Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[linux-2.6] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
78  *              associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
80  */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS              64
94 struct usb_busmap {
95         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117         return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123  * Sharable chunks of root hub code.
124  */
125
126 /*-------------------------------------------------------------------------*/
127
128 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
129 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
130
131 /* usb 2.0 root hub device descriptor */
132 static const u8 usb2_rh_dev_descriptor [18] = {
133         0x12,       /*  __u8  bLength; */
134         0x01,       /*  __u8  bDescriptorType; Device */
135         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
140         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
143         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
153
154 /* usb 1.1 root hub device descriptor */
155 static const u8 usb11_rh_dev_descriptor [18] = {
156         0x12,       /*  __u8  bLength; */
157         0x01,       /*  __u8  bDescriptorType; Device */
158         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
159
160         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
161         0x00,       /*  __u8  bDeviceSubClass; */
162         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
163         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
164
165         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
166         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
167         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
168
169         0x03,       /*  __u8  iManufacturer; */
170         0x02,       /*  __u8  iProduct; */
171         0x01,       /*  __u8  iSerialNumber; */
172         0x01        /*  __u8  bNumConfigurations; */
173 };
174
175
176 /*-------------------------------------------------------------------------*/
177
178 /* Configuration descriptors for our root hubs */
179
180 static const u8 fs_rh_config_descriptor [] = {
181
182         /* one configuration */
183         0x09,       /*  __u8  bLength; */
184         0x02,       /*  __u8  bDescriptorType; Configuration */
185         0x19, 0x00, /*  __le16 wTotalLength; */
186         0x01,       /*  __u8  bNumInterfaces; (1) */
187         0x01,       /*  __u8  bConfigurationValue; */
188         0x00,       /*  __u8  iConfiguration; */
189         0xc0,       /*  __u8  bmAttributes; 
190                                  Bit 7: must be set,
191                                      6: Self-powered,
192                                      5: Remote wakeup,
193                                      4..0: resvd */
194         0x00,       /*  __u8  MaxPower; */
195       
196         /* USB 1.1:
197          * USB 2.0, single TT organization (mandatory):
198          *      one interface, protocol 0
199          *
200          * USB 2.0, multiple TT organization (optional):
201          *      two interfaces, protocols 1 (like single TT)
202          *      and 2 (multiple TT mode) ... config is
203          *      sometimes settable
204          *      NOT IMPLEMENTED
205          */
206
207         /* one interface */
208         0x09,       /*  __u8  if_bLength; */
209         0x04,       /*  __u8  if_bDescriptorType; Interface */
210         0x00,       /*  __u8  if_bInterfaceNumber; */
211         0x00,       /*  __u8  if_bAlternateSetting; */
212         0x01,       /*  __u8  if_bNumEndpoints; */
213         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
214         0x00,       /*  __u8  if_bInterfaceSubClass; */
215         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
216         0x00,       /*  __u8  if_iInterface; */
217      
218         /* one endpoint (status change endpoint) */
219         0x07,       /*  __u8  ep_bLength; */
220         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
221         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
222         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
223         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
224         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
225 };
226
227 static const u8 hs_rh_config_descriptor [] = {
228
229         /* one configuration */
230         0x09,       /*  __u8  bLength; */
231         0x02,       /*  __u8  bDescriptorType; Configuration */
232         0x19, 0x00, /*  __le16 wTotalLength; */
233         0x01,       /*  __u8  bNumInterfaces; (1) */
234         0x01,       /*  __u8  bConfigurationValue; */
235         0x00,       /*  __u8  iConfiguration; */
236         0xc0,       /*  __u8  bmAttributes; 
237                                  Bit 7: must be set,
238                                      6: Self-powered,
239                                      5: Remote wakeup,
240                                      4..0: resvd */
241         0x00,       /*  __u8  MaxPower; */
242       
243         /* USB 1.1:
244          * USB 2.0, single TT organization (mandatory):
245          *      one interface, protocol 0
246          *
247          * USB 2.0, multiple TT organization (optional):
248          *      two interfaces, protocols 1 (like single TT)
249          *      and 2 (multiple TT mode) ... config is
250          *      sometimes settable
251          *      NOT IMPLEMENTED
252          */
253
254         /* one interface */
255         0x09,       /*  __u8  if_bLength; */
256         0x04,       /*  __u8  if_bDescriptorType; Interface */
257         0x00,       /*  __u8  if_bInterfaceNumber; */
258         0x00,       /*  __u8  if_bAlternateSetting; */
259         0x01,       /*  __u8  if_bNumEndpoints; */
260         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
261         0x00,       /*  __u8  if_bInterfaceSubClass; */
262         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
263         0x00,       /*  __u8  if_iInterface; */
264      
265         /* one endpoint (status change endpoint) */
266         0x07,       /*  __u8  ep_bLength; */
267         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
268         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
269         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
270                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
271                      * see hub.c:hub_configure() for details. */
272         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
273         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
274 };
275
276 /*-------------------------------------------------------------------------*/
277
278 /*
279  * helper routine for returning string descriptors in UTF-16LE
280  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
281  */
282 static unsigned ascii2utf(char *s, u8 *utf, int utfmax)
283 {
284         unsigned retval;
285
286         for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
287                 *utf++ = *s++;
288                 *utf++ = 0;
289         }
290         if (utfmax > 0) {
291                 *utf = *s;
292                 ++retval;
293         }
294         return retval;
295 }
296
297 /*
298  * rh_string - provides manufacturer, product and serial strings for root hub
299  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
300  * @hcd: the host controller for this root hub
301  * @data: return packet in UTF-16 LE
302  * @len: length of the return packet
303  *
304  * Produces either a manufacturer, product or serial number string for the
305  * virtual root hub device.
306  */
307 static unsigned rh_string(int id, struct usb_hcd *hcd, u8 *data, unsigned len)
308 {
309         char buf [100];
310
311         // language ids
312         if (id == 0) {
313                 buf[0] = 4;    buf[1] = 3;      /* 4 bytes string data */
314                 buf[2] = 0x09; buf[3] = 0x04;   /* MSFT-speak for "en-us" */
315                 len = min_t(unsigned, len, 4);
316                 memcpy (data, buf, len);
317                 return len;
318
319         // serial number
320         } else if (id == 1) {
321                 strlcpy (buf, hcd->self.bus_name, sizeof buf);
322
323         // product description
324         } else if (id == 2) {
325                 strlcpy (buf, hcd->product_desc, sizeof buf);
326
327         // id 3 == vendor description
328         } else if (id == 3) {
329                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
330                         init_utsname()->release, hcd->driver->description);
331         }
332
333         switch (len) {          /* All cases fall through */
334         default:
335                 len = 2 + ascii2utf (buf, data + 2, len - 2);
336         case 2:
337                 data [1] = 3;   /* type == string */
338         case 1:
339                 data [0] = 2 * (strlen (buf) + 1);
340         case 0:
341                 ;               /* Compiler wants a statement here */
342         }
343         return len;
344 }
345
346
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
349 {
350         struct usb_ctrlrequest *cmd;
351         u16             typeReq, wValue, wIndex, wLength;
352         u8              *ubuf = urb->transfer_buffer;
353         u8              tbuf [sizeof (struct usb_hub_descriptor)]
354                 __attribute__((aligned(4)));
355         const u8        *bufp = tbuf;
356         unsigned        len = 0;
357         int             status;
358         u8              patch_wakeup = 0;
359         u8              patch_protocol = 0;
360
361         might_sleep();
362
363         spin_lock_irq(&hcd_root_hub_lock);
364         status = usb_hcd_link_urb_to_ep(hcd, urb);
365         spin_unlock_irq(&hcd_root_hub_lock);
366         if (status)
367                 return status;
368         urb->hcpriv = hcd;      /* Indicate it's queued */
369
370         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
371         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
372         wValue   = le16_to_cpu (cmd->wValue);
373         wIndex   = le16_to_cpu (cmd->wIndex);
374         wLength  = le16_to_cpu (cmd->wLength);
375
376         if (wLength > urb->transfer_buffer_length)
377                 goto error;
378
379         urb->actual_length = 0;
380         switch (typeReq) {
381
382         /* DEVICE REQUESTS */
383
384         /* The root hub's remote wakeup enable bit is implemented using
385          * driver model wakeup flags.  If this system supports wakeup
386          * through USB, userspace may change the default "allow wakeup"
387          * policy through sysfs or these calls.
