSPC, or some other error.  We may already have added some
1738          * blocks to the file, so we need to write these out to avoid
1739          * exposing stale data.
1740          * The page is currently locked and not marked for writeback
1741          */
1742         bh = head;
1743         /* Recovery: lock and submit the mapped buffers */
1744         do {
1745                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1746                         lock_buffer(bh);
1747                         mark_buffer_async_write(bh);
1748                 } else {
1749                         /*
1750                          * The buffer may have been set dirty during
1751                          * attachment to a dirty page.
1752                          */
1753                         clear_buffer_dirty(bh);
1754                 }
1755         } while ((bh = bh->b_this_page) != head);
1756         SetPageError(page);
1757         BUG_ON(PageWriteback(page));
1758         mapping_set_error(page->mapping, err);
1759         set_page_writeback(page);
1760         do {
1761                 struct buffer_head *next = bh->b_this_page;
1762                 if (buffer_async_write(bh)) {
1763                         clear_buffer_dirty(bh);
1764                         submit_bh(WRITE, bh);
1765                         nr_underway++;
1766                 }
1767                 bh = next;
1768         } while (bh != head);
1769         unlock_page(page);
1770         goto done;
1771 }
1772
1773 static int __block_prepare_write(struct inode *inode, struct page *page,
1774                 unsigned from, unsigned to, get_block_t *get_block)
1775 {
1776         unsigned block_start, block_end;
1777         sector_t block;
1778         int err = 0;
1779         unsigned blocksize, bbits;
1780         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1781
1782         BUG_ON(!PageLocked(page));
1783         BUG_ON(from > PAGE_CACHE_SIZE);
1784         BUG_ON(to > PAGE_CACHE_SIZE);
1785         BUG_ON(from > to);
1786
1787         blocksize = 1 << inode->i_blkbits;
1788         if (!page_has_buffers(page))
1789                 create_empty_buffers(page, blocksize, 0);
1790         head = page_buffers(page);
1791
1792         bbits = inode->i_blkbits;
1793         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1794
1795         for(bh = head, block_start = 0; bh != head || !block_start;
1796             block++, block_start=block_end, bh = bh->b_this_page) {
1797                 block_end = block_start + blocksize;
1798                 if (block_end <= from || block_start >= to) {
1799                         if (PageUptodate(page)) {
1800                                 if (!buffer_uptodate(bh))
1801                                         set_buffer_uptodate(bh);
1802                         }
1803                         continue;
1804                 }
1805                 if (buffer_new(bh))
1806                         clear_buffer_new(bh);
1807                 if (!buffer_mapped(bh)) {
1808                         WARN_ON(bh->b_size != blocksize);
1809                         err = get_block(inode, block, bh, 1);
1810                         if (err)
1811                                 break;
1812                         if (buffer_new(bh)) {
1813                                 unmap_underlying_metadata(bh->b_bdev,
1814                                                         bh->b_blocknr);
1815                                 if (PageUptodate(page)) {
1816                                         set_buffer_uptodate(bh);
1817                                         continue;
1818                                 }
1819                                 if (block_end > to || block_start < from) {
1820                                         void *kaddr;
1821
1822                                         kaddr = kmap_atomic(page, KM_USER0);
1823                                         if (block_end > to)
1824                                                 memset(kaddr+to, 0,
1825                                                         block_end-to);
1826                                         if (block_start < from)
1827                                                 memset(kaddr+block_start,
1828                                                         0, from-block_start);
1829                                         flush_dcache_page(page);
1830                                         kunmap_atomic(kaddr, KM_USER0);
1831                                 }
1832                                 continue;
1833                         }
1834                 }
1835                 if (PageUptodate(page)) {
1836                         if (!buffer_uptodate(bh))
1837                                 set_buffer_uptodate(bh);
1838                         continue; 
1839                 }
1840                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1841                     !buffer_unwritten(bh) &&
1842                      (block_start < from || block_end > to)) {
1843                         ll_rw_block(READ, 1, &bh);
1844                         *wait_bh++=bh;
1845                 }
1846         }
1847         /*
1848          * If we issued read requests - let them complete.
1849          */
1850         while(wait_bh > wait) {
1851                 wait_on_buffer(*--wait_bh);
1852                 if (!buffer_uptodate(*wait_bh))
1853                         err = -EIO;
1854         }
1855         if (!err) {
1856                 bh = head;
1857                 do {
1858                         if (buffer_new(bh))
1859                                 clear_buffer_new(bh);
1860                 } while ((bh = bh->b_this_page) != head);
1861                 return 0;
1862         }
1863         /* Error case: */
1864         /*
1865          * Zero out any newly allocated blocks to avoid exposing stale
1866          * data.  If BH_New is set, we know that the block was newly
1867          * allocated in the above loop.
1868          */
1869         bh = head;
1870         block_start = 0;
1871         do {
1872                 block_end = block_start+blocksize;
1873                 if (block_end <= from)
1874                         goto next_bh;
1875                 if (block_start >= to)
1876                         break;
1877                 if (buffer_new(bh)) {
1878                         clear_buffer_new(bh);
1879                         zero_user_page(page, block_start, bh->b_size, KM_USER0);
1880                         set_buffer_uptodate(bh);
1881                         mark_buffer_dirty(bh);
1882                 }
1883 next_bh:
1884                 block_start = block_end;
1885                 bh = bh->b_this_page;
1886         } while (bh != head);
1887         return err;
1888 }
1889
1890 static int __block_commit_write(struct inode *inode, struct page *page,
1891                 unsigned from, unsigned to)
1892 {
1893         unsigned block_start, block_end;
1894         int partial = 0;
1895         unsigned blocksize;
1896         struct buffer_head *bh, *head;
1897
1898         blocksize = 1 << inode->i_blkbits;
1899
1900         for(bh = head = page_buffers(page), block_start = 0;
1901             bh != head || !block_start;
1902             block_start=block_end, bh = bh->b_this_page) {
1903                 block_end = block_start + blocksize;
1904                 if (block_end <= from || block_start >= to) {
1905                         if (!buffer_uptodate(bh))
1906                                 partial = 1;
1907                 } else {
1908                         set_buffer_uptodate(bh);
1909                         mark_buffer_dirty(bh);
1910                 }
1911         }
1912
1913         /*
1914          * If this is a partial write which happened to make all buffers
1915          * uptodate then we can optimize away a bogus readpage() for
1916          * the next read(). Here we 'discover' whether the page went
1917          * uptodate as a result of this (potentially partial) write.
