2 * Touchscreen driver for UCB1x00-based touchscreens
4 * Copyright (C) 2001 Russell King, All Rights Reserved.
5 * Copyright (C) 2005 Pavel Machek
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * 21-Jan-2002 <jco@ict.es> :
13 * Added support for synchronous A/D mode. This mode is useful to
14 * avoid noise induced in the touchpanel by the LCD, provided that
15 * the UCB1x00 has a valid LCD sync signal routed to its ADCSYNC pin.
16 * It is important to note that the signal connected to the ADCSYNC
17 * pin should provide pulses even when the LCD is blanked, otherwise
18 * a pen touch needed to unblank the LCD will never be read.
20 #include <linux/config.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 #include <linux/smp_lock.h>
26 #include <linux/sched.h>
27 #include <linux/completion.h>
28 #include <linux/delay.h>
29 #include <linux/string.h>
30 #include <linux/input.h>
31 #include <linux/device.h>
32 #include <linux/suspend.h>
33 #include <linux/slab.h>
34 #include <linux/kthread.h>
35 #include <linux/delay.h>
38 #include <asm/semaphore.h>
39 #include <asm/arch/collie.h>
40 #include <asm/mach-types.h>
46 struct input_dev *idev;
49 wait_queue_head_t irq_wait;
50 struct task_struct *rtask;
54 unsigned int restart:1;
55 unsigned int adcsync:1;
60 static inline void ucb1x00_ts_evt_add(struct ucb1x00_ts *ts, u16 pressure, u16 x, u16 y)
62 struct input_dev *idev = ts->idev;
63 input_report_abs(idev, ABS_X, x);
64 input_report_abs(idev, ABS_Y, y);
65 input_report_abs(idev, ABS_PRESSURE, pressure);
69 static inline void ucb1x00_ts_event_release(struct ucb1x00_ts *ts)
71 struct input_dev *idev = ts->idev;
72 input_report_abs(idev, ABS_PRESSURE, 0);
77 * Switch to interrupt mode.
79 static inline void ucb1x00_ts_mode_int(struct ucb1x00_ts *ts)
81 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
82 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
83 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
88 * Switch to pressure mode, and read pressure. We don't need to wait
89 * here, since both plates are being driven.
91 static inline unsigned int ucb1x00_ts_read_pressure(struct ucb1x00_ts *ts)
93 if (machine_is_collie()) {
94 ucb1x00_io_write(ts->ucb, COLLIE_TC35143_GPIO_TBL_CHK, 0);
95 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
96 UCB_TS_CR_TSPX_POW | UCB_TS_CR_TSMX_POW |
97 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
101 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_AD2, ts->adcsync);
103 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
104 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
105 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
106 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
108 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
113 * Switch to X position mode and measure Y plate. We switch the plate
114 * configuration in pressure mode, then switch to position mode. This
115 * gives a faster response time. Even so, we need to wait about 55us
116 * for things to stabilise.
118 static inline unsigned int ucb1x00_ts_read_xpos(struct ucb1x00_ts *ts)
120 if (machine_is_collie())
121 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
123 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
124 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
125 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
126 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
127 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
128 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
130 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
131 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
132 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
136 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
140 * Switch to Y position mode and measure X plate. We switch the plate
141 * configuration in pressure mode, then switch to position mode. This
142 * gives a faster response time. Even so, we need to wait about 55us
143 * for things to stabilise.
145 static inline unsigned int ucb1x00_ts_read_ypos(struct ucb1x00_ts *ts)
147 if (machine_is_collie())
148 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
150 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
151 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
152 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
153 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
154 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
155 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
158 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
159 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
160 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
164 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPX, ts->adcsync);
168 * Switch to X plate resistance mode. Set MX to ground, PX to
169 * supply. Measure current.
171 static inline unsigned int ucb1x00_ts_read_xres(struct ucb1x00_ts *ts)
173 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
174 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
175 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
176 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
180 * Switch to Y plate resistance mode. Set MY to ground, PY to
181 * supply. Measure current.
183 static inline unsigned int ucb1x00_ts_read_yres(struct ucb1x00_ts *ts)
185 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
186 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
187 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
188 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
191 static inline int ucb1x00_ts_pen_down(struct ucb1x00_ts *ts)
193 unsigned int val = ucb1x00_reg_read(ts->ucb, UCB_TS_CR);
194 if (machine_is_collie())
195 return (!(val & (UCB_TS_CR_TSPX_LOW)));
197 return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
201 * This is a RT kernel thread that handles the ADC accesses
202 * (mainly so we can use semaphores in the UCB1200 core code
203 * to serialise accesses to the ADC).
205 static int ucb1x00_thread(void *_ts)
207 struct ucb1x00_ts *ts = _ts;
208 struct task_struct *tsk = current;
209 DECLARE_WAITQUEUE(wait, tsk);
213 * We could run as a real-time thread. However, thus far
214 * this doesn't seem to be necessary.
216 // tsk->policy = SCHED_FIFO;
217 // tsk->rt_priority = 1;
221 add_wait_queue(&ts->irq_wait, &wait);
222 while (!kthread_should_stop()) {
223 unsigned int x, y, p;
228 ucb1x00_adc_enable(ts->ucb);
230 x = ucb1x00_ts_read_xpos(ts);
231 y = ucb1x00_ts_read_ypos(ts);
232 p = ucb1x00_ts_read_pressure(ts);
235 * Switch back to interrupt mode.