388          *
389          * Most root hubs support wakeup from downstream devices, for
390          * runtime power management (disabling USB clocks and reducing
391          * VBUS power usage).  However, not all of them do so; silicon,
392          * board, and BIOS bugs here are not uncommon, so these can't
393          * be treated quite like external hubs.
394          *
395          * Likewise, not all root hubs will pass wakeup events upstream,
396          * to wake up the whole system.  So don't assume root hub and
397          * controller capabilities are identical.
398          */
399
400         case DeviceRequest | USB_REQ_GET_STATUS:
401                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
402                                         << USB_DEVICE_REMOTE_WAKEUP)
403                                 | (1 << USB_DEVICE_SELF_POWERED);
404                 tbuf [1] = 0;
405                 len = 2;
406                 break;
407         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
408                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
409                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
410                 else
411                         goto error;
412                 break;
413         case DeviceOutRequest | USB_REQ_SET_FEATURE:
414                 if (device_can_wakeup(&hcd->self.root_hub->dev)
415                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
416                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
417                 else
418                         goto error;
419                 break;
420         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
421                 tbuf [0] = 1;
422                 len = 1;
423                         /* FALLTHROUGH */
424         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
425                 break;
426         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
427                 switch (wValue & 0xff00) {
428                 case USB_DT_DEVICE << 8:
429                         if (hcd->driver->flags & HCD_USB2)
430                                 bufp = usb2_rh_dev_descriptor;
431                         else if (hcd->driver->flags & HCD_USB11)
432                                 bufp = usb11_rh_dev_descriptor;
433                         else
434                                 goto error;
435                         len = 18;
436                         if (hcd->has_tt)
437                                 patch_protocol = 1;
438                         break;
439                 case USB_DT_CONFIG << 8:
440                         if (hcd->driver->flags & HCD_USB2) {
441                                 bufp = hs_rh_config_descriptor;
442                                 len = sizeof hs_rh_config_descriptor;
443                         } else {
444                                 bufp = fs_rh_config_descriptor;
445                                 len = sizeof fs_rh_config_descriptor;
446                         }
447                         if (device_can_wakeup(&hcd->self.root_hub->dev))
448                                 patch_wakeup = 1;
449                         break;
450                 case USB_DT_STRING << 8:
451                         if ((wValue & 0xff) < 4)
452                                 urb->actual_length = rh_string(wValue & 0xff,
453                                                 hcd, ubuf, wLength);
454                         else /* unsupported IDs --> "protocol stall" */
455                                 goto error;
456                         break;
457                 default:
458                         goto error;
459                 }
460                 break;
461         case DeviceRequest | USB_REQ_GET_INTERFACE:
462                 tbuf [0] = 0;
463                 len = 1;
464                         /* FALLTHROUGH */
465         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
466                 break;
467         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
468                 // wValue == urb->dev->devaddr
469                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
470                         wValue);
471                 break;
472
473         /* INTERFACE REQUESTS (no defined feature/status flags) */
474
475         /* ENDPOINT REQUESTS */
476
477         case EndpointRequest | USB_REQ_GET_STATUS:
478                 // ENDPOINT_HALT flag
479                 tbuf [0] = 0;
480                 tbuf [1] = 0;
481                 len = 2;
482                         /* FALLTHROUGH */
483         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
484         case EndpointOutRequest | USB_REQ_SET_FEATURE:
485                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
486                 break;
487
488         /* CLASS REQUESTS (and errors) */
489
490         default:
491                 /* non-generic request */
492                 switch (typeReq) {
493                 case GetHubStatus:
494                 case GetPortStatus:
495                         len = 4;
496                         break;
497                 case GetHubDescriptor:
498                         len = sizeof (struct usb_hub_descriptor);
499                         break;
500                 }
501                 status = hcd->driver->hub_control (hcd,
502                         typeReq, wValue, wIndex,
503                         tbuf, wLength);
504                 break;
505 error:
506                 /* "protocol stall" on error */
507                 status = -EPIPE;
508         }
509
510         if (status) {
511                 len = 0;
512                 if (status != -EPIPE) {
513                         dev_dbg (hcd->self.controller,
514                                 "CTRL: TypeReq=0x%x val=0x%x "
515                                 "idx=0x%x len=%d ==> %d\n",
516                                 typeReq, wValue, wIndex,
517                                 wLength, status);
518                 }
519         }
520         if (len) {
521                 if (urb->transfer_buffer_length < len)
522                         len = urb->transfer_buffer_length;
523                 urb->actual_length = len;
524                 // always USB_DIR_IN, toward host
525                 memcpy (ubuf, bufp, len);
526
527                 /* report whether RH hardware supports remote wakeup */
528                 if (patch_wakeup &&
529                                 len > offsetof (struct usb_config_descriptor,
530                                                 bmAttributes))
531                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
532                                 |= USB_CONFIG_ATT_WAKEUP;
533
534                 /* report whether RH hardware has an integrated TT */
535                 if (patch_protocol &&
536                                 len > offsetof(struct usb_device_descriptor,
537                                                 bDeviceProtocol))
538                         ((struct usb_device_descriptor *) ubuf)->
539                                         bDeviceProtocol = 1;
540         }
541
542         /* any errors get returned through the urb completion */
543         spin_lock_irq(&hcd_root_hub_lock);
544         usb_hcd_unlink_urb_from_ep(hcd, urb);
545
546         /* This peculiar use of spinlocks echoes what real HC drivers do.
547          * Avoiding calls to local_irq_disable/enable makes the code
548          * RT-friendly.
549          */
550         spin_unlock(&hcd_root_hub_lock);
551         usb_hcd_giveback_urb(hcd, urb, status);
552         spin_lock(&hcd_root_hub_lock);
553
554         spin_unlock_irq(&hcd_root_hub_lock);
555         return 0;
556 }
557
558 /*-------------------------------------------------------------------------*/
559
560 /*
561  * Root Hub interrupt transfers are polled using a timer if the
562  * driver requests it; otherwise the driver is responsible for
563  * calling usb_hcd_poll_rh_status() when an event occurs.
564  *
565  * Completions are called in_interrupt(), but they may or may not
566  * be in_irq().
