1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
42 #ifdef CONFIG_IPW2200_DEBUG
48 #ifdef CONFIG_IPW2200_MONITOR
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
60 #ifdef CONFIG_IPW2200_RADIOTAP
66 #ifdef CONFIG_IPW2200_QOS
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION IPW2200_VERSION
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
84 static int cmdlog = 0;
86 static int channel = 0;
89 static u32 ipw_debug_level;
91 static int auto_create = 1;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116 QOS_TX3_CW_MIN_OFDM},
117 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118 QOS_TX3_CW_MAX_OFDM},
119 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133 QOS_TX3_TXOP_LIMIT_CCK}
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138 DEF_TX3_CW_MIN_OFDM},
139 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140 DEF_TX3_CW_MAX_OFDM},
141 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155 DEF_TX3_TXOP_LIMIT_CCK}
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160 static int from_priority_to_tx_queue[] = {
161 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171 #endif /* CONFIG_IPW2200_QOS */
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
183 static void ipw_tx_queue_free(struct ipw_priv *);
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
198 static int snprint_line(char *buf, size_t count,
199 const u8 * data, u32 len, u32 ofs)
204 out = snprintf(buf, count, "%08X", ofs);
206 for (l = 0, i = 0; i < 2; i++) {
207 out += snprintf(buf + out, count - out, " ");
208 for (j = 0; j < 8 && l < len; j++, l++)
209 out += snprintf(buf + out, count - out, "%02X ",
212 out += snprintf(buf + out, count - out, " ");
215 out += snprintf(buf + out, count - out, " ");
216 for (l = 0, i = 0; i < 2; i++) {
217 out += snprintf(buf + out, count - out, " ");
218 for (j = 0; j < 8 && l < len; j++, l++) {
219 c = data[(i * 8 + j)];
220 if (!isascii(c) || !isprint(c))
223 out += snprintf(buf + out, count - out, "%c", c);
227 out += snprintf(buf + out, count - out, " ");
233 static void printk_buf(int level, const u8 * data, u32 len)
237 if (!(ipw_debug_level & level))
241 snprint_line(line, sizeof(line), &data[ofs],
243 printk(KERN_DEBUG "%s\n", line);
245 len -= min(len, 16U);
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
255 while (size && len) {
256 out = snprint_line(output, size, &data[ofs],
257 min_t(size_t, len, 16U), ofs);
262 len -= min_t(size_t, len, 16U);
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281 __LINE__, (u32) (b), (u32) (c));
282 _ipw_write_reg8(a, b, c);
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290 __LINE__, (u32) (b), (u32) (c));
291 _ipw_write_reg16(a, b, c);
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299 __LINE__, (u32) (b), (u32) (c));
300 _ipw_write_reg32(a, b, c);
303 /* 8-bit direct write (low 4K) */
304 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
307 writeb(val, ipw->hw_base + ofs);
310 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
311 #define ipw_write8(ipw, ofs, val) do { \
312 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
313 __LINE__, (u32)(ofs), (u32)(val)); \
314 _ipw_write8(ipw, ofs, val); \
317 /* 16-bit direct write (low 4K) */
318 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
321 writew(val, ipw->hw_base + ofs);
324 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write16(ipw, ofs, val) do { \
326 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
327 __LINE__, (u32)(ofs), (u32)(val)); \
328 _ipw_write16(ipw, ofs, val); \
331 /* 32-bit direct write (low 4K) */
332 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
335 writel(val, ipw->hw_base + ofs);
338 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_write32(ipw, ofs, val) do { \
340 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
341 __LINE__, (u32)(ofs), (u32)(val)); \
342 _ipw_write32(ipw, ofs, val); \
345 /* 8-bit direct read (low 4K) */
346 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
348 return readb(ipw->hw_base + ofs);
351 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read8(ipw, ofs) ({ \
353 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
355 _ipw_read8(ipw, ofs); \
358 /* 16-bit direct read (low 4K) */
359 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
361 return readw(ipw->hw_base + ofs);
364 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read16(ipw, ofs) ({ \
366 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
368 _ipw_read16(ipw, ofs); \
371 /* 32-bit direct read (low 4K) */
372 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
374 return readl(ipw->hw_base + ofs);
377 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read32(ipw, ofs) ({ \
379 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
381 _ipw_read32(ipw, ofs); \
384 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
385 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
386 #define ipw_read_indirect(a, b, c, d) ({ \
387 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
388 __LINE__, (u32)(b), (u32)(d)); \
389 _ipw_read_indirect(a, b, c, d); \
392 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
393 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
395 #define ipw_write_indirect(a, b, c, d) do { \
396 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
397 __LINE__, (u32)(b), (u32)(d)); \
398 _ipw_write_indirect(a, b, c, d); \
401 /* 32-bit indirect write (above 4K) */
402 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
404 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
405 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
406 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
409 /* 8-bit indirect write (above 4K) */
410 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
412 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
413 u32 dif_len = reg - aligned_addr;
415 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
416 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
417 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
420 /* 16-bit indirect write (above 4K) */
421 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
423 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
424 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
426 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
427 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
428 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
431 /* 8-bit indirect read (above 4K) */
432 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
435 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
436 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
437 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
438 return (word >> ((reg & 0x3) * 8)) & 0xff;
441 /* 32-bit indirect read (above 4K) */
442 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
446 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
448 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
449 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
450 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
454 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
455 /* for area above 1st 4K of SRAM/reg space */
456 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
459 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
460 u32 dif_len = addr - aligned_addr;
463 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
469 /* Read the first dword (or portion) byte by byte */
470 if (unlikely(dif_len)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 /* Start reading at aligned_addr + dif_len */
473 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
474 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
478 /* Read all of the middle dwords as dwords, with auto-increment */
479 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
480 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
481 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
483 /* Read the last dword (or portion) byte by byte */
485 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
486 for (i = 0; num > 0; i++, num--)
487 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
491 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
492 /* for area above 1st 4K of SRAM/reg space */
493 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
496 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
497 u32 dif_len = addr - aligned_addr;
500 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
506 /* Write the first dword (or portion) byte by byte */
507 if (unlikely(dif_len)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 /* Start writing at aligned_addr + dif_len */
510 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
511 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
515 /* Write all of the middle dwords as dwords, with auto-increment */
516 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
517 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
518 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
520 /* Write the last dword (or portion) byte by byte */
522 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
523 for (i = 0; num > 0; i++, num--, buf++)
524 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
528 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
529 /* for 1st 4K of SRAM/regs space */
530 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
533 memcpy_toio((priv->hw_base + addr), buf, num);
536 /* Set bit(s) in low 4K of SRAM/regs */
537 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
539 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
542 /* Clear bit(s) in low 4K of SRAM/regs */
543 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
545 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
548 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
550 if (priv->status & STATUS_INT_ENABLED)
552 priv->status |= STATUS_INT_ENABLED;
553 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
556 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
558 if (!(priv->status & STATUS_INT_ENABLED))
560 priv->status &= ~STATUS_INT_ENABLED;
561 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
564 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
568 spin_lock_irqsave(&priv->irq_lock, flags);
569 __ipw_enable_interrupts(priv);
570 spin_unlock_irqrestore(&priv->irq_lock, flags);
573 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
577 spin_lock_irqsave(&priv->irq_lock, flags);
578 __ipw_disable_interrupts(priv);
579 spin_unlock_irqrestore(&priv->irq_lock, flags);
582 static char *ipw_error_desc(u32 val)
585 case IPW_FW_ERROR_OK:
587 case IPW_FW_ERROR_FAIL:
589 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
590 return "MEMORY_UNDERFLOW";
591 case IPW_FW_ERROR_MEMORY_OVERFLOW:
592 return "MEMORY_OVERFLOW";
593 case IPW_FW_ERROR_BAD_PARAM:
595 case IPW_FW_ERROR_BAD_CHECKSUM:
596 return "BAD_CHECKSUM";
597 case IPW_FW_ERROR_NMI_INTERRUPT:
598 return "NMI_INTERRUPT";
599 case IPW_FW_ERROR_BAD_DATABASE:
600 return "BAD_DATABASE";
601 case IPW_FW_ERROR_ALLOC_FAIL:
603 case IPW_FW_ERROR_DMA_UNDERRUN:
604 return "DMA_UNDERRUN";
605 case IPW_FW_ERROR_DMA_STATUS:
607 case IPW_FW_ERROR_DINO_ERROR:
609 case IPW_FW_ERROR_EEPROM_ERROR:
610 return "EEPROM_ERROR";
611 case IPW_FW_ERROR_SYSASSERT:
613 case IPW_FW_ERROR_FATAL_ERROR:
614 return "FATAL_ERROR";
616 return "UNKNOWN_ERROR";
620 static void ipw_dump_error_log(struct ipw_priv *priv,
621 struct ipw_fw_error *error)
626 IPW_ERROR("Error allocating and capturing error log. "
627 "Nothing to dump.\n");
631 IPW_ERROR("Start IPW Error Log Dump:\n");
632 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
633 error->status, error->config);
635 for (i = 0; i < error->elem_len; i++)
636 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
637 ipw_error_desc(error->elem[i].desc),
639 error->elem[i].blink1,
640 error->elem[i].blink2,
641 error->elem[i].link1,
642 error->elem[i].link2, error->elem[i].data);
643 for (i = 0; i < error->log_len; i++)
644 IPW_ERROR("%i\t0x%08x\t%i\n",
646 error->log[i].data, error->log[i].event);
649 static inline int ipw_is_init(struct ipw_priv *priv)
651 return (priv->status & STATUS_INIT) ? 1 : 0;
654 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
656 u32 addr, field_info, field_len, field_count, total_len;
658 IPW_DEBUG_ORD("ordinal = %i\n", ord);
660 if (!priv || !val || !len) {
661 IPW_DEBUG_ORD("Invalid argument\n");
665 /* verify device ordinal tables have been initialized */
666 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
667 IPW_DEBUG_ORD("Access ordinals before initialization\n");
671 switch (IPW_ORD_TABLE_ID_MASK & ord) {
672 case IPW_ORD_TABLE_0_MASK:
674 * TABLE 0: Direct access to a table of 32 bit values
676 * This is a very simple table with the data directly
677 * read from the table
680 /* remove the table id from the ordinal */
681 ord &= IPW_ORD_TABLE_VALUE_MASK;
684 if (ord > priv->table0_len) {
685 IPW_DEBUG_ORD("ordinal value (%i) longer then "
686 "max (%i)\n", ord, priv->table0_len);
690 /* verify we have enough room to store the value */
691 if (*len < sizeof(u32)) {
692 IPW_DEBUG_ORD("ordinal buffer length too small, "
693 "need %zd\n", sizeof(u32));
697 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
698 ord, priv->table0_addr + (ord << 2));
702 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
705 case IPW_ORD_TABLE_1_MASK:
707 * TABLE 1: Indirect access to a table of 32 bit values
709 * This is a fairly large table of u32 values each
710 * representing starting addr for the data (which is
714 /* remove the table id from the ordinal */
715 ord &= IPW_ORD_TABLE_VALUE_MASK;
718 if (ord > priv->table1_len) {
719 IPW_DEBUG_ORD("ordinal value too long\n");
723 /* verify we have enough room to store the value */
724 if (*len < sizeof(u32)) {
725 IPW_DEBUG_ORD("ordinal buffer length too small, "
726 "need %zd\n", sizeof(u32));
731 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
735 case IPW_ORD_TABLE_2_MASK:
737 * TABLE 2: Indirect access to a table of variable sized values
739 * This table consist of six values, each containing
740 * - dword containing the starting offset of the data
741 * - dword containing the lengh in the first 16bits
742 * and the count in the second 16bits
745 /* remove the table id from the ordinal */
746 ord &= IPW_ORD_TABLE_VALUE_MASK;
749 if (ord > priv->table2_len) {
750 IPW_DEBUG_ORD("ordinal value too long\n");
754 /* get the address of statistic */
755 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
757 /* get the second DW of statistics ;
758 * two 16-bit words - first is length, second is count */
761 priv->table2_addr + (ord << 3) +
764 /* get each entry length */
765 field_len = *((u16 *) & field_info);
767 /* get number of entries */
768 field_count = *(((u16 *) & field_info) + 1);
770 /* abort if not enought memory */
771 total_len = field_len * field_count;
772 if (total_len > *len) {
781 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
782 "field_info = 0x%08x\n",
783 addr, total_len, field_info);
784 ipw_read_indirect(priv, addr, val, total_len);
788 IPW_DEBUG_ORD("Invalid ordinal!\n");
796 static void ipw_init_ordinals(struct ipw_priv *priv)
798 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
799 priv->table0_len = ipw_read32(priv, priv->table0_addr);
801 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
802 priv->table0_addr, priv->table0_len);
804 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
805 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
807 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
808 priv->table1_addr, priv->table1_len);
810 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
811 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
812 priv->table2_len &= 0x0000ffff; /* use first two bytes */
814 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
815 priv->table2_addr, priv->table2_len);
819 static u32 ipw_register_toggle(u32 reg)
821 reg &= ~IPW_START_STANDBY;
822 if (reg & IPW_GATE_ODMA)
823 reg &= ~IPW_GATE_ODMA;
824 if (reg & IPW_GATE_IDMA)
825 reg &= ~IPW_GATE_IDMA;
826 if (reg & IPW_GATE_ADMA)
827 reg &= ~IPW_GATE_ADMA;
833 * - On radio ON, turn on any LEDs that require to be on during start
834 * - On initialization, start unassociated blink
835 * - On association, disable unassociated blink
836 * - On disassociation, start unassociated blink
837 * - On radio OFF, turn off any LEDs started during radio on
840 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
841 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
842 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
844 static void ipw_led_link_on(struct ipw_priv *priv)
849 /* If configured to not use LEDs, or nic_type is 1,
850 * then we don't toggle a LINK led */
851 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
854 spin_lock_irqsave(&priv->lock, flags);
856 if (!(priv->status & STATUS_RF_KILL_MASK) &&
857 !(priv->status & STATUS_LED_LINK_ON)) {
858 IPW_DEBUG_LED("Link LED On\n");
859 led = ipw_read_reg32(priv, IPW_EVENT_REG);
860 led |= priv->led_association_on;
862 led = ipw_register_toggle(led);
864 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
865 ipw_write_reg32(priv, IPW_EVENT_REG, led);
867 priv->status |= STATUS_LED_LINK_ON;
869 /* If we aren't associated, schedule turning the LED off */
870 if (!(priv->status & STATUS_ASSOCIATED))
871 queue_delayed_work(priv->workqueue,
876 spin_unlock_irqrestore(&priv->lock, flags);
879 static void ipw_bg_led_link_on(struct work_struct *work)
881 struct ipw_priv *priv =
882 container_of(work, struct ipw_priv, led_link_on.work);
883 mutex_lock(&priv->mutex);
884 ipw_led_link_on(priv);
885 mutex_unlock(&priv->mutex);
888 static void ipw_led_link_off(struct ipw_priv *priv)
893 /* If configured not to use LEDs, or nic type is 1,
894 * then we don't goggle the LINK led. */
895 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
898 spin_lock_irqsave(&priv->lock, flags);
900 if (priv->status & STATUS_LED_LINK_ON) {
901 led = ipw_read_reg32(priv, IPW_EVENT_REG);
902 led &= priv->led_association_off;
903 led = ipw_register_toggle(led);
905 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
906 ipw_write_reg32(priv, IPW_EVENT_REG, led);
908 IPW_DEBUG_LED("Link LED Off\n");
910 priv->status &= ~STATUS_LED_LINK_ON;
912 /* If we aren't associated and the radio is on, schedule
913 * turning the LED on (blink while unassociated) */
914 if (!(priv->status & STATUS_RF_KILL_MASK) &&
915 !(priv->status & STATUS_ASSOCIATED))
916 queue_delayed_work(priv->workqueue, &priv->led_link_on,
921 spin_unlock_irqrestore(&priv->lock, flags);
924 static void ipw_bg_led_link_off(struct work_struct *work)
926 struct ipw_priv *priv =
927 container_of(work, struct ipw_priv, led_link_off.work);
928 mutex_lock(&priv->mutex);
929 ipw_led_link_off(priv);
930 mutex_unlock(&priv->mutex);
933 static void __ipw_led_activity_on(struct ipw_priv *priv)
937 if (priv->config & CFG_NO_LED)
940 if (priv->status & STATUS_RF_KILL_MASK)
943 if (!(priv->status & STATUS_LED_ACT_ON)) {
944 led = ipw_read_reg32(priv, IPW_EVENT_REG);
945 led |= priv->led_activity_on;
947 led = ipw_register_toggle(led);
949 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
950 ipw_write_reg32(priv, IPW_EVENT_REG, led);
952 IPW_DEBUG_LED("Activity LED On\n");
954 priv->status |= STATUS_LED_ACT_ON;
956 cancel_delayed_work(&priv->led_act_off);
957 queue_delayed_work(priv->workqueue, &priv->led_act_off,
960 /* Reschedule LED off for full time period */
961 cancel_delayed_work(&priv->led_act_off);
962 queue_delayed_work(priv->workqueue, &priv->led_act_off,
968 void ipw_led_activity_on(struct ipw_priv *priv)
971 spin_lock_irqsave(&priv->lock, flags);
972 __ipw_led_activity_on(priv);
973 spin_unlock_irqrestore(&priv->lock, flags);
977 static void ipw_led_activity_off(struct ipw_priv *priv)
982 if (priv->config & CFG_NO_LED)
985 spin_lock_irqsave(&priv->lock, flags);
987 if (priv->status & STATUS_LED_ACT_ON) {
988 led = ipw_read_reg32(priv, IPW_EVENT_REG);
989 led &= priv->led_activity_off;
991 led = ipw_register_toggle(led);
993 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
994 ipw_write_reg32(priv, IPW_EVENT_REG, led);
996 IPW_DEBUG_LED("Activity LED Off\n");
998 priv->status &= ~STATUS_LED_ACT_ON;
1001 spin_unlock_irqrestore(&priv->lock, flags);
1004 static void ipw_bg_led_activity_off(struct work_struct *work)
1006 struct ipw_priv *priv =
1007 container_of(work, struct ipw_priv, led_act_off.work);
1008 mutex_lock(&priv->mutex);
1009 ipw_led_activity_off(priv);
1010 mutex_unlock(&priv->mutex);
1013 static void ipw_led_band_on(struct ipw_priv *priv)
1015 unsigned long flags;
1018 /* Only nic type 1 supports mode LEDs */
1019 if (priv->config & CFG_NO_LED ||
1020 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1023 spin_lock_irqsave(&priv->lock, flags);
1025 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1026 if (priv->assoc_network->mode == IEEE_A) {
1027 led |= priv->led_ofdm_on;
1028 led &= priv->led_association_off;
1029 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1030 } else if (priv->assoc_network->mode == IEEE_G) {
1031 led |= priv->led_ofdm_on;
1032 led |= priv->led_association_on;
1033 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1035 led &= priv->led_ofdm_off;
1036 led |= priv->led_association_on;
1037 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1040 led = ipw_register_toggle(led);
1042 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1043 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1045 spin_unlock_irqrestore(&priv->lock, flags);
1048 static void ipw_led_band_off(struct ipw_priv *priv)
1050 unsigned long flags;
1053 /* Only nic type 1 supports mode LEDs */
1054 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1057 spin_lock_irqsave(&priv->lock, flags);
1059 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1060 led &= priv->led_ofdm_off;
1061 led &= priv->led_association_off;
1063 led = ipw_register_toggle(led);
1065 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1066 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1068 spin_unlock_irqrestore(&priv->lock, flags);
1071 static void ipw_led_radio_on(struct ipw_priv *priv)
1073 ipw_led_link_on(priv);
1076 static void ipw_led_radio_off(struct ipw_priv *priv)
1078 ipw_led_activity_off(priv);
1079 ipw_led_link_off(priv);
1082 static void ipw_led_link_up(struct ipw_priv *priv)
1084 /* Set the Link Led on for all nic types */
1085 ipw_led_link_on(priv);
1088 static void ipw_led_link_down(struct ipw_priv *priv)
1090 ipw_led_activity_off(priv);
1091 ipw_led_link_off(priv);
1093 if (priv->status & STATUS_RF_KILL_MASK)
1094 ipw_led_radio_off(priv);
1097 static void ipw_led_init(struct ipw_priv *priv)
1099 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1101 /* Set the default PINs for the link and activity leds */
1102 priv->led_activity_on = IPW_ACTIVITY_LED;
1103 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1105 priv->led_association_on = IPW_ASSOCIATED_LED;
1106 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1108 /* Set the default PINs for the OFDM leds */
1109 priv->led_ofdm_on = IPW_OFDM_LED;
1110 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1112 switch (priv->nic_type) {
1113 case EEPROM_NIC_TYPE_1:
1114 /* In this NIC type, the LEDs are reversed.... */
1115 priv->led_activity_on = IPW_ASSOCIATED_LED;
1116 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1117 priv->led_association_on = IPW_ACTIVITY_LED;
1118 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1120 if (!(priv->config & CFG_NO_LED))
1121 ipw_led_band_on(priv);
1123 /* And we don't blink link LEDs for this nic, so
1124 * just return here */
1127 case EEPROM_NIC_TYPE_3:
1128 case EEPROM_NIC_TYPE_2:
1129 case EEPROM_NIC_TYPE_4:
1130 case EEPROM_NIC_TYPE_0:
1134 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1136 priv->nic_type = EEPROM_NIC_TYPE_0;
1140 if (!(priv->config & CFG_NO_LED)) {
1141 if (priv->status & STATUS_ASSOCIATED)
1142 ipw_led_link_on(priv);
1144 ipw_led_link_off(priv);
1148 static void ipw_led_shutdown(struct ipw_priv *priv)
1150 ipw_led_activity_off(priv);
1151 ipw_led_link_off(priv);
1152 ipw_led_band_off(priv);
1153 cancel_delayed_work(&priv->led_link_on);
1154 cancel_delayed_work(&priv->led_link_off);
1155 cancel_delayed_work(&priv->led_act_off);
1159 * The following adds a new attribute to the sysfs representation
1160 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1161 * used for controling the debug level.
1163 * See the level definitions in ipw for details.
1165 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1167 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1170 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1173 char *p = (char *)buf;
1176 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1178 if (p[0] == 'x' || p[0] == 'X')
1180 val = simple_strtoul(p, &p, 16);
1182 val = simple_strtoul(p, &p, 10);
1184 printk(KERN_INFO DRV_NAME
1185 ": %s is not in hex or decimal form.\n", buf);
1187 ipw_debug_level = val;
1189 return strnlen(buf, count);
1192 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1193 show_debug_level, store_debug_level);
1195 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1197 /* length = 1st dword in log */
1198 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1201 static void ipw_capture_event_log(struct ipw_priv *priv,
1202 u32 log_len, struct ipw_event *log)
1207 base = ipw_read32(priv, IPW_EVENT_LOG);
1208 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1209 (u8 *) log, sizeof(*log) * log_len);
1213 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1215 struct ipw_fw_error *error;
1216 u32 log_len = ipw_get_event_log_len(priv);
1217 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1218 u32 elem_len = ipw_read_reg32(priv, base);
1220 error = kmalloc(sizeof(*error) +
1221 sizeof(*error->elem) * elem_len +
1222 sizeof(*error->log) * log_len, GFP_ATOMIC);
1224 IPW_ERROR("Memory allocation for firmware error log "
1228 error->jiffies = jiffies;
1229 error->status = priv->status;
1230 error->config = priv->config;
1231 error->elem_len = elem_len;
1232 error->log_len = log_len;
1233 error->elem = (struct ipw_error_elem *)error->payload;
1234 error->log = (struct ipw_event *)(error->elem + elem_len);
1236 ipw_capture_event_log(priv, log_len, error->log);
1239 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240 sizeof(*error->elem) * elem_len);
1245 static ssize_t show_event_log(struct device *d,
1246 struct device_attribute *attr, char *buf)
1248 struct ipw_priv *priv = dev_get_drvdata(d);
1249 u32 log_len = ipw_get_event_log_len(priv);
1251 struct ipw_event *log;
1254 /* not using min() because of its strict type checking */
1255 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256 sizeof(*log) * log_len : PAGE_SIZE;
1257 log = kzalloc(log_size, GFP_KERNEL);
1259 IPW_ERROR("Unable to allocate memory for log\n");
1262 log_len = log_size / sizeof(*log);
1263 ipw_capture_event_log(priv, log_len, log);
1265 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266 for (i = 0; i < log_len; i++)
1267 len += snprintf(buf + len, PAGE_SIZE - len,
1269 log[i].time, log[i].event, log[i].data);
1270 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1275 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1277 static ssize_t show_error(struct device *d,
1278 struct device_attribute *attr, char *buf)
1280 struct ipw_priv *priv = dev_get_drvdata(d);
1284 len += snprintf(buf + len, PAGE_SIZE - len,
1285 "%08lX%08X%08X%08X",
1286 priv->error->jiffies,
1287 priv->error->status,
1288 priv->error->config, priv->error->elem_len);
1289 for (i = 0; i < priv->error->elem_len; i++)
1290 len += snprintf(buf + len, PAGE_SIZE - len,
1291 "\n%08X%08X%08X%08X%08X%08X%08X",
1292 priv->error->elem[i].time,
1293 priv->error->elem[i].desc,
1294 priv->error->elem[i].blink1,
1295 priv->error->elem[i].blink2,
1296 priv->error->elem[i].link1,
1297 priv->error->elem[i].link2,
1298 priv->error->elem[i].data);
1300 len += snprintf(buf + len, PAGE_SIZE - len,
1301 "\n%08X", priv->error->log_len);
1302 for (i = 0; i < priv->error->log_len; i++)
1303 len += snprintf(buf + len, PAGE_SIZE - len,
1305 priv->error->log[i].time,
1306 priv->error->log[i].event,
1307 priv->error->log[i].data);
1308 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1312 static ssize_t clear_error(struct device *d,
1313 struct device_attribute *attr,
1314 const char *buf, size_t count)
1316 struct ipw_priv *priv = dev_get_drvdata(d);
1323 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1325 static ssize_t show_cmd_log(struct device *d,
1326 struct device_attribute *attr, char *buf)
1328 struct ipw_priv *priv = dev_get_drvdata(d);
1332 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1334 i = (i + 1) % priv->cmdlog_len) {
1336 snprintf(buf + len, PAGE_SIZE - len,
1337 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339 priv->cmdlog[i].cmd.len);
1341 snprintk_buf(buf + len, PAGE_SIZE - len,
1342 (u8 *) priv->cmdlog[i].cmd.param,
1343 priv->cmdlog[i].cmd.len);
1344 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1346 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1350 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
1355 static ssize_t store_rtap_iface(struct device *d,
1356 struct device_attribute *attr,
1357 const char *buf, size_t count)
1359 struct ipw_priv *priv = dev_get_drvdata(d);
1370 if (netif_running(priv->prom_net_dev)) {
1371 IPW_WARNING("Interface is up. Cannot unregister.\n");
1375 ipw_prom_free(priv);
1383 rc = ipw_prom_alloc(priv);
1393 IPW_ERROR("Failed to register promiscuous network "
1394 "device (error %d).\n", rc);
1400 static ssize_t show_rtap_iface(struct device *d,
1401 struct device_attribute *attr,
1404 struct ipw_priv *priv = dev_get_drvdata(d);
1406 return sprintf(buf, "%s", priv->prom_net_dev->name);
1415 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1418 static ssize_t store_rtap_filter(struct device *d,
1419 struct device_attribute *attr,
1420 const char *buf, size_t count)
1422 struct ipw_priv *priv = dev_get_drvdata(d);
1424 if (!priv->prom_priv) {
1425 IPW_ERROR("Attempting to set filter without "
1426 "rtap_iface enabled.\n");
1430 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1432 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1433 BIT_ARG16(priv->prom_priv->filter));
1438 static ssize_t show_rtap_filter(struct device *d,
1439 struct device_attribute *attr,
1442 struct ipw_priv *priv = dev_get_drvdata(d);
1443 return sprintf(buf, "0x%04X",
1444 priv->prom_priv ? priv->prom_priv->filter : 0);
1447 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1451 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1454 struct ipw_priv *priv = dev_get_drvdata(d);
1455 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1458 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1459 const char *buf, size_t count)
1461 struct ipw_priv *priv = dev_get_drvdata(d);
1462 struct net_device *dev = priv->net_dev;
1463 char buffer[] = "00000000";
1465 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1469 IPW_DEBUG_INFO("enter\n");
1471 strncpy(buffer, buf, len);
1474 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1476 if (p[0] == 'x' || p[0] == 'X')
1478 val = simple_strtoul(p, &p, 16);
1480 val = simple_strtoul(p, &p, 10);
1482 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1484 priv->ieee->scan_age = val;
1485 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1488 IPW_DEBUG_INFO("exit\n");
1492 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1494 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1497 struct ipw_priv *priv = dev_get_drvdata(d);
1498 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1501 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1502 const char *buf, size_t count)
1504 struct ipw_priv *priv = dev_get_drvdata(d);
1506 IPW_DEBUG_INFO("enter\n");
1512 IPW_DEBUG_LED("Disabling LED control.\n");
1513 priv->config |= CFG_NO_LED;
1514 ipw_led_shutdown(priv);
1516 IPW_DEBUG_LED("Enabling LED control.\n");
1517 priv->config &= ~CFG_NO_LED;
1521 IPW_DEBUG_INFO("exit\n");
1525 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1527 static ssize_t show_status(struct device *d,
1528 struct device_attribute *attr, char *buf)
1530 struct ipw_priv *p = d->driver_data;
1531 return sprintf(buf, "0x%08x\n", (int)p->status);
1534 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1539 struct ipw_priv *p = d->driver_data;
1540 return sprintf(buf, "0x%08x\n", (int)p->config);
1543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1545 static ssize_t show_nic_type(struct device *d,
1546 struct device_attribute *attr, char *buf)
1548 struct ipw_priv *priv = d->driver_data;
1549 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1552 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1554 static ssize_t show_ucode_version(struct device *d,
1555 struct device_attribute *attr, char *buf)
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1563 return sprintf(buf, "0x%08x\n", tmp);
1566 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1568 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1571 u32 len = sizeof(u32), tmp = 0;
1572 struct ipw_priv *p = d->driver_data;
1574 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1577 return sprintf(buf, "0x%08x\n", tmp);
1580 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1583 * Add a device attribute to view/control the delay between eeprom
1586 static ssize_t show_eeprom_delay(struct device *d,
1587 struct device_attribute *attr, char *buf)
1589 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1590 return sprintf(buf, "%i\n", n);
1592 static ssize_t store_eeprom_delay(struct device *d,
1593 struct device_attribute *attr,
1594 const char *buf, size_t count)
1596 struct ipw_priv *p = d->driver_data;
1597 sscanf(buf, "%i", &p->eeprom_delay);
1598 return strnlen(buf, count);
1601 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1602 show_eeprom_delay, store_eeprom_delay);
1604 static ssize_t show_command_event_reg(struct device *d,
1605 struct device_attribute *attr, char *buf)
1608 struct ipw_priv *p = d->driver_data;
1610 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1611 return sprintf(buf, "0x%08x\n", reg);
1613 static ssize_t store_command_event_reg(struct device *d,
1614 struct device_attribute *attr,
1615 const char *buf, size_t count)
1618 struct ipw_priv *p = d->driver_data;
1620 sscanf(buf, "%x", ®);
1621 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1622 return strnlen(buf, count);
1625 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1626 show_command_event_reg, store_command_event_reg);
1628 static ssize_t show_mem_gpio_reg(struct device *d,
1629 struct device_attribute *attr, char *buf)
1632 struct ipw_priv *p = d->driver_data;
1634 reg = ipw_read_reg32(p, 0x301100);
1635 return sprintf(buf, "0x%08x\n", reg);
1637 static ssize_t store_mem_gpio_reg(struct device *d,
1638 struct device_attribute *attr,
1639 const char *buf, size_t count)
1642 struct ipw_priv *p = d->driver_data;
1644 sscanf(buf, "%x", ®);
1645 ipw_write_reg32(p, 0x301100, reg);
1646 return strnlen(buf, count);
1649 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1650 show_mem_gpio_reg, store_mem_gpio_reg);
1652 static ssize_t show_indirect_dword(struct device *d,
1653 struct device_attribute *attr, char *buf)
1656 struct ipw_priv *priv = d->driver_data;
1658 if (priv->status & STATUS_INDIRECT_DWORD)
1659 reg = ipw_read_reg32(priv, priv->indirect_dword);
1663 return sprintf(buf, "0x%08x\n", reg);
1665 static ssize_t store_indirect_dword(struct device *d,
1666 struct device_attribute *attr,
1667 const char *buf, size_t count)
1669 struct ipw_priv *priv = d->driver_data;
1671 sscanf(buf, "%x", &priv->indirect_dword);
1672 priv->status |= STATUS_INDIRECT_DWORD;
1673 return strnlen(buf, count);
1676 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1677 show_indirect_dword, store_indirect_dword);
1679 static ssize_t show_indirect_byte(struct device *d,
1680 struct device_attribute *attr, char *buf)
1683 struct ipw_priv *priv = d->driver_data;
1685 if (priv->status & STATUS_INDIRECT_BYTE)
1686 reg = ipw_read_reg8(priv, priv->indirect_byte);
1690 return sprintf(buf, "0x%02x\n", reg);
1692 static ssize_t store_indirect_byte(struct device *d,
1693 struct device_attribute *attr,
1694 const char *buf, size_t count)
1696 struct ipw_priv *priv = d->driver_data;
1698 sscanf(buf, "%x", &priv->indirect_byte);
1699 priv->status |= STATUS_INDIRECT_BYTE;
1700 return strnlen(buf, count);
1703 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1704 show_indirect_byte, store_indirect_byte);
1706 static ssize_t show_direct_dword(struct device *d,
1707 struct device_attribute *attr, char *buf)
1710 struct ipw_priv *priv = d->driver_data;
1712 if (priv->status & STATUS_DIRECT_DWORD)
1713 reg = ipw_read32(priv, priv->direct_dword);
1717 return sprintf(buf, "0x%08x\n", reg);
1719 static ssize_t store_direct_dword(struct device *d,
1720 struct device_attribute *attr,
1721 const char *buf, size_t count)
1723 struct ipw_priv *priv = d->driver_data;
1725 sscanf(buf, "%x", &priv->direct_dword);
1726 priv->status |= STATUS_DIRECT_DWORD;
1727 return strnlen(buf, count);
1730 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1731 show_direct_dword, store_direct_dword);
1733 static int rf_kill_active(struct ipw_priv *priv)
1735 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1736 priv->status |= STATUS_RF_KILL_HW;
1738 priv->status &= ~STATUS_RF_KILL_HW;