1918          */
1919         if (!partial)
1920                 SetPageUptodate(page);
1921         return 0;
1922 }
1923
1924 /*
1925  * Generic "read page" function for block devices that have the normal
1926  * get_block functionality. This is most of the block device filesystems.
1927  * Reads the page asynchronously --- the unlock_buffer() and
1928  * set/clear_buffer_uptodate() functions propagate buffer state into the
1929  * page struct once IO has completed.
1930  */
1931 int block_read_full_page(struct page *page, get_block_t *get_block)
1932 {
1933         struct inode *inode = page->mapping->host;
1934         sector_t iblock, lblock;
1935         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1936         unsigned int blocksize;
1937         int nr, i;
1938         int fully_mapped = 1;
1939
1940         BUG_ON(!PageLocked(page));
1941         blocksize = 1 << inode->i_blkbits;
1942         if (!page_has_buffers(page))
1943                 create_empty_buffers(page, blocksize, 0);
1944         head = page_buffers(page);
1945
1946         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1947         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1948         bh = head;
1949         nr = 0;
1950         i = 0;
1951
1952         do {
1953                 if (buffer_uptodate(bh))
1954                         continue;
1955
1956                 if (!buffer_mapped(bh)) {
1957                         int err = 0;
1958
1959                         fully_mapped = 0;
1960                         if (iblock < lblock) {
1961                                 WARN_ON(bh->b_size != blocksize);
1962                                 err = get_block(inode, iblock, bh, 0);
1963                                 if (err)
1964                                         SetPageError(page);
1965                         }
1966                         if (!buffer_mapped(bh)) {
1967                                 zero_user_page(page, i * blocksize, blocksize,
1968                                                 KM_USER0);
1969                                 if (!err)
1970                                         set_buffer_uptodate(bh);
1971                                 continue;
1972                         }
1973                         /*
1974                          * get_block() might have updated the buffer
1975                          * synchronously
1976                          */
1977                         if (buffer_uptodate(bh))
1978                                 continue;
1979                 }
1980                 arr[nr++] = bh;
1981         } while (i++, iblock++, (bh = bh->b_this_page) != head);
1982
1983         if (fully_mapped)
1984                 SetPageMappedToDisk(page);
1985
1986         if (!nr) {
1987                 /*
1988                  * All buffers are uptodate - we can set the page uptodate
1989                  * as well. But not if get_block() returned an error.
1990                  */
1991                 if (!PageError(page))
1992                         SetPageUptodate(page);
1993                 unlock_page(page);
1994                 return 0;
1995         }
1996
1997         /* Stage two: lock the buffers */
1998         for (i = 0; i < nr; i++) {
1999                 bh = arr[i];
2000                 lock_buffer(bh);
2001                 mark_buffer_async_read(bh);
2002         }
2003
2004         /*
2005          * Stage 3: start the IO.  Check for uptodateness
2006          * inside the buffer lock in case another process reading
2007          * the underlying blockdev brought it uptodate (the sct fix).
2008          */
2009         for (i = 0; i < nr; i++) {
2010                 bh = arr[i];
2011                 if (buffer_uptodate(bh))
2012                         end_buffer_async_read(bh, 1);
2013                 else
2014                         submit_bh(READ, bh);
2015         }
2016         return 0;
2017 }
2018
2019 /* utility function for filesystems that need to do work on expanding
2020  * truncates.  Uses prepare/commit_write to allow the filesystem to
2021  * deal with the hole.  
2022  */
2023 static int __generic_cont_expand(struct inode *inode, loff_t size,
2024                                  pgoff_t index, unsigned int offset)
2025 {
2026         struct address_space *mapping = inode->i_mapping;
2027         struct page *page;
2028         unsigned long limit;
2029         int err;
2030
2031         err = -EFBIG;
2032         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2033         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2034                 send_sig(SIGXFSZ, current, 0);
2035                 goto out;
2036         }
2037         if (size > inode->i_sb->s_maxbytes)
2038                 goto out;
2039
2040         err = -ENOMEM;
2041         page = grab_cache_page(mapping, index);
2042         if (!page)
2043                 goto out;
2044         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2045         if (err) {
2046                 /*
2047                  * ->prepare_write() may have instantiated a few blocks
2048                  * outside i_size.  Trim these off again.