567  */
568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
569 {
570         struct urb      *urb;
571         int             length;
572         unsigned long   flags;
573         char            buffer[4];      /* Any root hubs with > 31 ports? */
574
575         if (unlikely(!hcd->rh_registered))
576                 return;
577         if (!hcd->uses_new_polling && !hcd->status_urb)
578                 return;
579
580         length = hcd->driver->hub_status_data(hcd, buffer);
581         if (length > 0) {
582
583                 /* try to complete the status urb */
584                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
585                 urb = hcd->status_urb;
586                 if (urb) {
587                         hcd->poll_pending = 0;
588                         hcd->status_urb = NULL;
589                         urb->actual_length = length;
590                         memcpy(urb->transfer_buffer, buffer, length);
591
592                         usb_hcd_unlink_urb_from_ep(hcd, urb);
593                         spin_unlock(&hcd_root_hub_lock);
594                         usb_hcd_giveback_urb(hcd, urb, 0);
595                         spin_lock(&hcd_root_hub_lock);
596                 } else {
597                         length = 0;
598                         hcd->poll_pending = 1;
599                 }
600                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
601         }
602
603         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
604          * exceed that limit if HZ is 100. The math is more clunky than
605          * maybe expected, this is to make sure that all timers for USB devices
606          * fire at the same time to give the CPU a break inbetween */
607         if (hcd->uses_new_polling ? hcd->poll_rh :
608                         (length == 0 && hcd->status_urb != NULL))
609                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
610 }
611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
612
613 /* timer callback */
614 static void rh_timer_func (unsigned long _hcd)
615 {
616         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
617 }
618
619 /*-------------------------------------------------------------------------*/
620
621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
622 {
623         int             retval;
624         unsigned long   flags;
625         unsigned        len = 1 + (urb->dev->maxchild / 8);
626
627         spin_lock_irqsave (&hcd_root_hub_lock, flags);
628         if (hcd->status_urb || urb->transfer_buffer_length < len) {
629                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
630                 retval = -EINVAL;
631                 goto done;
632         }
633
634         retval = usb_hcd_link_urb_to_ep(hcd, urb);
635         if (retval)
636                 goto done;
637
638         hcd->status_urb = urb;
639         urb->hcpriv = hcd;      /* indicate it's queued */
640         if (!hcd->uses_new_polling)
641                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
642
643         /* If a status change has already occurred, report it ASAP */
644         else if (hcd->poll_pending)
645                 mod_timer(&hcd->rh_timer, jiffies);
646         retval = 0;
647  done:
648         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
649         return retval;
650 }
651
652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
653 {
654         if (usb_endpoint_xfer_int(&urb->ep->desc))
655                 return rh_queue_status (hcd, urb);
656         if (usb_endpoint_xfer_control(&urb->ep->desc))
657                 return rh_call_control (hcd, urb);
658         return -EINVAL;
659 }
660
661 /*-------------------------------------------------------------------------*/
662
663 /* Unlinks of root-hub control URBs are legal, but they don't do anything
664  * since these URBs always execute synchronously.
665  */
666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
667 {
668         unsigned long   flags;
669         int             rc;
670
671         spin_lock_irqsave(&hcd_root_hub_lock, flags);
672         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
673         if (rc)
674                 goto done;
675
676         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
677                 ;       /* Do nothing */
678
679         } else {                                /* Status URB */
680                 if (!hcd->uses_new_polling)
681                         del_timer (&hcd->rh_timer);
682                 if (urb == hcd->status_urb) {
683                         hcd->status_urb = NULL;
684                         usb_hcd_unlink_urb_from_ep(hcd, urb);
685
686                         spin_unlock(&hcd_root_hub_lock);
687                         usb_hcd_giveback_urb(hcd, urb, status);
688                         spin_lock(&hcd_root_hub_lock);
689                 }
690         }
691  done:
692         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
693         return rc;
694 }
695
696
697
698 /*
699  * Show & store the current value of authorized_default
700  */
701 static ssize_t usb_host_authorized_default_show(struct device *dev,
702                                                 struct device_attribute *attr,
703                                                 char *buf)
704 {
705         struct usb_device *rh_usb_dev = to_usb_device(dev);
706         struct usb_bus *usb_bus = rh_usb_dev->bus;
707         struct usb_hcd *usb_hcd;
708
709         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
710                 return -ENODEV;
711         usb_hcd = bus_to_hcd(usb_bus);
712         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
713 }
714
715 static ssize_t usb_host_authorized_default_store(struct device *dev,
716                                                  struct device_attribute *attr,
717                                                  const char *buf, size_t size)
718 {
719         ssize_t result;
720         unsigned val;
721         struct usb_device *rh_usb_dev = to_usb_device(dev);
722         struct usb_bus *usb_bus = rh_usb_dev->bus;
723         struct usb_hcd *usb_hcd;
724
725         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
726                 return -ENODEV;
727         usb_hcd = bus_to_hcd(usb_bus);
728         result = sscanf(buf, "%u\n", &val);
729         if (result == 1) {
730                 usb_hcd->authorized_default = val? 1 : 0;
731                 result = size;
732         }
733         else
734                 result = -EINVAL;
735         return result;
736 }
737
738 static DEVICE_ATTR(authorized_default, 0644,
739             usb_host_authorized_default_show,
740             usb_host_authorized_default_store);
741
742
743 /* Group all the USB bus attributes */
744 static struct attribute *usb_bus_attrs[] = {
745                 &dev_attr_authorized_default.attr,
746                 NULL,
747 };
748
749 static struct attribute_group usb_bus_attr_group = {
750         .name = NULL,   /* we want them in the same directory */
751         .attrs = usb_bus_attrs,
752 };
753
754
755
756 /*-------------------------------------------------------------------------*/
757
758 static struct class *usb_host_class;
759
760 int usb_host_init(void)
761 {
762         int retval = 0;
763
764         usb_host_class = class_create(THIS_MODULE, "usb_host");
765         if (IS_ERR(usb_host_class))
766                 retval = PTR_ERR(usb_host_class);
767         return retval;
768 }
769
770 void usb_host_cleanup(void)
771 {
772         class_destroy(usb_host_class);
773 }
774
775 /**
776  * usb_bus_init - shared initialization code
777  * @bus: the bus structure being initialized
778  *
779  * This code is used to initialize a usb_bus structure, memory for which is
780  * separately managed.
781  */
782 static void usb_bus_init (struct usb_bus *bus)
783 {
784         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
785
786         bus->devnum_next = 1;
787
788         bus->root_hub = NULL;
789         bus->busnum = -1;
790         bus->bandwidth_allocated = 0;
791         bus->bandwidth_int_reqs  = 0;
792         bus->bandwidth_isoc_reqs = 0;
793
794         INIT_LIST_HEAD (&bus->bus_list);
795 }
796
797 /*-------------------------------------------------------------------------*/
798
799 /**
800  * usb_register_bus - registers the USB host controller with the usb core
801  * @bus: pointer to the bus to register
802  * Context: !in_interrupt()
803  *
804  * Assigns a bus number, and links the controller into usbcore data
805  * structures so that it can be seen by scanning the bus list.
806  */
807 static int usb_register_bus(struct usb_bus *bus)
808 {
809         int result = -E2BIG;
810         int busnum;
811
812         mutex_lock(&usb_bus_list_lock);
813         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
814         if (busnum >= USB_MAXBUS) {
815                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
816                 goto error_find_busnum;
817         }
818         set_bit (busnum, busmap.busmap);
819         bus->busnum = busnum;
820
821         bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
822                                  bus, "usb_host%d", busnum);
823         result = PTR_ERR(bus->dev);
824         if (IS_ERR(bus->dev))
825                 goto error_create_class_dev;
826
827         /* Add it to the local list of buses */
828         list_add (&bus->bus_list, &usb_bus_list);
829         mutex_unlock(&usb_bus_list_lock);
830
831         usb_notify_add_bus(bus);
832
833         dev_info (bus->controller, "new USB bus registered, assigned bus "
834                   "number %d\n", bus->busnum);
835         return 0;
836
837 error_create_class_dev:
838         clear_bit(busnum, busmap.busmap);
839 error_find_busnum:
840         mutex_unlock(&usb_bus_list_lock);
841         return result;
842 }
843
844 /**
845  * usb_deregister_bus - deregisters the USB host controller
846  * @bus: pointer to the bus to deregister
847  * Context: !in_interrupt()
848  *
849  * Recycles the bus number, and unlinks the controller from usbcore data
850  * structures so that it won't be seen by scanning the bus list.
851  */
852 static void usb_deregister_bus (struct usb_bus *bus)
853 {
854         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
855
856         /*
857          * NOTE: make sure that all the devices are removed by the
858          * controller code, as well as having it call this when cleaning
859          * itself up
860          */
861         mutex_lock(&usb_bus_list_lock);
862         list_del (&bus->bus_list);
863         mutex_unlock(&usb_bus_list_lock);
864
865         usb_notify_remove_bus(bus);
866
867         clear_bit (bus->busnum, busmap.busmap);
868
869         device_unregister(bus->dev);
870 }
871
872 /**
873  * register_root_hub - called by usb_add_hcd() to register a root hub
874  * @hcd: host controller for this root hub
875  *
876  * This function registers the root hub with the USB subsystem.  It sets up
877  * the device properly in the device tree and then calls usb_new_device()
878  * to register the usb device.  It also assigns the root hub's USB address
879  * (always 1).