1740 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1743 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1746 /* 0 - RF kill not enabled
1747 1 - SW based RF kill active (sysfs)
1748 2 - HW based RF kill active
1749 3 - Both HW and SW baed RF kill active */
1750 struct ipw_priv *priv = d->driver_data;
1751 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1752 (rf_kill_active(priv) ? 0x2 : 0x0);
1753 return sprintf(buf, "%i\n", val);
1756 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1758 if ((disable_radio ? 1 : 0) ==
1759 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1762 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1763 disable_radio ? "OFF" : "ON");
1765 if (disable_radio) {
1766 priv->status |= STATUS_RF_KILL_SW;
1768 if (priv->workqueue) {
1769 cancel_delayed_work(&priv->request_scan);
1770 cancel_delayed_work(&priv->request_direct_scan);
1771 cancel_delayed_work(&priv->request_passive_scan);
1772 cancel_delayed_work(&priv->scan_event);
1774 queue_work(priv->workqueue, &priv->down);
1776 priv->status &= ~STATUS_RF_KILL_SW;
1777 if (rf_kill_active(priv)) {
1778 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1779 "disabled by HW switch\n");
1780 /* Make sure the RF_KILL check timer is running */
1781 cancel_delayed_work(&priv->rf_kill);
1782 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1783 round_jiffies_relative(2 * HZ));
1785 queue_work(priv->workqueue, &priv->up);
1791 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1792 const char *buf, size_t count)
1794 struct ipw_priv *priv = d->driver_data;
1796 ipw_radio_kill_sw(priv, buf[0] == '1');
1801 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1803 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1806 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1807 int pos = 0, len = 0;
1808 if (priv->config & CFG_SPEED_SCAN) {
1809 while (priv->speed_scan[pos] != 0)
1810 len += sprintf(&buf[len], "%d ",
1811 priv->speed_scan[pos++]);
1812 return len + sprintf(&buf[len], "\n");
1815 return sprintf(buf, "0\n");
1818 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1819 const char *buf, size_t count)
1821 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1822 int channel, pos = 0;
1823 const char *p = buf;
1825 /* list of space separated channels to scan, optionally ending with 0 */
1826 while ((channel = simple_strtol(p, NULL, 0))) {
1827 if (pos == MAX_SPEED_SCAN - 1) {
1828 priv->speed_scan[pos] = 0;
1832 if (ieee80211_is_valid_channel(priv->ieee, channel))
1833 priv->speed_scan[pos++] = channel;
1835 IPW_WARNING("Skipping invalid channel request: %d\n",
1840 while (*p == ' ' || *p == '\t')
1845 priv->config &= ~CFG_SPEED_SCAN;
1847 priv->speed_scan_pos = 0;
1848 priv->config |= CFG_SPEED_SCAN;
1854 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1857 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1860 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1861 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1864 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1865 const char *buf, size_t count)
1867 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1869 priv->config |= CFG_NET_STATS;
1871 priv->config &= ~CFG_NET_STATS;
1876 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1877 show_net_stats, store_net_stats);
1879 static ssize_t show_channels(struct device *d,
1880 struct device_attribute *attr,
1883 struct ipw_priv *priv = dev_get_drvdata(d);
1884 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1887 len = sprintf(&buf[len],
1888 "Displaying %d channels in 2.4Ghz band "
1889 "(802.11bg):\n", geo->bg_channels);
1891 for (i = 0; i < geo->bg_channels; i++) {
1892 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1894 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1895 " (radar spectrum)" : "",
1896 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1897 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1899 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1900 "passive only" : "active/passive",
1901 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1905 len += sprintf(&buf[len],
1906 "Displaying %d channels in 5.2Ghz band "
1907 "(802.11a):\n", geo->a_channels);
1908 for (i = 0; i < geo->a_channels; i++) {
1909 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1911 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1912 " (radar spectrum)" : "",
1913 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1914 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1916 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1917 "passive only" : "active/passive");
1923 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1925 static void notify_wx_assoc_event(struct ipw_priv *priv)
1927 union iwreq_data wrqu;
1928 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1929 if (priv->status & STATUS_ASSOCIATED)
1930 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1932 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1933 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1936 static void ipw_irq_tasklet(struct ipw_priv *priv)
1938 u32 inta, inta_mask, handled = 0;
1939 unsigned long flags;
1942 spin_lock_irqsave(&priv->irq_lock, flags);
1944 inta = ipw_read32(priv, IPW_INTA_RW);
1945 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1946 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1948 /* Add any cached INTA values that need to be handled */
1949 inta |= priv->isr_inta;
1951 spin_unlock_irqrestore(&priv->irq_lock, flags);
1953 spin_lock_irqsave(&priv->lock, flags);
1955 /* handle all the justifications for the interrupt */
1956 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1958 handled |= IPW_INTA_BIT_RX_TRANSFER;
1961 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1962 IPW_DEBUG_HC("Command completed.\n");
1963 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1964 priv->status &= ~STATUS_HCMD_ACTIVE;
1965 wake_up_interruptible(&priv->wait_command_queue);
1966 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1969 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1970 IPW_DEBUG_TX("TX_QUEUE_1\n");
1971 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1972 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1975 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1976 IPW_DEBUG_TX("TX_QUEUE_2\n");
1977 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1978 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1981 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1982 IPW_DEBUG_TX("TX_QUEUE_3\n");
1983 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1984 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1987 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1988 IPW_DEBUG_TX("TX_QUEUE_4\n");
1989 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1990 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1993 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1994 IPW_WARNING("STATUS_CHANGE\n");
1995 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1998 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1999 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2000 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2003 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2004 IPW_WARNING("HOST_CMD_DONE\n");
2005 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2008 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2009 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2010 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2013 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2014 IPW_WARNING("PHY_OFF_DONE\n");
2015 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2018 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2019 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2020 priv->status |= STATUS_RF_KILL_HW;
2021 wake_up_interruptible(&priv->wait_command_queue);
2022 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2023 cancel_delayed_work(&priv->request_scan);
2024 cancel_delayed_work(&priv->request_direct_scan);
2025 cancel_delayed_work(&priv->request_passive_scan);
2026 cancel_delayed_work(&priv->scan_event);
2027 schedule_work(&priv->link_down);
2028 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2029 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2032 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2033 IPW_WARNING("Firmware error detected. Restarting.\n");
2035 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2036 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2037 struct ipw_fw_error *error =
2038 ipw_alloc_error_log(priv);
2039 ipw_dump_error_log(priv, error);
2043 priv->error = ipw_alloc_error_log(priv);
2045 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2047 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2049 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2050 ipw_dump_error_log(priv, priv->error);
2053 /* XXX: If hardware encryption is for WPA/WPA2,
2054 * we have to notify the supplicant. */
2055 if (priv->ieee->sec.encrypt) {
2056 priv->status &= ~STATUS_ASSOCIATED;
2057 notify_wx_assoc_event(priv);
2060 /* Keep the restart process from trying to send host
2061 * commands by clearing the INIT status bit */
2062 priv->status &= ~STATUS_INIT;
2064 /* Cancel currently queued command. */
2065 priv->status &= ~STATUS_HCMD_ACTIVE;
2066 wake_up_interruptible(&priv->wait_command_queue);
2068 queue_work(priv->workqueue, &priv->adapter_restart);
2069 handled |= IPW_INTA_BIT_FATAL_ERROR;
2072 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2073 IPW_ERROR("Parity error\n");
2074 handled |= IPW_INTA_BIT_PARITY_ERROR;
2077 if (handled != inta) {
2078 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2081 spin_unlock_irqrestore(&priv->lock, flags);
2083 /* enable all interrupts */
2084 ipw_enable_interrupts(priv);
2087 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2088 static char *get_cmd_string(u8 cmd)
2091 IPW_CMD(HOST_COMPLETE);
2092 IPW_CMD(POWER_DOWN);
2093 IPW_CMD(SYSTEM_CONFIG);
2094 IPW_CMD(MULTICAST_ADDRESS);
2096 IPW_CMD(ADAPTER_ADDRESS);
2098 IPW_CMD(RTS_THRESHOLD);
2099 IPW_CMD(FRAG_THRESHOLD);
2100 IPW_CMD(POWER_MODE);
2102 IPW_CMD(TGI_TX_KEY);
2103 IPW_CMD(SCAN_REQUEST);
2104 IPW_CMD(SCAN_REQUEST_EXT);
2106 IPW_CMD(SUPPORTED_RATES);
2107 IPW_CMD(SCAN_ABORT);
2109 IPW_CMD(QOS_PARAMETERS);
2110 IPW_CMD(DINO_CONFIG);
2111 IPW_CMD(RSN_CAPABILITIES);
2113 IPW_CMD(CARD_DISABLE);
2114 IPW_CMD(SEED_NUMBER);
2116 IPW_CMD(COUNTRY_INFO);
2117 IPW_CMD(AIRONET_INFO);
2118 IPW_CMD(AP_TX_POWER);
2120 IPW_CMD(CCX_VER_INFO);
2121 IPW_CMD(SET_CALIBRATION);
2122 IPW_CMD(SENSITIVITY_CALIB);
2123 IPW_CMD(RETRY_LIMIT);
2124 IPW_CMD(IPW_PRE_POWER_DOWN);
2125 IPW_CMD(VAP_BEACON_TEMPLATE);
2126 IPW_CMD(VAP_DTIM_PERIOD);
2127 IPW_CMD(EXT_SUPPORTED_RATES);
2128 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2129 IPW_CMD(VAP_QUIET_INTERVALS);
2130 IPW_CMD(VAP_CHANNEL_SWITCH);
2131 IPW_CMD(VAP_MANDATORY_CHANNELS);
2132 IPW_CMD(VAP_CELL_PWR_LIMIT);
2133 IPW_CMD(VAP_CF_PARAM_SET);
2134 IPW_CMD(VAP_SET_BEACONING_STATE);
2135 IPW_CMD(MEASUREMENT);
2136 IPW_CMD(POWER_CAPABILITY);
2137 IPW_CMD(SUPPORTED_CHANNELS);
2138 IPW_CMD(TPC_REPORT);
2140 IPW_CMD(PRODUCTION_COMMAND);
2146 #define HOST_COMPLETE_TIMEOUT HZ
2148 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2151 unsigned long flags;
2153 spin_lock_irqsave(&priv->lock, flags);
2154 if (priv->status & STATUS_HCMD_ACTIVE) {
2155 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2156 get_cmd_string(cmd->cmd));
2157 spin_unlock_irqrestore(&priv->lock, flags);
2161 priv->status |= STATUS_HCMD_ACTIVE;
2164 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2165 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2166 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2167 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2169 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2172 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2173 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2176 #ifndef DEBUG_CMD_WEP_KEY
2177 if (cmd->cmd == IPW_CMD_WEP_KEY)
2178 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2181 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2183 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2185 priv->status &= ~STATUS_HCMD_ACTIVE;
2186 IPW_ERROR("Failed to send %s: Reason %d\n",
2187 get_cmd_string(cmd->cmd), rc);
2188 spin_unlock_irqrestore(&priv->lock, flags);
2191 spin_unlock_irqrestore(&priv->lock, flags);
2193 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2195 status & STATUS_HCMD_ACTIVE),
2196 HOST_COMPLETE_TIMEOUT);
2198 spin_lock_irqsave(&priv->lock, flags);
2199 if (priv->status & STATUS_HCMD_ACTIVE) {
2200 IPW_ERROR("Failed to send %s: Command timed out.\n",
2201 get_cmd_string(cmd->cmd));
2202 priv->status &= ~STATUS_HCMD_ACTIVE;
2203 spin_unlock_irqrestore(&priv->lock, flags);
2207 spin_unlock_irqrestore(&priv->lock, flags);
2211 if (priv->status & STATUS_RF_KILL_HW) {
2212 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2213 get_cmd_string(cmd->cmd));
2220 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2221 priv->cmdlog_pos %= priv->cmdlog_len;
2226 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2228 struct host_cmd cmd = {
2232 return __ipw_send_cmd(priv, &cmd);
2235 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2238 struct host_cmd cmd = {
2244 return __ipw_send_cmd(priv, &cmd);
2247 static int ipw_send_host_complete(struct ipw_priv *priv)
2250 IPW_ERROR("Invalid args\n");
2254 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2257 static int ipw_send_system_config(struct ipw_priv *priv)
2259 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2260 sizeof(priv->sys_config),
2264 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2266 if (!priv || !ssid) {
2267 IPW_ERROR("Invalid args\n");
2271 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2275 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2277 if (!priv || !mac) {
2278 IPW_ERROR("Invalid args\n");
2282 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2283 priv->net_dev->name, mac);
2285 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2289 * NOTE: This must be executed from our workqueue as it results in udelay
2290 * being called which may corrupt the keyboard if executed on default
2293 static void ipw_adapter_restart(void *adapter)
2295 struct ipw_priv *priv = adapter;
2297 if (priv->status & STATUS_RF_KILL_MASK)
2302 if (priv->assoc_network &&
2303 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2304 ipw_remove_current_network(priv);
2307 IPW_ERROR("Failed to up device\n");
2312 static void ipw_bg_adapter_restart(struct work_struct *work)
2314 struct ipw_priv *priv =
2315 container_of(work, struct ipw_priv, adapter_restart);
2316 mutex_lock(&priv->mutex);
2317 ipw_adapter_restart(priv);
2318 mutex_unlock(&priv->mutex);
2321 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2323 static void ipw_scan_check(void *data)
2325 struct ipw_priv *priv = data;
2326 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2327 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2328 "adapter after (%dms).\n",
2329 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2330 queue_work(priv->workqueue, &priv->adapter_restart);
2334 static void ipw_bg_scan_check(struct work_struct *work)
2336 struct ipw_priv *priv =
2337 container_of(work, struct ipw_priv, scan_check.work);
2338 mutex_lock(&priv->mutex);
2339 ipw_scan_check(priv);
2340 mutex_unlock(&priv->mutex);
2343 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2344 struct ipw_scan_request_ext *request)
2346 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2347 sizeof(*request), request);
2350 static int ipw_send_scan_abort(struct ipw_priv *priv)
2353 IPW_ERROR("Invalid args\n");
2357 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2360 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2362 struct ipw_sensitivity_calib calib = {
2363 .beacon_rssi_raw = cpu_to_le16(sens),
2366 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2370 static int ipw_send_associate(struct ipw_priv *priv,
2371 struct ipw_associate *associate)
2373 if (!priv || !associate) {
2374 IPW_ERROR("Invalid args\n");
2378 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2382 static int ipw_send_supported_rates(struct ipw_priv *priv,
2383 struct ipw_supported_rates *rates)
2385 if (!priv || !rates) {
2386 IPW_ERROR("Invalid args\n");
2390 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2394 static int ipw_set_random_seed(struct ipw_priv *priv)
2399 IPW_ERROR("Invalid args\n");
2403 get_random_bytes(&val, sizeof(val));
2405 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2408 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2410 __le32 v = cpu_to_le32(phy_off);
2412 IPW_ERROR("Invalid args\n");
2416 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2419 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2421 if (!priv || !power) {
2422 IPW_ERROR("Invalid args\n");
2426 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2429 static int ipw_set_tx_power(struct ipw_priv *priv)
2431 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2432 struct ipw_tx_power tx_power;
2436 memset(&tx_power, 0, sizeof(tx_power));
2438 /* configure device for 'G' band */
2439 tx_power.ieee_mode = IPW_G_MODE;
2440 tx_power.num_channels = geo->bg_channels;
2441 for (i = 0; i < geo->bg_channels; i++) {
2442 max_power = geo->bg[i].max_power;
2443 tx_power.channels_tx_power[i].channel_number =
2445 tx_power.channels_tx_power[i].tx_power = max_power ?
2446 min(max_power, priv->tx_power) : priv->tx_power;
2448 if (ipw_send_tx_power(priv, &tx_power))
2451 /* configure device to also handle 'B' band */
2452 tx_power.ieee_mode = IPW_B_MODE;
2453 if (ipw_send_tx_power(priv, &tx_power))
2456 /* configure device to also handle 'A' band */
2457 if (priv->ieee->abg_true) {
2458 tx_power.ieee_mode = IPW_A_MODE;
2459 tx_power.num_channels = geo->a_channels;
2460 for (i = 0; i < tx_power.num_channels; i++) {
2461 max_power = geo->a[i].max_power;
2462 tx_power.channels_tx_power[i].channel_number =
2464 tx_power.channels_tx_power[i].tx_power = max_power ?
2465 min(max_power, priv->tx_power) : priv->tx_power;
2467 if (ipw_send_tx_power(priv, &tx_power))
2473 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2475 struct ipw_rts_threshold rts_threshold = {
2476 .rts_threshold = cpu_to_le16(rts),
2480 IPW_ERROR("Invalid args\n");
2484 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2485 sizeof(rts_threshold), &rts_threshold);
2488 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2490 struct ipw_frag_threshold frag_threshold = {
2491 .frag_threshold = cpu_to_le16(frag),
2495 IPW_ERROR("Invalid args\n");
2499 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2500 sizeof(frag_threshold), &frag_threshold);
2503 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2508 IPW_ERROR("Invalid args\n");
2512 /* If on battery, set to 3, if AC set to CAM, else user
2515 case IPW_POWER_BATTERY:
2516 param = cpu_to_le32(IPW_POWER_INDEX_3);
2519 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2522 param = cpu_to_le32(mode);
2526 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2530 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2532 struct ipw_retry_limit retry_limit = {
2533 .short_retry_limit = slimit,
2534 .long_retry_limit = llimit
2538 IPW_ERROR("Invalid args\n");
2542 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2547 * The IPW device contains a Microwire compatible EEPROM that stores
2548 * various data like the MAC address. Usually the firmware has exclusive
2549 * access to the eeprom, but during device initialization (before the
2550 * device driver has sent the HostComplete command to the firmware) the
2551 * device driver has read access to the EEPROM by way of indirect addressing
2552 * through a couple of memory mapped registers.
2554 * The following is a simplified implementation for pulling data out of the
2555 * the eeprom, along with some helper functions to find information in
2556 * the per device private data's copy of the eeprom.
2558 * NOTE: To better understand how these functions work (i.e what is a chip
2559 * select and why do have to keep driving the eeprom clock?), read
2560 * just about any data sheet for a Microwire compatible EEPROM.
2563 /* write a 32 bit value into the indirect accessor register */
2564 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2566 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2568 /* the eeprom requires some time to complete the operation */
2569 udelay(p->eeprom_delay);
2574 /* perform a chip select operation */
2575 static void eeprom_cs(struct ipw_priv *priv)
2577 eeprom_write_reg(priv, 0);
2578 eeprom_write_reg(priv, EEPROM_BIT_CS);
2579 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2580 eeprom_write_reg(priv, EEPROM_BIT_CS);
2583 /* perform a chip select operation */
2584 static void eeprom_disable_cs(struct ipw_priv *priv)
2586 eeprom_write_reg(priv, EEPROM_BIT_CS);
2587 eeprom_write_reg(priv, 0);
2588 eeprom_write_reg(priv, EEPROM_BIT_SK);
2591 /* push a single bit down to the eeprom */
2592 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2594 int d = (bit ? EEPROM_BIT_DI : 0);
2595 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2596 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2599 /* push an opcode followed by an address down to the eeprom */
2600 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2605 eeprom_write_bit(priv, 1);
2606 eeprom_write_bit(priv, op & 2);
2607 eeprom_write_bit(priv, op & 1);
2608 for (i = 7; i >= 0; i--) {
2609 eeprom_write_bit(priv, addr & (1 << i));
2613 /* pull 16 bits off the eeprom, one bit at a time */
2614 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2619 /* Send READ Opcode */
2620 eeprom_op(priv, EEPROM_CMD_READ, addr);
2622 /* Send dummy bit */
2623 eeprom_write_reg(priv, EEPROM_BIT_CS);
2625 /* Read the byte off the eeprom one bit at a time */
2626 for (i = 0; i < 16; i++) {
2628 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2629 eeprom_write_reg(priv, EEPROM_BIT_CS);
2630 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2631 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2634 /* Send another dummy bit */
2635 eeprom_write_reg(priv, 0);
2636 eeprom_disable_cs(priv);
2641 /* helper function for pulling the mac address out of the private */
2642 /* data's copy of the eeprom data */
2643 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2645 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2649 * Either the device driver (i.e. the host) or the firmware can
2650 * load eeprom data into the designated region in SRAM. If neither
2651 * happens then the FW will shutdown with a fatal error.
2653 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2654 * bit needs region of shared SRAM needs to be non-zero.
2656 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2659 __le16 *eeprom = (__le16 *) priv->eeprom;
2661 IPW_DEBUG_TRACE(">>\n");
2663 /* read entire contents of eeprom into private buffer */
2664 for (i = 0; i < 128; i++)
2665 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2668 If the data looks correct, then copy it to our private
2669 copy. Otherwise let the firmware know to perform the operation
2672 if (priv->eeprom[EEPROM_VERSION] != 0) {
2673 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2675 /* write the eeprom data to sram */
2676 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2677 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2679 /* Do not load eeprom data on fatal error or suspend */
2680 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2682 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2684 /* Load eeprom data on fatal error or suspend */
2685 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2688 IPW_DEBUG_TRACE("<<\n");
2691 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2696 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2698 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2701 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2703 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2704 CB_NUMBER_OF_ELEMENTS_SMALL *
2705 sizeof(struct command_block));
2708 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2709 { /* start dma engine but no transfers yet */
2711 IPW_DEBUG_FW(">> : \n");
2714 ipw_fw_dma_reset_command_blocks(priv);
2716 /* Write CB base address */
2717 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2719 IPW_DEBUG_FW("<< : \n");
2723 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2727 IPW_DEBUG_FW(">> :\n");
2729 /* set the Stop and Abort bit */
2730 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2731 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2732 priv->sram_desc.last_cb_index = 0;
2734 IPW_DEBUG_FW("<< \n");
2737 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2738 struct command_block *cb)
2741 IPW_SHARED_SRAM_DMA_CONTROL +
2742 (sizeof(struct command_block) * index);
2743 IPW_DEBUG_FW(">> :\n");
2745 ipw_write_indirect(priv, address, (u8 *) cb,
2746 (int)sizeof(struct command_block));
2748 IPW_DEBUG_FW("<< :\n");
2753 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2758 IPW_DEBUG_FW(">> :\n");
2760 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2761 ipw_fw_dma_write_command_block(priv, index,
2762 &priv->sram_desc.cb_list[index]);
2764 /* Enable the DMA in the CSR register */
2765 ipw_clear_bit(priv, IPW_RESET_REG,
2766 IPW_RESET_REG_MASTER_DISABLED |
2767 IPW_RESET_REG_STOP_MASTER);
2769 /* Set the Start bit. */
2770 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2771 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2773 IPW_DEBUG_FW("<< :\n");
2777 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2780 u32 register_value = 0;
2781 u32 cb_fields_address = 0;
2783 IPW_DEBUG_FW(">> :\n");
2784 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2785 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2787 /* Read the DMA Controlor register */
2788 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2789 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2791 /* Print the CB values */
2792 cb_fields_address = address;
2793 register_value = ipw_read_reg32(priv, cb_fields_address);
2794 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2796 cb_fields_address += sizeof(u32);
2797 register_value = ipw_read_reg32(priv, cb_fields_address);
2798 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2800 cb_fields_address += sizeof(u32);
2801 register_value = ipw_read_reg32(priv, cb_fields_address);
2802 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2805 cb_fields_address += sizeof(u32);
2806 register_value = ipw_read_reg32(priv, cb_fields_address);
2807 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2809 IPW_DEBUG_FW(">> :\n");
2812 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2814 u32 current_cb_address = 0;
2815 u32 current_cb_index = 0;
2817 IPW_DEBUG_FW("<< :\n");
2818 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2820 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2821 sizeof(struct command_block);
2823 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2824 current_cb_index, current_cb_address);
2826 IPW_DEBUG_FW(">> :\n");
2827 return current_cb_index;
2831 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2835 int interrupt_enabled, int is_last)
2838 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2839 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2841 struct command_block *cb;
2842 u32 last_cb_element = 0;
2844 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2845 src_address, dest_address, length);
2847 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2850 last_cb_element = priv->sram_desc.last_cb_index;
2851 cb = &priv->sram_desc.cb_list[last_cb_element];
2852 priv->sram_desc.last_cb_index++;
2854 /* Calculate the new CB control word */
2855 if (interrupt_enabled)
2856 control |= CB_INT_ENABLED;
2859 control |= CB_LAST_VALID;
2863 /* Calculate the CB Element's checksum value */
2864 cb->status = control ^ src_address ^ dest_address;
2866 /* Copy the Source and Destination addresses */
2867 cb->dest_addr = dest_address;
2868 cb->source_addr = src_address;
2870 /* Copy the Control Word last */
2871 cb->control = control;
2876 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2877 u32 src_phys, u32 dest_address, u32 length)
2879 u32 bytes_left = length;
2881 u32 dest_offset = 0;
2883 IPW_DEBUG_FW(">> \n");
2884 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2885 src_phys, dest_address, length);
2886 while (bytes_left > CB_MAX_LENGTH) {
2887 status = ipw_fw_dma_add_command_block(priv,
2888 src_phys + src_offset,
2891 CB_MAX_LENGTH, 0, 0);
2893 IPW_DEBUG_FW_INFO(": Failed\n");
2896 IPW_DEBUG_FW_INFO(": Added new cb\n");
2898 src_offset += CB_MAX_LENGTH;
2899 dest_offset += CB_MAX_LENGTH;
2900 bytes_left -= CB_MAX_LENGTH;
2903 /* add the buffer tail */
2904 if (bytes_left > 0) {
2906 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2907 dest_address + dest_offset,
2910 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2914 (": Adding new cb - the buffer tail\n");
2917 IPW_DEBUG_FW("<< \n");
2921 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2923 u32 current_index = 0, previous_index;
2926 IPW_DEBUG_FW(">> : \n");
2928 current_index = ipw_fw_dma_command_block_index(priv);
2929 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2930 (int)priv->sram_desc.last_cb_index);
2932 while (current_index < priv->sram_desc.last_cb_index) {
2934 previous_index = current_index;
2935 current_index = ipw_fw_dma_command_block_index(priv);
2937 if (previous_index < current_index) {
2941 if (++watchdog > 400) {
2942 IPW_DEBUG_FW_INFO("Timeout\n");
2943 ipw_fw_dma_dump_command_block(priv);
2944 ipw_fw_dma_abort(priv);
2949 ipw_fw_dma_abort(priv);
2951 /*Disable the DMA in the CSR register */
2952 ipw_set_bit(priv, IPW_RESET_REG,
2953 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2955 IPW_DEBUG_FW("<< dmaWaitSync \n");
2959 static void ipw_remove_current_network(struct ipw_priv *priv)
2961 struct list_head *element, *safe;
2962 struct ieee80211_network *network = NULL;
2963 unsigned long flags;
2965 spin_lock_irqsave(&priv->ieee->lock, flags);
2966 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2967 network = list_entry(element, struct ieee80211_network, list);
2968 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2970 list_add_tail(&network->list,
2971 &priv->ieee->network_free_list);
2974 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2978 * Check that card is still alive.
2979 * Reads debug register from domain0.
2980 * If card is present, pre-defined value should
2984 * @return 1 if card is present, 0 otherwise
2986 static inline int ipw_alive(struct ipw_priv *priv)
2988 return ipw_read32(priv, 0x90) == 0xd55555d5;
2991 /* timeout in msec, attempted in 10-msec quanta */
2992 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2998 if ((ipw_read32(priv, addr) & mask) == mask)
3002 } while (i < timeout);
3007 /* These functions load the firmware and micro code for the operation of
3008 * the ipw hardware. It assumes the buffer has all the bits for the
3009 * image and the caller is handling the memory allocation and clean up.
3012 static int ipw_stop_master(struct ipw_priv *priv)
3016 IPW_DEBUG_TRACE(">> \n");
3017 /* stop master. typical delay - 0 */
3018 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3020 /* timeout is in msec, polled in 10-msec quanta */
3021 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3022 IPW_RESET_REG_MASTER_DISABLED, 100);
3024 IPW_ERROR("wait for stop master failed after 100ms\n");
3028 IPW_DEBUG_INFO("stop master %dms\n", rc);
3033 static void ipw_arc_release(struct ipw_priv *priv)
3035 IPW_DEBUG_TRACE(">> \n");
3038 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3040 /* no one knows timing, for safety add some delay */
3049 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3051 int rc = 0, i, addr;
3055 image = (__le16 *) data;
3057 IPW_DEBUG_TRACE(">> \n");
3059 rc = ipw_stop_master(priv);
3064 for (addr = IPW_SHARED_LOWER_BOUND;
3065 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3066 ipw_write32(priv, addr, 0);
3069 /* no ucode (yet) */
3070 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3071 /* destroy DMA queues */
3072 /* reset sequence */
3074 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3075 ipw_arc_release(priv);
3076 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3080 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3083 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3086 /* enable ucode store */
3087 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3088 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3094 * Do NOT set indirect address register once and then
3095 * store data to indirect data register in the loop.
3096 * It seems very reasonable, but in this case DINO do not
3097 * accept ucode. It is essential to set address each time.
3099 /* load new ipw uCode */
3100 for (i = 0; i < len / 2; i++)
3101 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3102 le16_to_cpu(image[i]));
3105 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3106 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3108 /* this is where the igx / win driver deveates from the VAP driver. */
3110 /* wait for alive response */
3111 for (i = 0; i < 100; i++) {
3112 /* poll for incoming data */
3113 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3114 if (cr & DINO_RXFIFO_DATA)
3119 if (cr & DINO_RXFIFO_DATA) {
3120 /* alive_command_responce size is NOT multiple of 4 */
3121 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3123 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3124 response_buffer[i] =
3125 cpu_to_le32(ipw_read_reg32(priv,
3126 IPW_BASEBAND_RX_FIFO_READ));
3127 memcpy(&priv->dino_alive, response_buffer,
3128 sizeof(priv->dino_alive));
3129 if (priv->dino_alive.alive_command == 1
3130 && priv->dino_alive.ucode_valid == 1) {
3133 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3134 "of %02d/%02d/%02d %02d:%02d\n",
3135 priv->dino_alive.software_revision,
3136 priv->dino_alive.software_revision,
3137 priv->dino_alive.device_identifier,
3138 priv->dino_alive.device_identifier,
3139 priv->dino_alive.time_stamp[0],
3140 priv->dino_alive.time_stamp[1],
3141 priv->dino_alive.time_stamp[2],
3142 priv->dino_alive.time_stamp[3],
3143 priv->dino_alive.time_stamp[4]);
3145 IPW_DEBUG_INFO("Microcode is not alive\n");
3149 IPW_DEBUG_INFO("No alive response from DINO\n");
3153 /* disable DINO, otherwise for some reason
3154 firmware have problem getting alive resp. */
3155 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3160 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3164 struct fw_chunk *chunk;
3165 dma_addr_t shared_phys;
3168 IPW_DEBUG_TRACE("<< : \n");
3169 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3174 memmove(shared_virt, data, len);
3177 rc = ipw_fw_dma_enable(priv);
3179 /* the DMA is already ready this would be a bug. */
3180 BUG_ON(priv->sram_desc.last_cb_index > 0);
3183 chunk = (struct fw_chunk *)(data + offset);
3184 offset += sizeof(struct fw_chunk);
3185 /* build DMA packet and queue up for sending */
3186 /* dma to chunk->address, the chunk->length bytes from data +
3189 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3190 le32_to_cpu(chunk->address),
3191 le32_to_cpu(chunk->length));
3193 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3197 offset += le32_to_cpu(chunk->length);
3198 } while (offset < len);
3200 /* Run the DMA and wait for the answer */
3201 rc = ipw_fw_dma_kick(priv);
3203 IPW_ERROR("dmaKick Failed\n");
3207 rc = ipw_fw_dma_wait(priv);
3209 IPW_ERROR("dmaWaitSync Failed\n");
3213 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3218 static int ipw_stop_nic(struct ipw_priv *priv)
3223 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3225 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3226 IPW_RESET_REG_MASTER_DISABLED, 500);
3228 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3232 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3237 static void ipw_start_nic(struct ipw_priv *priv)
3239 IPW_DEBUG_TRACE(">>\n");
3241 /* prvHwStartNic release ARC */
3242 ipw_clear_bit(priv, IPW_RESET_REG,
3243 IPW_RESET_REG_MASTER_DISABLED |
3244 IPW_RESET_REG_STOP_MASTER |
3245 CBD_RESET_REG_PRINCETON_RESET);
3247 /* enable power management */
3248 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3249 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3251 IPW_DEBUG_TRACE("<<\n");
3254 static int ipw_init_nic(struct ipw_priv *priv)
3258 IPW_DEBUG_TRACE(">>\n");
3261 /* set "initialization complete" bit to move adapter to D0 state */
3262 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3264 /* low-level PLL activation */
3265 ipw_write32(priv, IPW_READ_INT_REGISTER,
3266 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3268 /* wait for clock stabilization */
3269 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3270 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3272 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3274 /* assert SW reset */
3275 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3279 /* set "initialization complete" bit to move adapter to D0 state */
3280 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3282 IPW_DEBUG_TRACE(">>\n");
3286 /* Call this function from process context, it will sleep in request_firmware.