2049                  */
2050                 unlock_page(page);
2051                 page_cache_release(page);
2052                 vmtruncate(inode, inode->i_size);
2053                 goto out;
2054         }
2055
2056         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2057
2058         unlock_page(page);
2059         page_cache_release(page);
2060         if (err > 0)
2061                 err = 0;
2062 out:
2063         return err;
2064 }
2065
2066 int generic_cont_expand(struct inode *inode, loff_t size)
2067 {
2068         pgoff_t index;
2069         unsigned int offset;
2070
2071         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2072
2073         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2074         ** skip the prepare.  make sure we never send an offset for the start
2075         ** of a block
2076         */
2077         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2078                 /* caller must handle this extra byte. */
2079                 offset++;
2080         }
2081         index = size >> PAGE_CACHE_SHIFT;
2082
2083         return __generic_cont_expand(inode, size, index, offset);
2084 }
2085
2086 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2087 {
2088         loff_t pos = size - 1;
2089         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2090         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2091
2092         /* prepare/commit_write can handle even if from==to==start of block. */
2093         return __generic_cont_expand(inode, size, index, offset);
2094 }
2095
2096 /*
2097  * For moronic filesystems that do not allow holes in file.
2098  * We may have to extend the file.
2099  */
2100
2101 int cont_prepare_write(struct page *page, unsigned offset,
2102                 unsigned to, get_block_t *get_block, loff_t *bytes)
2103 {
2104         struct address_space *mapping = page->mapping;
2105         struct inode *inode = mapping->host;
2106         struct page *new_page;
2107         pgoff_t pgpos;
2108         long status;
2109         unsigned zerofrom;
2110         unsigned blocksize = 1 << inode->i_blkbits;
2111
2112         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2113                 status = -ENOMEM;
2114                 new_page = grab_cache_page(mapping, pgpos);
2115                 if (!new_page)
2116                         goto out;
2117                 /* we might sleep */
2118                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2119                         unlock_page(new_page);
2120                         page_cache_release(new_page);
2121                         continue;
2122                 }
2123                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2124                 if (zerofrom & (blocksize-1)) {
2125                         *bytes |= (blocksize-1);
2126                         (*bytes)++;
2127                 }
2128                 status = __block_prepare_write(inode, new_page, zerofrom,
2129                                                 PAGE_CACHE_SIZE, get_block);
2130                 if (status)
2131                         goto out_unmap;
2132                 zero_user_page(new_page, zerofrom, PAGE_CACHE_SIZE - zerofrom,
2133                                 KM_USER0);
2134                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2135                 unlock_page(new_page);
2136                 page_cache_release(new_page);
2137         }
2138
2139         if (page->index < pgpos) {
2140                 /* completely inside the area */
2141                 zerofrom = offset;
2142         } else {
2143                 /* page covers the boundary, find the boundary offset */
2144                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2145
2146                 /* if we will expand the thing last block will be filled */
2147                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2148                         *bytes |= (blocksize-1);
2149                         (*bytes)++;
2150                 }
2151
2152                 /* starting below the boundary? Nothing to zero out */
2153                 if (offset <= zerofrom)
2154                         zerofrom = offset;
2155         }
2156         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2157         if (status)
2158                 goto out1;
2159         if (zerofrom < offset) {
2160                 zero_user_page(page, zerofrom, offset - zerofrom, KM_USER0);
2161                 __block_commit_write(inode, page, zerofrom, offset);
2162         }
2163         return 0;
2164 out1:
2165         ClearPageUptodate(page);
2166         return status;
2167
2168 out_unmap:
2169         ClearPageUptodate(new_page);
2170         unlock_page(new_page);
2171         page_cache_release(new_page);
2172 out:
2173         return status;
2174 }
2175
2176 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2177                         get_block_t *get_block)
2178 {
2179         struct inode *inode = page->mapping->host;
2180         int err = __block_prepare_write(inode, page, from, to, get_block);
2181         if (err)
2182                 ClearPageUptodate(page);
2183         return err;
2184 }
2185
2186 int block_commit_write(struct page *page, unsigned from, unsigned to)
2187 {
2188         struct inode *inode = page->mapping->host;
2189         __block_commit_write(inode,page,from,to);
2190         return 0;
2191 }
2192
2193 int generic_commit_write(struct file *file, struct page *page,
2194                 unsigned from, unsigned to)
2195 {
2196         struct inode *inode = page->mapping->host;
2197         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2198         __block_commit_write(inode,page,from,to);
2199         /*
2200          * No need to use i_size_read() here, the i_size
2201          * cannot change under us because we hold i_mutex.
2202          */
2203         if (pos > inode->i_size) {
2204                 i_size_write(inode, pos);
2205                 mark_inode_dirty(inode);
2206         }
2207         return 0;
2208 }
2209
2210 /*
2211  * block_page_mkwrite() is not allowed to change the file size as it gets
2212  * called from a page fault handler when a page is first dirtied. Hence we must
2213  * be careful to check for EOF conditions here. We set the page up correctly
2214  * for a written page which means we get ENOSPC checking when writing into
2215  * holes and correct delalloc and unwritten extent mapping on filesystems that
2216  * support these features.
2217  *
2218  * We are not allowed to take the i_mutex here so we have to play games to
2219  * protect against truncate races as the page could now be beyond EOF.  Because
2220  * vmtruncate() writes the inode size before removing pages, once we have the
2221  * page lock we can determine safely if the page is beyond EOF. If it is not
2222  * beyond EOF, then the page is guaranteed safe against truncation until we
2223  * unlock the page.
2224  */
2225 int
2226 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2227                    get_block_t get_block)
2228 {
2229         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2230         unsigned long end;
2231         loff_t size;
2232         int ret = -EINVAL;
2233
2234         lock_page(page);
2235         size = i_size_read(inode);
2236         if ((page->mapping != inode->i_mapping) ||
2237             (page_offset(page) > size)) {
2238                 /* page got truncated out from underneath us */
2239                 goto out_unlock;
2240         }
2241
2242         /* page is wholly or partially inside EOF */
2243         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2244                 end = size & ~PAGE_CACHE_MASK;
2245         else
2246                 end = PAGE_CACHE_SIZE;
2247
2248         ret = block_prepare_write(page, 0, end, get_block);
2249         if (!ret)
2250                 ret = block_commit_write(page, 0, end);
2251
2252 out_unlock:
2253         unlock_page(page);
2254         return ret;
2255 }
2256
2257 /*
2258  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2259  * immediately, while under the page lock.  So it needs a special end_io
2260  * handler which does not touch the bh after unlocking it.