880  */
881 static int register_root_hub(struct usb_hcd *hcd)
882 {
883         struct device *parent_dev = hcd->self.controller;
884         struct usb_device *usb_dev = hcd->self.root_hub;
885         const int devnum = 1;
886         int retval;
887
888         usb_dev->devnum = devnum;
889         usb_dev->bus->devnum_next = devnum + 1;
890         memset (&usb_dev->bus->devmap.devicemap, 0,
891                         sizeof usb_dev->bus->devmap.devicemap);
892         set_bit (devnum, usb_dev->bus->devmap.devicemap);
893         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
894
895         mutex_lock(&usb_bus_list_lock);
896
897         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
898         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
899         if (retval != sizeof usb_dev->descriptor) {
900                 mutex_unlock(&usb_bus_list_lock);
901                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
902                                 dev_name(&usb_dev->dev), retval);
903                 return (retval < 0) ? retval : -EMSGSIZE;
904         }
905
906         retval = usb_new_device (usb_dev);
907         if (retval) {
908                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
909                                 dev_name(&usb_dev->dev), retval);
910         }
911         mutex_unlock(&usb_bus_list_lock);
912
913         if (retval == 0) {
914                 spin_lock_irq (&hcd_root_hub_lock);
915                 hcd->rh_registered = 1;
916                 spin_unlock_irq (&hcd_root_hub_lock);
917
918                 /* Did the HC die before the root hub was registered? */
919                 if (hcd->state == HC_STATE_HALT)
920                         usb_hc_died (hcd);      /* This time clean up */
921         }
922
923         return retval;
924 }
925
926
927 /*-------------------------------------------------------------------------*/
928
929 /**
930  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
931  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
932  * @is_input: true iff the transaction sends data to the host
933  * @isoc: true for isochronous transactions, false for interrupt ones
934  * @bytecount: how many bytes in the transaction.
935  *
936  * Returns approximate bus time in nanoseconds for a periodic transaction.
937  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
938  * scheduled in software, this function is only used for such scheduling.
939  */
940 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
941 {
942         unsigned long   tmp;
943
944         switch (speed) {
945         case USB_SPEED_LOW:     /* INTR only */
946                 if (is_input) {
947                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
948                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
949                 } else {
950                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
951                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
952                 }
953         case USB_SPEED_FULL:    /* ISOC or INTR */
954                 if (isoc) {
955                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
956                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
957                 } else {
958                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
959                         return (9107L + BW_HOST_DELAY + tmp);
960                 }
961         case USB_SPEED_HIGH:    /* ISOC or INTR */
962                 // FIXME adjust for input vs output
963                 if (isoc)
964                         tmp = HS_NSECS_ISO (bytecount);
965                 else
966                         tmp = HS_NSECS (bytecount);
967                 return tmp;
968         default:
969                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
970                 return -1;
971         }
972 }
973 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
974
975
976 /*-------------------------------------------------------------------------*/
977
978 /*
979  * Generic HC operations.
980  */
981
982 /*-------------------------------------------------------------------------*/
983
984 /**
985  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
986  * @hcd: host controller to which @urb was submitted
987  * @urb: URB being submitted
988  *
989  * Host controller drivers should call this routine in their enqueue()
990  * method.  The HCD's private spinlock must be held and interrupts must
991  * be disabled.  The actions carried out here are required for URB
992  * submission, as well as for endpoint shutdown and for usb_kill_urb.
993  *
994  * Returns 0 for no error, otherwise a negative error code (in which case
995  * the enqueue() method must fail).  If no error occurs but enqueue() fails
996  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
997  * the private spinlock and returning.
998  */
999 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1000 {
1001         int             rc = 0;
1002
1003         spin_lock(&hcd_urb_list_lock);
1004
1005         /* Check that the URB isn't being killed */
1006         if (unlikely(atomic_read(&urb->reject))) {
1007                 rc = -EPERM;
1008                 goto done;
1009         }
1010
1011         if (unlikely(!urb->ep->enabled)) {
1012                 rc = -ENOENT;
1013                 goto done;
1014         }
1015
1016         if (unlikely(!urb->dev->can_submit)) {
1017                 rc = -EHOSTUNREACH;
1018                 goto done;
1019         }
1020
1021         /*
1022          * Check the host controller's state and add the URB to the
1023          * endpoint's queue.
1024          */
1025         switch (hcd->state) {
1026         case HC_STATE_RUNNING:
1027         case HC_STATE_RESUMING:
1028                 urb->unlinked = 0;
1029                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1030                 break;
1031         default:
1032                 rc = -ESHUTDOWN;
1033                 goto done;
1034         }
1035  done:
1036         spin_unlock(&hcd_urb_list_lock);
1037         return rc;
1038 }
1039 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1040
1041 /**
1042  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1043  * @hcd: host controller to which @urb was submitted
1044  * @urb: URB being checked for unlinkability
1045  * @status: error code to store in @urb if the unlink succeeds
1046  *
1047  * Host controller drivers should call this routine in their dequeue()
1048  * method.  The HCD's private spinlock must be held and interrupts must
1049  * be disabled.  The actions carried out here are required for making
1050  * sure than an unlink is valid.
1051  *
1052  * Returns 0 for no error, otherwise a negative error code (in which case
1053  * the dequeue() method must fail).  The possible error codes are:
1054  *
1055  *      -EIDRM: @urb was not submitted or has already completed.
1056  *              The completion function may not have been called yet.
1057  *
1058  *      -EBUSY: @urb has already been unlinked.
1059  */
1060 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1061                 int status)
1062 {
1063         struct list_head        *tmp;
1064
1065         /* insist the urb is still queued */
1066         list_for_each(tmp, &urb->ep->urb_list) {
1067                 if (tmp == &urb->urb_list)
1068                         break;
1069         }
1070         if (tmp != &urb->urb_list)
1071                 return -EIDRM;
1072
1073         /* Any status except -EINPROGRESS means something already started to
1074          * unlink this URB from the hardware.  So there's no more work to do.
1075          */
1076         if (urb->unlinked)
1077                 return -EBUSY;
1078         urb->unlinked = status;
1079
1080         /* IRQ setup can easily be broken so that USB controllers
1081          * never get completion IRQs ... maybe even the ones we need to
1082          * finish unlinking the initial failed usb_set_address()
1083          * or device descriptor fetch.
1084          */
1085         if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1086                         !is_root_hub(urb->dev)) {
1087                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1088                         "Controller is probably using the wrong IRQ.\n");
1089                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1090         }
1091
1092         return 0;
1093 }
1094 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1095
1096 /**
1097  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1098  * @hcd: host controller to which @urb was submitted
1099  * @urb: URB being unlinked
1100  *
1101  * Host controller drivers should call this routine before calling
1102  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1103  * interrupts must be disabled.  The actions carried out here are required
1104  * for URB completion.
1105  */
1106 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1107 {
1108         /* clear all state linking urb to this dev (and hcd) */
1109         spin_lock(&hcd_urb_list_lock);
1110         list_del_init(&urb->urb_list);
1111         spin_unlock(&hcd_urb_list_lock);
1112 }
1113 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1114
1115 /*
1116  * Some usb host controllers can only perform dma using a small SRAM area.
1117  * The usb core itself is however optimized for host controllers that can dma
1118  * using regular system memory - like pci devices doing bus mastering.
1119  *
1120  * To support host controllers with limited dma capabilites we provide dma
1121  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1122  * For this to work properly the host controller code must first use the
1123  * function dma_declare_coherent_memory() to point out which memory area
1124  * that should be used for dma allocations.
1125  *
1126  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1127  * dma using dma_alloc_coherent() which in turn allocates from the memory
1128  * area pointed out with dma_declare_coherent_memory().
1129  *
1130  * So, to summarize...
1131  *
1132  * - We need "local" memory, canonical example being
1133  *   a small SRAM on a discrete controller being the
1134  *   only memory that the controller can read ...