3287 * Probe is an ok place to call this from.
3289 static int ipw_reset_nic(struct ipw_priv *priv)
3292 unsigned long flags;
3294 IPW_DEBUG_TRACE(">>\n");
3296 rc = ipw_init_nic(priv);
3298 spin_lock_irqsave(&priv->lock, flags);
3299 /* Clear the 'host command active' bit... */
3300 priv->status &= ~STATUS_HCMD_ACTIVE;
3301 wake_up_interruptible(&priv->wait_command_queue);
3302 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3303 wake_up_interruptible(&priv->wait_state);
3304 spin_unlock_irqrestore(&priv->lock, flags);
3306 IPW_DEBUG_TRACE("<<\n");
3319 static int ipw_get_fw(struct ipw_priv *priv,
3320 const struct firmware **raw, const char *name)
3325 /* ask firmware_class module to get the boot firmware off disk */
3326 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3328 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3332 if ((*raw)->size < sizeof(*fw)) {
3333 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3337 fw = (void *)(*raw)->data;
3339 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3340 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3341 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3342 name, (*raw)->size);
3346 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3348 le32_to_cpu(fw->ver) >> 16,
3349 le32_to_cpu(fw->ver) & 0xff,
3350 (*raw)->size - sizeof(*fw));
3354 #define IPW_RX_BUF_SIZE (3000)
3356 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3357 struct ipw_rx_queue *rxq)
3359 unsigned long flags;
3362 spin_lock_irqsave(&rxq->lock, flags);
3364 INIT_LIST_HEAD(&rxq->rx_free);
3365 INIT_LIST_HEAD(&rxq->rx_used);
3367 /* Fill the rx_used queue with _all_ of the Rx buffers */
3368 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3369 /* In the reset function, these buffers may have been allocated
3370 * to an SKB, so we need to unmap and free potential storage */
3371 if (rxq->pool[i].skb != NULL) {
3372 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3373 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3374 dev_kfree_skb(rxq->pool[i].skb);
3375 rxq->pool[i].skb = NULL;
3377 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3380 /* Set us so that we have processed and used all buffers, but have
3381 * not restocked the Rx queue with fresh buffers */
3382 rxq->read = rxq->write = 0;
3383 rxq->free_count = 0;
3384 spin_unlock_irqrestore(&rxq->lock, flags);
3388 static int fw_loaded = 0;
3389 static const struct firmware *raw = NULL;
3391 static void free_firmware(void)
3394 release_firmware(raw);
3400 #define free_firmware() do {} while (0)
3403 static int ipw_load(struct ipw_priv *priv)
3406 const struct firmware *raw = NULL;
3409 u8 *boot_img, *ucode_img, *fw_img;
3411 int rc = 0, retries = 3;
3413 switch (priv->ieee->iw_mode) {
3415 name = "ipw2200-ibss.fw";
3417 #ifdef CONFIG_IPW2200_MONITOR
3418 case IW_MODE_MONITOR:
3419 name = "ipw2200-sniffer.fw";
3423 name = "ipw2200-bss.fw";
3435 rc = ipw_get_fw(priv, &raw, name);
3442 fw = (void *)raw->data;
3443 boot_img = &fw->data[0];
3444 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3445 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3446 le32_to_cpu(fw->ucode_size)];
3452 priv->rxq = ipw_rx_queue_alloc(priv);
3454 ipw_rx_queue_reset(priv, priv->rxq);
3456 IPW_ERROR("Unable to initialize Rx queue\n");
3461 /* Ensure interrupts are disabled */
3462 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3463 priv->status &= ~STATUS_INT_ENABLED;
3465 /* ack pending interrupts */
3466 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3470 rc = ipw_reset_nic(priv);
3472 IPW_ERROR("Unable to reset NIC\n");
3476 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3477 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3479 /* DMA the initial boot firmware into the device */
3480 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3482 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3486 /* kick start the device */
3487 ipw_start_nic(priv);
3489 /* wait for the device to finish its initial startup sequence */
3490 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3491 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3493 IPW_ERROR("device failed to boot initial fw image\n");
3496 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3498 /* ack fw init done interrupt */
3499 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3501 /* DMA the ucode into the device */
3502 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3504 IPW_ERROR("Unable to load ucode: %d\n", rc);
3511 /* DMA bss firmware into the device */
3512 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3514 IPW_ERROR("Unable to load firmware: %d\n", rc);
3521 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3523 rc = ipw_queue_reset(priv);
3525 IPW_ERROR("Unable to initialize queues\n");
3529 /* Ensure interrupts are disabled */
3530 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3531 /* ack pending interrupts */
3532 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3534 /* kick start the device */
3535 ipw_start_nic(priv);
3537 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3539 IPW_WARNING("Parity error. Retrying init.\n");
3544 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3549 /* wait for the device */
3550 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3551 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3553 IPW_ERROR("device failed to start within 500ms\n");
3556 IPW_DEBUG_INFO("device response after %dms\n", rc);
3558 /* ack fw init done interrupt */
3559 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3561 /* read eeprom data and initialize the eeprom region of sram */
3562 priv->eeprom_delay = 1;
3563 ipw_eeprom_init_sram(priv);
3565 /* enable interrupts */
3566 ipw_enable_interrupts(priv);
3568 /* Ensure our queue has valid packets */
3569 ipw_rx_queue_replenish(priv);
3571 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3573 /* ack pending interrupts */
3574 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3577 release_firmware(raw);
3583 ipw_rx_queue_free(priv, priv->rxq);
3586 ipw_tx_queue_free(priv);
3588 release_firmware(raw);
3600 * Theory of operation
3602 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3603 * 2 empty entries always kept in the buffer to protect from overflow.
3605 * For Tx queue, there are low mark and high mark limits. If, after queuing
3606 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3607 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3610 * The IPW operates with six queues, one receive queue in the device's
3611 * sram, one transmit queue for sending commands to the device firmware,
3612 * and four transmit queues for data.
3614 * The four transmit queues allow for performing quality of service (qos)
3615 * transmissions as per the 802.11 protocol. Currently Linux does not
3616 * provide a mechanism to the user for utilizing prioritized queues, so
3617 * we only utilize the first data transmit queue (queue1).
3621 * Driver allocates buffers of this size for Rx
3625 * ipw_rx_queue_space - Return number of free slots available in queue.
3627 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3629 int s = q->read - q->write;
3632 /* keep some buffer to not confuse full and empty queue */
3639 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3641 int s = q->last_used - q->first_empty;
3644 s -= 2; /* keep some reserve to not confuse empty and full situations */
3650 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3652 return (++index == n_bd) ? 0 : index;
3656 * Initialize common DMA queue structure
3658 * @param q queue to init
3659 * @param count Number of BD's to allocate. Should be power of 2
3660 * @param read_register Address for 'read' register
3661 * (not offset within BAR, full address)
3662 * @param write_register Address for 'write' register
3663 * (not offset within BAR, full address)
3664 * @param base_register Address for 'base' register
3665 * (not offset within BAR, full address)
3666 * @param size Address for 'size' register
3667 * (not offset within BAR, full address)
3669 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3670 int count, u32 read, u32 write, u32 base, u32 size)
3674 q->low_mark = q->n_bd / 4;
3675 if (q->low_mark < 4)
3678 q->high_mark = q->n_bd / 8;
3679 if (q->high_mark < 2)
3682 q->first_empty = q->last_used = 0;
3686 ipw_write32(priv, base, q->dma_addr);
3687 ipw_write32(priv, size, count);
3688 ipw_write32(priv, read, 0);
3689 ipw_write32(priv, write, 0);
3691 _ipw_read32(priv, 0x90);
3694 static int ipw_queue_tx_init(struct ipw_priv *priv,
3695 struct clx2_tx_queue *q,
3696 int count, u32 read, u32 write, u32 base, u32 size)
3698 struct pci_dev *dev = priv->pci_dev;
3700 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3702 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3707 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3709 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3710 sizeof(q->bd[0]) * count);
3716 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3721 * Free one TFD, those at index [txq->q.last_used].
3722 * Do NOT advance any indexes
3727 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3728 struct clx2_tx_queue *txq)
3730 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3731 struct pci_dev *dev = priv->pci_dev;
3735 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3736 /* nothing to cleanup after for host commands */
3740 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3741 IPW_ERROR("Too many chunks: %i\n",
3742 le32_to_cpu(bd->u.data.num_chunks));
3743 /** @todo issue fatal error, it is quite serious situation */
3747 /* unmap chunks if any */
3748 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3749 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3750 le16_to_cpu(bd->u.data.chunk_len[i]),
3752 if (txq->txb[txq->q.last_used]) {
3753 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3754 txq->txb[txq->q.last_used] = NULL;
3760 * Deallocate DMA queue.
3762 * Empty queue by removing and destroying all BD's.
3768 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3770 struct clx2_queue *q = &txq->q;
3771 struct pci_dev *dev = priv->pci_dev;
3776 /* first, empty all BD's */
3777 for (; q->first_empty != q->last_used;
3778 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3779 ipw_queue_tx_free_tfd(priv, txq);
3782 /* free buffers belonging to queue itself */
3783 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3787 /* 0 fill whole structure */
3788 memset(txq, 0, sizeof(*txq));
3792 * Destroy all DMA queues and structures
3796 static void ipw_tx_queue_free(struct ipw_priv *priv)
3799 ipw_queue_tx_free(priv, &priv->txq_cmd);
3802 ipw_queue_tx_free(priv, &priv->txq[0]);
3803 ipw_queue_tx_free(priv, &priv->txq[1]);
3804 ipw_queue_tx_free(priv, &priv->txq[2]);
3805 ipw_queue_tx_free(priv, &priv->txq[3]);
3808 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3810 /* First 3 bytes are manufacturer */
3811 bssid[0] = priv->mac_addr[0];
3812 bssid[1] = priv->mac_addr[1];
3813 bssid[2] = priv->mac_addr[2];
3815 /* Last bytes are random */
3816 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3818 bssid[0] &= 0xfe; /* clear multicast bit */
3819 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3822 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3824 struct ipw_station_entry entry;
3827 for (i = 0; i < priv->num_stations; i++) {
3828 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3829 /* Another node is active in network */
3830 priv->missed_adhoc_beacons = 0;
3831 if (!(priv->config & CFG_STATIC_CHANNEL))
3832 /* when other nodes drop out, we drop out */
3833 priv->config &= ~CFG_ADHOC_PERSIST;
3839 if (i == MAX_STATIONS)
3840 return IPW_INVALID_STATION;
3842 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3845 entry.support_mode = 0;
3846 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3847 memcpy(priv->stations[i], bssid, ETH_ALEN);
3848 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3849 &entry, sizeof(entry));
3850 priv->num_stations++;
3855 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3859 for (i = 0; i < priv->num_stations; i++)
3860 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3863 return IPW_INVALID_STATION;
3866 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3870 if (priv->status & STATUS_ASSOCIATING) {
3871 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3872 queue_work(priv->workqueue, &priv->disassociate);
3876 if (!(priv->status & STATUS_ASSOCIATED)) {
3877 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3881 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3883 priv->assoc_request.bssid,
3884 priv->assoc_request.channel);
3886 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3887 priv->status |= STATUS_DISASSOCIATING;
3890 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3892 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3894 err = ipw_send_associate(priv, &priv->assoc_request);
3896 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3903 static int ipw_disassociate(void *data)
3905 struct ipw_priv *priv = data;
3906 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3908 ipw_send_disassociate(data, 0);
3909 netif_carrier_off(priv->net_dev);
3913 static void ipw_bg_disassociate(struct work_struct *work)
3915 struct ipw_priv *priv =
3916 container_of(work, struct ipw_priv, disassociate);
3917 mutex_lock(&priv->mutex);
3918 ipw_disassociate(priv);
3919 mutex_unlock(&priv->mutex);
3922 static void ipw_system_config(struct work_struct *work)
3924 struct ipw_priv *priv =
3925 container_of(work, struct ipw_priv, system_config);
3927 #ifdef CONFIG_IPW2200_PROMISCUOUS
3928 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3929 priv->sys_config.accept_all_data_frames = 1;
3930 priv->sys_config.accept_non_directed_frames = 1;
3931 priv->sys_config.accept_all_mgmt_bcpr = 1;
3932 priv->sys_config.accept_all_mgmt_frames = 1;
3936 ipw_send_system_config(priv);
3939 struct ipw_status_code {
3944 static const struct ipw_status_code ipw_status_codes[] = {
3945 {0x00, "Successful"},
3946 {0x01, "Unspecified failure"},
3947 {0x0A, "Cannot support all requested capabilities in the "
3948 "Capability information field"},
3949 {0x0B, "Reassociation denied due to inability to confirm that "
3950 "association exists"},
3951 {0x0C, "Association denied due to reason outside the scope of this "
3954 "Responding station does not support the specified authentication "
3957 "Received an Authentication frame with authentication sequence "
3958 "transaction sequence number out of expected sequence"},
3959 {0x0F, "Authentication rejected because of challenge failure"},
3960 {0x10, "Authentication rejected due to timeout waiting for next "
3961 "frame in sequence"},
3962 {0x11, "Association denied because AP is unable to handle additional "
3963 "associated stations"},
3965 "Association denied due to requesting station not supporting all "
3966 "of the datarates in the BSSBasicServiceSet Parameter"},
3968 "Association denied due to requesting station not supporting "
3969 "short preamble operation"},
3971 "Association denied due to requesting station not supporting "
3974 "Association denied due to requesting station not supporting "
3977 "Association denied due to requesting station not supporting "
3978 "short slot operation"},
3980 "Association denied due to requesting station not supporting "
3981 "DSSS-OFDM operation"},
3982 {0x28, "Invalid Information Element"},
3983 {0x29, "Group Cipher is not valid"},
3984 {0x2A, "Pairwise Cipher is not valid"},
3985 {0x2B, "AKMP is not valid"},
3986 {0x2C, "Unsupported RSN IE version"},
3987 {0x2D, "Invalid RSN IE Capabilities"},
3988 {0x2E, "Cipher suite is rejected per security policy"},
3991 static const char *ipw_get_status_code(u16 status)
3994 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3995 if (ipw_status_codes[i].status == (status & 0xff))
3996 return ipw_status_codes[i].reason;
3997 return "Unknown status value.";
4000 static void inline average_init(struct average *avg)
4002 memset(avg, 0, sizeof(*avg));
4005 #define DEPTH_RSSI 8
4006 #define DEPTH_NOISE 16
4007 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4009 return ((depth-1)*prev_avg + val)/depth;
4012 static void average_add(struct average *avg, s16 val)
4014 avg->sum -= avg->entries[avg->pos];
4016 avg->entries[avg->pos++] = val;
4017 if (unlikely(avg->pos == AVG_ENTRIES)) {
4023 static s16 average_value(struct average *avg)
4025 if (!unlikely(avg->init)) {
4027 return avg->sum / avg->pos;
4031 return avg->sum / AVG_ENTRIES;
4034 static void ipw_reset_stats(struct ipw_priv *priv)
4036 u32 len = sizeof(u32);
4040 average_init(&priv->average_missed_beacons);
4041 priv->exp_avg_rssi = -60;
4042 priv->exp_avg_noise = -85 + 0x100;
4044 priv->last_rate = 0;
4045 priv->last_missed_beacons = 0;
4046 priv->last_rx_packets = 0;
4047 priv->last_tx_packets = 0;
4048 priv->last_tx_failures = 0;
4050 /* Firmware managed, reset only when NIC is restarted, so we have to
4051 * normalize on the current value */
4052 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4053 &priv->last_rx_err, &len);
4054 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4055 &priv->last_tx_failures, &len);
4057 /* Driver managed, reset with each association */
4058 priv->missed_adhoc_beacons = 0;
4059 priv->missed_beacons = 0;
4060 priv->tx_packets = 0;
4061 priv->rx_packets = 0;
4065 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4068 u32 mask = priv->rates_mask;
4069 /* If currently associated in B mode, restrict the maximum
4070 * rate match to B rates */
4071 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4072 mask &= IEEE80211_CCK_RATES_MASK;
4074 /* TODO: Verify that the rate is supported by the current rates
4077 while (i && !(mask & i))
4080 case IEEE80211_CCK_RATE_1MB_MASK:
4082 case IEEE80211_CCK_RATE_2MB_MASK:
4084 case IEEE80211_CCK_RATE_5MB_MASK:
4086 case IEEE80211_OFDM_RATE_6MB_MASK:
4088 case IEEE80211_OFDM_RATE_9MB_MASK:
4090 case IEEE80211_CCK_RATE_11MB_MASK:
4092 case IEEE80211_OFDM_RATE_12MB_MASK:
4094 case IEEE80211_OFDM_RATE_18MB_MASK:
4096 case IEEE80211_OFDM_RATE_24MB_MASK:
4098 case IEEE80211_OFDM_RATE_36MB_MASK:
4100 case IEEE80211_OFDM_RATE_48MB_MASK:
4102 case IEEE80211_OFDM_RATE_54MB_MASK:
4106 if (priv->ieee->mode == IEEE_B)
4112 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4114 u32 rate, len = sizeof(rate);
4117 if (!(priv->status & STATUS_ASSOCIATED))
4120 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4121 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4124 IPW_DEBUG_INFO("failed querying ordinals.\n");
4128 return ipw_get_max_rate(priv);
4131 case IPW_TX_RATE_1MB:
4133 case IPW_TX_RATE_2MB:
4135 case IPW_TX_RATE_5MB:
4137 case IPW_TX_RATE_6MB:
4139 case IPW_TX_RATE_9MB:
4141 case IPW_TX_RATE_11MB:
4143 case IPW_TX_RATE_12MB:
4145 case IPW_TX_RATE_18MB:
4147 case IPW_TX_RATE_24MB:
4149 case IPW_TX_RATE_36MB:
4151 case IPW_TX_RATE_48MB:
4153 case IPW_TX_RATE_54MB:
4160 #define IPW_STATS_INTERVAL (2 * HZ)
4161 static void ipw_gather_stats(struct ipw_priv *priv)
4163 u32 rx_err, rx_err_delta, rx_packets_delta;
4164 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4165 u32 missed_beacons_percent, missed_beacons_delta;
4167 u32 len = sizeof(u32);
4169 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4173 if (!(priv->status & STATUS_ASSOCIATED)) {
4178 /* Update the statistics */
4179 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4180 &priv->missed_beacons, &len);
4181 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4182 priv->last_missed_beacons = priv->missed_beacons;
4183 if (priv->assoc_request.beacon_interval) {
4184 missed_beacons_percent = missed_beacons_delta *
4185 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4186 (IPW_STATS_INTERVAL * 10);
4188 missed_beacons_percent = 0;
4190 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4192 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4193 rx_err_delta = rx_err - priv->last_rx_err;
4194 priv->last_rx_err = rx_err;
4196 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4197 tx_failures_delta = tx_failures - priv->last_tx_failures;
4198 priv->last_tx_failures = tx_failures;
4200 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4201 priv->last_rx_packets = priv->rx_packets;
4203 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4204 priv->last_tx_packets = priv->tx_packets;
4206 /* Calculate quality based on the following:
4208 * Missed beacon: 100% = 0, 0% = 70% missed
4209 * Rate: 60% = 1Mbs, 100% = Max
4210 * Rx and Tx errors represent a straight % of total Rx/Tx
4211 * RSSI: 100% = > -50, 0% = < -80
4212 * Rx errors: 100% = 0, 0% = 50% missed
4214 * The lowest computed quality is used.
4217 #define BEACON_THRESHOLD 5
4218 beacon_quality = 100 - missed_beacons_percent;
4219 if (beacon_quality < BEACON_THRESHOLD)
4222 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4223 (100 - BEACON_THRESHOLD);
4224 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4225 beacon_quality, missed_beacons_percent);
4227 priv->last_rate = ipw_get_current_rate(priv);
4228 max_rate = ipw_get_max_rate(priv);
4229 rate_quality = priv->last_rate * 40 / max_rate + 60;
4230 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4231 rate_quality, priv->last_rate / 1000000);
4233 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4234 rx_quality = 100 - (rx_err_delta * 100) /
4235 (rx_packets_delta + rx_err_delta);
4238 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4239 rx_quality, rx_err_delta, rx_packets_delta);
4241 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4242 tx_quality = 100 - (tx_failures_delta * 100) /
4243 (tx_packets_delta + tx_failures_delta);
4246 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4247 tx_quality, tx_failures_delta, tx_packets_delta);
4249 rssi = priv->exp_avg_rssi;
4252 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4253 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4254 (priv->ieee->perfect_rssi - rssi) *
4255 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4256 62 * (priv->ieee->perfect_rssi - rssi))) /
4257 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4258 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4259 if (signal_quality > 100)
4260 signal_quality = 100;
4261 else if (signal_quality < 1)
4264 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4265 signal_quality, rssi);
4267 quality = min(beacon_quality,
4269 min(tx_quality, min(rx_quality, signal_quality))));
4270 if (quality == beacon_quality)
4271 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4273 if (quality == rate_quality)
4274 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4276 if (quality == tx_quality)
4277 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4279 if (quality == rx_quality)
4280 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4282 if (quality == signal_quality)
4283 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4286 priv->quality = quality;
4288 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4289 IPW_STATS_INTERVAL);
4292 static void ipw_bg_gather_stats(struct work_struct *work)
4294 struct ipw_priv *priv =
4295 container_of(work, struct ipw_priv, gather_stats.work);
4296 mutex_lock(&priv->mutex);
4297 ipw_gather_stats(priv);
4298 mutex_unlock(&priv->mutex);
4301 /* Missed beacon behavior:
4302 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4303 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4304 * Above disassociate threshold, give up and stop scanning.
4305 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4306 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4309 priv->notif_missed_beacons = missed_count;
4311 if (missed_count > priv->disassociate_threshold &&
4312 priv->status & STATUS_ASSOCIATED) {
4313 /* If associated and we've hit the missed
4314 * beacon threshold, disassociate, turn
4315 * off roaming, and abort any active scans */
4316 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4317 IPW_DL_STATE | IPW_DL_ASSOC,
4318 "Missed beacon: %d - disassociate\n", missed_count);
4319 priv->status &= ~STATUS_ROAMING;
4320 if (priv->status & STATUS_SCANNING) {
4321 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4323 "Aborting scan with missed beacon.\n");
4324 queue_work(priv->workqueue, &priv->abort_scan);
4327 queue_work(priv->workqueue, &priv->disassociate);
4331 if (priv->status & STATUS_ROAMING) {
4332 /* If we are currently roaming, then just
4333 * print a debug statement... */
4334 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4335 "Missed beacon: %d - roam in progress\n",
4341 (missed_count > priv->roaming_threshold &&
4342 missed_count <= priv->disassociate_threshold)) {
4343 /* If we are not already roaming, set the ROAM
4344 * bit in the status and kick off a scan.
4345 * This can happen several times before we reach
4346 * disassociate_threshold. */
4347 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4348 "Missed beacon: %d - initiate "
4349 "roaming\n", missed_count);
4350 if (!(priv->status & STATUS_ROAMING)) {
4351 priv->status |= STATUS_ROAMING;
4352 if (!(priv->status & STATUS_SCANNING))
4353 queue_delayed_work(priv->workqueue,
4354 &priv->request_scan, 0);
4359 if (priv->status & STATUS_SCANNING &&
4360 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4361 /* Stop scan to keep fw from getting
4362 * stuck (only if we aren't roaming --
4363 * otherwise we'll never scan more than 2 or 3
4365 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4366 "Aborting scan with missed beacon.\n");
4367 queue_work(priv->workqueue, &priv->abort_scan);
4370 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4373 static void ipw_scan_event(struct work_struct *work)
4375 union iwreq_data wrqu;
4377 struct ipw_priv *priv =
4378 container_of(work, struct ipw_priv, scan_event.work);
4380 wrqu.data.length = 0;
4381 wrqu.data.flags = 0;
4382 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4385 static void handle_scan_event(struct ipw_priv *priv)
4387 /* Only userspace-requested scan completion events go out immediately */
4388 if (!priv->user_requested_scan) {
4389 if (!delayed_work_pending(&priv->scan_event))
4390 queue_delayed_work(priv->workqueue, &priv->scan_event,
4391 round_jiffies_relative(msecs_to_jiffies(4000)));
4393 union iwreq_data wrqu;
4395 priv->user_requested_scan = 0;
4396 cancel_delayed_work(&priv->scan_event);
4398 wrqu.data.length = 0;
4399 wrqu.data.flags = 0;
4400 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4405 * Handle host notification packet.
4406 * Called from interrupt routine
4408 static void ipw_rx_notification(struct ipw_priv *priv,
4409 struct ipw_rx_notification *notif)
4411 DECLARE_SSID_BUF(ssid);
4412 u16 size = le16_to_cpu(notif->size);
4413 notif->size = le16_to_cpu(notif->size);
4415 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4417 switch (notif->subtype) {
4418 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4419 struct notif_association *assoc = ¬if->u.assoc;
4421 switch (assoc->state) {
4422 case CMAS_ASSOCIATED:{
4423 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4425 "associated: '%s' %pM \n",
4426 print_ssid(ssid, priv->essid,
4430 switch (priv->ieee->iw_mode) {
4432 memcpy(priv->ieee->bssid,
4433 priv->bssid, ETH_ALEN);
4437 memcpy(priv->ieee->bssid,
4438 priv->bssid, ETH_ALEN);
4440 /* clear out the station table */
4441 priv->num_stations = 0;
4444 ("queueing adhoc check\n");
4445 queue_delayed_work(priv->
4455 priv->status &= ~STATUS_ASSOCIATING;
4456 priv->status |= STATUS_ASSOCIATED;
4457 queue_work(priv->workqueue,
4458 &priv->system_config);
4460 #ifdef CONFIG_IPW2200_QOS
4461 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4462 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4463 if ((priv->status & STATUS_AUTH) &&
4464 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4465 == IEEE80211_STYPE_ASSOC_RESP)) {
4468 ieee80211_assoc_response)
4470 && (size <= 2314)) {
4480 ieee80211_rx_mgt(priv->
4485 ¬if->u.raw, &stats);
4490 schedule_work(&priv->link_up);
4495 case CMAS_AUTHENTICATED:{
4497 status & (STATUS_ASSOCIATED |
4499 struct notif_authenticate *auth
4501 IPW_DEBUG(IPW_DL_NOTIF |
4504 "deauthenticated: '%s' "
4506 ": (0x%04X) - %s \n",
4513 le16_to_cpu(auth->status),
4519 ~(STATUS_ASSOCIATING |
4523 schedule_work(&priv->link_down);
4527 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4529 "authenticated: '%s' %pM\n",
4530 print_ssid(ssid, priv->essid,
4537 if (priv->status & STATUS_AUTH) {
4539 ieee80211_assoc_response
4543 ieee80211_assoc_response
4545 IPW_DEBUG(IPW_DL_NOTIF |
4548 "association failed (0x%04X): %s\n",
4549 le16_to_cpu(resp->status),
4555 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4557 "disassociated: '%s' %pM \n",
4558 print_ssid(ssid, priv->essid,
4563 ~(STATUS_DISASSOCIATING |
4564 STATUS_ASSOCIATING |
4565 STATUS_ASSOCIATED | STATUS_AUTH);
4566 if (priv->assoc_network
4567 && (priv->assoc_network->
4569 WLAN_CAPABILITY_IBSS))
4570 ipw_remove_current_network
4573 schedule_work(&priv->link_down);
4578 case CMAS_RX_ASSOC_RESP:
4582 IPW_ERROR("assoc: unknown (%d)\n",
4590 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4591 struct notif_authenticate *auth = ¬if->u.auth;
4592 switch (auth->state) {
4593 case CMAS_AUTHENTICATED:
4594 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4595 "authenticated: '%s' %pM \n",
4596 print_ssid(ssid, priv->essid,
4599 priv->status |= STATUS_AUTH;
4603 if (priv->status & STATUS_AUTH) {
4604 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4606 "authentication failed (0x%04X): %s\n",
4607 le16_to_cpu(auth->status),
4608 ipw_get_status_code(le16_to_cpu
4612 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4614 "deauthenticated: '%s' %pM\n",
4615 print_ssid(ssid, priv->essid,
4619 priv->status &= ~(STATUS_ASSOCIATING |
4623 schedule_work(&priv->link_down);
4626 case CMAS_TX_AUTH_SEQ_1:
4627 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4628 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4630 case CMAS_RX_AUTH_SEQ_2:
4631 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4632 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4634 case CMAS_AUTH_SEQ_1_PASS:
4635 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4636 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4638 case CMAS_AUTH_SEQ_1_FAIL:
4639 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4640 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4642 case CMAS_TX_AUTH_SEQ_3:
4643 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4644 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4646 case CMAS_RX_AUTH_SEQ_4:
4647 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4648 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4650 case CMAS_AUTH_SEQ_2_PASS:
4651 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4652 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4654 case CMAS_AUTH_SEQ_2_FAIL:
4655 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4656 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4659 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4660 IPW_DL_ASSOC, "TX_ASSOC\n");
4662 case CMAS_RX_ASSOC_RESP:
4663 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4664 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4667 case CMAS_ASSOCIATED:
4668 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4669 IPW_DL_ASSOC, "ASSOCIATED\n");
4672 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4679 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4680 struct notif_channel_result *x =
4681 ¬if->u.channel_result;
4683 if (size == sizeof(*x)) {
4684 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4687 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4688 "(should be %zd)\n",
4694 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4695 struct notif_scan_complete *x = ¬if->u.scan_complete;
4696 if (size == sizeof(*x)) {
4698 ("Scan completed: type %d, %d channels, "
4699 "%d status\n", x->scan_type,
4700 x->num_channels, x->status);
4702 IPW_ERROR("Scan completed of wrong size %d "
4703 "(should be %zd)\n",
4708 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4710 wake_up_interruptible(&priv->wait_state);
4711 cancel_delayed_work(&priv->scan_check);
4713 if (priv->status & STATUS_EXIT_PENDING)
4716 priv->ieee->scans++;
4718 #ifdef CONFIG_IPW2200_MONITOR
4719 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4720 priv->status |= STATUS_SCAN_FORCED;
4721 queue_delayed_work(priv->workqueue,
4722 &priv->request_scan, 0);
4725 priv->status &= ~STATUS_SCAN_FORCED;
4726 #endif /* CONFIG_IPW2200_MONITOR */
4728 /* Do queued direct scans first */
4729 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4730 queue_delayed_work(priv->workqueue,
4731 &priv->request_direct_scan, 0);
4734 if (!(priv->status & (STATUS_ASSOCIATED |
4735 STATUS_ASSOCIATING |
4737 STATUS_DISASSOCIATING)))
4738 queue_work(priv->workqueue, &priv->associate);
4739 else if (priv->status & STATUS_ROAMING) {
4740 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4741 /* If a scan completed and we are in roam mode, then
4742 * the scan that completed was the one requested as a
4743 * result of entering roam... so, schedule the
4745 queue_work(priv->workqueue,
4748 /* Don't schedule if we aborted the scan */
4749 priv->status &= ~STATUS_ROAMING;
4750 } else if (priv->status & STATUS_SCAN_PENDING)
4751 queue_delayed_work(priv->workqueue,
4752 &priv->request_scan, 0);
4753 else if (priv->config & CFG_BACKGROUND_SCAN
4754 && priv->status & STATUS_ASSOCIATED)
4755 queue_delayed_work(priv->workqueue,
4756 &priv->request_scan,
4757 round_jiffies_relative(HZ));
4759 /* Send an empty event to user space.
4760 * We don't send the received data on the event because
4761 * it would require us to do complex transcoding, and
4762 * we want to minimise the work done in the irq handler
4763 * Use a request to extract the data.
4764 * Also, we generate this even for any scan, regardless
4765 * on how the scan was initiated. User space can just
4766 * sync on periodic scan to get fresh data...
4768 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4769 handle_scan_event(priv);
4773 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4774 struct notif_frag_length *x = ¬if->u.frag_len;
4776 if (size == sizeof(*x))
4777 IPW_ERROR("Frag length: %d\n",
4778 le16_to_cpu(x->frag_length));
4780 IPW_ERROR("Frag length of wrong size %d "
4781 "(should be %zd)\n",
4786 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4787 struct notif_link_deterioration *x =
4788 ¬if->u.link_deterioration;
4790 if (size == sizeof(*x)) {
4791 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4792 "link deterioration: type %d, cnt %d\n",
4793 x->silence_notification_type,
4795 memcpy(&priv->last_link_deterioration, x,
4798 IPW_ERROR("Link Deterioration of wrong size %d "
4799 "(should be %zd)\n",
4805 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4806 IPW_ERROR("Dino config\n");
4808 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4809 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4814 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4815 struct notif_beacon_state *x = ¬if->u.beacon_state;
4816 if (size != sizeof(*x)) {
4818 ("Beacon state of wrong size %d (should "
4819 "be %zd)\n", size, sizeof(*x));
4823 if (le32_to_cpu(x->state) ==
4824 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4825 ipw_handle_missed_beacon(priv,
4832 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4833 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4834 if (size == sizeof(*x)) {
4835 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4836 "0x%02x station %d\n",
4837 x->key_state, x->security_type,
4843 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4848 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4849 struct notif_calibration *x = ¬if->u.calibration;
4851 if (size == sizeof(*x)) {
4852 memcpy(&priv->calib, x, sizeof(*x));
4853 IPW_DEBUG_INFO("TODO: Calibration\n");
4858 ("Calibration of wrong size %d (should be %zd)\n",
4863 case HOST_NOTIFICATION_NOISE_STATS:{
4864 if (size == sizeof(u32)) {
4865 priv->exp_avg_noise =
4866 exponential_average(priv->exp_avg_noise,
4867 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4873 ("Noise stat is wrong size %d (should be %zd)\n",
4879 IPW_DEBUG_NOTIF("Unknown notification: "
4880 "subtype=%d,flags=0x%2x,size=%d\n",
4881 notif->subtype, notif->flags, size);
4886 * Destroys all DMA structures and initialise them again
4889 * @return error code
4891 static int ipw_queue_reset(struct ipw_priv *priv)
4894 /** @todo customize queue sizes */
4895 int nTx = 64, nTxCmd = 8;
4896 ipw_tx_queue_free(priv);
4898 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4899 IPW_TX_CMD_QUEUE_READ_INDEX,
4900 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4901 IPW_TX_CMD_QUEUE_BD_BASE,
4902 IPW_TX_CMD_QUEUE_BD_SIZE);
4904 IPW_ERROR("Tx Cmd queue init failed\n");
4908 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4909 IPW_TX_QUEUE_0_READ_INDEX,
4910 IPW_TX_QUEUE_0_WRITE_INDEX,
4911 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4913 IPW_ERROR("Tx 0 queue init failed\n");
4916 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4917 IPW_TX_QUEUE_1_READ_INDEX,
4918 IPW_TX_QUEUE_1_WRITE_INDEX,
4919 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4921 IPW_ERROR("Tx 1 queue init failed\n");
4924 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4925 IPW_TX_QUEUE_2_READ_INDEX,
4926 IPW_TX_QUEUE_2_WRITE_INDEX,
4927 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4929 IPW_ERROR("Tx 2 queue init failed\n");
4932 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4933 IPW_TX_QUEUE_3_READ_INDEX,
4934 IPW_TX_QUEUE_3_WRITE_INDEX,
4935 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4937 IPW_ERROR("Tx 3 queue init failed\n");
4941 priv->rx_bufs_min = 0;
4942 priv->rx_pend_max = 0;
4946 ipw_tx_queue_free(priv);
4951 * Reclaim Tx queue entries no more used by NIC.
