2 * "High Precision Event Timer" based timekeeping.
4 * Copyright (c) 1991,1992,1995 Linus Torvalds
5 * Copyright (c) 1994 Alan Modra
6 * Copyright (c) 1995 Markus Kuhn
7 * Copyright (c) 1996 Ingo Molnar
8 * Copyright (c) 1998 Andrea Arcangeli
9 * Copyright (c) 2002,2006 Vojtech Pavlik
10 * Copyright (c) 2003 Andi Kleen
11 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/mc146818rtc.h>
19 #include <linux/time.h>
20 #include <linux/ioport.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/sysdev.h>
24 #include <linux/bcd.h>
25 #include <linux/notifier.h>
26 #include <linux/cpu.h>
27 #include <linux/kallsyms.h>
28 #include <linux/acpi.h>
29 #include <linux/clockchips.h>
32 #include <acpi/achware.h> /* for PM timer frequency */
33 #include <acpi/acpi_bus.h>
35 #include <asm/i8253.h>
36 #include <asm/pgtable.h>
37 #include <asm/vsyscall.h>
38 #include <asm/timex.h>
39 #include <asm/proto.h>
41 #include <asm/sections.h>
42 #include <linux/hpet.h>
45 #include <asm/mpspec.h>
47 #include <asm/vgtod.h>
49 DEFINE_SPINLOCK(rtc_lock);
50 EXPORT_SYMBOL(rtc_lock);
52 volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
54 unsigned long profile_pc(struct pt_regs *regs)
56 unsigned long pc = instruction_pointer(regs);
58 /* Assume the lock function has either no stack frame or a copy
60 Eflags always has bits 22 and up cleared unlike kernel addresses. */
61 if (!user_mode(regs) && in_lock_functions(pc)) {
62 unsigned long *sp = (unsigned long *)regs->rsp;
70 EXPORT_SYMBOL(profile_pc);
73 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
74 * ms after the second nowtime has started, because when nowtime is written
75 * into the registers of the CMOS clock, it will jump to the next second
76 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
80 static int set_rtc_mmss(unsigned long nowtime)
83 int real_seconds, real_minutes, cmos_minutes;
84 unsigned char control, freq_select;
88 * set_rtc_mmss is called when irqs are enabled, so disable irqs here
90 spin_lock_irqsave(&rtc_lock, flags);
92 * Tell the clock it's being set and stop it.
94 control = CMOS_READ(RTC_CONTROL);
95 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
97 freq_select = CMOS_READ(RTC_FREQ_SELECT);
98 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
100 cmos_minutes = CMOS_READ(RTC_MINUTES);
101 BCD_TO_BIN(cmos_minutes);
104 * since we're only adjusting minutes and seconds, don't interfere with hour
105 * overflow. This avoids messing with unknown time zones but requires your RTC
106 * not to be off by more than 15 minutes. Since we're calling it only when
107 * our clock is externally synchronized using NTP, this shouldn't be a problem.
110 real_seconds = nowtime % 60;
111 real_minutes = nowtime / 60;
112 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
113 real_minutes += 30; /* correct for half hour time zone */
116 if (abs(real_minutes - cmos_minutes) >= 30) {
117 printk(KERN_WARNING "time.c: can't update CMOS clock "
118 "from %d to %d\n", cmos_minutes, real_minutes);
121 BIN_TO_BCD(real_seconds);
122 BIN_TO_BCD(real_minutes);
123 CMOS_WRITE(real_seconds, RTC_SECONDS);
124 CMOS_WRITE(real_minutes, RTC_MINUTES);
128 * The following flags have to be released exactly in this order, otherwise the
129 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
130 * not reset the oscillator and will not update precisely 500 ms later. You
131 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
132 * believes data sheets anyway ... -- Markus Kuhn
135 CMOS_WRITE(control, RTC_CONTROL);
136 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
138 spin_unlock_irqrestore(&rtc_lock, flags);
143 int update_persistent_clock(struct timespec now)
145 return set_rtc_mmss(now.tv_sec);
148 static irqreturn_t timer_event_interrupt(int irq, void *dev_id)
150 add_pda(irq0_irqs, 1);
152 global_clock_event->event_handler(global_clock_event);
157 unsigned long read_persistent_clock(void)
159 unsigned int year, mon, day, hour, min, sec;
161 unsigned century = 0;
163 spin_lock_irqsave(&rtc_lock, flags);
165 * if UIP is clear, then we have >= 244 microseconds before RTC
166 * registers will be updated. Spec sheet says that this is the
167 * reliable way to read RTC - registers invalid (off bus) during update
169 while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
173 /* now read all RTC registers while stable with interrupts disabled */
174 sec = CMOS_READ(RTC_SECONDS);
175 min = CMOS_READ(RTC_MINUTES);
176 hour = CMOS_READ(RTC_HOURS);
177 day = CMOS_READ(RTC_DAY_OF_MONTH);
178 mon = CMOS_READ(RTC_MONTH);
179 year = CMOS_READ(RTC_YEAR);
181 if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
182 acpi_gbl_FADT.century)
183 century = CMOS_READ(acpi_gbl_FADT.century);
185 spin_unlock_irqrestore(&rtc_lock, flags);
188 * We know that x86-64 always uses BCD format, no need to check the
201 year += century * 100;
202 printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
205 * x86-64 systems only exists since 2002.
206 * This will work up to Dec 31, 2100
211 return mktime(year, mon, day, hour, min, sec);
214 /* calibrate_cpu is used on systems with fixed rate TSCs to determine
215 * processor frequency */
216 #define TICK_COUNT 100000000
217 static unsigned int __init tsc_calibrate_cpu_khz(void)
219 int tsc_start, tsc_now;
221 unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
224 for (i = 0; i < 4; i++)
225 if (avail_to_resrv_perfctr_nmi_bit(i))
227 no_ctr_free = (i == 4);
230 rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
231 wrmsrl(MSR_K7_EVNTSEL3, 0);
232 rdmsrl(MSR_K7_PERFCTR3, pmc3);
234 reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
235 reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
237 local_irq_save(flags);
238 /* start meauring cycles, incrementing from 0 */
239 wrmsrl(MSR_K7_PERFCTR0 + i, 0);
240 wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
243 rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
244 tsc_now = get_cycles_sync();
245 } while ((tsc_now - tsc_start) < TICK_COUNT);
247 local_irq_restore(flags);
249 wrmsrl(MSR_K7_EVNTSEL3, 0);
250 wrmsrl(MSR_K7_PERFCTR3, pmc3);
251 wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
253 release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
254 release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
257 return pmc_now * tsc_khz / (tsc_now - tsc_start);
260 static struct irqaction irq0 = {
261 .handler = timer_event_interrupt,
262 .flags = IRQF_DISABLED | IRQF_IRQPOLL | IRQF_NOBALANCING,
263 .mask = CPU_MASK_NONE,
267 void __init time_init(void)
277 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
278 boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
279 boot_cpu_data.x86 == 16)
280 cpu_khz = tsc_calibrate_cpu_khz();
282 if (unsynchronized_tsc())
283 mark_tsc_unstable("TSCs unsynchronized");
285 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
286 vgetcpu_mode = VGETCPU_RDTSCP;
288 vgetcpu_mode = VGETCPU_LSL;
290 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
291 cpu_khz / 1000, cpu_khz % 1000);
292 init_tsc_clocksource();