1135  *   (a) "normal" kernel memory is no good, and
1136  *   (b) there's not enough to share
1137  *
1138  * - The only *portable* hook for such stuff in the
1139  *   DMA framework is dma_declare_coherent_memory()
1140  *
1141  * - So we use that, even though the primary requirement
1142  *   is that the memory be "local" (hence addressible
1143  *   by that device), not "coherent".
1144  *
1145  */
1146
1147 static int hcd_alloc_coherent(struct usb_bus *bus,
1148                               gfp_t mem_flags, dma_addr_t *dma_handle,
1149                               void **vaddr_handle, size_t size,
1150                               enum dma_data_direction dir)
1151 {
1152         unsigned char *vaddr;
1153
1154         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1155                                  mem_flags, dma_handle);
1156         if (!vaddr)
1157                 return -ENOMEM;
1158
1159         /*
1160          * Store the virtual address of the buffer at the end
1161          * of the allocated dma buffer. The size of the buffer
1162          * may be uneven so use unaligned functions instead
1163          * of just rounding up. It makes sense to optimize for
1164          * memory footprint over access speed since the amount
1165          * of memory available for dma may be limited.
1166          */
1167         put_unaligned((unsigned long)*vaddr_handle,
1168                       (unsigned long *)(vaddr + size));
1169
1170         if (dir == DMA_TO_DEVICE)
1171                 memcpy(vaddr, *vaddr_handle, size);
1172
1173         *vaddr_handle = vaddr;
1174         return 0;
1175 }
1176
1177 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1178                               void **vaddr_handle, size_t size,
1179                               enum dma_data_direction dir)
1180 {
1181         unsigned char *vaddr = *vaddr_handle;
1182
1183         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1184
1185         if (dir == DMA_FROM_DEVICE)
1186                 memcpy(vaddr, *vaddr_handle, size);
1187
1188         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1189
1190         *vaddr_handle = vaddr;
1191         *dma_handle = 0;
1192 }
1193
1194 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1195                            gfp_t mem_flags)
1196 {
1197         enum dma_data_direction dir;
1198         int ret = 0;
1199
1200         /* Map the URB's buffers for DMA access.
1201          * Lower level HCD code should use *_dma exclusively,
1202          * unless it uses pio or talks to another transport.
1203          */
1204         if (is_root_hub(urb->dev))
1205                 return 0;
1206
1207         if (usb_endpoint_xfer_control(&urb->ep->desc)
1208             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1209                 if (hcd->self.uses_dma)
1210                         urb->setup_dma = dma_map_single(
1211                                         hcd->self.controller,
1212                                         urb->setup_packet,
1213                                         sizeof(struct usb_ctrlrequest),
1214                                         DMA_TO_DEVICE);
1215                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1216                         ret = hcd_alloc_coherent(
1217                                         urb->dev->bus, mem_flags,
1218                                         &urb->setup_dma,
1219                                         (void **)&urb->setup_packet,
1220                                         sizeof(struct usb_ctrlrequest),
1221                                         DMA_TO_DEVICE);
1222         }
1223
1224         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1225         if (ret == 0 && urb->transfer_buffer_length != 0
1226             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1227                 if (hcd->self.uses_dma)
1228                         urb->transfer_dma = dma_map_single (
1229                                         hcd->self.controller,
1230                                         urb->transfer_buffer,
1231                                         urb->transfer_buffer_length,
1232                                         dir);
1233                 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1234                         ret = hcd_alloc_coherent(
1235                                         urb->dev->bus, mem_flags,
1236                                         &urb->transfer_dma,
1237                                         &urb->transfer_buffer,
1238                                         urb->transfer_buffer_length,
1239                                         dir);
1240
1241                         if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1242                             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1243                                 hcd_free_coherent(urb->dev->bus,
1244                                         &urb->setup_dma,
1245                                         (void **)&urb->setup_packet,
1246                                         sizeof(struct usb_ctrlrequest),
1247                                         DMA_TO_DEVICE);
1248                 }
1249         }
1250         return ret;
1251 }
1252
1253 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1254 {
1255         enum dma_data_direction dir;
1256
1257         if (is_root_hub(urb->dev))
1258                 return;
1259
1260         if (usb_endpoint_xfer_control(&urb->ep->desc)
1261             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1262                 if (hcd->self.uses_dma)
1263                         dma_unmap_single(hcd->self.controller, urb->setup_dma,
1264                                         sizeof(struct usb_ctrlrequest),
1265                                         DMA_TO_DEVICE);
1266                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1267                         hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1268                                         (void **)&urb->setup_packet,
1269                                         sizeof(struct usb_ctrlrequest),
1270                                         DMA_TO_DEVICE);
1271         }
1272
1273         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1274         if (urb->transfer_buffer_length != 0
1275             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1276                 if (hcd->self.uses_dma)
1277                         dma_unmap_single(hcd->self.controller,
1278                                         urb->transfer_dma,
1279                                         urb->transfer_buffer_length,
1280                                         dir);
1281                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1282                         hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1283                                         &urb->transfer_buffer,
1284                                         urb->transfer_buffer_length,
1285                                         dir);
1286         }
1287 }
1288
1289 /*-------------------------------------------------------------------------*/
1290
1291 /* may be called in any context with a valid urb->dev usecount
1292  * caller surrenders "ownership" of urb
1293  * expects usb_submit_urb() to have sanity checked and conditioned all
1294  * inputs in the urb
1295  */
1296 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1297 {
1298         int                     status;
1299         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1300
1301         /* increment urb's reference count as part of giving it to the HCD
1302          * (which will control it).  HCD guarantees that it either returns
1303          * an error or calls giveback(), but not both.
1304          */
1305         usb_get_urb(urb);
1306         atomic_inc(&urb->use_count);
1307         atomic_inc(&urb->dev->urbnum);
1308         usbmon_urb_submit(&hcd->self, urb);
1309
1310         /* NOTE requirements on root-hub callers (usbfs and the hub
1311          * driver, for now):  URBs' urb->transfer_buffer must be
1312          * valid and usb_buffer_{sync,unmap}() not be needed, since
1313          * they could clobber root hub response data.  Also, control
1314          * URBs must be submitted in process context with interrupts
1315          * enabled.
1316          */
1317         status = map_urb_for_dma(hcd, urb, mem_flags);
1318         if (unlikely(status)) {
1319                 usbmon_urb_submit_error(&hcd->self, urb, status);
1320                 goto error;
1321         }
1322
1323         if (is_root_hub(urb->dev))
1324                 status = rh_urb_enqueue(hcd, urb);
1325         else
1326                 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1327
1328         if (unlikely(status)) {
1329                 usbmon_urb_submit_error(&hcd->self, urb, status);
1330                 unmap_urb_for_dma(hcd, urb);
1331  error:
1332                 urb->hcpriv = NULL;
1333                 INIT_LIST_HEAD(&urb->urb_list);
1334                 atomic_dec(&urb->use_count);
1335                 atomic_dec(&urb->dev->urbnum);
1336                 if (atomic_read(&urb->reject))
1337                         wake_up(&usb_kill_urb_queue);
1338                 usb_put_urb(urb);
1339         }
1340         return status;
1341 }
1342
1343 /*-------------------------------------------------------------------------*/
1344
1345 /* this makes the hcd giveback() the urb more quickly, by kicking it
1346  * off hardware queues (which may take a while) and returning it as
1347  * soon as practical.  we've already set up the urb's return status,
1348  * but we can't know if the callback completed already.
1349  */
1350 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1351 {
1352         int             value;
1353
1354         if (is_root_hub(urb->dev))
1355                 value = usb_rh_urb_dequeue(hcd, urb, status);
1356         else {
1357
1358                 /* The only reason an HCD might fail this call is if
1359                  * it has not yet fully queued the urb to begin with.
1360                  * Such failures should be harmless. */
1361                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1362         }
1363         return value;
1364 }
1365
1366 /*
1367  * called in any context
1368  *
1369  * caller guarantees urb won't be recycled till both unlink()
1370  * and the urb's completion function return
1371  */
1372 int usb_hcd_unlink_urb (struct urb *urb, int status)
1373 {
1374         struct usb_hcd          *hcd;
1375         int                     retval = -EIDRM;
1376         unsigned long           flags;
1377
1378         /* Prevent the device and bus from going away while
1379          * the unlink is carried out.  If they are already gone
1380          * then urb->use_count must be 0, since disconnected
1381          * devices can't have any active URBs.