2261  */
2262 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2263 {
2264         __end_buffer_read_notouch(bh, uptodate);
2265 }
2266
2267 /*
2268  * On entry, the page is fully not uptodate.
2269  * On exit the page is fully uptodate in the areas outside (from,to)
2270  */
2271 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2272                         get_block_t *get_block)
2273 {
2274         struct inode *inode = page->mapping->host;
2275         const unsigned blkbits = inode->i_blkbits;
2276         const unsigned blocksize = 1 << blkbits;
2277         struct buffer_head *head, *bh;
2278         unsigned block_in_page;
2279         unsigned block_start, block_end;
2280         sector_t block_in_file;
2281         char *kaddr;
2282         int nr_reads = 0;
2283         int ret = 0;
2284         int is_mapped_to_disk = 1;
2285
2286         if (page_has_buffers(page))
2287                 return block_prepare_write(page, from, to, get_block);
2288
2289         if (PageMappedToDisk(page))
2290                 return 0;
2291
2292         /*
2293          * Allocate buffers so that we can keep track of state, and potentially
2294          * attach them to the page if an error occurs. In the common case of
2295          * no error, they will just be freed again without ever being attached
2296          * to the page (which is all OK, because we're under the page lock).
2297          *
2298          * Be careful: the buffer linked list is a NULL terminated one, rather
2299          * than the circular one we're used to.
2300          */
2301         head = alloc_page_buffers(page, blocksize, 0);
2302         if (!head)
2303                 return -ENOMEM;
2304
2305         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2306
2307         /*
2308          * We loop across all blocks in the page, whether or not they are
2309          * part of the affected region.  This is so we can discover if the
2310          * page is fully mapped-to-disk.
2311          */
2312         for (block_start = 0, block_in_page = 0, bh = head;
2313                   block_start < PAGE_CACHE_SIZE;
2314                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2315                 int create;
2316
2317                 block_end = block_start + blocksize;
2318                 bh->b_state = 0;
2319                 create = 1;
2320                 if (block_start >= to)
2321                         create = 0;
2322                 ret = get_block(inode, block_in_file + block_in_page,
2323                                         bh, create);
2324                 if (ret)
2325                         goto failed;
2326                 if (!buffer_mapped(bh))
2327                         is_mapped_to_disk = 0;
2328                 if (buffer_new(bh))
2329                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2330                 if (PageUptodate(page)) {
2331                         set_buffer_uptodate(bh);
2332                         continue;
2333                 }
2334                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2335                         kaddr = kmap_atomic(page, KM_USER0);
2336                         if (block_start < from)
2337                                 memset(kaddr+block_start, 0, from-block_start);
2338                         if (block_end > to)
2339                                 memset(kaddr + to, 0, block_end - to);
2340                         flush_dcache_page(page);
2341                         kunmap_atomic(kaddr, KM_USER0);
2342                         continue;
2343                 }
2344                 if (buffer_uptodate(bh))
2345                         continue;       /* reiserfs does this */
2346                 if (block_start < from || block_end > to) {
2347                         lock_buffer(bh);
2348                         bh->b_end_io = end_buffer_read_nobh;
2349                         submit_bh(READ, bh);
2350                         nr_reads++;
2351                 }
2352         }
2353
2354         if (nr_reads) {
2355                 /*
2356                  * The page is locked, so these buffers are protected from
2357                  * any VM or truncate activity.  Hence we don't need to care
2358                  * for the buffer_head refcounts.
2359                  */
2360                 for (bh = head; bh; bh = bh->b_this_page) {
2361                         wait_on_buffer(bh);
2362                         if (!buffer_uptodate(bh))
2363                                 ret = -EIO;
2364                 }
2365                 if (ret)
2366                         goto failed;
2367         }
2368
2369         if (is_mapped_to_disk)
2370                 SetPageMappedToDisk(page);
2371
2372         do {
2373                 bh = head;
2374                 head = head->b_this_page;
2375                 free_buffer_head(bh);
2376         } while (head);
2377
2378         return 0;
2379
2380 failed:
2381         /*
2382          * Error recovery is a bit difficult. We need to zero out blocks that
2383          * were newly allocated, and dirty them to ensure they get written out.
2384          * Buffers need to be attached to the page at this point, otherwise
2385          * the handling of potential IO errors during writeout would be hard
2386          * (could try doing synchronous writeout, but what if that fails too?)
2387          */
2388         spin_lock(&page->mapping->private_lock);
2389         bh = head;
2390         block_start = 0;
2391         do {
2392                 if (PageUptodate(page))
2393                         set_buffer_uptodate(bh);
2394                 if (PageDirty(page))
2395                         set_buffer_dirty(bh);
2396
2397                 block_end = block_start+blocksize;
2398                 if (block_end <= from)
2399                         goto next;
2400                 if (block_start >= to)
2401                         goto next;
2402
2403                 if (buffer_new(bh)) {
2404                         clear_buffer_new(bh);
2405                         if (!buffer_uptodate(bh)) {
2406                                 zero_user_page(page, block_start, bh->b_size, KM_USER0);
2407                                 set_buffer_uptodate(bh);
2408                         }
2409                         mark_buffer_dirty(bh);
2410                 }
2411 next:
2412                 block_start = block_end;
2413                 if (!bh->b_this_page)
2414                         bh->b_this_page = head;
2415                 bh = bh->b_this_page;
2416         } while (bh != head);
2417         attach_page_buffers(page, head);
2418         spin_unlock(&page->mapping->private_lock);
2419
2420         return ret;
2421 }
2422 EXPORT_SYMBOL(nobh_prepare_write);
2423
2424 /*
2425  * Make sure any changes to nobh_commit_write() are reflected in
2426  * nobh_truncate_page(), since it doesn't call commit_write().