4953 * When FW advances 'R' index, all entries between old and
4954 * new 'R' index need to be reclaimed. As result, some free space
4955 * forms. If there is enough free space (> low mark), wake Tx queue.
4957 * @note Need to protect against garbage in 'R' index
4961 * @return Number of used entries remains in the queue
4963 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4964 struct clx2_tx_queue *txq, int qindex)
4968 struct clx2_queue *q = &txq->q;
4970 hw_tail = ipw_read32(priv, q->reg_r);
4971 if (hw_tail >= q->n_bd) {
4973 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4977 for (; q->last_used != hw_tail;
4978 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4979 ipw_queue_tx_free_tfd(priv, txq);
4983 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4985 netif_wake_queue(priv->net_dev);
4986 used = q->first_empty - q->last_used;
4993 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4996 struct clx2_tx_queue *txq = &priv->txq_cmd;
4997 struct clx2_queue *q = &txq->q;
4998 struct tfd_frame *tfd;
5000 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5001 IPW_ERROR("No space for Tx\n");
5005 tfd = &txq->bd[q->first_empty];
5006 txq->txb[q->first_empty] = NULL;
5008 memset(tfd, 0, sizeof(*tfd));
5009 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5010 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5012 tfd->u.cmd.index = hcmd;
5013 tfd->u.cmd.length = len;
5014 memcpy(tfd->u.cmd.payload, buf, len);
5015 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5016 ipw_write32(priv, q->reg_w, q->first_empty);
5017 _ipw_read32(priv, 0x90);
5023 * Rx theory of operation
5025 * The host allocates 32 DMA target addresses and passes the host address
5026 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5030 * The host/firmware share two index registers for managing the Rx buffers.
5032 * The READ index maps to the first position that the firmware may be writing
5033 * to -- the driver can read up to (but not including) this position and get
5035 * The READ index is managed by the firmware once the card is enabled.
5037 * The WRITE index maps to the last position the driver has read from -- the
5038 * position preceding WRITE is the last slot the firmware can place a packet.
5040 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5043 * During initialization the host sets up the READ queue position to the first
5044 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5046 * When the firmware places a packet in a buffer it will advance the READ index
5047 * and fire the RX interrupt. The driver can then query the READ index and
5048 * process as many packets as possible, moving the WRITE index forward as it
5049 * resets the Rx queue buffers with new memory.
5051 * The management in the driver is as follows:
5052 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5053 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5054 * to replensish the ipw->rxq->rx_free.
5055 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5056 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5057 * 'processed' and 'read' driver indexes as well)
5058 * + A received packet is processed and handed to the kernel network stack,
5059 * detached from the ipw->rxq. The driver 'processed' index is updated.
5060 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5061 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5062 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5063 * were enough free buffers and RX_STALLED is set it is cleared.
5068 * ipw_rx_queue_alloc() Allocates rx_free
5069 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5070 * ipw_rx_queue_restock
5071 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5072 * queue, updates firmware pointers, and updates
5073 * the WRITE index. If insufficient rx_free buffers
5074 * are available, schedules ipw_rx_queue_replenish
5076 * -- enable interrupts --
5077 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5078 * READ INDEX, detaching the SKB from the pool.
5079 * Moves the packet buffer from queue to rx_used.
5080 * Calls ipw_rx_queue_restock to refill any empty
5087 * If there are slots in the RX queue that need to be restocked,
5088 * and we have free pre-allocated buffers, fill the ranks as much
5089 * as we can pulling from rx_free.
5091 * This moves the 'write' index forward to catch up with 'processed', and
5092 * also updates the memory address in the firmware to reference the new
5095 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5097 struct ipw_rx_queue *rxq = priv->rxq;
5098 struct list_head *element;
5099 struct ipw_rx_mem_buffer *rxb;
5100 unsigned long flags;
5103 spin_lock_irqsave(&rxq->lock, flags);
5105 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5106 element = rxq->rx_free.next;
5107 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5110 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5112 rxq->queue[rxq->write] = rxb;
5113 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5116 spin_unlock_irqrestore(&rxq->lock, flags);
5118 /* If the pre-allocated buffer pool is dropping low, schedule to
5120 if (rxq->free_count <= RX_LOW_WATERMARK)
5121 queue_work(priv->workqueue, &priv->rx_replenish);
5123 /* If we've added more space for the firmware to place data, tell it */
5124 if (write != rxq->write)
5125 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5129 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5130 * Also restock the Rx queue via ipw_rx_queue_restock.
5132 * This is called as a scheduled work item (except for during intialization)
5134 static void ipw_rx_queue_replenish(void *data)
5136 struct ipw_priv *priv = data;
5137 struct ipw_rx_queue *rxq = priv->rxq;
5138 struct list_head *element;
5139 struct ipw_rx_mem_buffer *rxb;
5140 unsigned long flags;
5142 spin_lock_irqsave(&rxq->lock, flags);
5143 while (!list_empty(&rxq->rx_used)) {
5144 element = rxq->rx_used.next;
5145 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5146 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5148 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5149 priv->net_dev->name);
5150 /* We don't reschedule replenish work here -- we will
5151 * call the restock method and if it still needs
5152 * more buffers it will schedule replenish */
5158 pci_map_single(priv->pci_dev, rxb->skb->data,
5159 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5161 list_add_tail(&rxb->list, &rxq->rx_free);
5164 spin_unlock_irqrestore(&rxq->lock, flags);
5166 ipw_rx_queue_restock(priv);
5169 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5171 struct ipw_priv *priv =
5172 container_of(work, struct ipw_priv, rx_replenish);
5173 mutex_lock(&priv->mutex);
5174 ipw_rx_queue_replenish(priv);
5175 mutex_unlock(&priv->mutex);
5178 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5179 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5180 * This free routine walks the list of POOL entries and if SKB is set to
5181 * non NULL it is unmapped and freed
5183 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5190 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5191 if (rxq->pool[i].skb != NULL) {
5192 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5193 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5194 dev_kfree_skb(rxq->pool[i].skb);
5201 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5203 struct ipw_rx_queue *rxq;
5206 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5207 if (unlikely(!rxq)) {
5208 IPW_ERROR("memory allocation failed\n");
5211 spin_lock_init(&rxq->lock);
5212 INIT_LIST_HEAD(&rxq->rx_free);
5213 INIT_LIST_HEAD(&rxq->rx_used);
5215 /* Fill the rx_used queue with _all_ of the Rx buffers */
5216 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5217 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5219 /* Set us so that we have processed and used all buffers, but have
5220 * not restocked the Rx queue with fresh buffers */
5221 rxq->read = rxq->write = 0;
5222 rxq->free_count = 0;
5227 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5229 rate &= ~IEEE80211_BASIC_RATE_MASK;
5230 if (ieee_mode == IEEE_A) {
5232 case IEEE80211_OFDM_RATE_6MB:
5233 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5235 case IEEE80211_OFDM_RATE_9MB:
5236 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5238 case IEEE80211_OFDM_RATE_12MB:
5240 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5241 case IEEE80211_OFDM_RATE_18MB:
5243 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5244 case IEEE80211_OFDM_RATE_24MB:
5246 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5247 case IEEE80211_OFDM_RATE_36MB:
5249 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5250 case IEEE80211_OFDM_RATE_48MB:
5252 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5253 case IEEE80211_OFDM_RATE_54MB:
5255 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5263 case IEEE80211_CCK_RATE_1MB:
5264 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5265 case IEEE80211_CCK_RATE_2MB:
5266 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5267 case IEEE80211_CCK_RATE_5MB:
5268 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5269 case IEEE80211_CCK_RATE_11MB:
5270 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5273 /* If we are limited to B modulations, bail at this point */
5274 if (ieee_mode == IEEE_B)
5279 case IEEE80211_OFDM_RATE_6MB:
5280 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5281 case IEEE80211_OFDM_RATE_9MB:
5282 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5283 case IEEE80211_OFDM_RATE_12MB:
5284 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5285 case IEEE80211_OFDM_RATE_18MB:
5286 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5287 case IEEE80211_OFDM_RATE_24MB:
5288 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5289 case IEEE80211_OFDM_RATE_36MB:
5290 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5291 case IEEE80211_OFDM_RATE_48MB:
5292 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5293 case IEEE80211_OFDM_RATE_54MB:
5294 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5300 static int ipw_compatible_rates(struct ipw_priv *priv,
5301 const struct ieee80211_network *network,
5302 struct ipw_supported_rates *rates)
5306 memset(rates, 0, sizeof(*rates));
5307 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5308 rates->num_rates = 0;
5309 for (i = 0; i < num_rates; i++) {
5310 if (!ipw_is_rate_in_mask(priv, network->mode,
5311 network->rates[i])) {
5313 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5314 IPW_DEBUG_SCAN("Adding masked mandatory "
5317 rates->supported_rates[rates->num_rates++] =
5322 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5323 network->rates[i], priv->rates_mask);
5327 rates->supported_rates[rates->num_rates++] = network->rates[i];
5330 num_rates = min(network->rates_ex_len,
5331 (u8) (IPW_MAX_RATES - num_rates));
5332 for (i = 0; i < num_rates; i++) {
5333 if (!ipw_is_rate_in_mask(priv, network->mode,
5334 network->rates_ex[i])) {
5335 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5336 IPW_DEBUG_SCAN("Adding masked mandatory "
5338 network->rates_ex[i]);
5339 rates->supported_rates[rates->num_rates++] =
5344 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5345 network->rates_ex[i], priv->rates_mask);
5349 rates->supported_rates[rates->num_rates++] =
5350 network->rates_ex[i];
5356 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5357 const struct ipw_supported_rates *src)
5360 for (i = 0; i < src->num_rates; i++)
5361 dest->supported_rates[i] = src->supported_rates[i];
5362 dest->num_rates = src->num_rates;
5365 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5366 * mask should ever be used -- right now all callers to add the scan rates are
5367 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5368 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5369 u8 modulation, u32 rate_mask)
5371 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5372 IEEE80211_BASIC_RATE_MASK : 0;
5374 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5375 rates->supported_rates[rates->num_rates++] =
5376 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5378 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5379 rates->supported_rates[rates->num_rates++] =
5380 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5382 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5383 rates->supported_rates[rates->num_rates++] = basic_mask |
5384 IEEE80211_CCK_RATE_5MB;
5386 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5387 rates->supported_rates[rates->num_rates++] = basic_mask |
5388 IEEE80211_CCK_RATE_11MB;
5391 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5392 u8 modulation, u32 rate_mask)
5394 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5395 IEEE80211_BASIC_RATE_MASK : 0;
5397 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5398 rates->supported_rates[rates->num_rates++] = basic_mask |
5399 IEEE80211_OFDM_RATE_6MB;
5401 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5402 rates->supported_rates[rates->num_rates++] =
5403 IEEE80211_OFDM_RATE_9MB;
5405 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5406 rates->supported_rates[rates->num_rates++] = basic_mask |
5407 IEEE80211_OFDM_RATE_12MB;
5409 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5410 rates->supported_rates[rates->num_rates++] =
5411 IEEE80211_OFDM_RATE_18MB;
5413 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5414 rates->supported_rates[rates->num_rates++] = basic_mask |
5415 IEEE80211_OFDM_RATE_24MB;
5417 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5418 rates->supported_rates[rates->num_rates++] =
5419 IEEE80211_OFDM_RATE_36MB;
5421 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5422 rates->supported_rates[rates->num_rates++] =
5423 IEEE80211_OFDM_RATE_48MB;
5425 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5426 rates->supported_rates[rates->num_rates++] =
5427 IEEE80211_OFDM_RATE_54MB;
5430 struct ipw_network_match {
5431 struct ieee80211_network *network;
5432 struct ipw_supported_rates rates;
5435 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5436 struct ipw_network_match *match,
5437 struct ieee80211_network *network,
5440 struct ipw_supported_rates rates;
5441 DECLARE_SSID_BUF(ssid);
5443 /* Verify that this network's capability is compatible with the
5444 * current mode (AdHoc or Infrastructure) */
5445 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5446 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5447 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5448 "capability mismatch.\n",
5449 print_ssid(ssid, network->ssid,
5455 if (unlikely(roaming)) {
5456 /* If we are roaming, then ensure check if this is a valid
5457 * network to try and roam to */
5458 if ((network->ssid_len != match->network->ssid_len) ||
5459 memcmp(network->ssid, match->network->ssid,
5460 network->ssid_len)) {
5461 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5462 "because of non-network ESSID.\n",
5463 print_ssid(ssid, network->ssid,
5469 /* If an ESSID has been configured then compare the broadcast
5471 if ((priv->config & CFG_STATIC_ESSID) &&
5472 ((network->ssid_len != priv->essid_len) ||
5473 memcmp(network->ssid, priv->essid,
5474 min(network->ssid_len, priv->essid_len)))) {
5475 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5478 print_ssid(ssid, network->ssid,
5481 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5482 "because of ESSID mismatch: '%s'.\n",
5483 escaped, network->bssid,
5484 print_ssid(ssid, priv->essid,
5490 /* If the old network rate is better than this one, don't bother
5491 * testing everything else. */
5493 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5494 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5495 "current network.\n",
5496 print_ssid(ssid, match->network->ssid,
5497 match->network->ssid_len));
5499 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5500 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5501 "current network.\n",
5502 print_ssid(ssid, match->network->ssid,
5503 match->network->ssid_len));
5507 /* Now go through and see if the requested network is valid... */
5508 if (priv->ieee->scan_age != 0 &&
5509 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5510 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5511 "because of age: %ums.\n",
5512 print_ssid(ssid, network->ssid,
5515 jiffies_to_msecs(jiffies -
5516 network->last_scanned));
5520 if ((priv->config & CFG_STATIC_CHANNEL) &&
5521 (network->channel != priv->channel)) {
5522 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5523 "because of channel mismatch: %d != %d.\n",
5524 print_ssid(ssid, network->ssid,
5527 network->channel, priv->channel);
5531 /* Verify privacy compatability */
5532 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5533 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5534 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5535 "because of privacy mismatch: %s != %s.\n",
5536 print_ssid(ssid, network->ssid,
5540 capability & CAP_PRIVACY_ON ? "on" : "off",
5542 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5547 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5548 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5549 "because of the same BSSID match: %pM"
5550 ".\n", print_ssid(ssid, network->ssid,
5557 /* Filter out any incompatible freq / mode combinations */
5558 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5559 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5560 "because of invalid frequency/mode "
5562 print_ssid(ssid, network->ssid,
5568 /* Ensure that the rates supported by the driver are compatible with
5569 * this AP, including verification of basic rates (mandatory) */
5570 if (!ipw_compatible_rates(priv, network, &rates)) {
5571 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5572 "because configured rate mask excludes "
5573 "AP mandatory rate.\n",
5574 print_ssid(ssid, network->ssid,
5580 if (rates.num_rates == 0) {
5581 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5582 "because of no compatible rates.\n",
5583 print_ssid(ssid, network->ssid,
5589 /* TODO: Perform any further minimal comparititive tests. We do not
5590 * want to put too much policy logic here; intelligent scan selection
5591 * should occur within a generic IEEE 802.11 user space tool. */
5593 /* Set up 'new' AP to this network */
5594 ipw_copy_rates(&match->rates, &rates);
5595 match->network = network;
5596 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5597 print_ssid(ssid, network->ssid, network->ssid_len),
5603 static void ipw_merge_adhoc_network(struct work_struct *work)
5605 DECLARE_SSID_BUF(ssid);
5606 struct ipw_priv *priv =
5607 container_of(work, struct ipw_priv, merge_networks);
5608 struct ieee80211_network *network = NULL;
5609 struct ipw_network_match match = {
5610 .network = priv->assoc_network
5613 if ((priv->status & STATUS_ASSOCIATED) &&
5614 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5615 /* First pass through ROAM process -- look for a better
5617 unsigned long flags;
5619 spin_lock_irqsave(&priv->ieee->lock, flags);
5620 list_for_each_entry(network, &priv->ieee->network_list, list) {
5621 if (network != priv->assoc_network)
5622 ipw_find_adhoc_network(priv, &match, network,
5625 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5627 if (match.network == priv->assoc_network) {
5628 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5633 mutex_lock(&priv->mutex);
5634 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5635 IPW_DEBUG_MERGE("remove network %s\n",
5636 print_ssid(ssid, priv->essid,
5638 ipw_remove_current_network(priv);
5641 ipw_disassociate(priv);
5642 priv->assoc_network = match.network;
5643 mutex_unlock(&priv->mutex);
5648 static int ipw_best_network(struct ipw_priv *priv,
5649 struct ipw_network_match *match,
5650 struct ieee80211_network *network, int roaming)
5652 struct ipw_supported_rates rates;
5653 DECLARE_SSID_BUF(ssid);
5655 /* Verify that this network's capability is compatible with the
5656 * current mode (AdHoc or Infrastructure) */
5657 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5658 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5659 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5660 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5661 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5662 "capability mismatch.\n",
5663 print_ssid(ssid, network->ssid,
5669 if (unlikely(roaming)) {
5670 /* If we are roaming, then ensure check if this is a valid
5671 * network to try and roam to */
5672 if ((network->ssid_len != match->network->ssid_len) ||
5673 memcmp(network->ssid, match->network->ssid,
5674 network->ssid_len)) {
5675 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5676 "because of non-network ESSID.\n",
5677 print_ssid(ssid, network->ssid,
5683 /* If an ESSID has been configured then compare the broadcast
5685 if ((priv->config & CFG_STATIC_ESSID) &&
5686 ((network->ssid_len != priv->essid_len) ||
5687 memcmp(network->ssid, priv->essid,
5688 min(network->ssid_len, priv->essid_len)))) {
5689 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5691 print_ssid(ssid, network->ssid,
5694 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5695 "because of ESSID mismatch: '%s'.\n",
5696 escaped, network->bssid,
5697 print_ssid(ssid, priv->essid,
5703 /* If the old network rate is better than this one, don't bother
5704 * testing everything else. */
5705 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5706 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5708 print_ssid(ssid, network->ssid, network->ssid_len),
5710 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5711 "'%s (%pM)' has a stronger signal.\n",
5712 escaped, network->bssid,
5713 print_ssid(ssid, match->network->ssid,
5714 match->network->ssid_len),
5715 match->network->bssid);
5719 /* If this network has already had an association attempt within the
5720 * last 3 seconds, do not try and associate again... */
5721 if (network->last_associate &&
5722 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5723 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5724 "because of storming (%ums since last "
5725 "assoc attempt).\n",
5726 print_ssid(ssid, network->ssid,
5729 jiffies_to_msecs(jiffies -
5730 network->last_associate));
5734 /* Now go through and see if the requested network is valid... */
5735 if (priv->ieee->scan_age != 0 &&
5736 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5737 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5738 "because of age: %ums.\n",
5739 print_ssid(ssid, network->ssid,
5742 jiffies_to_msecs(jiffies -
5743 network->last_scanned));
5747 if ((priv->config & CFG_STATIC_CHANNEL) &&
5748 (network->channel != priv->channel)) {
5749 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5750 "because of channel mismatch: %d != %d.\n",
5751 print_ssid(ssid, network->ssid,
5754 network->channel, priv->channel);
5758 /* Verify privacy compatability */
5759 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5760 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5761 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5762 "because of privacy mismatch: %s != %s.\n",
5763 print_ssid(ssid, network->ssid,
5766 priv->capability & CAP_PRIVACY_ON ? "on" :
5768 network->capability &
5769 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5773 if ((priv->config & CFG_STATIC_BSSID) &&
5774 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5775 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5776 "because of BSSID mismatch: %pM.\n",
5777 print_ssid(ssid, network->ssid,
5779 network->bssid, priv->bssid);
5783 /* Filter out any incompatible freq / mode combinations */
5784 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5785 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5786 "because of invalid frequency/mode "
5788 print_ssid(ssid, network->ssid,
5794 /* Filter out invalid channel in current GEO */
5795 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5796 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5797 "because of invalid channel in current GEO\n",
5798 print_ssid(ssid, network->ssid,
5804 /* Ensure that the rates supported by the driver are compatible with
5805 * this AP, including verification of basic rates (mandatory) */
5806 if (!ipw_compatible_rates(priv, network, &rates)) {
5807 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5808 "because configured rate mask excludes "
5809 "AP mandatory rate.\n",
5810 print_ssid(ssid, network->ssid,
5816 if (rates.num_rates == 0) {
5817 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5818 "because of no compatible rates.\n",
5819 print_ssid(ssid, network->ssid,
5825 /* TODO: Perform any further minimal comparititive tests. We do not
5826 * want to put too much policy logic here; intelligent scan selection
5827 * should occur within a generic IEEE 802.11 user space tool. */
5829 /* Set up 'new' AP to this network */
5830 ipw_copy_rates(&match->rates, &rates);
5831 match->network = network;
5833 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5834 print_ssid(ssid, network->ssid, network->ssid_len),
5840 static void ipw_adhoc_create(struct ipw_priv *priv,
5841 struct ieee80211_network *network)
5843 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5847 * For the purposes of scanning, we can set our wireless mode
5848 * to trigger scans across combinations of bands, but when it
5849 * comes to creating a new ad-hoc network, we have tell the FW
5850 * exactly which band to use.
5852 * We also have the possibility of an invalid channel for the
5853 * chossen band. Attempting to create a new ad-hoc network
5854 * with an invalid channel for wireless mode will trigger a
5858 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5859 case IEEE80211_52GHZ_BAND:
5860 network->mode = IEEE_A;
5861 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5863 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5864 IPW_WARNING("Overriding invalid channel\n");
5865 priv->channel = geo->a[0].channel;
5869 case IEEE80211_24GHZ_BAND:
5870 if (priv->ieee->mode & IEEE_G)
5871 network->mode = IEEE_G;
5873 network->mode = IEEE_B;
5874 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5876 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5877 IPW_WARNING("Overriding invalid channel\n");
5878 priv->channel = geo->bg[0].channel;
5883 IPW_WARNING("Overriding invalid channel\n");
5884 if (priv->ieee->mode & IEEE_A) {
5885 network->mode = IEEE_A;
5886 priv->channel = geo->a[0].channel;
5887 } else if (priv->ieee->mode & IEEE_G) {
5888 network->mode = IEEE_G;
5889 priv->channel = geo->bg[0].channel;
5891 network->mode = IEEE_B;
5892 priv->channel = geo->bg[0].channel;
5897 network->channel = priv->channel;
5898 priv->config |= CFG_ADHOC_PERSIST;
5899 ipw_create_bssid(priv, network->bssid);
5900 network->ssid_len = priv->essid_len;
5901 memcpy(network->ssid, priv->essid, priv->essid_len);
5902 memset(&network->stats, 0, sizeof(network->stats));
5903 network->capability = WLAN_CAPABILITY_IBSS;
5904 if (!(priv->config & CFG_PREAMBLE_LONG))
5905 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5906 if (priv->capability & CAP_PRIVACY_ON)
5907 network->capability |= WLAN_CAPABILITY_PRIVACY;
5908 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5909 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5910 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5911 memcpy(network->rates_ex,
5912 &priv->rates.supported_rates[network->rates_len],
5913 network->rates_ex_len);
5914 network->last_scanned = 0;
5916 network->last_associate = 0;
5917 network->time_stamp[0] = 0;
5918 network->time_stamp[1] = 0;
5919 network->beacon_interval = 100; /* Default */
5920 network->listen_interval = 10; /* Default */
5921 network->atim_window = 0; /* Default */
5922 network->wpa_ie_len = 0;
5923 network->rsn_ie_len = 0;
5926 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5928 struct ipw_tgi_tx_key key;
5930 if (!(priv->ieee->sec.flags & (1 << index)))
5934 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5935 key.security_type = type;
5936 key.station_index = 0; /* always 0 for BSS */
5938 /* 0 for new key; previous value of counter (after fatal error) */
5939 key.tx_counter[0] = cpu_to_le32(0);
5940 key.tx_counter[1] = cpu_to_le32(0);
5942 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5945 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5947 struct ipw_wep_key key;
5950 key.cmd_id = DINO_CMD_WEP_KEY;
5953 /* Note: AES keys cannot be set for multiple times.
5954 * Only set it at the first time. */
5955 for (i = 0; i < 4; i++) {
5956 key.key_index = i | type;
5957 if (!(priv->ieee->sec.flags & (1 << i))) {
5962 key.key_size = priv->ieee->sec.key_sizes[i];
5963 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5965 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5969 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5971 if (priv->ieee->host_encrypt)
5976 priv->sys_config.disable_unicast_decryption = 0;
5977 priv->ieee->host_decrypt = 0;
5980 priv->sys_config.disable_unicast_decryption = 1;
5981 priv->ieee->host_decrypt = 1;
5984 priv->sys_config.disable_unicast_decryption = 0;
5985 priv->ieee->host_decrypt = 0;
5988 priv->sys_config.disable_unicast_decryption = 1;
5995 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5997 if (priv->ieee->host_encrypt)
6002 priv->sys_config.disable_multicast_decryption = 0;
6005 priv->sys_config.disable_multicast_decryption = 1;
6008 priv->sys_config.disable_multicast_decryption = 0;
6011 priv->sys_config.disable_multicast_decryption = 1;
6018 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6020 switch (priv->ieee->sec.level) {
6022 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6023 ipw_send_tgi_tx_key(priv,
6024 DCT_FLAG_EXT_SECURITY_CCM,
6025 priv->ieee->sec.active_key);
6027 if (!priv->ieee->host_mc_decrypt)
6028 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6031 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6032 ipw_send_tgi_tx_key(priv,
6033 DCT_FLAG_EXT_SECURITY_TKIP,
6034 priv->ieee->sec.active_key);
6037 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6038 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6039 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6047 static void ipw_adhoc_check(void *data)
6049 struct ipw_priv *priv = data;
6051 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6052 !(priv->config & CFG_ADHOC_PERSIST)) {
6053 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6054 IPW_DL_STATE | IPW_DL_ASSOC,
6055 "Missed beacon: %d - disassociate\n",
6056 priv->missed_adhoc_beacons);
6057 ipw_remove_current_network(priv);
6058 ipw_disassociate(priv);
6062 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6063 le16_to_cpu(priv->assoc_request.beacon_interval));
6066 static void ipw_bg_adhoc_check(struct work_struct *work)
6068 struct ipw_priv *priv =
6069 container_of(work, struct ipw_priv, adhoc_check.work);
6070 mutex_lock(&priv->mutex);
6071 ipw_adhoc_check(priv);
6072 mutex_unlock(&priv->mutex);
6075 static void ipw_debug_config(struct ipw_priv *priv)
6077 DECLARE_SSID_BUF(ssid);
6078 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6079 "[CFG 0x%08X]\n", priv->config);
6080 if (priv->config & CFG_STATIC_CHANNEL)
6081 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6083 IPW_DEBUG_INFO("Channel unlocked.\n");
6084 if (priv->config & CFG_STATIC_ESSID)
6085 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6086 print_ssid(ssid, priv->essid, priv->essid_len));
6088 IPW_DEBUG_INFO("ESSID unlocked.\n");
6089 if (priv->config & CFG_STATIC_BSSID)
6090 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6092 IPW_DEBUG_INFO("BSSID unlocked.\n");
6093 if (priv->capability & CAP_PRIVACY_ON)
6094 IPW_DEBUG_INFO("PRIVACY on\n");
6096 IPW_DEBUG_INFO("PRIVACY off\n");
6097 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6100 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6102 /* TODO: Verify that this works... */
6103 struct ipw_fixed_rate fr = {
6104 .tx_rates = priv->rates_mask
6109 /* Identify 'current FW band' and match it with the fixed
6112 switch (priv->ieee->freq_band) {
6113 case IEEE80211_52GHZ_BAND: /* A only */
6115 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6116 /* Invalid fixed rate mask */
6118 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6123 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6126 default: /* 2.4Ghz or Mixed */
6128 if (mode == IEEE_B) {
6129 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6130 /* Invalid fixed rate mask */
6132 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6139 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6140 IEEE80211_OFDM_RATES_MASK)) {
6141 /* Invalid fixed rate mask */
6143 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6148 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6149 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6150 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6153 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6154 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6155 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6158 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6159 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6160 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6163 fr.tx_rates |= mask;
6167 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6168 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6171 static void ipw_abort_scan(struct ipw_priv *priv)
6175 if (priv->status & STATUS_SCAN_ABORTING) {
6176 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6179 priv->status |= STATUS_SCAN_ABORTING;
6181 err = ipw_send_scan_abort(priv);
6183 IPW_DEBUG_HC("Request to abort scan failed.\n");
6186 static void ipw_add_scan_channels(struct ipw_priv *priv,
6187 struct ipw_scan_request_ext *scan,
6190 int channel_index = 0;
6191 const struct ieee80211_geo *geo;
6194 geo = ieee80211_get_geo(priv->ieee);
6196 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6197 int start = channel_index;
6198 for (i = 0; i < geo->a_channels; i++) {
6199 if ((priv->status & STATUS_ASSOCIATED) &&
6200 geo->a[i].channel == priv->channel)
6203 scan->channels_list[channel_index] = geo->a[i].channel;
6204 ipw_set_scan_type(scan, channel_index,
6206 flags & IEEE80211_CH_PASSIVE_ONLY ?
6207 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6211 if (start != channel_index) {
6212 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6213 (channel_index - start);
6218 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6219 int start = channel_index;
6220 if (priv->config & CFG_SPEED_SCAN) {
6222 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6223 /* nop out the list */
6228 while (channel_index < IPW_SCAN_CHANNELS) {
6230 priv->speed_scan[priv->speed_scan_pos];
6232 priv->speed_scan_pos = 0;
6233 channel = priv->speed_scan[0];
6235 if ((priv->status & STATUS_ASSOCIATED) &&
6236 channel == priv->channel) {
6237 priv->speed_scan_pos++;
6241 /* If this channel has already been
6242 * added in scan, break from loop
6243 * and this will be the first channel
6246 if (channels[channel - 1] != 0)
6249 channels[channel - 1] = 1;
6250 priv->speed_scan_pos++;
6252 scan->channels_list[channel_index] = channel;
6254 ieee80211_channel_to_index(priv->ieee, channel);
6255 ipw_set_scan_type(scan, channel_index,
6258 IEEE80211_CH_PASSIVE_ONLY ?
6259 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6263 for (i = 0; i < geo->bg_channels; i++) {
6264 if ((priv->status & STATUS_ASSOCIATED) &&
6265 geo->bg[i].channel == priv->channel)
6268 scan->channels_list[channel_index] =
6270 ipw_set_scan_type(scan, channel_index,
6273 IEEE80211_CH_PASSIVE_ONLY ?
6274 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6279 if (start != channel_index) {
6280 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6281 (channel_index - start);
6286 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6288 /* staying on passive channels longer than the DTIM interval during a
6289 * scan, while associated, causes the firmware to cancel the scan
6290 * without notification. Hence, don't stay on passive channels longer
6291 * than the beacon interval.