1382          */
1383         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1384         if (atomic_read(&urb->use_count) > 0) {
1385                 retval = 0;
1386                 usb_get_dev(urb->dev);
1387         }
1388         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1389         if (retval == 0) {
1390                 hcd = bus_to_hcd(urb->dev->bus);
1391                 retval = unlink1(hcd, urb, status);
1392                 usb_put_dev(urb->dev);
1393         }
1394
1395         if (retval == 0)
1396                 retval = -EINPROGRESS;
1397         else if (retval != -EIDRM && retval != -EBUSY)
1398                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1399                                 urb, retval);
1400         return retval;
1401 }
1402
1403 /*-------------------------------------------------------------------------*/
1404
1405 /**
1406  * usb_hcd_giveback_urb - return URB from HCD to device driver
1407  * @hcd: host controller returning the URB
1408  * @urb: urb being returned to the USB device driver.
1409  * @status: completion status code for the URB.
1410  * Context: in_interrupt()
1411  *
1412  * This hands the URB from HCD to its USB device driver, using its
1413  * completion function.  The HCD has freed all per-urb resources
1414  * (and is done using urb->hcpriv).  It also released all HCD locks;
1415  * the device driver won't cause problems if it frees, modifies,
1416  * or resubmits this URB.
1417  *
1418  * If @urb was unlinked, the value of @status will be overridden by
1419  * @urb->unlinked.  Erroneous short transfers are detected in case
1420  * the HCD hasn't checked for them.
1421  */
1422 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1423 {
1424         urb->hcpriv = NULL;
1425         if (unlikely(urb->unlinked))
1426                 status = urb->unlinked;
1427         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1428                         urb->actual_length < urb->transfer_buffer_length &&
1429                         !status))
1430                 status = -EREMOTEIO;
1431
1432         unmap_urb_for_dma(hcd, urb);
1433         usbmon_urb_complete(&hcd->self, urb, status);
1434         usb_unanchor_urb(urb);
1435
1436         /* pass ownership to the completion handler */
1437         urb->status = status;
1438         urb->complete (urb);
1439         atomic_dec (&urb->use_count);
1440         if (unlikely(atomic_read(&urb->reject)))
1441                 wake_up (&usb_kill_urb_queue);
1442         usb_put_urb (urb);
1443 }
1444 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1445
1446 /*-------------------------------------------------------------------------*/
1447
1448 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1449  * queue to drain completely.  The caller must first insure that no more
1450  * URBs can be submitted for this endpoint.
1451  */
1452 void usb_hcd_flush_endpoint(struct usb_device *udev,
1453                 struct usb_host_endpoint *ep)
1454 {
1455         struct usb_hcd          *hcd;
1456         struct urb              *urb;
1457
1458         if (!ep)
1459                 return;
1460         might_sleep();
1461         hcd = bus_to_hcd(udev->bus);
1462
1463         /* No more submits can occur */
1464         spin_lock_irq(&hcd_urb_list_lock);
1465 rescan:
1466         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1467                 int     is_in;
1468
1469                 if (urb->unlinked)
1470                         continue;
1471                 usb_get_urb (urb);
1472                 is_in = usb_urb_dir_in(urb);
1473                 spin_unlock(&hcd_urb_list_lock);
1474
1475                 /* kick hcd */
1476                 unlink1(hcd, urb, -ESHUTDOWN);
1477                 dev_dbg (hcd->self.controller,
1478                         "shutdown urb %p ep%d%s%s\n",
1479                         urb, usb_endpoint_num(&ep->desc),
1480                         is_in ? "in" : "out",
1481                         ({      char *s;
1482
1483                                  switch (usb_endpoint_type(&ep->desc)) {
1484                                  case USB_ENDPOINT_XFER_CONTROL:
1485                                         s = ""; break;
1486                                  case USB_ENDPOINT_XFER_BULK:
1487                                         s = "-bulk"; break;
1488                                  case USB_ENDPOINT_XFER_INT:
1489                                         s = "-intr"; break;
1490                                  default:
1491                                         s = "-iso"; break;
1492                                 };
1493                                 s;
1494                         }));
1495                 usb_put_urb (urb);
1496
1497                 /* list contents may have changed */
1498                 spin_lock(&hcd_urb_list_lock);
1499                 goto rescan;
1500         }
1501         spin_unlock_irq(&hcd_urb_list_lock);
1502
1503         /* Wait until the endpoint queue is completely empty */
1504         while (!list_empty (&ep->urb_list)) {
1505                 spin_lock_irq(&hcd_urb_list_lock);
1506
1507                 /* The list may have changed while we acquired the spinlock */
1508                 urb = NULL;
1509                 if (!list_empty (&ep->urb_list)) {
1510                         urb = list_entry (ep->urb_list.prev, struct urb,
1511                                         urb_list);
1512                         usb_get_urb (urb);
1513                 }
1514                 spin_unlock_irq(&hcd_urb_list_lock);
1515
1516                 if (urb) {
1517                         usb_kill_urb (urb);
1518                         usb_put_urb (urb);
1519                 }
1520         }
1521 }
1522
1523 /* Disables the endpoint: synchronizes with the hcd to make sure all
1524  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1525  * have been called previously.  Use for set_configuration, set_interface,
1526  * driver removal, physical disconnect.
1527  *
1528  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1529  * type, maxpacket size, toggle, halt status, and scheduling.
1530  */
1531 void usb_hcd_disable_endpoint(struct usb_device *udev,
1532                 struct usb_host_endpoint *ep)
1533 {
1534         struct usb_hcd          *hcd;
1535
1536         might_sleep();
1537         hcd = bus_to_hcd(udev->bus);
1538         if (hcd->driver->endpoint_disable)
1539                 hcd->driver->endpoint_disable(hcd, ep);
1540 }
1541
1542 /**
1543  * usb_hcd_reset_endpoint - reset host endpoint state
1544  * @udev: USB device.
1545  * @ep:   the endpoint to reset.
1546  *
1547  * Resets any host endpoint state such as the toggle bit, sequence
1548  * number and current window.
1549  */
1550 void usb_hcd_reset_endpoint(struct usb_device *udev,
1551                             struct usb_host_endpoint *ep)
1552 {
1553         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1554
1555         if (hcd->driver->endpoint_reset)
1556                 hcd->driver->endpoint_reset(hcd, ep);
1557         else {
1558                 int epnum = usb_endpoint_num(&ep->desc);
1559                 int is_out = usb_endpoint_dir_out(&ep->desc);
1560                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1561
1562                 usb_settoggle(udev, epnum, is_out, 0);
1563                 if (is_control)
1564                         usb_settoggle(udev, epnum, !is_out, 0);
1565         }
1566 }
1567
1568 /* Protect against drivers that try to unlink URBs after the device
1569  * is gone, by waiting until all unlinks for @udev are finished.
1570  * Since we don't currently track URBs by device, simply wait until
1571  * nothing is running in the locked region of usb_hcd_unlink_urb().