2427  */
2428 int nobh_commit_write(struct file *file, struct page *page,
2429                 unsigned from, unsigned to)
2430 {
2431         struct inode *inode = page->mapping->host;
2432         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2433
2434         if (page_has_buffers(page))
2435                 return generic_commit_write(file, page, from, to);
2436
2437         SetPageUptodate(page);
2438         set_page_dirty(page);
2439         if (pos > inode->i_size) {
2440                 i_size_write(inode, pos);
2441                 mark_inode_dirty(inode);
2442         }
2443         return 0;
2444 }
2445 EXPORT_SYMBOL(nobh_commit_write);
2446
2447 /*
2448  * nobh_writepage() - based on block_full_write_page() except
2449  * that it tries to operate without attaching bufferheads to
2450  * the page.
2451  */
2452 int nobh_writepage(struct page *page, get_block_t *get_block,
2453                         struct writeback_control *wbc)
2454 {
2455         struct inode * const inode = page->mapping->host;
2456         loff_t i_size = i_size_read(inode);
2457         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2458         unsigned offset;
2459         int ret;
2460
2461         /* Is the page fully inside i_size? */
2462         if (page->index < end_index)
2463                 goto out;
2464
2465         /* Is the page fully outside i_size? (truncate in progress) */
2466         offset = i_size & (PAGE_CACHE_SIZE-1);
2467         if (page->index >= end_index+1 || !offset) {
2468                 /*
2469                  * The page may have dirty, unmapped buffers.  For example,
2470                  * they may have been added in ext3_writepage().  Make them
2471                  * freeable here, so the page does not leak.
2472                  */
2473 #if 0
2474                 /* Not really sure about this  - do we need this ? */
2475                 if (page->mapping->a_ops->invalidatepage)
2476                         page->mapping->a_ops->invalidatepage(page, offset);
2477 #endif
2478                 unlock_page(page);
2479                 return 0; /* don't care */
2480         }
2481
2482         /*
2483          * The page straddles i_size.  It must be zeroed out on each and every
2484          * writepage invocation because it may be mmapped.  "A file is mapped
2485          * in multiples of the page size.  For a file that is not a multiple of
2486          * the  page size, the remaining memory is zeroed when mapped, and
2487          * writes to that region are not written out to the file."
2488          */
2489         zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2490 out:
2491         ret = mpage_writepage(page, get_block, wbc);
2492         if (ret == -EAGAIN)
2493                 ret = __block_write_full_page(inode, page, get_block, wbc);
2494         return ret;
2495 }
2496 EXPORT_SYMBOL(nobh_writepage);
2497
2498 /*
2499  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2500  */
2501 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2502 {
2503         struct inode *inode = mapping->host;
2504         unsigned blocksize = 1 << inode->i_blkbits;
2505         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2506         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2507         unsigned to;
2508         struct page *page;
2509         const struct address_space_operations *a_ops = mapping->a_ops;
2510         int ret = 0;
2511
2512         if ((offset & (blocksize - 1)) == 0)
2513                 goto out;
2514
2515         ret = -ENOMEM;
2516         page = grab_cache_page(mapping, index);
2517         if (!page)
2518                 goto out;
2519
2520         to = (offset + blocksize) & ~(blocksize - 1);
2521         ret = a_ops->prepare_write(NULL, page, offset, to);
2522         if (ret == 0) {
2523                 zero_user_page(page, offset, PAGE_CACHE_SIZE - offset,
2524                                 KM_USER0);
2525                 /*
2526                  * It would be more correct to call aops->commit_write()
2527                  * here, but this is more efficient.