6293 if (priv->status & STATUS_ASSOCIATED
6294 && priv->assoc_network->beacon_interval > 10)
6295 return priv->assoc_network->beacon_interval - 10;
6300 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6302 struct ipw_scan_request_ext scan;
6303 int err = 0, scan_type;
6305 if (!(priv->status & STATUS_INIT) ||
6306 (priv->status & STATUS_EXIT_PENDING))
6309 mutex_lock(&priv->mutex);
6311 if (direct && (priv->direct_scan_ssid_len == 0)) {
6312 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6313 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6317 if (priv->status & STATUS_SCANNING) {
6318 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6319 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6320 STATUS_SCAN_PENDING;
6324 if (!(priv->status & STATUS_SCAN_FORCED) &&
6325 priv->status & STATUS_SCAN_ABORTING) {
6326 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6327 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6328 STATUS_SCAN_PENDING;
6332 if (priv->status & STATUS_RF_KILL_MASK) {
6333 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6334 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6335 STATUS_SCAN_PENDING;
6339 memset(&scan, 0, sizeof(scan));
6340 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6342 if (type == IW_SCAN_TYPE_PASSIVE) {
6343 IPW_DEBUG_WX("use passive scanning\n");
6344 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6345 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6346 cpu_to_le16(ipw_passive_dwell_time(priv));
6347 ipw_add_scan_channels(priv, &scan, scan_type);
6351 /* Use active scan by default. */
6352 if (priv->config & CFG_SPEED_SCAN)
6353 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6356 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6359 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6362 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6363 cpu_to_le16(ipw_passive_dwell_time(priv));
6364 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6366 #ifdef CONFIG_IPW2200_MONITOR
6367 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6371 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6372 case IEEE80211_52GHZ_BAND:
6373 band = (u8) (IPW_A_MODE << 6) | 1;
6374 channel = priv->channel;
6377 case IEEE80211_24GHZ_BAND:
6378 band = (u8) (IPW_B_MODE << 6) | 1;
6379 channel = priv->channel;
6383 band = (u8) (IPW_B_MODE << 6) | 1;
6388 scan.channels_list[0] = band;
6389 scan.channels_list[1] = channel;
6390 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6392 /* NOTE: The card will sit on this channel for this time
6393 * period. Scan aborts are timing sensitive and frequently
6394 * result in firmware restarts. As such, it is best to
6395 * set a small dwell_time here and just keep re-issuing
6396 * scans. Otherwise fast channel hopping will not actually
6399 * TODO: Move SPEED SCAN support to all modes and bands */
6400 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6403 #endif /* CONFIG_IPW2200_MONITOR */
6404 /* Honor direct scans first, otherwise if we are roaming make
6405 * this a direct scan for the current network. Finally,
6406 * ensure that every other scan is a fast channel hop scan */
6408 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6409 priv->direct_scan_ssid_len);
6411 IPW_DEBUG_HC("Attempt to send SSID command "
6416 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6417 } else if ((priv->status & STATUS_ROAMING)
6418 || (!(priv->status & STATUS_ASSOCIATED)
6419 && (priv->config & CFG_STATIC_ESSID)
6420 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6421 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6423 IPW_DEBUG_HC("Attempt to send SSID command "
6428 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6430 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6432 ipw_add_scan_channels(priv, &scan, scan_type);
6433 #ifdef CONFIG_IPW2200_MONITOR
6438 err = ipw_send_scan_request_ext(priv, &scan);
6440 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6444 priv->status |= STATUS_SCANNING;
6446 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6447 priv->direct_scan_ssid_len = 0;
6449 priv->status &= ~STATUS_SCAN_PENDING;
6451 queue_delayed_work(priv->workqueue, &priv->scan_check,
6452 IPW_SCAN_CHECK_WATCHDOG);
6454 mutex_unlock(&priv->mutex);
6458 static void ipw_request_passive_scan(struct work_struct *work)
6460 struct ipw_priv *priv =
6461 container_of(work, struct ipw_priv, request_passive_scan.work);
6462 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6465 static void ipw_request_scan(struct work_struct *work)
6467 struct ipw_priv *priv =
6468 container_of(work, struct ipw_priv, request_scan.work);
6469 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6472 static void ipw_request_direct_scan(struct work_struct *work)
6474 struct ipw_priv *priv =
6475 container_of(work, struct ipw_priv, request_direct_scan.work);
6476 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6479 static void ipw_bg_abort_scan(struct work_struct *work)
6481 struct ipw_priv *priv =
6482 container_of(work, struct ipw_priv, abort_scan);
6483 mutex_lock(&priv->mutex);
6484 ipw_abort_scan(priv);
6485 mutex_unlock(&priv->mutex);
6488 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6490 /* This is called when wpa_supplicant loads and closes the driver
6492 priv->ieee->wpa_enabled = value;
6496 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6498 struct ieee80211_device *ieee = priv->ieee;
6499 struct ieee80211_security sec = {
6500 .flags = SEC_AUTH_MODE,
6504 if (value & IW_AUTH_ALG_SHARED_KEY) {
6505 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6507 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6508 sec.auth_mode = WLAN_AUTH_OPEN;
6510 } else if (value & IW_AUTH_ALG_LEAP) {
6511 sec.auth_mode = WLAN_AUTH_LEAP;
6516 if (ieee->set_security)
6517 ieee->set_security(ieee->dev, &sec);
6524 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6527 /* make sure WPA is enabled */
6528 ipw_wpa_enable(priv, 1);
6531 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6532 char *capabilities, int length)
6534 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6536 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6545 static int ipw_wx_set_genie(struct net_device *dev,
6546 struct iw_request_info *info,
6547 union iwreq_data *wrqu, char *extra)
6549 struct ipw_priv *priv = ieee80211_priv(dev);
6550 struct ieee80211_device *ieee = priv->ieee;
6554 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6555 (wrqu->data.length && extra == NULL))
6558 if (wrqu->data.length) {
6559 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6565 memcpy(buf, extra, wrqu->data.length);
6566 kfree(ieee->wpa_ie);
6568 ieee->wpa_ie_len = wrqu->data.length;
6570 kfree(ieee->wpa_ie);
6571 ieee->wpa_ie = NULL;
6572 ieee->wpa_ie_len = 0;
6575 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6581 static int ipw_wx_get_genie(struct net_device *dev,
6582 struct iw_request_info *info,
6583 union iwreq_data *wrqu, char *extra)
6585 struct ipw_priv *priv = ieee80211_priv(dev);
6586 struct ieee80211_device *ieee = priv->ieee;
6589 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6590 wrqu->data.length = 0;
6594 if (wrqu->data.length < ieee->wpa_ie_len) {
6599 wrqu->data.length = ieee->wpa_ie_len;
6600 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6606 static int wext_cipher2level(int cipher)
6609 case IW_AUTH_CIPHER_NONE:
6611 case IW_AUTH_CIPHER_WEP40:
6612 case IW_AUTH_CIPHER_WEP104:
6614 case IW_AUTH_CIPHER_TKIP:
6616 case IW_AUTH_CIPHER_CCMP:
6624 static int ipw_wx_set_auth(struct net_device *dev,
6625 struct iw_request_info *info,
6626 union iwreq_data *wrqu, char *extra)
6628 struct ipw_priv *priv = ieee80211_priv(dev);
6629 struct ieee80211_device *ieee = priv->ieee;
6630 struct iw_param *param = &wrqu->param;
6631 struct lib80211_crypt_data *crypt;
6632 unsigned long flags;
6635 switch (param->flags & IW_AUTH_INDEX) {
6636 case IW_AUTH_WPA_VERSION:
6638 case IW_AUTH_CIPHER_PAIRWISE:
6639 ipw_set_hw_decrypt_unicast(priv,
6640 wext_cipher2level(param->value));
6642 case IW_AUTH_CIPHER_GROUP:
6643 ipw_set_hw_decrypt_multicast(priv,
6644 wext_cipher2level(param->value));
6646 case IW_AUTH_KEY_MGMT:
6648 * ipw2200 does not use these parameters
6652 case IW_AUTH_TKIP_COUNTERMEASURES:
6653 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6654 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6657 flags = crypt->ops->get_flags(crypt->priv);
6660 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6662 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6664 crypt->ops->set_flags(flags, crypt->priv);
6668 case IW_AUTH_DROP_UNENCRYPTED:{
6671 * wpa_supplicant calls set_wpa_enabled when the driver
6672 * is loaded and unloaded, regardless of if WPA is being
6673 * used. No other calls are made which can be used to
6674 * determine if encryption will be used or not prior to
6675 * association being expected. If encryption is not being
6676 * used, drop_unencrypted is set to false, else true -- we
6677 * can use this to determine if the CAP_PRIVACY_ON bit should
6680 struct ieee80211_security sec = {
6681 .flags = SEC_ENABLED,
6682 .enabled = param->value,
6684 priv->ieee->drop_unencrypted = param->value;
6685 /* We only change SEC_LEVEL for open mode. Others
6686 * are set by ipw_wpa_set_encryption.
6688 if (!param->value) {
6689 sec.flags |= SEC_LEVEL;
6690 sec.level = SEC_LEVEL_0;
6692 sec.flags |= SEC_LEVEL;
6693 sec.level = SEC_LEVEL_1;
6695 if (priv->ieee->set_security)
6696 priv->ieee->set_security(priv->ieee->dev, &sec);
6700 case IW_AUTH_80211_AUTH_ALG:
6701 ret = ipw_wpa_set_auth_algs(priv, param->value);
6704 case IW_AUTH_WPA_ENABLED:
6705 ret = ipw_wpa_enable(priv, param->value);
6706 ipw_disassociate(priv);
6709 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6710 ieee->ieee802_1x = param->value;
6713 case IW_AUTH_PRIVACY_INVOKED:
6714 ieee->privacy_invoked = param->value;
6724 static int ipw_wx_get_auth(struct net_device *dev,
6725 struct iw_request_info *info,
6726 union iwreq_data *wrqu, char *extra)
6728 struct ipw_priv *priv = ieee80211_priv(dev);
6729 struct ieee80211_device *ieee = priv->ieee;
6730 struct lib80211_crypt_data *crypt;
6731 struct iw_param *param = &wrqu->param;
6734 switch (param->flags & IW_AUTH_INDEX) {
6735 case IW_AUTH_WPA_VERSION:
6736 case IW_AUTH_CIPHER_PAIRWISE:
6737 case IW_AUTH_CIPHER_GROUP:
6738 case IW_AUTH_KEY_MGMT:
6740 * wpa_supplicant will control these internally
6745 case IW_AUTH_TKIP_COUNTERMEASURES:
6746 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6747 if (!crypt || !crypt->ops->get_flags)
6750 param->value = (crypt->ops->get_flags(crypt->priv) &
6751 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6755 case IW_AUTH_DROP_UNENCRYPTED:
6756 param->value = ieee->drop_unencrypted;
6759 case IW_AUTH_80211_AUTH_ALG:
6760 param->value = ieee->sec.auth_mode;
6763 case IW_AUTH_WPA_ENABLED:
6764 param->value = ieee->wpa_enabled;
6767 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6768 param->value = ieee->ieee802_1x;
6771 case IW_AUTH_ROAMING_CONTROL:
6772 case IW_AUTH_PRIVACY_INVOKED:
6773 param->value = ieee->privacy_invoked;
6782 /* SIOCSIWENCODEEXT */
6783 static int ipw_wx_set_encodeext(struct net_device *dev,
6784 struct iw_request_info *info,
6785 union iwreq_data *wrqu, char *extra)
6787 struct ipw_priv *priv = ieee80211_priv(dev);
6788 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6791 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6792 /* IPW HW can't build TKIP MIC,
6793 host decryption still needed */
6794 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6795 priv->ieee->host_mc_decrypt = 1;
6797 priv->ieee->host_encrypt = 0;
6798 priv->ieee->host_encrypt_msdu = 1;
6799 priv->ieee->host_decrypt = 1;
6802 priv->ieee->host_encrypt = 0;
6803 priv->ieee->host_encrypt_msdu = 0;
6804 priv->ieee->host_decrypt = 0;
6805 priv->ieee->host_mc_decrypt = 0;
6809 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6812 /* SIOCGIWENCODEEXT */
6813 static int ipw_wx_get_encodeext(struct net_device *dev,
6814 struct iw_request_info *info,
6815 union iwreq_data *wrqu, char *extra)
6817 struct ipw_priv *priv = ieee80211_priv(dev);
6818 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6822 static int ipw_wx_set_mlme(struct net_device *dev,
6823 struct iw_request_info *info,
6824 union iwreq_data *wrqu, char *extra)
6826 struct ipw_priv *priv = ieee80211_priv(dev);
6827 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6830 reason = cpu_to_le16(mlme->reason_code);
6832 switch (mlme->cmd) {
6833 case IW_MLME_DEAUTH:
6834 /* silently ignore */
6837 case IW_MLME_DISASSOC:
6838 ipw_disassociate(priv);
6847 #ifdef CONFIG_IPW2200_QOS
6851 * get the modulation type of the current network or
6852 * the card current mode
6854 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6858 if (priv->status & STATUS_ASSOCIATED) {
6859 unsigned long flags;
6861 spin_lock_irqsave(&priv->ieee->lock, flags);
6862 mode = priv->assoc_network->mode;
6863 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6865 mode = priv->ieee->mode;
6867 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6872 * Handle management frame beacon and probe response
6874 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6876 struct ieee80211_network *network)
6878 u32 size = sizeof(struct ieee80211_qos_parameters);
6880 if (network->capability & WLAN_CAPABILITY_IBSS)
6881 network->qos_data.active = network->qos_data.supported;
6883 if (network->flags & NETWORK_HAS_QOS_MASK) {
6884 if (active_network &&
6885 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6886 network->qos_data.active = network->qos_data.supported;
6888 if ((network->qos_data.active == 1) && (active_network == 1) &&
6889 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6890 (network->qos_data.old_param_count !=
6891 network->qos_data.param_count)) {
6892 network->qos_data.old_param_count =
6893 network->qos_data.param_count;
6894 schedule_work(&priv->qos_activate);
6895 IPW_DEBUG_QOS("QoS parameters change call "
6899 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6900 memcpy(&network->qos_data.parameters,
6901 &def_parameters_CCK, size);
6903 memcpy(&network->qos_data.parameters,
6904 &def_parameters_OFDM, size);
6906 if ((network->qos_data.active == 1) && (active_network == 1)) {
6907 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6908 schedule_work(&priv->qos_activate);
6911 network->qos_data.active = 0;
6912 network->qos_data.supported = 0;
6914 if ((priv->status & STATUS_ASSOCIATED) &&
6915 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6916 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6917 if (network->capability & WLAN_CAPABILITY_IBSS)
6918 if ((network->ssid_len ==
6919 priv->assoc_network->ssid_len) &&
6920 !memcmp(network->ssid,
6921 priv->assoc_network->ssid,
6922 network->ssid_len)) {
6923 queue_work(priv->workqueue,
6924 &priv->merge_networks);
6932 * This function set up the firmware to support QoS. It sends
6933 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6935 static int ipw_qos_activate(struct ipw_priv *priv,
6936 struct ieee80211_qos_data *qos_network_data)
6939 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6940 struct ieee80211_qos_parameters *active_one = NULL;
6941 u32 size = sizeof(struct ieee80211_qos_parameters);
6946 type = ipw_qos_current_mode(priv);
6948 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6949 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6950 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6951 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6953 if (qos_network_data == NULL) {
6954 if (type == IEEE_B) {
6955 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6956 active_one = &def_parameters_CCK;
6958 active_one = &def_parameters_OFDM;
6960 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6961 burst_duration = ipw_qos_get_burst_duration(priv);
6962 for (i = 0; i < QOS_QUEUE_NUM; i++)
6963 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6964 cpu_to_le16(burst_duration);
6965 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6966 if (type == IEEE_B) {
6967 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6969 if (priv->qos_data.qos_enable == 0)
6970 active_one = &def_parameters_CCK;
6972 active_one = priv->qos_data.def_qos_parm_CCK;
6974 if (priv->qos_data.qos_enable == 0)
6975 active_one = &def_parameters_OFDM;
6977 active_one = priv->qos_data.def_qos_parm_OFDM;
6979 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6981 unsigned long flags;
6984 spin_lock_irqsave(&priv->ieee->lock, flags);
6985 active_one = &(qos_network_data->parameters);
6986 qos_network_data->old_param_count =
6987 qos_network_data->param_count;
6988 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6989 active = qos_network_data->supported;
6990 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6993 burst_duration = ipw_qos_get_burst_duration(priv);
6994 for (i = 0; i < QOS_QUEUE_NUM; i++)
6995 qos_parameters[QOS_PARAM_SET_ACTIVE].
6996 tx_op_limit[i] = cpu_to_le16(burst_duration);
7000 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7001 err = ipw_send_qos_params_command(priv,
7002 (struct ieee80211_qos_parameters *)
7003 &(qos_parameters[0]));
7005 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7011 * send IPW_CMD_WME_INFO to the firmware
7013 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7016 struct ieee80211_qos_information_element qos_info;
7021 qos_info.elementID = QOS_ELEMENT_ID;
7022 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7024 qos_info.version = QOS_VERSION_1;
7025 qos_info.ac_info = 0;
7027 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7028 qos_info.qui_type = QOS_OUI_TYPE;
7029 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7031 ret = ipw_send_qos_info_command(priv, &qos_info);
7033 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7039 * Set the QoS parameter with the association request structure
7041 static int ipw_qos_association(struct ipw_priv *priv,
7042 struct ieee80211_network *network)
7045 struct ieee80211_qos_data *qos_data = NULL;
7046 struct ieee80211_qos_data ibss_data = {
7051 switch (priv->ieee->iw_mode) {
7053 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7055 qos_data = &ibss_data;
7059 qos_data = &network->qos_data;
7067 err = ipw_qos_activate(priv, qos_data);
7069 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7073 if (priv->qos_data.qos_enable && qos_data->supported) {
7074 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7075 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7076 return ipw_qos_set_info_element(priv);
7083 * handling the beaconing responses. if we get different QoS setting
7084 * off the network from the associated setting, adjust the QoS
7087 static int ipw_qos_association_resp(struct ipw_priv *priv,
7088 struct ieee80211_network *network)
7091 unsigned long flags;
7092 u32 size = sizeof(struct ieee80211_qos_parameters);
7093 int set_qos_param = 0;
7095 if ((priv == NULL) || (network == NULL) ||
7096 (priv->assoc_network == NULL))
7099 if (!(priv->status & STATUS_ASSOCIATED))
7102 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7105 spin_lock_irqsave(&priv->ieee->lock, flags);
7106 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7107 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7108 sizeof(struct ieee80211_qos_data));
7109 priv->assoc_network->qos_data.active = 1;
7110 if ((network->qos_data.old_param_count !=
7111 network->qos_data.param_count)) {
7113 network->qos_data.old_param_count =
7114 network->qos_data.param_count;
7118 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7119 memcpy(&priv->assoc_network->qos_data.parameters,
7120 &def_parameters_CCK, size);
7122 memcpy(&priv->assoc_network->qos_data.parameters,
7123 &def_parameters_OFDM, size);
7124 priv->assoc_network->qos_data.active = 0;
7125 priv->assoc_network->qos_data.supported = 0;
7129 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7131 if (set_qos_param == 1)
7132 schedule_work(&priv->qos_activate);
7137 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7144 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7145 ret = priv->qos_data.burst_duration_CCK;
7147 ret = priv->qos_data.burst_duration_OFDM;
7153 * Initialize the setting of QoS global
7155 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7156 int burst_enable, u32 burst_duration_CCK,
7157 u32 burst_duration_OFDM)
7159 priv->qos_data.qos_enable = enable;
7161 if (priv->qos_data.qos_enable) {
7162 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7163 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7164 IPW_DEBUG_QOS("QoS is enabled\n");
7166 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7167 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7168 IPW_DEBUG_QOS("QoS is not enabled\n");
7171 priv->qos_data.burst_enable = burst_enable;
7174 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7175 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7177 priv->qos_data.burst_duration_CCK = 0;
7178 priv->qos_data.burst_duration_OFDM = 0;
7183 * map the packet priority to the right TX Queue
7185 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7187 if (priority > 7 || !priv->qos_data.qos_enable)
7190 return from_priority_to_tx_queue[priority] - 1;
7193 static int ipw_is_qos_active(struct net_device *dev,
7194 struct sk_buff *skb)
7196 struct ipw_priv *priv = ieee80211_priv(dev);
7197 struct ieee80211_qos_data *qos_data = NULL;
7198 int active, supported;
7199 u8 *daddr = skb->data + ETH_ALEN;
7200 int unicast = !is_multicast_ether_addr(daddr);
7202 if (!(priv->status & STATUS_ASSOCIATED))
7205 qos_data = &priv->assoc_network->qos_data;
7207 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7209 qos_data->active = 0;
7211 qos_data->active = qos_data->supported;
7213 active = qos_data->active;
7214 supported = qos_data->supported;
7215 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7217 priv->qos_data.qos_enable, active, supported, unicast);
7218 if (active && priv->qos_data.qos_enable)
7225 * add QoS parameter to the TX command
7227 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7229 struct tfd_data *tfd)
7231 int tx_queue_id = 0;
7234 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7235 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7237 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7238 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7239 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7245 * background support to run QoS activate functionality
7247 static void ipw_bg_qos_activate(struct work_struct *work)
7249 struct ipw_priv *priv =
7250 container_of(work, struct ipw_priv, qos_activate);
7255 mutex_lock(&priv->mutex);
7257 if (priv->status & STATUS_ASSOCIATED)
7258 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7260 mutex_unlock(&priv->mutex);
7263 static int ipw_handle_probe_response(struct net_device *dev,
7264 struct ieee80211_probe_response *resp,
7265 struct ieee80211_network *network)
7267 struct ipw_priv *priv = ieee80211_priv(dev);
7268 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7269 (network == priv->assoc_network));
7271 ipw_qos_handle_probe_response(priv, active_network, network);
7276 static int ipw_handle_beacon(struct net_device *dev,
7277 struct ieee80211_beacon *resp,
7278 struct ieee80211_network *network)
7280 struct ipw_priv *priv = ieee80211_priv(dev);
7281 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7282 (network == priv->assoc_network));
7284 ipw_qos_handle_probe_response(priv, active_network, network);
7289 static int ipw_handle_assoc_response(struct net_device *dev,
7290 struct ieee80211_assoc_response *resp,
7291 struct ieee80211_network *network)
7293 struct ipw_priv *priv = ieee80211_priv(dev);
7294 ipw_qos_association_resp(priv, network);
7298 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7301 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7302 sizeof(*qos_param) * 3, qos_param);
7305 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7308 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7312 #endif /* CONFIG_IPW2200_QOS */
7314 static int ipw_associate_network(struct ipw_priv *priv,
7315 struct ieee80211_network *network,
7316 struct ipw_supported_rates *rates, int roaming)
7319 DECLARE_SSID_BUF(ssid);
7321 if (priv->config & CFG_FIXED_RATE)
7322 ipw_set_fixed_rate(priv, network->mode);
7324 if (!(priv->config & CFG_STATIC_ESSID)) {
7325 priv->essid_len = min(network->ssid_len,
7326 (u8) IW_ESSID_MAX_SIZE);
7327 memcpy(priv->essid, network->ssid, priv->essid_len);
7330 network->last_associate = jiffies;
7332 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7333 priv->assoc_request.channel = network->channel;
7334 priv->assoc_request.auth_key = 0;
7336 if ((priv->capability & CAP_PRIVACY_ON) &&
7337 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7338 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7339 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7341 if (priv->ieee->sec.level == SEC_LEVEL_1)
7342 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7344 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7345 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7346 priv->assoc_request.auth_type = AUTH_LEAP;
7348 priv->assoc_request.auth_type = AUTH_OPEN;
7350 if (priv->ieee->wpa_ie_len) {
7351 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7352 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7353 priv->ieee->wpa_ie_len);
7357 * It is valid for our ieee device to support multiple modes, but
7358 * when it comes to associating to a given network we have to choose
7361 if (network->mode & priv->ieee->mode & IEEE_A)
7362 priv->assoc_request.ieee_mode = IPW_A_MODE;
7363 else if (network->mode & priv->ieee->mode & IEEE_G)
7364 priv->assoc_request.ieee_mode = IPW_G_MODE;
7365 else if (network->mode & priv->ieee->mode & IEEE_B)
7366 priv->assoc_request.ieee_mode = IPW_B_MODE;
7368 priv->assoc_request.capability = cpu_to_le16(network->capability);
7369 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7370 && !(priv->config & CFG_PREAMBLE_LONG)) {
7371 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7373 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7375 /* Clear the short preamble if we won't be supporting it */
7376 priv->assoc_request.capability &=
7377 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7380 /* Clear capability bits that aren't used in Ad Hoc */
7381 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7382 priv->assoc_request.capability &=
7383 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7385 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7386 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7387 roaming ? "Rea" : "A",
7388 print_ssid(ssid, priv->essid, priv->essid_len),
7390 ipw_modes[priv->assoc_request.ieee_mode],
7392 (priv->assoc_request.preamble_length ==
7393 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7394 network->capability &
7395 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7396 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7397 priv->capability & CAP_PRIVACY_ON ?
7398 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7400 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7401 priv->capability & CAP_PRIVACY_ON ?
7402 '1' + priv->ieee->sec.active_key : '.',
7403 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7405 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7406 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7407 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7408 priv->assoc_request.assoc_type = HC_IBSS_START;
7409 priv->assoc_request.assoc_tsf_msw = 0;
7410 priv->assoc_request.assoc_tsf_lsw = 0;
7412 if (unlikely(roaming))
7413 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7415 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7416 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7417 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7420 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7422 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7423 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7424 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7426 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7427 priv->assoc_request.atim_window = 0;
7430 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7432 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7434 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7438 rates->ieee_mode = priv->assoc_request.ieee_mode;
7439 rates->purpose = IPW_RATE_CONNECT;
7440 ipw_send_supported_rates(priv, rates);
7442 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7443 priv->sys_config.dot11g_auto_detection = 1;
7445 priv->sys_config.dot11g_auto_detection = 0;
7447 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7448 priv->sys_config.answer_broadcast_ssid_probe = 1;
7450 priv->sys_config.answer_broadcast_ssid_probe = 0;
7452 err = ipw_send_system_config(priv);
7454 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7458 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7459 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7461 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7466 * If preemption is enabled, it is possible for the association
7467 * to complete before we return from ipw_send_associate. Therefore
7468 * we have to be sure and update our priviate data first.
7470 priv->channel = network->channel;
7471 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7472 priv->status |= STATUS_ASSOCIATING;
7473 priv->status &= ~STATUS_SECURITY_UPDATED;
7475 priv->assoc_network = network;
7477 #ifdef CONFIG_IPW2200_QOS
7478 ipw_qos_association(priv, network);
7481 err = ipw_send_associate(priv, &priv->assoc_request);
7483 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7487 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7488 print_ssid(ssid, priv->essid, priv->essid_len),
7494 static void ipw_roam(void *data)
7496 struct ipw_priv *priv = data;
7497 struct ieee80211_network *network = NULL;
7498 struct ipw_network_match match = {
7499 .network = priv->assoc_network
7502 /* The roaming process is as follows:
7504 * 1. Missed beacon threshold triggers the roaming process by
7505 * setting the status ROAM bit and requesting a scan.
7506 * 2. When the scan completes, it schedules the ROAM work
7507 * 3. The ROAM work looks at all of the known networks for one that
7508 * is a better network than the currently associated. If none
7509 * found, the ROAM process is over (ROAM bit cleared)
7510 * 4. If a better network is found, a disassociation request is
7512 * 5. When the disassociation completes, the roam work is again
7513 * scheduled. The second time through, the driver is no longer
7514 * associated, and the newly selected network is sent an
7515 * association request.
7516 * 6. At this point ,the roaming process is complete and the ROAM
7517 * status bit is cleared.
7520 /* If we are no longer associated, and the roaming bit is no longer
7521 * set, then we are not actively roaming, so just return */
7522 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7525 if (priv->status & STATUS_ASSOCIATED) {
7526 /* First pass through ROAM process -- look for a better
7528 unsigned long flags;
7529 u8 rssi = priv->assoc_network->stats.rssi;
7530 priv->assoc_network->stats.rssi = -128;
7531 spin_lock_irqsave(&priv->ieee->lock, flags);
7532 list_for_each_entry(network, &priv->ieee->network_list, list) {
7533 if (network != priv->assoc_network)
7534 ipw_best_network(priv, &match, network, 1);
7536 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7537 priv->assoc_network->stats.rssi = rssi;
7539 if (match.network == priv->assoc_network) {
7540 IPW_DEBUG_ASSOC("No better APs in this network to "
7542 priv->status &= ~STATUS_ROAMING;
7543 ipw_debug_config(priv);
7547 ipw_send_disassociate(priv, 1);
7548 priv->assoc_network = match.network;
7553 /* Second pass through ROAM process -- request association */
7554 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7555 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7556 priv->status &= ~STATUS_ROAMING;
7559 static void ipw_bg_roam(struct work_struct *work)
7561 struct ipw_priv *priv =
7562 container_of(work, struct ipw_priv, roam);
7563 mutex_lock(&priv->mutex);
7565 mutex_unlock(&priv->mutex);
7568 static int ipw_associate(void *data)
7570 struct ipw_priv *priv = data;
7572 struct ieee80211_network *network = NULL;
7573 struct ipw_network_match match = {
7576 struct ipw_supported_rates *rates;
7577 struct list_head *element;
7578 unsigned long flags;
7579 DECLARE_SSID_BUF(ssid);
7581 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7582 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7586 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7587 IPW_DEBUG_ASSOC("Not attempting association (already in "
7592 if (priv->status & STATUS_DISASSOCIATING) {
7593 IPW_DEBUG_ASSOC("Not attempting association (in "
7594 "disassociating)\n ");
7595 queue_work(priv->workqueue, &priv->associate);
7599 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7600 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7605 if (!(priv->config & CFG_ASSOCIATE) &&
7606 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7607 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7611 /* Protect our use of the network_list */
7612 spin_lock_irqsave(&priv->ieee->lock, flags);
7613 list_for_each_entry(network, &priv->ieee->network_list, list)
7614 ipw_best_network(priv, &match, network, 0);
7616 network = match.network;
7617 rates = &match.rates;
7619 if (network == NULL &&
7620 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7621 priv->config & CFG_ADHOC_CREATE &&
7622 priv->config & CFG_STATIC_ESSID &&
7623 priv->config & CFG_STATIC_CHANNEL) {
7624 /* Use oldest network if the free list is empty */
7625 if (list_empty(&priv->ieee->network_free_list)) {
7626 struct ieee80211_network *oldest = NULL;
7627 struct ieee80211_network *target;
7629 list_for_each_entry(target, &priv->ieee->network_list, list) {
7630 if ((oldest == NULL) ||
7631 (target->last_scanned < oldest->last_scanned))
7635 /* If there are no more slots, expire the oldest */
7636 list_del(&oldest->list);
7638 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7640 print_ssid(ssid, target->ssid,
7643 list_add_tail(&target->list,
7644 &priv->ieee->network_free_list);
7647 element = priv->ieee->network_free_list.next;
7648 network = list_entry(element, struct ieee80211_network, list);
7649 ipw_adhoc_create(priv, network);
7650 rates = &priv->rates;
7652 list_add_tail(&network->list, &priv->ieee->network_list);
7654 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7656 /* If we reached the end of the list, then we don't have any valid
7659 ipw_debug_config(priv);
7661 if (!(priv->status & STATUS_SCANNING)) {
7662 if (!(priv->config & CFG_SPEED_SCAN))
7663 queue_delayed_work(priv->workqueue,
7664 &priv->request_scan,
7667 queue_delayed_work(priv->workqueue,
7668 &priv->request_scan, 0);
7674 ipw_associate_network(priv, network, rates, 0);
7679 static void ipw_bg_associate(struct work_struct *work)
7681 struct ipw_priv *priv =
7682 container_of(work, struct ipw_priv, associate);
7683 mutex_lock(&priv->mutex);
7684 ipw_associate(priv);
7685 mutex_unlock(&priv->mutex);
7688 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7689 struct sk_buff *skb)
7691 struct ieee80211_hdr *hdr;
7694 hdr = (struct ieee80211_hdr *)skb->data;
7695 fc = le16_to_cpu(hdr->frame_control);
7696 if (!(fc & IEEE80211_FCTL_PROTECTED))
7699 fc &= ~IEEE80211_FCTL_PROTECTED;
7700 hdr->frame_control = cpu_to_le16(fc);
7701 switch (priv->ieee->sec.level) {
7703 /* Remove CCMP HDR */
7704 memmove(skb->data + IEEE80211_3ADDR_LEN,
7705 skb->data + IEEE80211_3ADDR_LEN + 8,
7706 skb->len - IEEE80211_3ADDR_LEN - 8);
7707 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7713 memmove(skb->data + IEEE80211_3ADDR_LEN,
7714 skb->data + IEEE80211_3ADDR_LEN + 4,
7715 skb->len - IEEE80211_3ADDR_LEN - 4);
7716 skb_trim(skb, skb->len - 8); /* IV + ICV */
7721 printk(KERN_ERR "Unknow security level %d\n",
7722 priv->ieee->sec.level);
7727 static void ipw_handle_data_packet(struct ipw_priv *priv,
7728 struct ipw_rx_mem_buffer *rxb,
7729 struct ieee80211_rx_stats *stats)
7731 struct net_device *dev = priv->net_dev;
7732 struct ieee80211_hdr_4addr *hdr;
7733 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7735 /* We received data from the HW, so stop the watchdog */
7736 dev->trans_start = jiffies;
7738 /* We only process data packets if the
7739 * interface is open */
7740 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7741 skb_tailroom(rxb->skb))) {
7742 dev->stats.rx_errors++;
7743 priv->wstats.discard.misc++;
7744 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7746 } else if (unlikely(!netif_running(priv->net_dev))) {
7747 dev->stats.rx_dropped++;
7748 priv->wstats.discard.misc++;
7749 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7753 /* Advance skb->data to the start of the actual payload */
7754 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7756 /* Set the size of the skb to the size of the frame */
7757 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7759 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7761 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7762 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7763 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7764 (is_multicast_ether_addr(hdr->addr1) ?