1572  */
1573 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1574 {
1575         spin_lock_irq(&hcd_urb_unlink_lock);
1576         spin_unlock_irq(&hcd_urb_unlink_lock);
1577 }
1578
1579 /*-------------------------------------------------------------------------*/
1580
1581 /* called in any context */
1582 int usb_hcd_get_frame_number (struct usb_device *udev)
1583 {
1584         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1585
1586         if (!HC_IS_RUNNING (hcd->state))
1587                 return -ESHUTDOWN;
1588         return hcd->driver->get_frame_number (hcd);
1589 }
1590
1591 /*-------------------------------------------------------------------------*/
1592
1593 #ifdef  CONFIG_PM
1594
1595 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1596 {
1597         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1598         int             status;
1599         int             old_state = hcd->state;
1600
1601         dev_dbg(&rhdev->dev, "bus %s%s\n",
1602                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1603         if (!hcd->driver->bus_suspend) {
1604                 status = -ENOENT;
1605         } else {
1606                 hcd->state = HC_STATE_QUIESCING;
1607                 status = hcd->driver->bus_suspend(hcd);
1608         }
1609         if (status == 0) {
1610                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1611                 hcd->state = HC_STATE_SUSPENDED;
1612         } else {
1613                 hcd->state = old_state;
1614                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1615                                 "suspend", status);
1616         }
1617         return status;
1618 }
1619
1620 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1621 {
1622         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1623         int             status;
1624         int             old_state = hcd->state;
1625
1626         dev_dbg(&rhdev->dev, "usb %s%s\n",
1627                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1628         if (!hcd->driver->bus_resume)
1629                 return -ENOENT;
1630         if (hcd->state == HC_STATE_RUNNING)
1631                 return 0;
1632
1633         hcd->state = HC_STATE_RESUMING;
1634         status = hcd->driver->bus_resume(hcd);
1635         if (status == 0) {
1636                 /* TRSMRCY = 10 msec */
1637                 msleep(10);
1638                 usb_set_device_state(rhdev, rhdev->actconfig
1639                                 ? USB_STATE_CONFIGURED
1640                                 : USB_STATE_ADDRESS);
1641                 hcd->state = HC_STATE_RUNNING;
1642         } else {
1643                 hcd->state = old_state;
1644                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1645                                 "resume", status);
1646                 if (status != -ESHUTDOWN)
1647                         usb_hc_died(hcd);
1648         }
1649         return status;
1650 }
1651
1652 /* Workqueue routine for root-hub remote wakeup */
1653 static void hcd_resume_work(struct work_struct *work)
1654 {
1655         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1656         struct usb_device *udev = hcd->self.root_hub;
1657
1658         usb_lock_device(udev);
1659         usb_mark_last_busy(udev);
1660         usb_external_resume_device(udev, PMSG_REMOTE_RESUME);
1661         usb_unlock_device(udev);
1662 }
1663
1664 /**
1665  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
1666  * @hcd: host controller for this root hub
1667  *
1668  * The USB host controller calls this function when its root hub is
1669  * suspended (with the remote wakeup feature enabled) and a remote
1670  * wakeup request is received.  The routine submits a workqueue request
1671  * to resume the root hub (that is, manage its downstream ports again).
1672  */
1673 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1674 {
1675         unsigned long flags;
1676
1677         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1678         if (hcd->rh_registered)
1679                 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1680         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1681 }
1682 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1683
1684 #endif
1685
1686 /*-------------------------------------------------------------------------*/
1687
1688 #ifdef  CONFIG_USB_OTG
1689
1690 /**
1691  * usb_bus_start_enum - start immediate enumeration (for OTG)
1692  * @bus: the bus (must use hcd framework)
1693  * @port_num: 1-based number of port; usually bus->otg_port
1694  * Context: in_interrupt()
1695  *
1696  * Starts enumeration, with an immediate reset followed later by
1697  * khubd identifying and possibly configuring the device.
1698  * This is needed by OTG controller drivers, where it helps meet
1699  * HNP protocol timing requirements for starting a port reset.
1700  */
1701 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1702 {
1703         struct usb_hcd          *hcd;
1704         int                     status = -EOPNOTSUPP;
1705
1706         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1707          * boards with root hubs hooked up to internal devices (instead of
1708          * just the OTG port) may need more attention to resetting...
1709          */
1710         hcd = container_of (bus, struct usb_hcd, self);
1711         if (port_num && hcd->driver->start_port_reset)
1712                 status = hcd->driver->start_port_reset(hcd, port_num);
1713
1714         /* run khubd shortly after (first) root port reset finishes;
1715          * it may issue others, until at least 50 msecs have passed.
1716          */
1717         if (status == 0)
1718                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1719         return status;
1720 }
1721 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1722
1723 #endif
1724
1725 /*-------------------------------------------------------------------------*/
1726
1727 /**
1728  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1729  * @irq: the IRQ being raised
1730  * @__hcd: pointer to the HCD whose IRQ is being signaled
1731  *
1732  * If the controller isn't HALTed, calls the driver's irq handler.
1733  * Checks whether the controller is now dead.
1734  */
1735 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1736 {
1737         struct usb_hcd          *hcd = __hcd;
1738         unsigned long           flags;
1739         irqreturn_t             rc;
1740
1741         /* IRQF_DISABLED doesn't work correctly with shared IRQs
1742          * when the first handler doesn't use it.  So let's just
1743          * assume it's never used.
1744          */
1745         local_irq_save(flags);
1746
1747         if (unlikely(hcd->state == HC_STATE_HALT ||
1748                      !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1749                 rc = IRQ_NONE;
1750         } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1751                 rc = IRQ_NONE;
1752         } else {
1753                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1754
1755                 if (unlikely(hcd->state == HC_STATE_HALT))
1756                         usb_hc_died(hcd);
1757                 rc = IRQ_HANDLED;
1758         }
1759
1760         local_irq_restore(flags);
1761         return rc;
1762 }
1763
1764 /*-------------------------------------------------------------------------*/
1765
1766 /**
1767  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1768  * @hcd: pointer to the HCD representing the controller
1769  *
1770  * This is called by bus glue to report a USB host controller that died
1771  * while operations may still have been pending.  It's called automatically
1772  * by the PCI glue, so only glue for non-PCI busses should need to call it. 
1773  */
1774 void usb_hc_died (struct usb_hcd *hcd)
1775 {
1776         unsigned long flags;
1777
1778         dev_err (hcd->self.controller, "HC died; cleaning up\n");
1779
1780         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1781         if (hcd->rh_registered) {
1782                 hcd->poll_rh = 0;
1783
1784                 /* make khubd clean up old urbs and devices */
1785                 usb_set_device_state (hcd->self.root_hub,
1786                                 USB_STATE_NOTATTACHED);
1787                 usb_kick_khubd (hcd->self.root_hub);
1788         }
1789         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1790 }
1791 EXPORT_SYMBOL_GPL (usb_hc_died);
1792
1793 /*-------------------------------------------------------------------------*/
1794
1795 /**
1796  * usb_create_hcd - create and initialize an HCD structure
1797  * @driver: HC driver that will use this hcd
1798  * @dev: device for this HC, stored in hcd->self.controller
1799  * @bus_name: value to store in hcd->self.bus_name
1800  * Context: !in_interrupt()
1801  *
1802  * Allocate a struct usb_hcd, with extra space at the end for the
1803  * HC driver's private data.  Initialize the generic members of the
1804  * hcd structure.
1805  *
1806  * If memory is unavailable, returns NULL.
1807  */
1808 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1809                 struct device *dev, const char *bus_name)
1810 {
1811         struct usb_hcd *hcd;
1812
1813         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1814         if (!hcd) {
1815                 dev_dbg (dev, "hcd alloc failed\n");
1816                 return NULL;
1817         }
1818         dev_set_drvdata(dev, hcd);
1819         kref_init(&hcd->kref);
1820
1821         usb_bus_init(&hcd->self);
1822         hcd->self.controller = dev;
1823         hcd->self.bus_name = bus_name;
1824         hcd->self.uses_dma = (dev->dma_mask != NULL);
1825
1826         init_timer(&hcd->rh_timer);
1827         hcd->rh_timer.function = rh_timer_func;
1828         hcd->rh_timer.data = (unsigned long) hcd;
1829 #ifdef CONFIG_PM
1830         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1831 #endif
1832
1833         hcd->driver = driver;
1834         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1835                         "USB Host Controller";
1836         return hcd;
1837 }
1838 EXPORT_SYMBOL_GPL(usb_create_hcd);
1839
1840 static void hcd_release (struct kref *kref)
1841 {
1842         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1843
1844         kfree(hcd);
1845 }
1846
1847 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1848 {
1849         if (hcd)
1850                 kref_get (&hcd->kref);
1851         return hcd;
1852 }
1853 EXPORT_SYMBOL_GPL(usb_get_hcd);
1854
1855 void usb_put_hcd (struct usb_hcd *hcd)
1856 {
1857         if (hcd)
1858                 kref_put (&hcd->kref, hcd_release);
1859 }
1860 EXPORT_SYMBOL_GPL(usb_put_hcd);
1861
1862 /**
1863  * usb_add_hcd - finish generic HCD structure initialization and register
1864  * @hcd: the usb_hcd structure to initialize
1865  * @irqnum: Interrupt line to allocate
1866  * @irqflags: Interrupt type flags
1867  *
1868  * Finish the remaining parts of generic HCD initialization: allocate the
1869  * buffers of consistent memory, register the bus, request the IRQ line,
1870  * and call the driver's reset() and start() routines.