2528                  */
2529                 SetPageUptodate(page);
2530                 set_page_dirty(page);
2531         }
2532         unlock_page(page);
2533         page_cache_release(page);
2534 out:
2535         return ret;
2536 }
2537 EXPORT_SYMBOL(nobh_truncate_page);
2538
2539 int block_truncate_page(struct address_space *mapping,
2540                         loff_t from, get_block_t *get_block)
2541 {
2542         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2543         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2544         unsigned blocksize;
2545         sector_t iblock;
2546         unsigned length, pos;
2547         struct inode *inode = mapping->host;
2548         struct page *page;
2549         struct buffer_head *bh;
2550         int err;
2551
2552         blocksize = 1 << inode->i_blkbits;
2553         length = offset & (blocksize - 1);
2554
2555         /* Block boundary? Nothing to do */
2556         if (!length)
2557                 return 0;
2558
2559         length = blocksize - length;
2560         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2561         
2562         page = grab_cache_page(mapping, index);
2563         err = -ENOMEM;
2564         if (!page)
2565                 goto out;
2566
2567         if (!page_has_buffers(page))
2568                 create_empty_buffers(page, blocksize, 0);
2569
2570         /* Find the buffer that contains "offset" */
2571         bh = page_buffers(page);
2572         pos = blocksize;
2573         while (offset >= pos) {
2574                 bh = bh->b_this_page;
2575                 iblock++;
2576                 pos += blocksize;
2577         }
2578
2579         err = 0;
2580         if (!buffer_mapped(bh)) {
2581                 WARN_ON(bh->b_size != blocksize);
2582                 err = get_block(inode, iblock, bh, 0);
2583                 if (err)
2584                         goto unlock;
2585                 /* unmapped? It's a hole - nothing to do */
2586                 if (!buffer_mapped(bh))
2587                         goto unlock;
2588         }
2589
2590         /* Ok, it's mapped. Make sure it's up-to-date */
2591         if (PageUptodate(page))
2592                 set_buffer_uptodate(bh);
2593
2594         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2595                 err = -EIO;
2596                 ll_rw_block(READ, 1, &bh);
2597                 wait_on_buffer(bh);
2598                 /* Uhhuh. Read error. Complain and punt. */
2599                 if (!buffer_uptodate(bh))
2600                         goto unlock;
2601         }
2602
2603         zero_user_page(page, offset, length, KM_USER0);
2604         mark_buffer_dirty(bh);
2605         err = 0;
2606
2607 unlock:
2608         unlock_page(page);
2609         page_cache_release(page);
2610 out:
2611         return err;
2612 }
2613
2614 /*
2615  * The generic ->writepage function for buffer-backed address_spaces
2616  */
2617 int block_write_full_page(struct page *page, get_block_t *get_block,
2618                         struct writeback_control *wbc)
2619 {
2620         struct inode * const inode = page->mapping->host;
2621         loff_t i_size = i_size_read(inode);
2622         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2623         unsigned offset;
2624
2625         /* Is the page fully inside i_size? */
2626         if (page->index < end_index)
2627                 return __block_write_full_page(inode, page, get_block, wbc);
2628
2629         /* Is the page fully outside i_size? (truncate in progress) */
2630         offset = i_size & (PAGE_CACHE_SIZE-1);
2631         if (page->index >= end_index+1 || !offset) {
2632                 /*
2633                  * The page may have dirty, unmapped buffers.  For example,
2634                  * they may have been added in ext3_writepage().  Make them
2635                  * freeable here, so the page does not leak.
2636                  */
2637                 do_invalidatepage(page, 0);
2638                 unlock_page(page);
2639                 return 0; /* don't care */
2640         }
2641
2642         /*
2643          * The page straddles i_size.  It must be zeroed out on each and every
2644          * writepage invokation because it may be mmapped.  "A file is mapped
2645          * in multiples of the page size.  For a file that is not a multiple of
2646          * the  page size, the remaining memory is zeroed when mapped, and
2647          * writes to that region are not written out to the file."
2648          */
2649         zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2650         return __block_write_full_page(inode, page, get_block, wbc);
2651 }
2652
2653 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2654                             get_block_t *get_block)
2655 {
2656         struct buffer_head tmp;
2657         struct inode *inode = mapping->host;
2658         tmp.b_state = 0;
2659         tmp.b_blocknr = 0;
2660         tmp.b_size = 1 << inode->i_blkbits;
2661         get_block(inode, block, &tmp, 0);
2662         return tmp.b_blocknr;
2663 }
2664
2665 static void end_bio_bh_io_sync(struct bio *bio, int err)
2666 {
2667         struct buffer_head *bh = bio->bi_private;
2668
2669         if (err == -EOPNOTSUPP) {
2670                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2671                 set_bit(BH_Eopnotsupp, &bh->b_state);
2672         }
2673
2674         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2675         bio_put(bio);
2676 }
2677
2678 int submit_bh(int rw, struct buffer_head * bh)
2679 {
2680         struct bio *bio;
2681         int ret = 0;
2682
2683         BUG_ON(!buffer_locked(bh));
2684         BUG_ON(!buffer_mapped(bh));
2685         BUG_ON(!bh->b_end_io);
2686
2687         if (buffer_ordered(bh) && (rw == WRITE))
2688                 rw = WRITE_BARRIER;
2689
2690         /*
2691          * Only clear out a write error when rewriting, should this
2692          * include WRITE_SYNC as well?
2693          */
2694         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2695                 clear_buffer_write_io_error(bh);
2696
2697         /*
2698          * from here on down, it's all bio -- do the initial mapping,
2699          * submit_bio -> generic_make_request may further map this bio around
2700          */
2701         bio = bio_alloc(GFP_NOIO, 1);
2702
2703         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2704         bio->bi_bdev = bh->b_bdev;
2705         bio->bi_io_vec[0].bv_page = bh->b_page;
2706         bio->bi_io_vec[0].bv_len = bh->b_size;
2707         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2708
2709         bio->bi_vcnt = 1;
2710         bio->bi_idx = 0;
2711         bio->bi_size = bh->b_size;
2712
2713         bio->bi_end_io = end_bio_bh_io_sync;
2714         bio->bi_private = bh;
2715
2716         bio_get(bio);
2717         submit_bio(rw, bio);
2718
2719         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2720                 ret = -EOPNOTSUPP;
2721
2722         bio_put(bio);
2723         return ret;
2724 }
2725
2726 /**
2727  * ll_rw_block: low-level access to block devices (DEPRECATED)
2728  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2729  * @nr: number of &struct buffer_heads in the array
2730  * @bhs: array of pointers to &struct buffer_head
2731  *
2732  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2733  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2734  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2735  * are sent to disk. The fourth %READA option is described in the documentation
2736  * for generic_make_request() which ll_rw_block() calls.
2737  *
2738  * This function drops any buffer that it cannot get a lock on (with the
2739  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2740  * clean when doing a write request, and any buffer that appears to be
2741  * up-to-date when doing read request.  Further it marks as clean buffers that
2742  * are processed for writing (the buffer cache won't assume that they are
2743  * actually clean until the buffer gets unlocked).