7765 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7766 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7768 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7769 dev->stats.rx_errors++;
7770 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7772 __ipw_led_activity_on(priv);
7776 #ifdef CONFIG_IPW2200_RADIOTAP
7777 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7778 struct ipw_rx_mem_buffer *rxb,
7779 struct ieee80211_rx_stats *stats)
7781 struct net_device *dev = priv->net_dev;
7782 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7783 struct ipw_rx_frame *frame = &pkt->u.frame;
7785 /* initial pull of some data */
7786 u16 received_channel = frame->received_channel;
7787 u8 antennaAndPhy = frame->antennaAndPhy;
7788 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7789 u16 pktrate = frame->rate;
7791 /* Magic struct that slots into the radiotap header -- no reason
7792 * to build this manually element by element, we can write it much
7793 * more efficiently than we can parse it. ORDER MATTERS HERE */
7794 struct ipw_rt_hdr *ipw_rt;
7796 short len = le16_to_cpu(pkt->u.frame.length);
7798 /* We received data from the HW, so stop the watchdog */
7799 dev->trans_start = jiffies;
7801 /* We only process data packets if the
7802 * interface is open */
7803 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7804 skb_tailroom(rxb->skb))) {
7805 dev->stats.rx_errors++;
7806 priv->wstats.discard.misc++;
7807 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7809 } else if (unlikely(!netif_running(priv->net_dev))) {
7810 dev->stats.rx_dropped++;
7811 priv->wstats.discard.misc++;
7812 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7816 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7818 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7819 /* FIXME: Should alloc bigger skb instead */
7820 dev->stats.rx_dropped++;
7821 priv->wstats.discard.misc++;
7822 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7826 /* copy the frame itself */
7827 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7828 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7830 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7832 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7833 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7834 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7836 /* Big bitfield of all the fields we provide in radiotap */
7837 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7838 (1 << IEEE80211_RADIOTAP_TSFT) |
7839 (1 << IEEE80211_RADIOTAP_FLAGS) |
7840 (1 << IEEE80211_RADIOTAP_RATE) |
7841 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7842 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7843 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7844 (1 << IEEE80211_RADIOTAP_ANTENNA));
7846 /* Zero the flags, we'll add to them as we go */
7847 ipw_rt->rt_flags = 0;
7848 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7849 frame->parent_tsf[2] << 16 |
7850 frame->parent_tsf[1] << 8 |
7851 frame->parent_tsf[0]);
7853 /* Convert signal to DBM */
7854 ipw_rt->rt_dbmsignal = antsignal;
7855 ipw_rt->rt_dbmnoise = frame->noise;
7857 /* Convert the channel data and set the flags */
7858 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7859 if (received_channel > 14) { /* 802.11a */
7860 ipw_rt->rt_chbitmask =
7861 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7862 } else if (antennaAndPhy & 32) { /* 802.11b */
7863 ipw_rt->rt_chbitmask =
7864 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7865 } else { /* 802.11g */
7866 ipw_rt->rt_chbitmask =
7867 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7870 /* set the rate in multiples of 500k/s */
7872 case IPW_TX_RATE_1MB:
7873 ipw_rt->rt_rate = 2;
7875 case IPW_TX_RATE_2MB:
7876 ipw_rt->rt_rate = 4;
7878 case IPW_TX_RATE_5MB:
7879 ipw_rt->rt_rate = 10;
7881 case IPW_TX_RATE_6MB:
7882 ipw_rt->rt_rate = 12;
7884 case IPW_TX_RATE_9MB:
7885 ipw_rt->rt_rate = 18;
7887 case IPW_TX_RATE_11MB:
7888 ipw_rt->rt_rate = 22;
7890 case IPW_TX_RATE_12MB:
7891 ipw_rt->rt_rate = 24;
7893 case IPW_TX_RATE_18MB:
7894 ipw_rt->rt_rate = 36;
7896 case IPW_TX_RATE_24MB:
7897 ipw_rt->rt_rate = 48;
7899 case IPW_TX_RATE_36MB:
7900 ipw_rt->rt_rate = 72;
7902 case IPW_TX_RATE_48MB:
7903 ipw_rt->rt_rate = 96;
7905 case IPW_TX_RATE_54MB:
7906 ipw_rt->rt_rate = 108;
7909 ipw_rt->rt_rate = 0;
7913 /* antenna number */
7914 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7916 /* set the preamble flag if we have it */
7917 if ((antennaAndPhy & 64))
7918 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7920 /* Set the size of the skb to the size of the frame */
7921 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7923 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7925 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7926 dev->stats.rx_errors++;
7927 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7929 /* no LED during capture */
7934 #ifdef CONFIG_IPW2200_PROMISCUOUS
7935 #define ieee80211_is_probe_response(fc) \
7936 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7937 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7939 #define ieee80211_is_management(fc) \
7940 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7942 #define ieee80211_is_control(fc) \
7943 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7945 #define ieee80211_is_data(fc) \
7946 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7948 #define ieee80211_is_assoc_request(fc) \
7949 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7951 #define ieee80211_is_reassoc_request(fc) \
7952 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7954 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7955 struct ipw_rx_mem_buffer *rxb,
7956 struct ieee80211_rx_stats *stats)
7958 struct net_device *dev = priv->prom_net_dev;
7959 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7960 struct ipw_rx_frame *frame = &pkt->u.frame;
7961 struct ipw_rt_hdr *ipw_rt;
7963 /* First cache any information we need before we overwrite
7964 * the information provided in the skb from the hardware */
7965 struct ieee80211_hdr *hdr;
7966 u16 channel = frame->received_channel;
7967 u8 phy_flags = frame->antennaAndPhy;
7968 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7969 s8 noise = frame->noise;
7970 u8 rate = frame->rate;
7971 short len = le16_to_cpu(pkt->u.frame.length);
7972 struct sk_buff *skb;
7974 u16 filter = priv->prom_priv->filter;
7976 /* If the filter is set to not include Rx frames then return */
7977 if (filter & IPW_PROM_NO_RX)
7980 /* We received data from the HW, so stop the watchdog */
7981 dev->trans_start = jiffies;
7983 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7984 dev->stats.rx_errors++;
7985 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7989 /* We only process data packets if the interface is open */
7990 if (unlikely(!netif_running(dev))) {
7991 dev->stats.rx_dropped++;
7992 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7996 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7998 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7999 /* FIXME: Should alloc bigger skb instead */
8000 dev->stats.rx_dropped++;
8001 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8005 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8006 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
8007 if (filter & IPW_PROM_NO_MGMT)
8009 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8011 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
8012 if (filter & IPW_PROM_NO_CTL)
8014 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8016 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
8017 if (filter & IPW_PROM_NO_DATA)
8019 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8023 /* Copy the SKB since this is for the promiscuous side */
8024 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8026 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8030 /* copy the frame data to write after where the radiotap header goes */
8031 ipw_rt = (void *)skb->data;
8034 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8036 memcpy(ipw_rt->payload, hdr, len);
8038 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8039 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8040 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8042 /* Set the size of the skb to the size of the frame */
8043 skb_put(skb, sizeof(*ipw_rt) + len);
8045 /* Big bitfield of all the fields we provide in radiotap */
8046 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8047 (1 << IEEE80211_RADIOTAP_TSFT) |
8048 (1 << IEEE80211_RADIOTAP_FLAGS) |
8049 (1 << IEEE80211_RADIOTAP_RATE) |
8050 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8051 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8052 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8053 (1 << IEEE80211_RADIOTAP_ANTENNA));
8055 /* Zero the flags, we'll add to them as we go */
8056 ipw_rt->rt_flags = 0;
8057 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8058 frame->parent_tsf[2] << 16 |
8059 frame->parent_tsf[1] << 8 |
8060 frame->parent_tsf[0]);
8062 /* Convert to DBM */
8063 ipw_rt->rt_dbmsignal = signal;
8064 ipw_rt->rt_dbmnoise = noise;
8066 /* Convert the channel data and set the flags */
8067 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8068 if (channel > 14) { /* 802.11a */
8069 ipw_rt->rt_chbitmask =
8070 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8071 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8072 ipw_rt->rt_chbitmask =
8073 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8074 } else { /* 802.11g */
8075 ipw_rt->rt_chbitmask =
8076 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8079 /* set the rate in multiples of 500k/s */
8081 case IPW_TX_RATE_1MB:
8082 ipw_rt->rt_rate = 2;
8084 case IPW_TX_RATE_2MB:
8085 ipw_rt->rt_rate = 4;
8087 case IPW_TX_RATE_5MB:
8088 ipw_rt->rt_rate = 10;
8090 case IPW_TX_RATE_6MB:
8091 ipw_rt->rt_rate = 12;
8093 case IPW_TX_RATE_9MB:
8094 ipw_rt->rt_rate = 18;
8096 case IPW_TX_RATE_11MB:
8097 ipw_rt->rt_rate = 22;
8099 case IPW_TX_RATE_12MB:
8100 ipw_rt->rt_rate = 24;
8102 case IPW_TX_RATE_18MB:
8103 ipw_rt->rt_rate = 36;
8105 case IPW_TX_RATE_24MB:
8106 ipw_rt->rt_rate = 48;
8108 case IPW_TX_RATE_36MB:
8109 ipw_rt->rt_rate = 72;
8111 case IPW_TX_RATE_48MB:
8112 ipw_rt->rt_rate = 96;
8114 case IPW_TX_RATE_54MB:
8115 ipw_rt->rt_rate = 108;
8118 ipw_rt->rt_rate = 0;
8122 /* antenna number */
8123 ipw_rt->rt_antenna = (phy_flags & 3);
8125 /* set the preamble flag if we have it */
8126 if (phy_flags & (1 << 6))
8127 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8129 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8131 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8132 dev->stats.rx_errors++;
8133 dev_kfree_skb_any(skb);
8138 static int is_network_packet(struct ipw_priv *priv,
8139 struct ieee80211_hdr_4addr *header)
8141 /* Filter incoming packets to determine if they are targetted toward
8142 * this network, discarding packets coming from ourselves */
8143 switch (priv->ieee->iw_mode) {
8144 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8145 /* packets from our adapter are dropped (echo) */
8146 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8149 /* {broad,multi}cast packets to our BSSID go through */
8150 if (is_multicast_ether_addr(header->addr1))
8151 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8153 /* packets to our adapter go through */
8154 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8157 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8158 /* packets from our adapter are dropped (echo) */
8159 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8162 /* {broad,multi}cast packets to our BSS go through */
8163 if (is_multicast_ether_addr(header->addr1))
8164 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8166 /* packets to our adapter go through */
8167 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8174 #define IPW_PACKET_RETRY_TIME HZ
8176 static int is_duplicate_packet(struct ipw_priv *priv,
8177 struct ieee80211_hdr_4addr *header)
8179 u16 sc = le16_to_cpu(header->seq_ctl);
8180 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8181 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8182 u16 *last_seq, *last_frag;
8183 unsigned long *last_time;
8185 switch (priv->ieee->iw_mode) {
8188 struct list_head *p;
8189 struct ipw_ibss_seq *entry = NULL;
8190 u8 *mac = header->addr2;
8191 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8193 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8195 list_entry(p, struct ipw_ibss_seq, list);
8196 if (!memcmp(entry->mac, mac, ETH_ALEN))
8199 if (p == &priv->ibss_mac_hash[index]) {
8200 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8203 ("Cannot malloc new mac entry\n");
8206 memcpy(entry->mac, mac, ETH_ALEN);
8207 entry->seq_num = seq;
8208 entry->frag_num = frag;
8209 entry->packet_time = jiffies;
8210 list_add(&entry->list,
8211 &priv->ibss_mac_hash[index]);
8214 last_seq = &entry->seq_num;
8215 last_frag = &entry->frag_num;
8216 last_time = &entry->packet_time;
8220 last_seq = &priv->last_seq_num;
8221 last_frag = &priv->last_frag_num;
8222 last_time = &priv->last_packet_time;
8227 if ((*last_seq == seq) &&
8228 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8229 if (*last_frag == frag)
8231 if (*last_frag + 1 != frag)
8232 /* out-of-order fragment */
8238 *last_time = jiffies;
8242 /* Comment this line now since we observed the card receives
8243 * duplicate packets but the FCTL_RETRY bit is not set in the
8244 * IBSS mode with fragmentation enabled.
8245 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8249 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8250 struct ipw_rx_mem_buffer *rxb,
8251 struct ieee80211_rx_stats *stats)
8253 struct sk_buff *skb = rxb->skb;
8254 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8255 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8256 (skb->data + IPW_RX_FRAME_SIZE);
8258 ieee80211_rx_mgt(priv->ieee, header, stats);
8260 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8261 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8262 IEEE80211_STYPE_PROBE_RESP) ||
8263 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8264 IEEE80211_STYPE_BEACON))) {
8265 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8266 ipw_add_station(priv, header->addr2);
8269 if (priv->config & CFG_NET_STATS) {
8270 IPW_DEBUG_HC("sending stat packet\n");
8272 /* Set the size of the skb to the size of the full
8273 * ipw header and 802.11 frame */
8274 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8277 /* Advance past the ipw packet header to the 802.11 frame */
8278 skb_pull(skb, IPW_RX_FRAME_SIZE);
8280 /* Push the ieee80211_rx_stats before the 802.11 frame */
8281 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8283 skb->dev = priv->ieee->dev;
8285 /* Point raw at the ieee80211_stats */
8286 skb_reset_mac_header(skb);
8288 skb->pkt_type = PACKET_OTHERHOST;
8289 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8290 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8297 * Main entry function for recieving a packet with 80211 headers. This
8298 * should be called when ever the FW has notified us that there is a new
8299 * skb in the recieve queue.
8301 static void ipw_rx(struct ipw_priv *priv)
8303 struct ipw_rx_mem_buffer *rxb;
8304 struct ipw_rx_packet *pkt;
8305 struct ieee80211_hdr_4addr *header;
8310 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8311 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8312 i = priv->rxq->read;
8314 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8318 rxb = priv->rxq->queue[i];
8319 if (unlikely(rxb == NULL)) {
8320 printk(KERN_CRIT "Queue not allocated!\n");
8323 priv->rxq->queue[i] = NULL;
8325 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8327 PCI_DMA_FROMDEVICE);
8329 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8330 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8331 pkt->header.message_type,
8332 pkt->header.rx_seq_num, pkt->header.control_bits);
8334 switch (pkt->header.message_type) {
8335 case RX_FRAME_TYPE: /* 802.11 frame */ {
8336 struct ieee80211_rx_stats stats = {
8337 .rssi = pkt->u.frame.rssi_dbm -
8340 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8341 IPW_RSSI_TO_DBM + 0x100,
8343 le16_to_cpu(pkt->u.frame.noise),
8344 .rate = pkt->u.frame.rate,
8345 .mac_time = jiffies,
8347 pkt->u.frame.received_channel,
8350 control & (1 << 0)) ?
8351 IEEE80211_24GHZ_BAND :
8352 IEEE80211_52GHZ_BAND,
8353 .len = le16_to_cpu(pkt->u.frame.length),
8356 if (stats.rssi != 0)
8357 stats.mask |= IEEE80211_STATMASK_RSSI;
8358 if (stats.signal != 0)
8359 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8360 if (stats.noise != 0)
8361 stats.mask |= IEEE80211_STATMASK_NOISE;
8362 if (stats.rate != 0)
8363 stats.mask |= IEEE80211_STATMASK_RATE;
8367 #ifdef CONFIG_IPW2200_PROMISCUOUS
8368 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8369 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8372 #ifdef CONFIG_IPW2200_MONITOR
8373 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8374 #ifdef CONFIG_IPW2200_RADIOTAP
8376 ipw_handle_data_packet_monitor(priv,
8380 ipw_handle_data_packet(priv, rxb,
8388 (struct ieee80211_hdr_4addr *)(rxb->skb->
8391 /* TODO: Check Ad-Hoc dest/source and make sure
8392 * that we are actually parsing these packets
8393 * correctly -- we should probably use the
8394 * frame control of the packet and disregard
8395 * the current iw_mode */
8398 is_network_packet(priv, header);
8399 if (network_packet && priv->assoc_network) {
8400 priv->assoc_network->stats.rssi =
8402 priv->exp_avg_rssi =
8403 exponential_average(priv->exp_avg_rssi,
8404 stats.rssi, DEPTH_RSSI);
8407 IPW_DEBUG_RX("Frame: len=%u\n",
8408 le16_to_cpu(pkt->u.frame.length));
8410 if (le16_to_cpu(pkt->u.frame.length) <
8411 ieee80211_get_hdrlen(le16_to_cpu(
8412 header->frame_ctl))) {
8414 ("Received packet is too small. "
8416 priv->net_dev->stats.rx_errors++;
8417 priv->wstats.discard.misc++;
8421 switch (WLAN_FC_GET_TYPE
8422 (le16_to_cpu(header->frame_ctl))) {
8424 case IEEE80211_FTYPE_MGMT:
8425 ipw_handle_mgmt_packet(priv, rxb,
8429 case IEEE80211_FTYPE_CTL:
8432 case IEEE80211_FTYPE_DATA:
8433 if (unlikely(!network_packet ||
8434 is_duplicate_packet(priv,
8437 IPW_DEBUG_DROP("Dropping: "
8447 ipw_handle_data_packet(priv, rxb,
8455 case RX_HOST_NOTIFICATION_TYPE:{
8457 ("Notification: subtype=%02X flags=%02X size=%d\n",
8458 pkt->u.notification.subtype,
8459 pkt->u.notification.flags,
8460 le16_to_cpu(pkt->u.notification.size));
8461 ipw_rx_notification(priv, &pkt->u.notification);
8466 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8467 pkt->header.message_type);
8471 /* For now we just don't re-use anything. We can tweak this
8472 * later to try and re-use notification packets and SKBs that
8473 * fail to Rx correctly */
8474 if (rxb->skb != NULL) {
8475 dev_kfree_skb_any(rxb->skb);
8479 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8480 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8481 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8483 i = (i + 1) % RX_QUEUE_SIZE;
8485 /* If there are a lot of unsued frames, restock the Rx queue
8486 * so the ucode won't assert */
8488 priv->rxq->read = i;
8489 ipw_rx_queue_replenish(priv);
8493 /* Backtrack one entry */
8494 priv->rxq->read = i;
8495 ipw_rx_queue_restock(priv);
8498 #define DEFAULT_RTS_THRESHOLD 2304U
8499 #define MIN_RTS_THRESHOLD 1U
8500 #define MAX_RTS_THRESHOLD 2304U
8501 #define DEFAULT_BEACON_INTERVAL 100U
8502 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8503 #define DEFAULT_LONG_RETRY_LIMIT 4U
8507 * @option: options to control different reset behaviour
8508 * 0 = reset everything except the 'disable' module_param
8509 * 1 = reset everything and print out driver info (for probe only)
8510 * 2 = reset everything
8512 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8514 int band, modulation;
8515 int old_mode = priv->ieee->iw_mode;
8517 /* Initialize module parameter values here */
8520 /* We default to disabling the LED code as right now it causes
8521 * too many systems to lock up... */
8523 priv->config |= CFG_NO_LED;
8526 priv->config |= CFG_ASSOCIATE;
8528 IPW_DEBUG_INFO("Auto associate disabled.\n");
8531 priv->config |= CFG_ADHOC_CREATE;
8533 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8535 priv->config &= ~CFG_STATIC_ESSID;
8536 priv->essid_len = 0;
8537 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8539 if (disable && option) {
8540 priv->status |= STATUS_RF_KILL_SW;
8541 IPW_DEBUG_INFO("Radio disabled.\n");
8545 priv->config |= CFG_STATIC_CHANNEL;
8546 priv->channel = channel;
8547 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8548 /* TODO: Validate that provided channel is in range */
8550 #ifdef CONFIG_IPW2200_QOS
8551 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8552 burst_duration_CCK, burst_duration_OFDM);
8553 #endif /* CONFIG_IPW2200_QOS */
8557 priv->ieee->iw_mode = IW_MODE_ADHOC;
8558 priv->net_dev->type = ARPHRD_ETHER;
8561 #ifdef CONFIG_IPW2200_MONITOR
8563 priv->ieee->iw_mode = IW_MODE_MONITOR;
8564 #ifdef CONFIG_IPW2200_RADIOTAP
8565 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8567 priv->net_dev->type = ARPHRD_IEEE80211;
8573 priv->net_dev->type = ARPHRD_ETHER;
8574 priv->ieee->iw_mode = IW_MODE_INFRA;
8579 priv->ieee->host_encrypt = 0;
8580 priv->ieee->host_encrypt_msdu = 0;
8581 priv->ieee->host_decrypt = 0;
8582 priv->ieee->host_mc_decrypt = 0;
8584 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8586 /* IPW2200/2915 is abled to do hardware fragmentation. */
8587 priv->ieee->host_open_frag = 0;
8589 if ((priv->pci_dev->device == 0x4223) ||
8590 (priv->pci_dev->device == 0x4224)) {
8592 printk(KERN_INFO DRV_NAME
8593 ": Detected Intel PRO/Wireless 2915ABG Network "
8595 priv->ieee->abg_true = 1;
8596 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8597 modulation = IEEE80211_OFDM_MODULATION |
8598 IEEE80211_CCK_MODULATION;
8599 priv->adapter = IPW_2915ABG;
8600 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8603 printk(KERN_INFO DRV_NAME
8604 ": Detected Intel PRO/Wireless 2200BG Network "
8607 priv->ieee->abg_true = 0;
8608 band = IEEE80211_24GHZ_BAND;
8609 modulation = IEEE80211_OFDM_MODULATION |
8610 IEEE80211_CCK_MODULATION;
8611 priv->adapter = IPW_2200BG;
8612 priv->ieee->mode = IEEE_G | IEEE_B;
8615 priv->ieee->freq_band = band;
8616 priv->ieee->modulation = modulation;
8618 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8620 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8621 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8623 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8624 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8625 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8627 /* If power management is turned on, default to AC mode */
8628 priv->power_mode = IPW_POWER_AC;
8629 priv->tx_power = IPW_TX_POWER_DEFAULT;
8631 return old_mode == priv->ieee->iw_mode;
8635 * This file defines the Wireless Extension handlers. It does not
8636 * define any methods of hardware manipulation and relies on the
8637 * functions defined in ipw_main to provide the HW interaction.
8639 * The exception to this is the use of the ipw_get_ordinal()
8640 * function used to poll the hardware vs. making unecessary calls.
8644 static int ipw_wx_get_name(struct net_device *dev,
8645 struct iw_request_info *info,
8646 union iwreq_data *wrqu, char *extra)
8648 struct ipw_priv *priv = ieee80211_priv(dev);
8649 mutex_lock(&priv->mutex);
8650 if (priv->status & STATUS_RF_KILL_MASK)
8651 strcpy(wrqu->name, "radio off");
8652 else if (!(priv->status & STATUS_ASSOCIATED))
8653 strcpy(wrqu->name, "unassociated");
8655 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8656 ipw_modes[priv->assoc_request.ieee_mode]);
8657 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8658 mutex_unlock(&priv->mutex);
8662 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8665 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8666 priv->config &= ~CFG_STATIC_CHANNEL;
8667 IPW_DEBUG_ASSOC("Attempting to associate with new "
8669 ipw_associate(priv);
8673 priv->config |= CFG_STATIC_CHANNEL;
8675 if (priv->channel == channel) {
8676 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8681 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8682 priv->channel = channel;
8684 #ifdef CONFIG_IPW2200_MONITOR
8685 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8687 if (priv->status & STATUS_SCANNING) {
8688 IPW_DEBUG_SCAN("Scan abort triggered due to "
8689 "channel change.\n");
8690 ipw_abort_scan(priv);
8693 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8696 if (priv->status & STATUS_SCANNING)
8697 IPW_DEBUG_SCAN("Still scanning...\n");
8699 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8704 #endif /* CONFIG_IPW2200_MONITOR */
8706 /* Network configuration changed -- force [re]association */
8707 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8708 if (!ipw_disassociate(priv))
8709 ipw_associate(priv);
8714 static int ipw_wx_set_freq(struct net_device *dev,
8715 struct iw_request_info *info,
8716 union iwreq_data *wrqu, char *extra)
8718 struct ipw_priv *priv = ieee80211_priv(dev);
8719 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8720 struct iw_freq *fwrq = &wrqu->freq;
8726 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8727 mutex_lock(&priv->mutex);
8728 ret = ipw_set_channel(priv, 0);
8729 mutex_unlock(&priv->mutex);
8732 /* if setting by freq convert to channel */
8734 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8740 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8743 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8744 i = ieee80211_channel_to_index(priv->ieee, channel);
8748 flags = (band == IEEE80211_24GHZ_BAND) ?
8749 geo->bg[i].flags : geo->a[i].flags;
8750 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8751 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8756 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8757 mutex_lock(&priv->mutex);
8758 ret = ipw_set_channel(priv, channel);
8759 mutex_unlock(&priv->mutex);
8763 static int ipw_wx_get_freq(struct net_device *dev,
8764 struct iw_request_info *info,
8765 union iwreq_data *wrqu, char *extra)
8767 struct ipw_priv *priv = ieee80211_priv(dev);
8771 /* If we are associated, trying to associate, or have a statically
8772 * configured CHANNEL then return that; otherwise return ANY */
8773 mutex_lock(&priv->mutex);
8774 if (priv->config & CFG_STATIC_CHANNEL ||
8775 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8778 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8782 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8783 case IEEE80211_52GHZ_BAND:
8784 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8787 case IEEE80211_24GHZ_BAND:
8788 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8797 mutex_unlock(&priv->mutex);
8798 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8802 static int ipw_wx_set_mode(struct net_device *dev,
8803 struct iw_request_info *info,
8804 union iwreq_data *wrqu, char *extra)
8806 struct ipw_priv *priv = ieee80211_priv(dev);
8809 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8811 switch (wrqu->mode) {
8812 #ifdef CONFIG_IPW2200_MONITOR
8813 case IW_MODE_MONITOR:
8819 wrqu->mode = IW_MODE_INFRA;
8824 if (wrqu->mode == priv->ieee->iw_mode)
8827 mutex_lock(&priv->mutex);
8829 ipw_sw_reset(priv, 0);
8831 #ifdef CONFIG_IPW2200_MONITOR
8832 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8833 priv->net_dev->type = ARPHRD_ETHER;
8835 if (wrqu->mode == IW_MODE_MONITOR)
8836 #ifdef CONFIG_IPW2200_RADIOTAP
8837 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8839 priv->net_dev->type = ARPHRD_IEEE80211;
8841 #endif /* CONFIG_IPW2200_MONITOR */
8843 /* Free the existing firmware and reset the fw_loaded
8844 * flag so ipw_load() will bring in the new firmware */
8847 priv->ieee->iw_mode = wrqu->mode;
8849 queue_work(priv->workqueue, &priv->adapter_restart);
8850 mutex_unlock(&priv->mutex);
8854 static int ipw_wx_get_mode(struct net_device *dev,
8855 struct iw_request_info *info,
8856 union iwreq_data *wrqu, char *extra)
8858 struct ipw_priv *priv = ieee80211_priv(dev);
8859 mutex_lock(&priv->mutex);
8860 wrqu->mode = priv->ieee->iw_mode;
8861 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8862 mutex_unlock(&priv->mutex);
8866 /* Values are in microsecond */
8867 static const s32 timeout_duration[] = {
8875 static const s32 period_duration[] = {
8883 static int ipw_wx_get_range(struct net_device *dev,
8884 struct iw_request_info *info,
8885 union iwreq_data *wrqu, char *extra)
8887 struct ipw_priv *priv = ieee80211_priv(dev);
8888 struct iw_range *range = (struct iw_range *)extra;
8889 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8892 wrqu->data.length = sizeof(*range);
8893 memset(range, 0, sizeof(*range));
8895 /* 54Mbs == ~27 Mb/s real (802.11g) */
8896 range->throughput = 27 * 1000 * 1000;
8898 range->max_qual.qual = 100;
8899 /* TODO: Find real max RSSI and stick here */
8900 range->max_qual.level = 0;
8901 range->max_qual.noise = 0;
8902 range->max_qual.updated = 7; /* Updated all three */
8904 range->avg_qual.qual = 70;
8905 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8906 range->avg_qual.level = 0; /* FIXME to real average level */
8907 range->avg_qual.noise = 0;
8908 range->avg_qual.updated = 7; /* Updated all three */
8909 mutex_lock(&priv->mutex);
8910 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8912 for (i = 0; i < range->num_bitrates; i++)
8913 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8916 range->max_rts = DEFAULT_RTS_THRESHOLD;
8917 range->min_frag = MIN_FRAG_THRESHOLD;
8918 range->max_frag = MAX_FRAG_THRESHOLD;
8920 range->encoding_size[0] = 5;
8921 range->encoding_size[1] = 13;
8922 range->num_encoding_sizes = 2;
8923 range->max_encoding_tokens = WEP_KEYS;
8925 /* Set the Wireless Extension versions */
8926 range->we_version_compiled = WIRELESS_EXT;
8927 range->we_version_source = 18;
8930 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8931 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8932 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8933 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8936 range->freq[i].i = geo->bg[j].channel;
8937 range->freq[i].m = geo->bg[j].freq * 100000;
8938 range->freq[i].e = 1;
8943 if (priv->ieee->mode & IEEE_A) {
8944 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8945 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8946 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8949 range->freq[i].i = geo->a[j].channel;
8950 range->freq[i].m = geo->a[j].freq * 100000;
8951 range->freq[i].e = 1;
8956 range->num_channels = i;
8957 range->num_frequency = i;
8959 mutex_unlock(&priv->mutex);
8961 /* Event capability (kernel + driver) */
8962 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8963 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8964 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8965 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8966 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8968 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8969 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8971 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8973 IPW_DEBUG_WX("GET Range\n");
8977 static int ipw_wx_set_wap(struct net_device *dev,
8978 struct iw_request_info *info,
8979 union iwreq_data *wrqu, char *extra)
8981 struct ipw_priv *priv = ieee80211_priv(dev);
8983 static const unsigned char any[] = {
8984 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8986 static const unsigned char off[] = {
8987 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8990 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8992 mutex_lock(&priv->mutex);
8993 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8994 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8995 /* we disable mandatory BSSID association */
8996 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8997 priv->config &= ~CFG_STATIC_BSSID;
8998 IPW_DEBUG_ASSOC("Attempting to associate with new "
9000 ipw_associate(priv);
9001 mutex_unlock(&priv->mutex);
9005 priv->config |= CFG_STATIC_BSSID;