237 ucb1x00_ts_mode_int(ts);
238 ucb1x00_adc_disable(ts->ucb);
242 ucb1x00_enable(ts->ucb);
245 if (ucb1x00_ts_pen_down(ts)) {
246 set_task_state(tsk, TASK_INTERRUPTIBLE);
248 ucb1x00_enable_irq(ts->ucb, UCB_IRQ_TSPX, machine_is_collie() ? UCB_RISING : UCB_FALLING);
249 ucb1x00_disable(ts->ucb);
252 * If we spat out a valid sample set last time,
253 * spit out a "pen off" sample here.
256 ucb1x00_ts_event_release(ts);
260 timeout = MAX_SCHEDULE_TIMEOUT;
262 ucb1x00_disable(ts->ucb);
265 * Filtering is policy. Policy belongs in user
266 * space. We therefore leave it to user space
267 * to do any filtering they please.
270 ucb1x00_ts_evt_add(ts, p, x, y);
274 set_task_state(tsk, TASK_INTERRUPTIBLE);
280 schedule_timeout(timeout);
283 remove_wait_queue(&ts->irq_wait, &wait);
290 * We only detect touch screen _touches_ with this interrupt
291 * handler, and even then we just schedule our task.
293 static void ucb1x00_ts_irq(int idx, void *id)
295 struct ucb1x00_ts *ts = id;
296 ucb1x00_disable_irq(ts->ucb, UCB_IRQ_TSPX, UCB_FALLING);
297 wake_up(&ts->irq_wait);
300 static int ucb1x00_ts_open(struct input_dev *idev)
302 struct ucb1x00_ts *ts = idev->private;
307 init_waitqueue_head(&ts->irq_wait);
308 ret = ucb1x00_hook_irq(ts->ucb, UCB_IRQ_TSPX, ucb1x00_ts_irq, ts);
313 * If we do this at all, we should allow the user to
314 * measure and read the X and Y resistance at any time.
316 ucb1x00_adc_enable(ts->ucb);
317 ts->x_res = ucb1x00_ts_read_xres(ts);
318 ts->y_res = ucb1x00_ts_read_yres(ts);
319 ucb1x00_adc_disable(ts->ucb);
321 ts->rtask = kthread_run(ucb1x00_thread, ts, "ktsd");
322 if (!IS_ERR(ts->rtask)) {
325 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
335 * Release touchscreen resources. Disable IRQs.
337 static void ucb1x00_ts_close(struct input_dev *idev)
339 struct ucb1x00_ts *ts = idev->private;
342 kthread_stop(ts->rtask);
344 ucb1x00_enable(ts->ucb);
345 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
346 ucb1x00_reg_write(ts->ucb, UCB_TS_CR, 0);
347 ucb1x00_disable(ts->ucb);
351 static int ucb1x00_ts_resume(struct ucb1x00_dev *dev)
353 struct ucb1x00_ts *ts = dev->priv;
355 if (ts->rtask != NULL) {
357 * Restart the TS thread to ensure the
358 * TS interrupt mode is set up again
362 wake_up(&ts->irq_wait);
367 #define ucb1x00_ts_resume NULL
374 static int ucb1x00_ts_add(struct ucb1x00_dev *dev)
376 struct ucb1x00_ts *ts;
378 ts = kzalloc(sizeof(struct ucb1x00_ts), GFP_KERNEL);
382 ts->idev = input_allocate_device();
389 ts->adcsync = adcsync ? UCB_SYNC : UCB_NOSYNC;
391 ts->idev->private = ts;
392 ts->idev->name = "Touchscreen panel";
393 ts->idev->id.product = ts->ucb->id;
394 ts->idev->open = ucb1x00_ts_open;
395 ts->idev->close = ucb1x00_ts_close;
397 __set_bit(EV_ABS, ts->idev->evbit);
398 __set_bit(ABS_X, ts->idev->absbit);
399 __set_bit(ABS_Y, ts->idev->absbit);
400 __set_bit(ABS_PRESSURE, ts->idev->absbit);
402 input_register_device(ts->idev);
409 static void ucb1x00_ts_remove(struct ucb1x00_dev *dev)
411 struct ucb1x00_ts *ts = dev->priv;
413 input_unregister_device(ts->idev);
417 static struct ucb1x00_driver ucb1x00_ts_driver = {
418 .add = ucb1x00_ts_add,
419 .remove = ucb1x00_ts_remove,
420 .resume = ucb1x00_ts_resume,
423 static int __init ucb1x00_ts_init(void)
425 return ucb1x00_register_driver(&ucb1x00_ts_driver);
428 static void __exit ucb1x00_ts_exit(void)
430 ucb1x00_unregister_driver(&ucb1x00_ts_driver);
433 module_param(adcsync, int, 0444);
434 module_init(ucb1x00_ts_init);
435 module_exit(ucb1x00_ts_exit);
437 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
438 MODULE_DESCRIPTION("UCB1x00 touchscreen driver");
439 MODULE_LICENSE("GPL");