2744  *
2745  * ll_rw_block sets b_end_io to simple completion handler that marks
2746  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2747  * any waiters. 
2748  *
2749  * All of the buffers must be for the same device, and must also be a
2750  * multiple of the current approved size for the device.
2751  */
2752 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2753 {
2754         int i;
2755
2756         for (i = 0; i < nr; i++) {
2757                 struct buffer_head *bh = bhs[i];
2758
2759                 if (rw == SWRITE)
2760                         lock_buffer(bh);
2761                 else if (test_set_buffer_locked(bh))
2762                         continue;
2763
2764                 if (rw == WRITE || rw == SWRITE) {
2765                         if (test_clear_buffer_dirty(bh)) {
2766                                 bh->b_end_io = end_buffer_write_sync;
2767                                 get_bh(bh);
2768                                 submit_bh(WRITE, bh);
2769                                 continue;
2770                         }
2771                 } else {
2772                         if (!buffer_uptodate(bh)) {
2773                                 bh->b_end_io = end_buffer_read_sync;
2774                                 get_bh(bh);
2775                                 submit_bh(rw, bh);
2776                                 continue;
2777                         }
2778                 }
2779                 unlock_buffer(bh);
2780         }
2781 }
2782
2783 /*
2784  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2785  * and then start new I/O and then wait upon it.  The caller must have a ref on
2786  * the buffer_head.
2787  */
2788 int sync_dirty_buffer(struct buffer_head *bh)
2789 {
2790         int ret = 0;
2791
2792         WARN_ON(atomic_read(&bh->b_count) < 1);
2793         lock_buffer(bh);
2794         if (test_clear_buffer_dirty(bh)) {
2795                 get_bh(bh);
2796                 bh->b_end_io = end_buffer_write_sync;
2797                 ret = submit_bh(WRITE, bh);
2798                 wait_on_buffer(bh);
2799                 if (buffer_eopnotsupp(bh)) {
2800                         clear_buffer_eopnotsupp(bh);
2801                         ret = -EOPNOTSUPP;
2802                 }
2803                 if (!ret && !buffer_uptodate(bh))
2804                         ret = -EIO;
2805         } else {
2806                 unlock_buffer(bh);
2807         }
2808         return ret;
2809 }
2810
2811 /*
2812  * try_to_free_buffers() checks if all the buffers on this particular page
2813  * are unused, and releases them if so.
2814  *
2815  * Exclusion against try_to_free_buffers may be obtained by either
2816  * locking the page or by holding its mapping's private_lock.
2817  *
2818  * If the page is dirty but all the buffers are clean then we need to
2819  * be sure to mark the page clean as well.  This is because the page
2820  * may be against a block device, and a later reattachment of buffers
2821  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2822  * filesystem data on the same device.
2823  *
2824  * The same applies to regular filesystem pages: if all the buffers are
2825  * clean then we set the page clean and proceed.  To do that, we require
2826  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2827  * private_lock.
2828  *
2829  * try_to_free_buffers() is non-blocking.
2830  */
2831 static inline int buffer_busy(struct buffer_head *bh)
2832 {
2833         return atomic_read(&bh->b_count) |
2834                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2835 }
2836
2837 static int
2838 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2839 {
2840         struct buffer_head *head = page_buffers(page);
2841         struct buffer_head *bh;
2842
2843         bh = head;
2844         do {
2845                 if (buffer_write_io_error(bh) && page->mapping)
2846                         set_bit(AS_EIO, &page->mapping->flags);
2847                 if (buffer_busy(bh))
2848                         goto failed;
2849                 bh = bh->b_this_page;
2850         } while (bh != head);
2851
2852         do {
2853                 struct buffer_head *next = bh->b_this_page;
2854
2855                 if (!list_empty(&bh->b_assoc_buffers))
2856                         __remove_assoc_queue(bh);
2857                 bh = next;
2858         } while (bh != head);
2859         *buffers_to_free = head;
2860         __clear_page_buffers(page);
2861         return 1;
2862 failed:
2863         return 0;
2864 }
2865
2866 int try_to_free_buffers(struct page *page)
2867 {
2868         struct address_space * const mapping = page->mapping;
2869         struct buffer_head *buffers_to_free = NULL;
2870         int ret = 0;
2871
2872         BUG_ON(!PageLocked(page));
2873         if (PageWriteback(page))
2874                 return 0;
2875
2876         if (mapping == NULL) {          /* can this still happen? */
2877                 ret = drop_buffers(page, &buffers_to_free);
2878                 goto out;
2879         }
2880
2881         spin_lock(&mapping->private_lock);
2882         ret = drop_buffers(page, &buffers_to_free);
2883
2884         /*
2885          * If the filesystem writes its buffers by hand (eg ext3)
2886          * then we can have clean buffers against a dirty page.  We
2887          * clean the page here; otherwise the VM will never notice
2888          * that the filesystem did any IO at all.
2889          *
2890          * Also, during truncate, discard_buffer will have marked all
2891          * the page's buffers clean.  We discover that here and clean
2892          * the page also.
2893          *
2894          * private_lock must be held over this entire operation in order
2895          * to synchronise against __set_page_dirty_buffers and prevent the
2896          * dirty bit from being lost.
2897          */
2898         if (ret)
2899                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
2900         spin_unlock(&mapping->private_lock);
2901 out:
2902         if (buffers_to_free) {
2903                 struct buffer_head *bh = buffers_to_free;
2904
2905                 do {
2906                         struct buffer_head *next = bh->b_this_page;
2907                         free_buffer_head(bh);
2908                         bh = next;
2909                 } while (bh != buffers_to_free);
2910         }
2911         return ret;
2912 }
2913 EXPORT_SYMBOL(try_to_free_buffers);
2914
2915 void block_sync_page(struct page *page)
2916 {
2917         struct address_space *mapping;
2918
2919         smp_mb();
2920         mapping = page_mapping(page);
2921         if (mapping)
2922                 blk_run_backing_dev(mapping->backing_dev_info, page);
2923 }
2924
2925 /*
2926  * There are no bdflush tunables left.  But distributions are
2927  * still running obsolete flush daemons, so we terminate them here.
2928  *
2929  * Use of bdflush() is deprecated and will be removed in a future kernel.
2930  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2931  */
2932 asmlinkage long sys_bdflush(int func, long data)
2933 {
2934         static int msg_count;
2935
2936         if (!capable(CAP_SYS_ADMIN))
2937                 return -EPERM;
2938
2939         if (msg_count < 5) {
2940                 msg_count++;
2941                 printk(KERN_INFO
2942                         "warning: process `%s' used the obsolete bdflush"
2943                         " system call\n", current->comm);
2944                 printk(KERN_INFO "Fix your initscripts?\n");
2945         }
2946
2947         if (func == 1)
2948                 do_exit(0);
2949         return 0;
2950 }
2951
2952 /*
2953  * Buffer-head allocation
2954  */
2955 static struct kmem_cache *bh_cachep;
2956
2957 /*
2958  * Once the number of bh's in the machine exceeds this level, we start
2959  * stripping them in writeback.
2960  */
2961 static int max_buffer_heads;
2962
2963 int buffer_heads_over_limit;
2964
2965 struct bh_accounting {
2966         int nr;                 /* Number of live bh's */
2967         int ratelimit;          /* Limit cacheline bouncing */
2968 };
2969
2970 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2971
2972 static void recalc_bh_state(void)
2973 {
2974         int i;
2975         int tot = 0;
2976
2977         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2978                 return;
2979         __get_cpu_var(bh_accounting).ratelimit = 0;
2980         for_each_online_cpu(i)
2981                 tot += per_cpu(bh_accounting, i).nr;
2982         buffer_heads_over_limit = (tot > max_buffer_heads);
2983 }
2984         
2985 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2986 {
2987         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2988         if (ret) {
2989                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2990                 get_cpu_var(bh_accounting).nr++;
2991                 recalc_bh_state();
2992                 put_cpu_var(bh_accounting);
2993         }
2994         return ret;
2995 }
2996 EXPORT_SYMBOL(alloc_buffer_head);
2997
2998 void free_buffer_head(struct buffer_head *bh)
2999 {
3000         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3001         kmem_cache_free(bh_cachep, bh);
3002         get_cpu_var(bh_accounting).nr--;
3003         recalc_bh_state();
3004         put_cpu_var(bh_accounting);
3005 }
3006 EXPORT_SYMBOL(free_buffer_head);
3007
3008 static void buffer_exit_cpu(int cpu)
3009 {
3010         int i;
3011         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3012
3013         for (i = 0; i < BH_LRU_SIZE; i++) {
3014                 brelse(b->bhs[i]);
3015                 b->bhs[i] = NULL;
3016         }
3017         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3018         per_cpu(bh_accounting, cpu).nr = 0;
3019         put_cpu_var(bh_accounting);
3020 }
3021
3022 static int buffer_cpu_notify(struct notifier_block *self,
3023                               unsigned long action, void *hcpu)
3024 {
3025         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3026                 buffer_exit_cpu((unsigned long)hcpu);
3027         return NOTIFY_OK;
3028 }
3029
3030 void __init buffer_init(void)
3031 {
3032         int nrpages;
3033
3034         bh_cachep = KMEM_CACHE(buffer_head,
3035                         SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3036
3037         /*
3038          * Limit the bh occupancy to 10% of ZONE_NORMAL
3039          */
3040         nrpages = (nr_free_buffer_pages() * 10) / 100;
3041         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3042         hotcpu_notifier(buffer_cpu_notify, 0);
3043 }
3044
3045 EXPORT_SYMBOL(__bforget);
3046 EXPORT_SYMBOL(__brelse);
3047 EXPORT_SYMBOL(__wait_on_buffer);
3048 EXPORT_SYMBOL(block_commit_write);
3049 EXPORT_SYMBOL(block_prepare_write);
3050 EXPORT_SYMBOL(block_page_mkwrite);
3051 EXPORT_SYMBOL(block_read_full_page);
3052 EXPORT_SYMBOL(block_sync_page);
3053 EXPORT_SYMBOL(block_truncate_page);
3054 EXPORT_SYMBOL(block_write_full_page);
3055 EXPORT_SYMBOL(cont_prepare_write);
3056 EXPORT_SYMBOL(end_buffer_read_sync);
3057 EXPORT_SYMBOL(end_buffer_write_sync);
3058 EXPORT_SYMBOL(file_fsync);
3059 EXPORT_SYMBOL(fsync_bdev);
3060 EXPORT_SYMBOL(generic_block_bmap);
3061 EXPORT_SYMBOL(generic_commit_write);
3062 EXPORT_SYMBOL(generic_cont_expand);
3063 EXPORT_SYMBOL(generic_cont_expand_simple);
3064 EXPORT_SYMBOL(init_buffer);
3065 EXPORT_SYMBOL(invalidate_bdev);
3066 EXPORT_SYMBOL(ll_rw_block);
3067 EXPORT_SYMBOL(mark_buffer_dirty);
3068 EXPORT_SYMBOL(submit_bh);
3069 EXPORT_SYMBOL(sync_dirty_buffer);
3070 EXPORT_SYMBOL(unlock_buffer);