9006 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9007 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9008 mutex_unlock(&priv->mutex);
9012 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9013 wrqu->ap_addr.sa_data);
9015 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9017 /* Network configuration changed -- force [re]association */
9018 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9019 if (!ipw_disassociate(priv))
9020 ipw_associate(priv);
9022 mutex_unlock(&priv->mutex);
9026 static int ipw_wx_get_wap(struct net_device *dev,
9027 struct iw_request_info *info,
9028 union iwreq_data *wrqu, char *extra)
9030 struct ipw_priv *priv = ieee80211_priv(dev);
9032 /* If we are associated, trying to associate, or have a statically
9033 * configured BSSID then return that; otherwise return ANY */
9034 mutex_lock(&priv->mutex);
9035 if (priv->config & CFG_STATIC_BSSID ||
9036 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9037 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9038 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9040 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9042 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9043 wrqu->ap_addr.sa_data);
9044 mutex_unlock(&priv->mutex);
9048 static int ipw_wx_set_essid(struct net_device *dev,
9049 struct iw_request_info *info,
9050 union iwreq_data *wrqu, char *extra)
9052 struct ipw_priv *priv = ieee80211_priv(dev);
9054 DECLARE_SSID_BUF(ssid);
9056 mutex_lock(&priv->mutex);
9058 if (!wrqu->essid.flags)
9060 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9061 ipw_disassociate(priv);
9062 priv->config &= ~CFG_STATIC_ESSID;
9063 ipw_associate(priv);
9064 mutex_unlock(&priv->mutex);
9068 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9070 priv->config |= CFG_STATIC_ESSID;
9072 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9073 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9074 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9075 mutex_unlock(&priv->mutex);
9079 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9080 print_ssid(ssid, extra, length), length);
9082 priv->essid_len = length;
9083 memcpy(priv->essid, extra, priv->essid_len);
9085 /* Network configuration changed -- force [re]association */
9086 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9087 if (!ipw_disassociate(priv))
9088 ipw_associate(priv);
9090 mutex_unlock(&priv->mutex);
9094 static int ipw_wx_get_essid(struct net_device *dev,
9095 struct iw_request_info *info,
9096 union iwreq_data *wrqu, char *extra)
9098 struct ipw_priv *priv = ieee80211_priv(dev);
9099 DECLARE_SSID_BUF(ssid);
9101 /* If we are associated, trying to associate, or have a statically
9102 * configured ESSID then return that; otherwise return ANY */
9103 mutex_lock(&priv->mutex);
9104 if (priv->config & CFG_STATIC_ESSID ||
9105 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9106 IPW_DEBUG_WX("Getting essid: '%s'\n",
9107 print_ssid(ssid, priv->essid, priv->essid_len));
9108 memcpy(extra, priv->essid, priv->essid_len);
9109 wrqu->essid.length = priv->essid_len;
9110 wrqu->essid.flags = 1; /* active */
9112 IPW_DEBUG_WX("Getting essid: ANY\n");
9113 wrqu->essid.length = 0;
9114 wrqu->essid.flags = 0; /* active */
9116 mutex_unlock(&priv->mutex);
9120 static int ipw_wx_set_nick(struct net_device *dev,
9121 struct iw_request_info *info,
9122 union iwreq_data *wrqu, char *extra)
9124 struct ipw_priv *priv = ieee80211_priv(dev);
9126 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9127 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9129 mutex_lock(&priv->mutex);
9130 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9131 memset(priv->nick, 0, sizeof(priv->nick));
9132 memcpy(priv->nick, extra, wrqu->data.length);
9133 IPW_DEBUG_TRACE("<<\n");
9134 mutex_unlock(&priv->mutex);
9139 static int ipw_wx_get_nick(struct net_device *dev,
9140 struct iw_request_info *info,
9141 union iwreq_data *wrqu, char *extra)
9143 struct ipw_priv *priv = ieee80211_priv(dev);
9144 IPW_DEBUG_WX("Getting nick\n");
9145 mutex_lock(&priv->mutex);
9146 wrqu->data.length = strlen(priv->nick);
9147 memcpy(extra, priv->nick, wrqu->data.length);
9148 wrqu->data.flags = 1; /* active */
9149 mutex_unlock(&priv->mutex);
9153 static int ipw_wx_set_sens(struct net_device *dev,
9154 struct iw_request_info *info,
9155 union iwreq_data *wrqu, char *extra)
9157 struct ipw_priv *priv = ieee80211_priv(dev);
9160 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9161 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9162 mutex_lock(&priv->mutex);
9164 if (wrqu->sens.fixed == 0)
9166 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9167 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9170 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9171 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9176 priv->roaming_threshold = wrqu->sens.value;
9177 priv->disassociate_threshold = 3*wrqu->sens.value;
9179 mutex_unlock(&priv->mutex);
9183 static int ipw_wx_get_sens(struct net_device *dev,
9184 struct iw_request_info *info,
9185 union iwreq_data *wrqu, char *extra)
9187 struct ipw_priv *priv = ieee80211_priv(dev);
9188 mutex_lock(&priv->mutex);
9189 wrqu->sens.fixed = 1;
9190 wrqu->sens.value = priv->roaming_threshold;
9191 mutex_unlock(&priv->mutex);
9193 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9194 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9199 static int ipw_wx_set_rate(struct net_device *dev,
9200 struct iw_request_info *info,
9201 union iwreq_data *wrqu, char *extra)
9203 /* TODO: We should use semaphores or locks for access to priv */
9204 struct ipw_priv *priv = ieee80211_priv(dev);
9205 u32 target_rate = wrqu->bitrate.value;
9208 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9209 /* value = X, fixed = 1 means only rate X */
9210 /* value = X, fixed = 0 means all rates lower equal X */
9212 if (target_rate == -1) {
9214 mask = IEEE80211_DEFAULT_RATES_MASK;
9215 /* Now we should reassociate */
9220 fixed = wrqu->bitrate.fixed;
9222 if (target_rate == 1000000 || !fixed)
9223 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9224 if (target_rate == 1000000)
9227 if (target_rate == 2000000 || !fixed)
9228 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9229 if (target_rate == 2000000)
9232 if (target_rate == 5500000 || !fixed)
9233 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9234 if (target_rate == 5500000)
9237 if (target_rate == 6000000 || !fixed)
9238 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9239 if (target_rate == 6000000)
9242 if (target_rate == 9000000 || !fixed)
9243 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9244 if (target_rate == 9000000)
9247 if (target_rate == 11000000 || !fixed)
9248 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9249 if (target_rate == 11000000)
9252 if (target_rate == 12000000 || !fixed)
9253 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9254 if (target_rate == 12000000)
9257 if (target_rate == 18000000 || !fixed)
9258 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9259 if (target_rate == 18000000)
9262 if (target_rate == 24000000 || !fixed)
9263 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9264 if (target_rate == 24000000)
9267 if (target_rate == 36000000 || !fixed)
9268 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9269 if (target_rate == 36000000)
9272 if (target_rate == 48000000 || !fixed)
9273 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9274 if (target_rate == 48000000)
9277 if (target_rate == 54000000 || !fixed)
9278 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9279 if (target_rate == 54000000)
9282 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9286 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9287 mask, fixed ? "fixed" : "sub-rates");
9288 mutex_lock(&priv->mutex);
9289 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9290 priv->config &= ~CFG_FIXED_RATE;
9291 ipw_set_fixed_rate(priv, priv->ieee->mode);
9293 priv->config |= CFG_FIXED_RATE;
9295 if (priv->rates_mask == mask) {
9296 IPW_DEBUG_WX("Mask set to current mask.\n");
9297 mutex_unlock(&priv->mutex);
9301 priv->rates_mask = mask;
9303 /* Network configuration changed -- force [re]association */
9304 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9305 if (!ipw_disassociate(priv))
9306 ipw_associate(priv);
9308 mutex_unlock(&priv->mutex);
9312 static int ipw_wx_get_rate(struct net_device *dev,
9313 struct iw_request_info *info,
9314 union iwreq_data *wrqu, char *extra)
9316 struct ipw_priv *priv = ieee80211_priv(dev);
9317 mutex_lock(&priv->mutex);
9318 wrqu->bitrate.value = priv->last_rate;
9319 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9320 mutex_unlock(&priv->mutex);
9321 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9325 static int ipw_wx_set_rts(struct net_device *dev,
9326 struct iw_request_info *info,
9327 union iwreq_data *wrqu, char *extra)
9329 struct ipw_priv *priv = ieee80211_priv(dev);
9330 mutex_lock(&priv->mutex);
9331 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9332 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9334 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9335 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9336 mutex_unlock(&priv->mutex);
9339 priv->rts_threshold = wrqu->rts.value;
9342 ipw_send_rts_threshold(priv, priv->rts_threshold);
9343 mutex_unlock(&priv->mutex);
9344 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9348 static int ipw_wx_get_rts(struct net_device *dev,
9349 struct iw_request_info *info,
9350 union iwreq_data *wrqu, char *extra)
9352 struct ipw_priv *priv = ieee80211_priv(dev);
9353 mutex_lock(&priv->mutex);
9354 wrqu->rts.value = priv->rts_threshold;
9355 wrqu->rts.fixed = 0; /* no auto select */
9356 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9357 mutex_unlock(&priv->mutex);
9358 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9362 static int ipw_wx_set_txpow(struct net_device *dev,
9363 struct iw_request_info *info,
9364 union iwreq_data *wrqu, char *extra)
9366 struct ipw_priv *priv = ieee80211_priv(dev);
9369 mutex_lock(&priv->mutex);
9370 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9375 if (!wrqu->power.fixed)
9376 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9378 if (wrqu->power.flags != IW_TXPOW_DBM) {
9383 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9384 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9389 priv->tx_power = wrqu->power.value;
9390 err = ipw_set_tx_power(priv);
9392 mutex_unlock(&priv->mutex);
9396 static int ipw_wx_get_txpow(struct net_device *dev,
9397 struct iw_request_info *info,
9398 union iwreq_data *wrqu, char *extra)
9400 struct ipw_priv *priv = ieee80211_priv(dev);
9401 mutex_lock(&priv->mutex);
9402 wrqu->power.value = priv->tx_power;
9403 wrqu->power.fixed = 1;
9404 wrqu->power.flags = IW_TXPOW_DBM;
9405 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9406 mutex_unlock(&priv->mutex);
9408 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9409 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9414 static int ipw_wx_set_frag(struct net_device *dev,
9415 struct iw_request_info *info,
9416 union iwreq_data *wrqu, char *extra)
9418 struct ipw_priv *priv = ieee80211_priv(dev);
9419 mutex_lock(&priv->mutex);
9420 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9421 priv->ieee->fts = DEFAULT_FTS;
9423 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9424 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9425 mutex_unlock(&priv->mutex);
9429 priv->ieee->fts = wrqu->frag.value & ~0x1;
9432 ipw_send_frag_threshold(priv, wrqu->frag.value);
9433 mutex_unlock(&priv->mutex);
9434 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9438 static int ipw_wx_get_frag(struct net_device *dev,
9439 struct iw_request_info *info,
9440 union iwreq_data *wrqu, char *extra)
9442 struct ipw_priv *priv = ieee80211_priv(dev);
9443 mutex_lock(&priv->mutex);
9444 wrqu->frag.value = priv->ieee->fts;
9445 wrqu->frag.fixed = 0; /* no auto select */
9446 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9447 mutex_unlock(&priv->mutex);
9448 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9453 static int ipw_wx_set_retry(struct net_device *dev,
9454 struct iw_request_info *info,
9455 union iwreq_data *wrqu, char *extra)
9457 struct ipw_priv *priv = ieee80211_priv(dev);
9459 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9462 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9465 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9468 mutex_lock(&priv->mutex);
9469 if (wrqu->retry.flags & IW_RETRY_SHORT)
9470 priv->short_retry_limit = (u8) wrqu->retry.value;
9471 else if (wrqu->retry.flags & IW_RETRY_LONG)
9472 priv->long_retry_limit = (u8) wrqu->retry.value;
9474 priv->short_retry_limit = (u8) wrqu->retry.value;
9475 priv->long_retry_limit = (u8) wrqu->retry.value;
9478 ipw_send_retry_limit(priv, priv->short_retry_limit,
9479 priv->long_retry_limit);
9480 mutex_unlock(&priv->mutex);
9481 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9482 priv->short_retry_limit, priv->long_retry_limit);
9486 static int ipw_wx_get_retry(struct net_device *dev,
9487 struct iw_request_info *info,
9488 union iwreq_data *wrqu, char *extra)
9490 struct ipw_priv *priv = ieee80211_priv(dev);
9492 mutex_lock(&priv->mutex);
9493 wrqu->retry.disabled = 0;
9495 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9496 mutex_unlock(&priv->mutex);
9500 if (wrqu->retry.flags & IW_RETRY_LONG) {
9501 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9502 wrqu->retry.value = priv->long_retry_limit;
9503 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9504 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9505 wrqu->retry.value = priv->short_retry_limit;
9507 wrqu->retry.flags = IW_RETRY_LIMIT;
9508 wrqu->retry.value = priv->short_retry_limit;
9510 mutex_unlock(&priv->mutex);
9512 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9517 static int ipw_wx_set_scan(struct net_device *dev,
9518 struct iw_request_info *info,
9519 union iwreq_data *wrqu, char *extra)
9521 struct ipw_priv *priv = ieee80211_priv(dev);
9522 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9523 struct delayed_work *work = NULL;
9525 mutex_lock(&priv->mutex);
9527 priv->user_requested_scan = 1;
9529 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9530 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9531 int len = min((int)req->essid_len,
9532 (int)sizeof(priv->direct_scan_ssid));
9533 memcpy(priv->direct_scan_ssid, req->essid, len);
9534 priv->direct_scan_ssid_len = len;
9535 work = &priv->request_direct_scan;
9536 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9537 work = &priv->request_passive_scan;
9540 /* Normal active broadcast scan */
9541 work = &priv->request_scan;
9544 mutex_unlock(&priv->mutex);
9546 IPW_DEBUG_WX("Start scan\n");
9548 queue_delayed_work(priv->workqueue, work, 0);
9553 static int ipw_wx_get_scan(struct net_device *dev,
9554 struct iw_request_info *info,
9555 union iwreq_data *wrqu, char *extra)
9557 struct ipw_priv *priv = ieee80211_priv(dev);
9558 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9561 static int ipw_wx_set_encode(struct net_device *dev,
9562 struct iw_request_info *info,
9563 union iwreq_data *wrqu, char *key)
9565 struct ipw_priv *priv = ieee80211_priv(dev);
9567 u32 cap = priv->capability;
9569 mutex_lock(&priv->mutex);
9570 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9572 /* In IBSS mode, we need to notify the firmware to update
9573 * the beacon info after we changed the capability. */
9574 if (cap != priv->capability &&
9575 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9576 priv->status & STATUS_ASSOCIATED)
9577 ipw_disassociate(priv);
9579 mutex_unlock(&priv->mutex);
9583 static int ipw_wx_get_encode(struct net_device *dev,
9584 struct iw_request_info *info,
9585 union iwreq_data *wrqu, char *key)
9587 struct ipw_priv *priv = ieee80211_priv(dev);
9588 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9591 static int ipw_wx_set_power(struct net_device *dev,
9592 struct iw_request_info *info,
9593 union iwreq_data *wrqu, char *extra)
9595 struct ipw_priv *priv = ieee80211_priv(dev);
9597 mutex_lock(&priv->mutex);
9598 if (wrqu->power.disabled) {
9599 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9600 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9602 IPW_DEBUG_WX("failed setting power mode.\n");
9603 mutex_unlock(&priv->mutex);
9606 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9607 mutex_unlock(&priv->mutex);
9611 switch (wrqu->power.flags & IW_POWER_MODE) {
9612 case IW_POWER_ON: /* If not specified */
9613 case IW_POWER_MODE: /* If set all mask */
9614 case IW_POWER_ALL_R: /* If explicitly state all */
9616 default: /* Otherwise we don't support it */
9617 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9619 mutex_unlock(&priv->mutex);
9623 /* If the user hasn't specified a power management mode yet, default
9625 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9626 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9628 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9630 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9632 IPW_DEBUG_WX("failed setting power mode.\n");
9633 mutex_unlock(&priv->mutex);
9637 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9638 mutex_unlock(&priv->mutex);
9642 static int ipw_wx_get_power(struct net_device *dev,
9643 struct iw_request_info *info,
9644 union iwreq_data *wrqu, char *extra)
9646 struct ipw_priv *priv = ieee80211_priv(dev);
9647 mutex_lock(&priv->mutex);
9648 if (!(priv->power_mode & IPW_POWER_ENABLED))
9649 wrqu->power.disabled = 1;
9651 wrqu->power.disabled = 0;
9653 mutex_unlock(&priv->mutex);
9654 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9659 static int ipw_wx_set_powermode(struct net_device *dev,
9660 struct iw_request_info *info,
9661 union iwreq_data *wrqu, char *extra)
9663 struct ipw_priv *priv = ieee80211_priv(dev);
9664 int mode = *(int *)extra;
9667 mutex_lock(&priv->mutex);
9668 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9669 mode = IPW_POWER_AC;
9671 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9672 err = ipw_send_power_mode(priv, mode);
9674 IPW_DEBUG_WX("failed setting power mode.\n");
9675 mutex_unlock(&priv->mutex);
9678 priv->power_mode = IPW_POWER_ENABLED | mode;
9680 mutex_unlock(&priv->mutex);
9684 #define MAX_WX_STRING 80
9685 static int ipw_wx_get_powermode(struct net_device *dev,
9686 struct iw_request_info *info,
9687 union iwreq_data *wrqu, char *extra)
9689 struct ipw_priv *priv = ieee80211_priv(dev);
9690 int level = IPW_POWER_LEVEL(priv->power_mode);
9693 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9697 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9699 case IPW_POWER_BATTERY:
9700 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9703 p += snprintf(p, MAX_WX_STRING - (p - extra),
9704 "(Timeout %dms, Period %dms)",
9705 timeout_duration[level - 1] / 1000,
9706 period_duration[level - 1] / 1000);
9709 if (!(priv->power_mode & IPW_POWER_ENABLED))
9710 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9712 wrqu->data.length = p - extra + 1;
9717 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9718 struct iw_request_info *info,
9719 union iwreq_data *wrqu, char *extra)
9721 struct ipw_priv *priv = ieee80211_priv(dev);
9722 int mode = *(int *)extra;
9723 u8 band = 0, modulation = 0;
9725 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9726 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9729 mutex_lock(&priv->mutex);
9730 if (priv->adapter == IPW_2915ABG) {
9731 priv->ieee->abg_true = 1;
9732 if (mode & IEEE_A) {
9733 band |= IEEE80211_52GHZ_BAND;
9734 modulation |= IEEE80211_OFDM_MODULATION;
9736 priv->ieee->abg_true = 0;
9738 if (mode & IEEE_A) {
9739 IPW_WARNING("Attempt to set 2200BG into "
9741 mutex_unlock(&priv->mutex);
9745 priv->ieee->abg_true = 0;
9748 if (mode & IEEE_B) {
9749 band |= IEEE80211_24GHZ_BAND;
9750 modulation |= IEEE80211_CCK_MODULATION;
9752 priv->ieee->abg_true = 0;
9754 if (mode & IEEE_G) {
9755 band |= IEEE80211_24GHZ_BAND;
9756 modulation |= IEEE80211_OFDM_MODULATION;
9758 priv->ieee->abg_true = 0;
9760 priv->ieee->mode = mode;
9761 priv->ieee->freq_band = band;
9762 priv->ieee->modulation = modulation;
9763 init_supported_rates(priv, &priv->rates);
9765 /* Network configuration changed -- force [re]association */
9766 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9767 if (!ipw_disassociate(priv)) {
9768 ipw_send_supported_rates(priv, &priv->rates);
9769 ipw_associate(priv);
9772 /* Update the band LEDs */
9773 ipw_led_band_on(priv);
9775 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9776 mode & IEEE_A ? 'a' : '.',
9777 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9778 mutex_unlock(&priv->mutex);
9782 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9783 struct iw_request_info *info,
9784 union iwreq_data *wrqu, char *extra)
9786 struct ipw_priv *priv = ieee80211_priv(dev);
9787 mutex_lock(&priv->mutex);
9788 switch (priv->ieee->mode) {
9790 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9793 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9795 case IEEE_A | IEEE_B:
9796 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9799 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9801 case IEEE_A | IEEE_G:
9802 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9804 case IEEE_B | IEEE_G:
9805 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9807 case IEEE_A | IEEE_B | IEEE_G:
9808 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9811 strncpy(extra, "unknown", MAX_WX_STRING);
9815 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9817 wrqu->data.length = strlen(extra) + 1;
9818 mutex_unlock(&priv->mutex);
9823 static int ipw_wx_set_preamble(struct net_device *dev,
9824 struct iw_request_info *info,
9825 union iwreq_data *wrqu, char *extra)
9827 struct ipw_priv *priv = ieee80211_priv(dev);
9828 int mode = *(int *)extra;
9829 mutex_lock(&priv->mutex);
9830 /* Switching from SHORT -> LONG requires a disassociation */
9832 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9833 priv->config |= CFG_PREAMBLE_LONG;
9835 /* Network configuration changed -- force [re]association */
9837 ("[re]association triggered due to preamble change.\n");
9838 if (!ipw_disassociate(priv))
9839 ipw_associate(priv);
9845 priv->config &= ~CFG_PREAMBLE_LONG;
9848 mutex_unlock(&priv->mutex);
9852 mutex_unlock(&priv->mutex);
9856 static int ipw_wx_get_preamble(struct net_device *dev,
9857 struct iw_request_info *info,
9858 union iwreq_data *wrqu, char *extra)
9860 struct ipw_priv *priv = ieee80211_priv(dev);
9861 mutex_lock(&priv->mutex);
9862 if (priv->config & CFG_PREAMBLE_LONG)
9863 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9865 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9866 mutex_unlock(&priv->mutex);
9870 #ifdef CONFIG_IPW2200_MONITOR
9871 static int ipw_wx_set_monitor(struct net_device *dev,
9872 struct iw_request_info *info,
9873 union iwreq_data *wrqu, char *extra)
9875 struct ipw_priv *priv = ieee80211_priv(dev);
9876 int *parms = (int *)extra;
9877 int enable = (parms[0] > 0);
9878 mutex_lock(&priv->mutex);
9879 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9881 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9882 #ifdef CONFIG_IPW2200_RADIOTAP
9883 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9885 priv->net_dev->type = ARPHRD_IEEE80211;
9887 queue_work(priv->workqueue, &priv->adapter_restart);
9890 ipw_set_channel(priv, parms[1]);
9892 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9893 mutex_unlock(&priv->mutex);
9896 priv->net_dev->type = ARPHRD_ETHER;
9897 queue_work(priv->workqueue, &priv->adapter_restart);
9899 mutex_unlock(&priv->mutex);
9903 #endif /* CONFIG_IPW2200_MONITOR */
9905 static int ipw_wx_reset(struct net_device *dev,
9906 struct iw_request_info *info,
9907 union iwreq_data *wrqu, char *extra)
9909 struct ipw_priv *priv = ieee80211_priv(dev);
9910 IPW_DEBUG_WX("RESET\n");
9911 queue_work(priv->workqueue, &priv->adapter_restart);
9915 static int ipw_wx_sw_reset(struct net_device *dev,
9916 struct iw_request_info *info,
9917 union iwreq_data *wrqu, char *extra)
9919 struct ipw_priv *priv = ieee80211_priv(dev);
9920 union iwreq_data wrqu_sec = {
9922 .flags = IW_ENCODE_DISABLED,
9927 IPW_DEBUG_WX("SW_RESET\n");
9929 mutex_lock(&priv->mutex);
9931 ret = ipw_sw_reset(priv, 2);
9934 ipw_adapter_restart(priv);
9937 /* The SW reset bit might have been toggled on by the 'disable'
9938 * module parameter, so take appropriate action */
9939 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9941 mutex_unlock(&priv->mutex);
9942 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9943 mutex_lock(&priv->mutex);
9945 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9946 /* Configuration likely changed -- force [re]association */
9947 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9949 if (!ipw_disassociate(priv))
9950 ipw_associate(priv);
9953 mutex_unlock(&priv->mutex);
9958 /* Rebase the WE IOCTLs to zero for the handler array */
9959 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9960 static iw_handler ipw_wx_handlers[] = {
9961 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9962 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9963 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9964 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9965 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9966 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9967 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9968 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9969 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9970 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9971 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9972 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9973 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9974 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9975 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9976 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9977 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9978 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9979 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9980 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9981 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9982 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9983 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9984 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9985 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9986 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9987 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9988 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9989 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9990 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9991 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9992 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9993 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9994 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9995 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9996 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9997 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9998 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9999 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10000 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10001 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10005 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10006 IPW_PRIV_GET_POWER,
10009 IPW_PRIV_SET_PREAMBLE,
10010 IPW_PRIV_GET_PREAMBLE,
10013 #ifdef CONFIG_IPW2200_MONITOR
10014 IPW_PRIV_SET_MONITOR,
10018 static struct iw_priv_args ipw_priv_args[] = {
10020 .cmd = IPW_PRIV_SET_POWER,
10021 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10022 .name = "set_power"},
10024 .cmd = IPW_PRIV_GET_POWER,
10025 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10026 .name = "get_power"},
10028 .cmd = IPW_PRIV_SET_MODE,
10029 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10030 .name = "set_mode"},
10032 .cmd = IPW_PRIV_GET_MODE,
10033 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10034 .name = "get_mode"},
10036 .cmd = IPW_PRIV_SET_PREAMBLE,
10037 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10038 .name = "set_preamble"},
10040 .cmd = IPW_PRIV_GET_PREAMBLE,
10041 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10042 .name = "get_preamble"},
10045 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10048 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10049 #ifdef CONFIG_IPW2200_MONITOR
10051 IPW_PRIV_SET_MONITOR,
10052 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10053 #endif /* CONFIG_IPW2200_MONITOR */
10056 static iw_handler ipw_priv_handler[] = {
10057 ipw_wx_set_powermode,
10058 ipw_wx_get_powermode,
10059 ipw_wx_set_wireless_mode,
10060 ipw_wx_get_wireless_mode,
10061 ipw_wx_set_preamble,
10062 ipw_wx_get_preamble,
10065 #ifdef CONFIG_IPW2200_MONITOR
10066 ipw_wx_set_monitor,
10070 static struct iw_handler_def ipw_wx_handler_def = {
10071 .standard = ipw_wx_handlers,
10072 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10073 .num_private = ARRAY_SIZE(ipw_priv_handler),
10074 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10075 .private = ipw_priv_handler,
10076 .private_args = ipw_priv_args,
10077 .get_wireless_stats = ipw_get_wireless_stats,
10081 * Get wireless statistics.
10082 * Called by /proc/net/wireless
10083 * Also called by SIOCGIWSTATS
10085 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10087 struct ipw_priv *priv = ieee80211_priv(dev);
10088 struct iw_statistics *wstats;
10090 wstats = &priv->wstats;
10092 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10093 * netdev->get_wireless_stats seems to be called before fw is
10094 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10095 * and associated; if not associcated, the values are all meaningless
10096 * anyway, so set them all to NULL and INVALID */
10097 if (!(priv->status & STATUS_ASSOCIATED)) {
10098 wstats->miss.beacon = 0;
10099 wstats->discard.retries = 0;
10100 wstats->qual.qual = 0;
10101 wstats->qual.level = 0;
10102 wstats->qual.noise = 0;
10103 wstats->qual.updated = 7;
10104 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10105 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10109 wstats->qual.qual = priv->quality;
10110 wstats->qual.level = priv->exp_avg_rssi;
10111 wstats->qual.noise = priv->exp_avg_noise;
10112 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10113 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10115 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10116 wstats->discard.retries = priv->last_tx_failures;
10117 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10119 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10120 goto fail_get_ordinal;
10121 wstats->discard.retries += tx_retry; */
10126 /* net device stuff */
10128 static void init_sys_config(struct ipw_sys_config *sys_config)
10130 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10131 sys_config->bt_coexistence = 0;
10132 sys_config->answer_broadcast_ssid_probe = 0;
10133 sys_config->accept_all_data_frames = 0;
10134 sys_config->accept_non_directed_frames = 1;
10135 sys_config->exclude_unicast_unencrypted = 0;
10136 sys_config->disable_unicast_decryption = 1;
10137 sys_config->exclude_multicast_unencrypted = 0;
10138 sys_config->disable_multicast_decryption = 1;
10139 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10140 antenna = CFG_SYS_ANTENNA_BOTH;
10141 sys_config->antenna_diversity = antenna;
10142 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10143 sys_config->dot11g_auto_detection = 0;
10144 sys_config->enable_cts_to_self = 0;
10145 sys_config->bt_coexist_collision_thr = 0;
10146 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10147 sys_config->silence_threshold = 0x1e;
10150 static int ipw_net_open(struct net_device *dev)
10152 IPW_DEBUG_INFO("dev->open\n");
10153 netif_start_queue(dev);
10157 static int ipw_net_stop(struct net_device *dev)
10159 IPW_DEBUG_INFO("dev->close\n");
10160 netif_stop_queue(dev);
10167 modify to send one tfd per fragment instead of using chunking. otherwise
10168 we need to heavily modify the ieee80211_skb_to_txb.
10171 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10174 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10175 txb->fragments[0]->data;
10177 struct tfd_frame *tfd;
10178 #ifdef CONFIG_IPW2200_QOS
10179 int tx_id = ipw_get_tx_queue_number(priv, pri);
10180 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10182 struct clx2_tx_queue *txq = &priv->txq[0];
10184 struct clx2_queue *q = &txq->q;
10185 u8 id, hdr_len, unicast;
10186 u16 remaining_bytes;
10189 if (!(priv->status & STATUS_ASSOCIATED))
10192 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10193 switch (priv->ieee->iw_mode) {
10194 case IW_MODE_ADHOC:
10195 unicast = !is_multicast_ether_addr(hdr->addr1);
10196 id = ipw_find_station(priv, hdr->addr1);
10197 if (id == IPW_INVALID_STATION) {
10198 id = ipw_add_station(priv, hdr->addr1);
10199 if (id == IPW_INVALID_STATION) {
10200 IPW_WARNING("Attempt to send data to "
10201 "invalid cell: %pM\n",
10208 case IW_MODE_INFRA:
10210 unicast = !is_multicast_ether_addr(hdr->addr3);
10215 tfd = &txq->bd[q->first_empty];
10216 txq->txb[q->first_empty] = txb;
10217 memset(tfd, 0, sizeof(*tfd));
10218 tfd->u.data.station_number = id;
10220 tfd->control_flags.message_type = TX_FRAME_TYPE;
10221 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10223 tfd->u.data.cmd_id = DINO_CMD_TX;
10224 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10225 remaining_bytes = txb->payload_size;
10227 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10228 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10230 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10232 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10233 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10235 fc = le16_to_cpu(hdr->frame_ctl);
10236 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10238 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10240 if (likely(unicast))
10241 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10243 if (txb->encrypted && !priv->ieee->host_encrypt) {
10244 switch (priv->ieee->sec.level) {
10246 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10247 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10248 /* XXX: ACK flag must be set for CCMP even if it
10249 * is a multicast/broadcast packet, because CCMP
10250 * group communication encrypted by GTK is
10251 * actually done by the AP. */
10253 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10255 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10256 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10257 tfd->u.data.key_index = 0;
10258 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10261 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10262 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10263 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10264 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10265 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10268 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10269 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10270 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10271 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10273 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10275 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10280 printk(KERN_ERR "Unknow security level %d\n",
10281 priv->ieee->sec.level);
10285 /* No hardware encryption */
10286 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10288 #ifdef CONFIG_IPW2200_QOS
10289 if (fc & IEEE80211_STYPE_QOS_DATA)
10290 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10291 #endif /* CONFIG_IPW2200_QOS */
10294 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10296 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10297 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10298 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10299 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10300 i, le32_to_cpu(tfd->u.data.num_chunks),
10301 txb->fragments[i]->len - hdr_len);
10302 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10303 i, tfd->u.data.num_chunks,
10304 txb->fragments[i]->len - hdr_len);
10305 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10306 txb->fragments[i]->len - hdr_len);
10308 tfd->u.data.chunk_ptr[i] =
10309 cpu_to_le32(pci_map_single
10311 txb->fragments[i]->data + hdr_len,
10312 txb->fragments[i]->len - hdr_len,
10313 PCI_DMA_TODEVICE));
10314 tfd->u.data.chunk_len[i] =
10315 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10318 if (i != txb->nr_frags) {
10319 struct sk_buff *skb;
10320 u16 remaining_bytes = 0;
10323 for (j = i; j < txb->nr_frags; j++)
10324 remaining_bytes += txb->fragments[j]->len - hdr_len;
10326 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10328 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10330 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10331 for (j = i; j < txb->nr_frags; j++) {
10332 int size = txb->fragments[j]->len - hdr_len;
10334 printk(KERN_INFO "Adding frag %d %d...\n",
10336 memcpy(skb_put(skb, size),
10337 txb->fragments[j]->data + hdr_len, size);
10339 dev_kfree_skb_any(txb->fragments[i]);
10340 txb->fragments[i] = skb;
10341 tfd->u.data.chunk_ptr[i] =
10342 cpu_to_le32(pci_map_single
10343 (priv->pci_dev, skb->data,
10345 PCI_DMA_TODEVICE));
10347 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10352 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10353 ipw_write32(priv, q->reg_w, q->first_empty);
10355 if (ipw_tx_queue_space(q) < q->high_mark)
10356 netif_stop_queue(priv->net_dev);
10358 return NETDEV_TX_OK;
10361 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10362 ieee80211_txb_free(txb);
10363 return NETDEV_TX_OK;
10366 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10368 struct ipw_priv *priv = ieee80211_priv(dev);
10369 #ifdef CONFIG_IPW2200_QOS
10370 int tx_id = ipw_get_tx_queue_number(priv, pri);
10371 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10373 struct clx2_tx_queue *txq = &priv->txq[0];
10374 #endif /* CONFIG_IPW2200_QOS */
10376 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10382 #ifdef CONFIG_IPW2200_PROMISCUOUS
10383 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10384 struct ieee80211_txb *txb)
10386 struct ieee80211_rx_stats dummystats;
10387 struct ieee80211_hdr *hdr;
10389 u16 filter = priv->prom_priv->filter;
10392 if (filter & IPW_PROM_NO_TX)
10395 memset(&dummystats, 0, sizeof(dummystats));
10397 /* Filtering of fragment chains is done agains the first fragment */
10398 hdr = (void *)txb->fragments[0]->data;
10399 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10400 if (filter & IPW_PROM_NO_MGMT)
10402 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10404 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10405 if (filter & IPW_PROM_NO_CTL)
10407 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10409 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10410 if (filter & IPW_PROM_NO_DATA)
10412 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10416 for(n=0; n<txb->nr_frags; ++n) {
10417 struct sk_buff *src = txb->fragments[n];
10418 struct sk_buff *dst;
10419 struct ieee80211_radiotap_header *rt_hdr;
10423 hdr = (void *)src->data;
10424 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10428 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10432 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10434 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10435 rt_hdr->it_pad = 0;
10436 rt_hdr->it_present = 0; /* after all, it's just an idea */
10437 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10439 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10440 ieee80211chan2mhz(priv->channel));
10441 if (priv->channel > 14) /* 802.11a */
10442 *(__le16*)skb_put(dst, sizeof(u16)) =
10443 cpu_to_le16(IEEE80211_CHAN_OFDM |
10444 IEEE80211_CHAN_5GHZ);
10445 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10446 *(__le16*)skb_put(dst, sizeof(u16)) =
10447 cpu_to_le16(IEEE80211_CHAN_CCK |
10448 IEEE80211_CHAN_2GHZ);
10450 *(__le16*)skb_put(dst, sizeof(u16)) =
10451 cpu_to_le16(IEEE80211_CHAN_OFDM |
10452 IEEE80211_CHAN_2GHZ);
10454 rt_hdr->it_len = cpu_to_le16(dst->len);
10456 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10458 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10459 dev_kfree_skb_any(dst);
10464 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10465 struct net_device *dev, int pri)
10467 struct ipw_priv *priv = ieee80211_priv(dev);
10468 unsigned long flags;
10471 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10472 spin_lock_irqsave(&priv->lock, flags);
10474 #ifdef CONFIG_IPW2200_PROMISCUOUS
10475 if (rtap_iface && netif_running(priv->prom_net_dev))
10476 ipw_handle_promiscuous_tx(priv, txb);
10479 ret = ipw_tx_skb(priv, txb, pri);
10480 if (ret == NETDEV_TX_OK)
10481 __ipw_led_activity_on(priv);
10482 spin_unlock_irqrestore(&priv->lock, flags);
10487 static void ipw_net_set_multicast_list(struct net_device *dev)
10492 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10494 struct ipw_priv *priv = ieee80211_priv(dev);
10495 struct sockaddr *addr = p;
10497 if (!is_valid_ether_addr(addr->sa_data))
10498 return -EADDRNOTAVAIL;
10499 mutex_lock(&priv->mutex);
10500 priv->config |= CFG_CUSTOM_MAC;
10501 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10502 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10503 priv->net_dev->name, priv->mac_addr);
10504 queue_work(priv->workqueue, &priv->adapter_restart);
10505 mutex_unlock(&priv->mutex);
10509 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10510 struct ethtool_drvinfo *info)
10512 struct ipw_priv *p = ieee80211_priv(dev);
10517 strcpy(info->driver, DRV_NAME);
10518 strcpy(info->version, DRV_VERSION);
10520 len = sizeof(vers);
10521 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10522 len = sizeof(date);
10523 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10525 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10527 strcpy(info->bus_info, pci_name(p->pci_dev));
10528 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10531 static u32 ipw_ethtool_get_link(struct net_device *dev)
10533 struct ipw_priv *priv = ieee80211_priv(dev);
10534 return (priv->status & STATUS_ASSOCIATED) != 0;
10537 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10539 return IPW_EEPROM_IMAGE_SIZE;
10542 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10543 struct ethtool_eeprom *eeprom, u8 * bytes)
10545 struct ipw_priv *p = ieee80211_priv(dev);
10547 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10549 mutex_lock(&p->mutex);
10550 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10551 mutex_unlock(&p->mutex);
10555 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10556 struct ethtool_eeprom *eeprom, u8 * bytes)
10558 struct ipw_priv *p = ieee80211_priv(dev);
10561 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10563 mutex_lock(&p->mutex);
10564 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10565 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10566 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10567 mutex_unlock(&p->mutex);
10571 static const struct ethtool_ops ipw_ethtool_ops = {
10572 .get_link = ipw_ethtool_get_link,
10573 .get_drvinfo = ipw_ethtool_get_drvinfo,
10574 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10575 .get_eeprom = ipw_ethtool_get_eeprom,
10576 .set_eeprom = ipw_ethtool_set_eeprom,
10579 static irqreturn_t ipw_isr(int irq, void *data)
10581 struct ipw_priv *priv = data;
10582 u32 inta, inta_mask;
10587 spin_lock(&priv->irq_lock);
10589 if (!(priv->status & STATUS_INT_ENABLED)) {
10590 /* IRQ is disabled */
10594 inta = ipw_read32(priv, IPW_INTA_RW);
10595 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10597 if (inta == 0xFFFFFFFF) {
10598 /* Hardware disappeared */
10599 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10603 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10604 /* Shared interrupt */
10608 /* tell the device to stop sending interrupts */
10609 __ipw_disable_interrupts(priv);
10611 /* ack current interrupts */
10612 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10613 ipw_write32(priv, IPW_INTA_RW, inta);
10615 /* Cache INTA value for our tasklet */
10616 priv->isr_inta = inta;
10618 tasklet_schedule(&priv->irq_tasklet);
10620 spin_unlock(&priv->irq_lock);
10622 return IRQ_HANDLED;
10624 spin_unlock(&priv->irq_lock);
10628 static void ipw_rf_kill(void *adapter)
10630 struct ipw_priv *priv = adapter;
10631 unsigned long flags;
10633 spin_lock_irqsave(&priv->lock, flags);
10635 if (rf_kill_active(priv)) {
10636 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10637 if (priv->workqueue)
10638 queue_delayed_work(priv->workqueue,
10639 &priv->rf_kill, 2 * HZ);
10643 /* RF Kill is now disabled, so bring the device back up */
10645 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10646 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10649 /* we can not do an adapter restart while inside an irq lock */
10650 queue_work(priv->workqueue, &priv->adapter_restart);
10652 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10656 spin_unlock_irqrestore(&priv->lock, flags);
10659 static void ipw_bg_rf_kill(struct work_struct *work)
10661 struct ipw_priv *priv =
10662 container_of(work, struct ipw_priv, rf_kill.work);
10663 mutex_lock(&priv->mutex);
10665 mutex_unlock(&priv->mutex);
10668 static void ipw_link_up(struct ipw_priv *priv)
10670 priv->last_seq_num = -1;
10671 priv->last_frag_num = -1;
10672 priv->last_packet_time = 0;
10674 netif_carrier_on(priv->net_dev);
10676 cancel_delayed_work(&priv->request_scan);
10677 cancel_delayed_work(&priv->request_direct_scan);
10678 cancel_delayed_work(&priv->request_passive_scan);
10679 cancel_delayed_work(&priv->scan_event);
10680 ipw_reset_stats(priv);
10681 /* Ensure the rate is updated immediately */
10682 priv->last_rate = ipw_get_current_rate(priv);
10683 ipw_gather_stats(priv);
10684 ipw_led_link_up(priv);
10685 notify_wx_assoc_event(priv);
10687 if (priv->config & CFG_BACKGROUND_SCAN)
10688 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10691 static void ipw_bg_link_up(struct work_struct *work)
10693 struct ipw_priv *priv =
10694 container_of(work, struct ipw_priv, link_up);
10695 mutex_lock(&priv->mutex);
10697 mutex_unlock(&priv->mutex);
10700 static void ipw_link_down(struct ipw_priv *priv)
10702 ipw_led_link_down(priv);
10703 netif_carrier_off(priv->net_dev);
10704 notify_wx_assoc_event(priv);
10706 /* Cancel any queued work ... */
10707 cancel_delayed_work(&priv->request_scan);
10708 cancel_delayed_work(&priv->request_direct_scan);
10709 cancel_delayed_work(&priv->request_passive_scan);
10710 cancel_delayed_work(&priv->adhoc_check);
10711 cancel_delayed_work(&priv->gather_stats);
10713 ipw_reset_stats(priv);
10715 if (!(priv->status & STATUS_EXIT_PENDING)) {
10716 /* Queue up another scan... */
10717 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10719 cancel_delayed_work(&priv->scan_event);
10722 static void ipw_bg_link_down(struct work_struct *work)
10724 struct ipw_priv *priv =
10725 container_of(work, struct ipw_priv, link_down);
10726 mutex_lock(&priv->mutex);
10727 ipw_link_down(priv);
10728 mutex_unlock(&priv->mutex);
10731 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10735 priv->workqueue = create_workqueue(DRV_NAME);
10736 init_waitqueue_head(&priv->wait_command_queue);
10737 init_waitqueue_head(&priv->wait_state);
10739 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10740 INIT_WORK(&priv->associate, ipw_bg_associate);
10741 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10742 INIT_WORK(&priv->system_config, ipw_system_config);
10743 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10744 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10745 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10746 INIT_WORK(&priv->up, ipw_bg_up);
10747 INIT_WORK(&priv->down, ipw_bg_down);
10748 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10749 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10750 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10751 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10752 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10753 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10754 INIT_WORK(&priv->roam, ipw_bg_roam);
10755 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10756 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10757 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10758 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10759 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10760 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10761 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10763 #ifdef CONFIG_IPW2200_QOS
10764 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10765 #endif /* CONFIG_IPW2200_QOS */
10767 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10768 ipw_irq_tasklet, (unsigned long)priv);
10773 static void shim__set_security(struct net_device *dev,
10774 struct ieee80211_security *sec)
10776 struct ipw_priv *priv = ieee80211_priv(dev);
10778 for (i = 0; i < 4; i++) {
10779 if (sec->flags & (1 << i)) {
10780 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10781 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10782 if (sec->key_sizes[i] == 0)
10783 priv->ieee->sec.flags &= ~(1 << i);
10785 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10786 sec->key_sizes[i]);
10787 priv->ieee->sec.flags |= (1 << i);
10789 priv->status |= STATUS_SECURITY_UPDATED;
10790 } else if (sec->level != SEC_LEVEL_1)
10791 priv->ieee->sec.flags &= ~(1 << i);
10794 if (sec->flags & SEC_ACTIVE_KEY) {
10795 if (sec->active_key <= 3) {
10796 priv->ieee->sec.active_key = sec->active_key;
10797 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10799 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10800 priv->status |= STATUS_SECURITY_UPDATED;
10802 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10804 if ((sec->flags & SEC_AUTH_MODE) &&
10805 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10806 priv->ieee->sec.auth_mode = sec->auth_mode;
10807 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10808 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10809 priv->capability |= CAP_SHARED_KEY;
10811 priv->capability &= ~CAP_SHARED_KEY;
10812 priv->status |= STATUS_SECURITY_UPDATED;
10815 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10816 priv->ieee->sec.flags |= SEC_ENABLED;
10817 priv->ieee->sec.enabled = sec->enabled;
10818 priv->status |= STATUS_SECURITY_UPDATED;
10820 priv->capability |= CAP_PRIVACY_ON;
10822 priv->capability &= ~CAP_PRIVACY_ON;
10825 if (sec->flags & SEC_ENCRYPT)
10826 priv->ieee->sec.encrypt = sec->encrypt;
10828 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10829 priv->ieee->sec.level = sec->level;
10830 priv->ieee->sec.flags |= SEC_LEVEL;
10831 priv->status |= STATUS_SECURITY_UPDATED;
10834 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10835 ipw_set_hwcrypto_keys(priv);
10837 /* To match current functionality of ipw2100 (which works well w/
10838 * various supplicants, we don't force a disassociate if the
10839 * privacy capability changes ... */
10841 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10842 (((priv->assoc_request.capability &
10843 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10844 (!(priv->assoc_request.capability &
10845 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10846 IPW_DEBUG_ASSOC("Disassociating due to capability "
10848 ipw_disassociate(priv);
10853 static int init_supported_rates(struct ipw_priv *priv,
10854 struct ipw_supported_rates *rates)
10856 /* TODO: Mask out rates based on priv->rates_mask */
10858 memset(rates, 0, sizeof(*rates));
10859 /* configure supported rates */
10860 switch (priv->ieee->freq_band) {
10861 case IEEE80211_52GHZ_BAND:
10862 rates->ieee_mode = IPW_A_MODE;
10863 rates->purpose = IPW_RATE_CAPABILITIES;
10864 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10865 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10868 default: /* Mixed or 2.4Ghz */
10869 rates->ieee_mode = IPW_G_MODE;
10870 rates->purpose = IPW_RATE_CAPABILITIES;
10871 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10872 IEEE80211_CCK_DEFAULT_RATES_MASK);
10873 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10874 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10875 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10883 static int ipw_config(struct ipw_priv *priv)
10885 /* This is only called from ipw_up, which resets/reloads the firmware
10886 so, we don't need to first disable the card before we configure
10888 if (ipw_set_tx_power(priv))
10891 /* initialize adapter address */
10892 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10895 /* set basic system config settings */
10896 init_sys_config(&priv->sys_config);
10898 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10899 * Does not support BT priority yet (don't abort or defer our Tx) */
10901 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10903 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10904 priv->sys_config.bt_coexistence
10905 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10906 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10907 priv->sys_config.bt_coexistence
10908 |= CFG_BT_COEXISTENCE_OOB;
10911 #ifdef CONFIG_IPW2200_PROMISCUOUS
10912 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10913 priv->sys_config.accept_all_data_frames = 1;
10914 priv->sys_config.accept_non_directed_frames = 1;
10915 priv->sys_config.accept_all_mgmt_bcpr = 1;
10916 priv->sys_config.accept_all_mgmt_frames = 1;
10920 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10921 priv->sys_config.answer_broadcast_ssid_probe = 1;
10923 priv->sys_config.answer_broadcast_ssid_probe = 0;
10925 if (ipw_send_system_config(priv))
10928 init_supported_rates(priv, &priv->rates);
10929 if (ipw_send_supported_rates(priv, &priv->rates))
10932 /* Set request-to-send threshold */
10933 if (priv->rts_threshold) {
10934 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10937 #ifdef CONFIG_IPW2200_QOS
10938 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10939 ipw_qos_activate(priv, NULL);
10940 #endif /* CONFIG_IPW2200_QOS */
10942 if (ipw_set_random_seed(priv))
10945 /* final state transition to the RUN state */
10946 if (ipw_send_host_complete(priv))
10949 priv->status |= STATUS_INIT;
10951 ipw_led_init(priv);
10952 ipw_led_radio_on(priv);
10953 priv->notif_missed_beacons = 0;
10955 /* Set hardware WEP key if it is configured. */
10956 if ((priv->capability & CAP_PRIVACY_ON) &&
10957 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10958 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10959 ipw_set_hwcrypto_keys(priv);
10970 * These tables have been tested in conjunction with the
10971 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10973 * Altering this values, using it on other hardware, or in geographies
10974 * not intended for resale of the above mentioned Intel adapters has
10977 * Remember to update the table in README.ipw2200 when changing this
10981 static const struct ieee80211_geo ipw_geos[] = {
10985 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10986 {2427, 4}, {2432, 5}, {2437, 6},
10987 {2442, 7}, {2447, 8}, {2452, 9},
10988 {2457, 10}, {2462, 11}},
10991 { /* Custom US/Canada */
10994 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10995 {2427, 4}, {2432, 5}, {2437, 6},
10996 {2442, 7}, {2447, 8}, {2452, 9},
10997 {2457, 10}, {2462, 11}},
11003 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11004 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11005 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11006 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11009 { /* Rest of World */
11012 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11013 {2427, 4}, {2432, 5}, {2437, 6},
11014 {2442, 7}, {2447, 8}, {2452, 9},
11015 {2457, 10}, {2462, 11}, {2467, 12},
11019 { /* Custom USA & Europe & High */
11022 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11023 {2427, 4}, {2432, 5}, {2437, 6},
11024 {2442, 7}, {2447, 8}, {2452, 9},
11025 {2457, 10}, {2462, 11}},
11031 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11032 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11033 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11034 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11042 { /* Custom NA & Europe */
11045 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11046 {2427, 4}, {2432, 5}, {2437, 6},
11047 {2442, 7}, {2447, 8}, {2452, 9},
11048 {2457, 10}, {2462, 11}},
11054 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11055 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11056 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11057 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11058 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11059 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11060 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11061 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11062 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11065 { /* Custom Japan */
11068 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11069 {2427, 4}, {2432, 5}, {2437, 6},
11070 {2442, 7}, {2447, 8}, {2452, 9},
11071 {2457, 10}, {2462, 11}},
11073 .a = {{5170, 34}, {5190, 38},
11074 {5210, 42}, {5230, 46}},
11080 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11081 {2427, 4}, {2432, 5}, {2437, 6},
11082 {2442, 7}, {2447, 8}, {2452, 9},
11083 {2457, 10}, {2462, 11}},
11089 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11090 {2427, 4}, {2432, 5}, {2437, 6},
11091 {2442, 7}, {2447, 8}, {2452, 9},
11092 {2457, 10}, {2462, 11}, {2467, 12},
11099 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11100 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11101 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11102 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11103 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11104 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11105 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11106 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11107 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11108 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11109 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11110 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11111 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11112 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11113 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11116 { /* Custom Japan */
11119 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11120 {2427, 4}, {2432, 5}, {2437, 6},
11121 {2442, 7}, {2447, 8}, {2452, 9},
11122 {2457, 10}, {2462, 11}, {2467, 12},
11123 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11125 .a = {{5170, 34}, {5190, 38},
11126 {5210, 42}, {5230, 46}},
11129 { /* Rest of World */
11132 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11133 {2427, 4}, {2432, 5}, {2437, 6},
11134 {2442, 7}, {2447, 8}, {2452, 9},
11135 {2457, 10}, {2462, 11}, {2467, 12},
11136 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11137 IEEE80211_CH_PASSIVE_ONLY}},
11143 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11144 {2427, 4}, {2432, 5}, {2437, 6},
11145 {2442, 7}, {2447, 8}, {2452, 9},
11146 {2457, 10}, {2462, 11},
11147 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11148 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11150 .a = {{5745, 149}, {5765, 153},
11151 {5785, 157}, {5805, 161}},
11154 { /* Custom Europe */
11157 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11158 {2427, 4}, {2432, 5}, {2437, 6},
11159 {2442, 7}, {2447, 8}, {2452, 9},
11160 {2457, 10}, {2462, 11},
11161 {2467, 12}, {2472, 13}},
11163 .a = {{5180, 36}, {5200, 40},
11164 {5220, 44}, {5240, 48}},
11170 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11171 {2427, 4}, {2432, 5}, {2437, 6},
11172 {2442, 7}, {2447, 8}, {2452, 9},
11173 {2457, 10}, {2462, 11},
11174 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11175 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11177 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11178 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11179 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11180 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11181 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11182 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11183 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11184 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11185 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11186 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11187 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11188 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11189 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11190 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11191 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11192 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11193 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11194 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11195 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11196 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11197 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11198 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11199 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11200 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11206 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11207 {2427, 4}, {2432, 5}, {2437, 6},
11208 {2442, 7}, {2447, 8}, {2452, 9},
11209 {2457, 10}, {2462, 11}},
11211 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11212 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11213 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11214 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11215 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11216 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11217 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11218 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11219 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11220 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11221 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11222 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11223 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11227 #define MAX_HW_RESTARTS 5
11228 static int ipw_up(struct ipw_priv *priv)
11232 /* Age scan list entries found before suspend */
11233 if (priv->suspend_time) {
11234 ieee80211_networks_age(priv->ieee, priv->suspend_time);
11235 priv->suspend_time = 0;
11238 if (priv->status & STATUS_EXIT_PENDING)
11241 if (cmdlog && !priv->cmdlog) {
11242 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11244 if (priv->cmdlog == NULL) {
11245 IPW_ERROR("Error allocating %d command log entries.\n",
11249 priv->cmdlog_len = cmdlog;
11253 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11254 /* Load the microcode, firmware, and eeprom.
11255 * Also start the clocks. */
11256 rc = ipw_load(priv);
11258 IPW_ERROR("Unable to load firmware: %d\n", rc);
11262 ipw_init_ordinals(priv);
11263 if (!(priv->config & CFG_CUSTOM_MAC))
11264 eeprom_parse_mac(priv, priv->mac_addr);
11265 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11267 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11268 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11269 ipw_geos[j].name, 3))
11272 if (j == ARRAY_SIZE(ipw_geos)) {
11273 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11274 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11275 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11276 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11279 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11280 IPW_WARNING("Could not set geography.");
11284 if (priv->status & STATUS_RF_KILL_SW) {
11285 IPW_WARNING("Radio disabled by module parameter.\n");
11287 } else if (rf_kill_active(priv)) {
11288 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11289 "Kill switch must be turned off for "
11290 "wireless networking to work.\n");
11291 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11296 rc = ipw_config(priv);
11298 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11300 /* If configure to try and auto-associate, kick
11302 queue_delayed_work(priv->workqueue,
11303 &priv->request_scan, 0);
11308 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11309 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11310 i, MAX_HW_RESTARTS);
11312 /* We had an error bringing up the hardware, so take it
11313 * all the way back down so we can try again */
11317 /* tried to restart and config the device for as long as our
11318 * patience could withstand */
11319 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11324 static void ipw_bg_up(struct work_struct *work)
11326 struct ipw_priv *priv =
11327 container_of(work, struct ipw_priv, up);
11328 mutex_lock(&priv->mutex);
11330 mutex_unlock(&priv->mutex);
11333 static void ipw_deinit(struct ipw_priv *priv)
11337 if (priv->status & STATUS_SCANNING) {
11338 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11339 ipw_abort_scan(priv);
11342 if (priv->status & STATUS_ASSOCIATED) {
11343 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11344 ipw_disassociate(priv);
11347 ipw_led_shutdown(priv);
11349 /* Wait up to 1s for status to change to not scanning and not
11350 * associated (disassociation can take a while for a ful 802.11
11352 for (i = 1000; i && (priv->status &
11353 (STATUS_DISASSOCIATING |
11354 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11357 if (priv->status & (STATUS_DISASSOCIATING |
11358 STATUS_ASSOCIATED | STATUS_SCANNING))
11359 IPW_DEBUG_INFO("Still associated or scanning...\n");
11361 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11363 /* Attempt to disable the card */
11364 ipw_send_card_disable(priv, 0);
11366 priv->status &= ~STATUS_INIT;
11369 static void ipw_down(struct ipw_priv *priv)
11371 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11373 priv->status |= STATUS_EXIT_PENDING;
11375 if (ipw_is_init(priv))
11378 /* Wipe out the EXIT_PENDING status bit if we are not actually
11379 * exiting the module */
11381 priv->status &= ~STATUS_EXIT_PENDING;
11383 /* tell the device to stop sending interrupts */
11384 ipw_disable_interrupts(priv);
11386 /* Clear all bits but the RF Kill */
11387 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11388 netif_carrier_off(priv->net_dev);
11390 ipw_stop_nic(priv);
11392 ipw_led_radio_off(priv);
11395 static void ipw_bg_down(struct work_struct *work)
11397 struct ipw_priv *priv =
11398 container_of(work, struct ipw_priv, down);
11399 mutex_lock(&priv->mutex);
11401 mutex_unlock(&priv->mutex);
11404 /* Called by register_netdev() */
11405 static int ipw_net_init(struct net_device *dev)
11407 struct ipw_priv *priv = ieee80211_priv(dev);
11408 mutex_lock(&priv->mutex);
11410 if (ipw_up(priv)) {
11411 mutex_unlock(&priv->mutex);
11415 mutex_unlock(&priv->mutex);
11419 /* PCI driver stuff */
11420 static struct pci_device_id card_ids[] = {
11421 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11427 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11428 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11433 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11434 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11435 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11437 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11438 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11439 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11440 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11441 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11442 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11444 /* required last entry */
11448 MODULE_DEVICE_TABLE(pci, card_ids);
11450 static struct attribute *ipw_sysfs_entries[] = {
11451 &dev_attr_rf_kill.attr,
11452 &dev_attr_direct_dword.attr,
11453 &dev_attr_indirect_byte.attr,
11454 &dev_attr_indirect_dword.attr,
11455 &dev_attr_mem_gpio_reg.attr,
11456 &dev_attr_command_event_reg.attr,
11457 &dev_attr_nic_type.attr,
11458 &dev_attr_status.attr,
11459 &dev_attr_cfg.attr,
11460 &dev_attr_error.attr,
11461 &dev_attr_event_log.attr,
11462 &dev_attr_cmd_log.attr,
11463 &dev_attr_eeprom_delay.attr,
11464 &dev_attr_ucode_version.attr,
11465 &dev_attr_rtc.attr,
11466 &dev_attr_scan_age.attr,
11467 &dev_attr_led.attr,
11468 &dev_attr_speed_scan.attr,
11469 &dev_attr_net_stats.attr,
11470 &dev_attr_channels.attr,
11471 #ifdef CONFIG_IPW2200_PROMISCUOUS
11472 &dev_attr_rtap_iface.attr,
11473 &dev_attr_rtap_filter.attr,
11478 static struct attribute_group ipw_attribute_group = {
11479 .name = NULL, /* put in device directory */
11480 .attrs = ipw_sysfs_entries,
11483 #ifdef CONFIG_IPW2200_PROMISCUOUS
11484 static int ipw_prom_open(struct net_device *dev)
11486 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11487 struct ipw_priv *priv = prom_priv->priv;
11489 IPW_DEBUG_INFO("prom dev->open\n");
11490 netif_carrier_off(dev);
11492 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11493 priv->sys_config.accept_all_data_frames = 1;
11494 priv->sys_config.accept_non_directed_frames = 1;
11495 priv->sys_config.accept_all_mgmt_bcpr = 1;
11496 priv->sys_config.accept_all_mgmt_frames = 1;
11498 ipw_send_system_config(priv);
11504 static int ipw_prom_stop(struct net_device *dev)
11506 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11507 struct ipw_priv *priv = prom_priv->priv;
11509 IPW_DEBUG_INFO("prom dev->stop\n");
11511 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11512 priv->sys_config.accept_all_data_frames = 0;
11513 priv->sys_config.accept_non_directed_frames = 0;
11514 priv->sys_config.accept_all_mgmt_bcpr = 0;
11515 priv->sys_config.accept_all_mgmt_frames = 0;
11517 ipw_send_system_config(priv);
11523 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11525 IPW_DEBUG_INFO("prom dev->xmit\n");
11526 return -EOPNOTSUPP;
11529 static const struct net_device_ops ipw_prom_netdev_ops = {
11530 .ndo_open = ipw_prom_open,
11531 .ndo_stop = ipw_prom_stop,
11532 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11533 .ndo_change_mtu = ieee80211_change_mtu,
11534 .ndo_set_mac_address = eth_mac_addr,
11535 .ndo_validate_addr = eth_validate_addr,
11538 static int ipw_prom_alloc(struct ipw_priv *priv)
11542 if (priv->prom_net_dev)
11545 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11546 if (priv->prom_net_dev == NULL)
11549 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11550 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11551 priv->prom_priv->priv = priv;
11553 strcpy(priv->prom_net_dev->name, "rtap%d");
11554 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11556 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11557 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11559 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11560 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11562 rc = register_netdev(priv->prom_net_dev);
11564 free_ieee80211(priv->prom_net_dev);
11565 priv->prom_net_dev = NULL;
11572 static void ipw_prom_free(struct ipw_priv *priv)
11574 if (!priv->prom_net_dev)
11577 unregister_netdev(priv->prom_net_dev);
11578 free_ieee80211(priv->prom_net_dev);
11580 priv->prom_net_dev = NULL;
11585 static const struct net_device_ops ipw_netdev_ops = {
11586 .ndo_init = ipw_net_init,
11587 .ndo_open = ipw_net_open,
11588 .ndo_stop = ipw_net_stop,
11589 .ndo_set_multicast_list = ipw_net_set_multicast_list,
11590 .ndo_set_mac_address = ipw_net_set_mac_address,
11591 .ndo_start_xmit = ieee80211_xmit,
11592 .ndo_change_mtu = ieee80211_change_mtu,
11593 .ndo_validate_addr = eth_validate_addr,
11596 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11597 const struct pci_device_id *ent)
11600 struct net_device *net_dev;
11601 void __iomem *base;
11603 struct ipw_priv *priv;
11606 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11607 if (net_dev == NULL) {
11612 priv = ieee80211_priv(net_dev);
11613 priv->ieee = netdev_priv(net_dev);
11615 priv->net_dev = net_dev;
11616 priv->pci_dev = pdev;
11617 ipw_debug_level = debug;
11618 spin_lock_init(&priv->irq_lock);
11619 spin_lock_init(&priv->lock);
11620 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11621 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11623 mutex_init(&priv->mutex);
11624 if (pci_enable_device(pdev)) {
11626 goto out_free_ieee80211;
11629 pci_set_master(pdev);
11631 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11633 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11635 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11636 goto out_pci_disable_device;
11639 pci_set_drvdata(pdev, priv);
11641 err = pci_request_regions(pdev, DRV_NAME);
11643 goto out_pci_disable_device;
11645 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11646 * PCI Tx retries from interfering with C3 CPU state */
11647 pci_read_config_dword(pdev, 0x40, &val);
11648 if ((val & 0x0000ff00) != 0)
11649 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11651 length = pci_resource_len(pdev, 0);
11652 priv->hw_len = length;
11654 base = pci_ioremap_bar(pdev, 0);
11657 goto out_pci_release_regions;
11660 priv->hw_base = base;
11661 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11662 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11664 err = ipw_setup_deferred_work(priv);
11666 IPW_ERROR("Unable to setup deferred work\n");
11670 ipw_sw_reset(priv, 1);
11672 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11674 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11675 goto out_destroy_workqueue;
11678 SET_NETDEV_DEV(net_dev, &pdev->dev);
11680 mutex_lock(&priv->mutex);
11682 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11683 priv->ieee->set_security = shim__set_security;
11684 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11686 #ifdef CONFIG_IPW2200_QOS
11687 priv->ieee->is_qos_active = ipw_is_qos_active;
11688 priv->ieee->handle_probe_response = ipw_handle_beacon;
11689 priv->ieee->handle_beacon = ipw_handle_probe_response;
11690 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11691 #endif /* CONFIG_IPW2200_QOS */
11693 priv->ieee->perfect_rssi = -20;
11694 priv->ieee->worst_rssi = -85;
11696 net_dev->netdev_ops = &ipw_netdev_ops;
11697 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11698 net_dev->wireless_data = &priv->wireless_data;
11699 net_dev->wireless_handlers = &ipw_wx_handler_def;
11700 net_dev->ethtool_ops = &ipw_ethtool_ops;
11701 net_dev->irq = pdev->irq;
11702 net_dev->base_addr = (unsigned long)priv->hw_base;
11703 net_dev->mem_start = pci_resource_start(pdev, 0);
11704 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11706 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11708 IPW_ERROR("failed to create sysfs device attributes\n");
11709 mutex_unlock(&priv->mutex);
11710 goto out_release_irq;
11713 mutex_unlock(&priv->mutex);
11714 err = register_netdev(net_dev);
11716 IPW_ERROR("failed to register network device\n");
11717 goto out_remove_sysfs;
11720 #ifdef CONFIG_IPW2200_PROMISCUOUS
11722 err = ipw_prom_alloc(priv);
11724 IPW_ERROR("Failed to register promiscuous network "
11725 "device (error %d).\n", err);
11726 unregister_netdev(priv->net_dev);
11727 goto out_remove_sysfs;
11732 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11733 "channels, %d 802.11a channels)\n",
11734 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11735 priv->ieee->geo.a_channels);
11740 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11742 free_irq(pdev->irq, priv);
11743 out_destroy_workqueue:
11744 destroy_workqueue(priv->workqueue);
11745 priv->workqueue = NULL;
11747 iounmap(priv->hw_base);
11748 out_pci_release_regions:
11749 pci_release_regions(pdev);
11750 out_pci_disable_device:
11751 pci_disable_device(pdev);
11752 pci_set_drvdata(pdev, NULL);
11753 out_free_ieee80211:
11754 free_ieee80211(priv->net_dev);
11759 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11761 struct ipw_priv *priv = pci_get_drvdata(pdev);
11762 struct list_head *p, *q;
11768 mutex_lock(&priv->mutex);
11770 priv->status |= STATUS_EXIT_PENDING;
11772 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11774 mutex_unlock(&priv->mutex);
11776 unregister_netdev(priv->net_dev);
11779 ipw_rx_queue_free(priv, priv->rxq);
11782 ipw_tx_queue_free(priv);
11784 if (priv->cmdlog) {
11785 kfree(priv->cmdlog);
11786 priv->cmdlog = NULL;
11788 /* ipw_down will ensure that there is no more pending work
11789 * in the workqueue's, so we can safely remove them now. */
11790 cancel_delayed_work(&priv->adhoc_check);
11791 cancel_delayed_work(&priv->gather_stats);
11792 cancel_delayed_work(&priv->request_scan);
11793 cancel_delayed_work(&priv->request_direct_scan);
11794 cancel_delayed_work(&priv->request_passive_scan);
11795 cancel_delayed_work(&priv->scan_event);
11796 cancel_delayed_work(&priv->rf_kill);
11797 cancel_delayed_work(&priv->scan_check);
11798 destroy_workqueue(priv->workqueue);
11799 priv->workqueue = NULL;
11801 /* Free MAC hash list for ADHOC */
11802 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11803 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11805 kfree(list_entry(p, struct ipw_ibss_seq, list));
11809 kfree(priv->error);
11810 priv->error = NULL;
11812 #ifdef CONFIG_IPW2200_PROMISCUOUS
11813 ipw_prom_free(priv);
11816 free_irq(pdev->irq, priv);
11817 iounmap(priv->hw_base);
11818 pci_release_regions(pdev);
11819 pci_disable_device(pdev);
11820 pci_set_drvdata(pdev, NULL);
11821 free_ieee80211(priv->net_dev);
11826 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11828 struct ipw_priv *priv = pci_get_drvdata(pdev);
11829 struct net_device *dev = priv->net_dev;
11831 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11833 /* Take down the device; powers it off, etc. */
11836 /* Remove the PRESENT state of the device */
11837 netif_device_detach(dev);
11839 pci_save_state(pdev);
11840 pci_disable_device(pdev);
11841 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11843 priv->suspend_at = get_seconds();
11848 static int ipw_pci_resume(struct pci_dev *pdev)
11850 struct ipw_priv *priv = pci_get_drvdata(pdev);
11851 struct net_device *dev = priv->net_dev;
11855 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11857 pci_set_power_state(pdev, PCI_D0);
11858 err = pci_enable_device(pdev);
11860 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11864 pci_restore_state(pdev);
11867 * Suspend/Resume resets the PCI configuration space, so we have to
11868 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11869 * from interfering with C3 CPU state. pci_restore_state won't help
11870 * here since it only restores the first 64 bytes pci config header.
11872 pci_read_config_dword(pdev, 0x40, &val);
11873 if ((val & 0x0000ff00) != 0)
11874 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11876 /* Set the device back into the PRESENT state; this will also wake
11877 * the queue of needed */
11878 netif_device_attach(dev);
11880 priv->suspend_time = get_seconds() - priv->suspend_at;
11882 /* Bring the device back up */
11883 queue_work(priv->workqueue, &priv->up);
11889 static void ipw_pci_shutdown(struct pci_dev *pdev)
11891 struct ipw_priv *priv = pci_get_drvdata(pdev);
11893 /* Take down the device; powers it off, etc. */
11896 pci_disable_device(pdev);
11899 /* driver initialization stuff */
11900 static struct pci_driver ipw_driver = {
11902 .id_table = card_ids,
11903 .probe = ipw_pci_probe,
11904 .remove = __devexit_p(ipw_pci_remove),
11906 .suspend = ipw_pci_suspend,
11907 .resume = ipw_pci_resume,
11909 .shutdown = ipw_pci_shutdown,
11912 static int __init ipw_init(void)
11916 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11917 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11919 ret = pci_register_driver(&ipw_driver);
11921 IPW_ERROR("Unable to initialize PCI module\n");
11925 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11927 IPW_ERROR("Unable to create driver sysfs file\n");
11928 pci_unregister_driver(&ipw_driver);
11935 static void __exit ipw_exit(void)
11937 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11938 pci_unregister_driver(&ipw_driver);
11941 module_param(disable, int, 0444);
11942 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11944 module_param(associate, int, 0444);
11945 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11947 module_param(auto_create, int, 0444);
11948 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11950 module_param(led, int, 0444);
11951 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11953 module_param(debug, int, 0444);
11954 MODULE_PARM_DESC(debug, "debug output mask");
11956 module_param(channel, int, 0444);
11957 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11959 #ifdef CONFIG_IPW2200_PROMISCUOUS
11960 module_param(rtap_iface, int, 0444);
11961 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11964 #ifdef CONFIG_IPW2200_QOS
11965 module_param(qos_enable, int, 0444);
11966 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11968 module_param(qos_burst_enable, int, 0444);
11969 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11971 module_param(qos_no_ack_mask, int, 0444);
11972 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11974 module_param(burst_duration_CCK, int, 0444);
11975 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11977 module_param(burst_duration_OFDM, int, 0444);
11978 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11979 #endif /* CONFIG_IPW2200_QOS */
11981 #ifdef CONFIG_IPW2200_MONITOR
11982 module_param(mode, int, 0444);
11983 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11985 module_param(mode, int, 0444);
11986 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11989 module_param(bt_coexist, int, 0444);
11990 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11992 module_param(hwcrypto, int, 0444);
11993 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11995 module_param(cmdlog, int, 0444);
11996 MODULE_PARM_DESC(cmdlog,
11997 "allocate a ring buffer for logging firmware commands");
11999 module_param(roaming, int, 0444);
12000 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12002 module_param(antenna, int, 0444);
12003 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12005 module_exit(ipw_exit);
12006 module_init(ipw_init);