1871  */
1872 int usb_add_hcd(struct usb_hcd *hcd,
1873                 unsigned int irqnum, unsigned long irqflags)
1874 {
1875         int retval;
1876         struct usb_device *rhdev;
1877
1878         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1879
1880         hcd->authorized_default = hcd->wireless? 0 : 1;
1881         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1882
1883         /* HC is in reset state, but accessible.  Now do the one-time init,
1884          * bottom up so that hcds can customize the root hubs before khubd
1885          * starts talking to them.  (Note, bus id is assigned early too.)
1886          */
1887         if ((retval = hcd_buffer_create(hcd)) != 0) {
1888                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1889                 return retval;
1890         }
1891
1892         if ((retval = usb_register_bus(&hcd->self)) < 0)
1893                 goto err_register_bus;
1894
1895         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1896                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1897                 retval = -ENOMEM;
1898                 goto err_allocate_root_hub;
1899         }
1900         rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1901                         USB_SPEED_FULL;
1902         hcd->self.root_hub = rhdev;
1903
1904         /* wakeup flag init defaults to "everything works" for root hubs,
1905          * but drivers can override it in reset() if needed, along with
1906          * recording the overall controller's system wakeup capability.
1907          */
1908         device_init_wakeup(&rhdev->dev, 1);
1909
1910         /* "reset" is misnamed; its role is now one-time init. the controller
1911          * should already have been reset (and boot firmware kicked off etc).
1912          */
1913         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1914                 dev_err(hcd->self.controller, "can't setup\n");
1915                 goto err_hcd_driver_setup;
1916         }
1917
1918         /* NOTE: root hub and controller capabilities may not be the same */
1919         if (device_can_wakeup(hcd->self.controller)
1920                         && device_can_wakeup(&hcd->self.root_hub->dev))
1921                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1922
1923         /* enable irqs just before we start the controller */
1924         if (hcd->driver->irq) {
1925
1926                 /* IRQF_DISABLED doesn't work as advertised when used together
1927                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
1928                  * interrupts we can remove it here.
1929                  */
1930                 if (irqflags & IRQF_SHARED)
1931                         irqflags &= ~IRQF_DISABLED;
1932
1933                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1934                                 hcd->driver->description, hcd->self.busnum);
1935                 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1936                                 hcd->irq_descr, hcd)) != 0) {
1937                         dev_err(hcd->self.controller,
1938                                         "request interrupt %d failed\n", irqnum);
1939                         goto err_request_irq;
1940                 }
1941                 hcd->irq = irqnum;
1942                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1943                                 (hcd->driver->flags & HCD_MEMORY) ?
1944                                         "io mem" : "io base",
1945                                         (unsigned long long)hcd->rsrc_start);
1946         } else {
1947                 hcd->irq = -1;
1948                 if (hcd->rsrc_start)
1949                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
1950                                         (hcd->driver->flags & HCD_MEMORY) ?
1951                                         "io mem" : "io base",
1952                                         (unsigned long long)hcd->rsrc_start);
1953         }
1954
1955         if ((retval = hcd->driver->start(hcd)) < 0) {
1956                 dev_err(hcd->self.controller, "startup error %d\n", retval);
1957                 goto err_hcd_driver_start;
1958         }
1959
1960         /* starting here, usbcore will pay attention to this root hub */
1961         rhdev->bus_mA = min(500u, hcd->power_budget);
1962         if ((retval = register_root_hub(hcd)) != 0)
1963                 goto err_register_root_hub;
1964
1965         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1966         if (retval < 0) {
1967                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1968                        retval);
1969                 goto error_create_attr_group;
1970         }
1971         if (hcd->uses_new_polling && hcd->poll_rh)
1972                 usb_hcd_poll_rh_status(hcd);
1973         return retval;
1974
1975 error_create_attr_group:
1976         mutex_lock(&usb_bus_list_lock);
1977         usb_disconnect(&hcd->self.root_hub);
1978         mutex_unlock(&usb_bus_list_lock);
1979 err_register_root_hub:
1980         hcd->driver->stop(hcd);
1981 err_hcd_driver_start:
1982         if (hcd->irq >= 0)
1983                 free_irq(irqnum, hcd);
1984 err_request_irq:
1985 err_hcd_driver_setup:
1986         hcd->self.root_hub = NULL;
1987         usb_put_dev(rhdev);
1988 err_allocate_root_hub:
1989         usb_deregister_bus(&hcd->self);
1990 err_register_bus:
1991         hcd_buffer_destroy(hcd);
1992         return retval;
1993
1994 EXPORT_SYMBOL_GPL(usb_add_hcd);
1995
1996 /**
1997  * usb_remove_hcd - shutdown processing for generic HCDs
1998  * @hcd: the usb_hcd structure to remove
1999  * Context: !in_interrupt()
2000  *
2001  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2002  * invoking the HCD's stop() method.
2003  */
2004 void usb_remove_hcd(struct usb_hcd *hcd)
2005 {
2006         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2007
2008         if (HC_IS_RUNNING (hcd->state))
2009                 hcd->state = HC_STATE_QUIESCING;
2010
2011         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2012         spin_lock_irq (&hcd_root_hub_lock);
2013         hcd->rh_registered = 0;
2014         spin_unlock_irq (&hcd_root_hub_lock);
2015
2016 #ifdef CONFIG_PM
2017         cancel_work_sync(&hcd->wakeup_work);
2018 #endif
2019
2020         sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
2021         mutex_lock(&usb_bus_list_lock);
2022         usb_disconnect(&hcd->self.root_hub);
2023         mutex_unlock(&usb_bus_list_lock);
2024
2025         hcd->driver->stop(hcd);
2026         hcd->state = HC_STATE_HALT;
2027
2028         hcd->poll_rh = 0;
2029         del_timer_sync(&hcd->rh_timer);
2030
2031         if (hcd->irq >= 0)
2032                 free_irq(hcd->irq, hcd);
2033         usb_deregister_bus(&hcd->self);
2034         hcd_buffer_destroy(hcd);
2035 }
2036 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2037
2038 void
2039 usb_hcd_platform_shutdown(struct platform_device* dev)
2040 {
2041         struct usb_hcd *hcd = platform_get_drvdata(dev);
2042
2043         if (hcd->driver->shutdown)
2044                 hcd->driver->shutdown(hcd);
2045 }
2046 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2047
2048 /*-------------------------------------------------------------------------*/
2049
2050 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2051
2052 struct usb_mon_operations *mon_ops;
2053
2054 /*
2055  * The registration is unlocked.
2056  * We do it this way because we do not want to lock in hot paths.
2057  *
2058  * Notice that the code is minimally error-proof. Because usbmon needs
2059  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2060  */
2061  
2062 int usb_mon_register (struct usb_mon_operations *ops)
2063 {
2064
2065         if (mon_ops)
2066                 return -EBUSY;
2067
2068         mon_ops = ops;
2069         mb();
2070         return 0;
2071 }
2072 EXPORT_SYMBOL_GPL (usb_mon_register);
2073
2074 void usb_mon_deregister (void)
2075 {
2076
2077         if (mon_ops == NULL) {
2078                 printk(KERN_ERR "USB: monitor was not registered\n");
2079                 return;
2080         }
2081         mon_ops = NULL;
2082         mb();
2083 }
2084 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2085
2086 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */