Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35
36 #ifndef KBUILD_EXTMOD
37 #define VK "k"
38 #else
39 #define VK
40 #endif
41
42 #ifdef CONFIG_IPW2200_DEBUG
43 #define VD "d"
44 #else
45 #define VD
46 #endif
47
48 #ifdef CONFIG_IPW2200_MONITOR
49 #define VM "m"
50 #else
51 #define VM
52 #endif
53
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
55 #define VP "p"
56 #else
57 #define VP
58 #endif
59
60 #ifdef CONFIG_IPW2200_RADIOTAP
61 #define VR "r"
62 #else
63 #define VR
64 #endif
65
66 #ifdef CONFIG_IPW2200_QOS
67 #define VQ "q"
68 #else
69 #define VQ
70 #endif
71
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION     IPW2200_VERSION
76
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
78
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
83
84 static int cmdlog = 0;
85 static int debug = 0;
86 static int channel = 0;
87 static int mode = 0;
88
89 static u32 ipw_debug_level;
90 static int associate;
91 static int auto_create = 1;
92 static int led = 0;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
98         'a', 'b', 'g', '?'
99 };
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
101
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
104 #endif
105
106
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
113
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116          QOS_TX3_CW_MIN_OFDM},
117         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118          QOS_TX3_CW_MAX_OFDM},
119         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
123 };
124
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127          QOS_TX3_CW_MIN_CCK},
128         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129          QOS_TX3_CW_MAX_CCK},
130         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133          QOS_TX3_TXOP_LIMIT_CCK}
134 };
135
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138          DEF_TX3_CW_MIN_OFDM},
139         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140          DEF_TX3_CW_MAX_OFDM},
141         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149          DEF_TX3_CW_MIN_CCK},
150         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151          DEF_TX3_CW_MAX_CCK},
152         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155          DEF_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
159
160 static int from_priority_to_tx_queue[] = {
161         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
163 };
164
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
166
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168                                        *qos_param);
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170                                      *qos_param);
171 #endif                          /* CONFIG_IPW2200_QOS */
172
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177                                 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
179
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181                              int len, int sync);
182
183 static void ipw_tx_queue_free(struct ipw_priv *);
184
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194                                 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
197
198 static int snprint_line(char *buf, size_t count,
199                         const u8 * data, u32 len, u32 ofs)
200 {
201         int out, i, j, l;
202         char c;
203
204         out = snprintf(buf, count, "%08X", ofs);
205
206         for (l = 0, i = 0; i < 2; i++) {
207                 out += snprintf(buf + out, count - out, " ");
208                 for (j = 0; j < 8 && l < len; j++, l++)
209                         out += snprintf(buf + out, count - out, "%02X ",
210                                         data[(i * 8 + j)]);
211                 for (; j < 8; j++)
212                         out += snprintf(buf + out, count - out, "   ");
213         }
214
215         out += snprintf(buf + out, count - out, " ");
216         for (l = 0, i = 0; i < 2; i++) {
217                 out += snprintf(buf + out, count - out, " ");
218                 for (j = 0; j < 8 && l < len; j++, l++) {
219                         c = data[(i * 8 + j)];
220                         if (!isascii(c) || !isprint(c))
221                                 c = '.';
222
223                         out += snprintf(buf + out, count - out, "%c", c);
224                 }
225
226                 for (; j < 8; j++)
227                         out += snprintf(buf + out, count - out, " ");
228         }
229
230         return out;
231 }
232
233 static void printk_buf(int level, const u8 * data, u32 len)
234 {
235         char line[81];
236         u32 ofs = 0;
237         if (!(ipw_debug_level & level))
238                 return;
239
240         while (len) {
241                 snprint_line(line, sizeof(line), &data[ofs],
242                              min(len, 16U), ofs);
243                 printk(KERN_DEBUG "%s\n", line);
244                 ofs += 16;
245                 len -= min(len, 16U);
246         }
247 }
248
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
250 {
251         size_t out = size;
252         u32 ofs = 0;
253         int total = 0;
254
255         while (size && len) {
256                 out = snprint_line(output, size, &data[ofs],
257                                    min_t(size_t, len, 16U), ofs);
258
259                 ofs += 16;
260                 output += out;
261                 size -= out;
262                 len -= min_t(size_t, len, 16U);
263                 total += out;
264         }
265         return total;
266 }
267
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
271
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
275
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
279 {
280         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281                      __LINE__, (u32) (b), (u32) (c));
282         _ipw_write_reg8(a, b, c);
283 }
284
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
288 {
289         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290                      __LINE__, (u32) (b), (u32) (c));
291         _ipw_write_reg16(a, b, c);
292 }
293
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
297 {
298         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299                      __LINE__, (u32) (b), (u32) (c));
300         _ipw_write_reg32(a, b, c);
301 }
302
303 /* 8-bit direct write (low 4K) */
304 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
305                 u8 val)
306 {
307         writeb(val, ipw->hw_base + ofs);
308 }
309
310 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
311 #define ipw_write8(ipw, ofs, val) do { \
312         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
313                         __LINE__, (u32)(ofs), (u32)(val)); \
314         _ipw_write8(ipw, ofs, val); \
315 } while (0)
316
317 /* 16-bit direct write (low 4K) */
318 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
319                 u16 val)
320 {
321         writew(val, ipw->hw_base + ofs);
322 }
323
324 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write16(ipw, ofs, val) do { \
326         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
327                         __LINE__, (u32)(ofs), (u32)(val)); \
328         _ipw_write16(ipw, ofs, val); \
329 } while (0)
330
331 /* 32-bit direct write (low 4K) */
332 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
333                 u32 val)
334 {
335         writel(val, ipw->hw_base + ofs);
336 }
337
338 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_write32(ipw, ofs, val) do { \
340         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
341                         __LINE__, (u32)(ofs), (u32)(val)); \
342         _ipw_write32(ipw, ofs, val); \
343 } while (0)
344
345 /* 8-bit direct read (low 4K) */
346 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
347 {
348         return readb(ipw->hw_base + ofs);
349 }
350
351 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read8(ipw, ofs) ({ \
353         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
354                         (u32)(ofs)); \
355         _ipw_read8(ipw, ofs); \
356 })
357
358 /* 16-bit direct read (low 4K) */
359 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
360 {
361         return readw(ipw->hw_base + ofs);
362 }
363
364 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read16(ipw, ofs) ({ \
366         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
367                         (u32)(ofs)); \
368         _ipw_read16(ipw, ofs); \
369 })
370
371 /* 32-bit direct read (low 4K) */
372 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
373 {
374         return readl(ipw->hw_base + ofs);
375 }
376
377 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read32(ipw, ofs) ({ \
379         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
380                         (u32)(ofs)); \
381         _ipw_read32(ipw, ofs); \
382 })
383
384 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
385 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
386 #define ipw_read_indirect(a, b, c, d) ({ \
387         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
388                         __LINE__, (u32)(b), (u32)(d)); \
389         _ipw_read_indirect(a, b, c, d); \
390 })
391
392 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
393 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
394                                 int num);
395 #define ipw_write_indirect(a, b, c, d) do { \
396         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
397                         __LINE__, (u32)(b), (u32)(d)); \
398         _ipw_write_indirect(a, b, c, d); \
399 } while (0)
400
401 /* 32-bit indirect write (above 4K) */
402 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
403 {
404         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
405         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
406         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
407 }
408
409 /* 8-bit indirect write (above 4K) */
410 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
411 {
412         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
413         u32 dif_len = reg - aligned_addr;
414
415         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
416         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
417         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
418 }
419
420 /* 16-bit indirect write (above 4K) */
421 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
422 {
423         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
424         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
425
426         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
427         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
428         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
429 }
430
431 /* 8-bit indirect read (above 4K) */
432 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
433 {
434         u32 word;
435         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
436         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
437         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
438         return (word >> ((reg & 0x3) * 8)) & 0xff;
439 }
440
441 /* 32-bit indirect read (above 4K) */
442 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
443 {
444         u32 value;
445
446         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
447
448         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
449         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
450         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
451         return value;
452 }
453
454 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
455 /*    for area above 1st 4K of SRAM/reg space */
456 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
457                                int num)
458 {
459         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
460         u32 dif_len = addr - aligned_addr;
461         u32 i;
462
463         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
464
465         if (num <= 0) {
466                 return;
467         }
468
469         /* Read the first dword (or portion) byte by byte */
470         if (unlikely(dif_len)) {
471                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472                 /* Start reading at aligned_addr + dif_len */
473                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
474                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
475                 aligned_addr += 4;
476         }
477
478         /* Read all of the middle dwords as dwords, with auto-increment */
479         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
480         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
481                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
482
483         /* Read the last dword (or portion) byte by byte */
484         if (unlikely(num)) {
485                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
486                 for (i = 0; num > 0; i++, num--)
487                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
488         }
489 }
490
491 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
492 /*    for area above 1st 4K of SRAM/reg space */
493 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
494                                 int num)
495 {
496         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
497         u32 dif_len = addr - aligned_addr;
498         u32 i;
499
500         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
501
502         if (num <= 0) {
503                 return;
504         }
505
506         /* Write the first dword (or portion) byte by byte */
507         if (unlikely(dif_len)) {
508                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509                 /* Start writing at aligned_addr + dif_len */
510                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
511                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
512                 aligned_addr += 4;
513         }
514
515         /* Write all of the middle dwords as dwords, with auto-increment */
516         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
517         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
518                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
519
520         /* Write the last dword (or portion) byte by byte */
521         if (unlikely(num)) {
522                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
523                 for (i = 0; num > 0; i++, num--, buf++)
524                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
525         }
526 }
527
528 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
529 /*    for 1st 4K of SRAM/regs space */
530 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
531                              int num)
532 {
533         memcpy_toio((priv->hw_base + addr), buf, num);
534 }
535
536 /* Set bit(s) in low 4K of SRAM/regs */
537 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
538 {
539         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
540 }
541
542 /* Clear bit(s) in low 4K of SRAM/regs */
543 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
544 {
545         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
546 }
547
548 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
549 {
550         if (priv->status & STATUS_INT_ENABLED)
551                 return;
552         priv->status |= STATUS_INT_ENABLED;
553         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
554 }
555
556 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
557 {
558         if (!(priv->status & STATUS_INT_ENABLED))
559                 return;
560         priv->status &= ~STATUS_INT_ENABLED;
561         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
562 }
563
564 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
565 {
566         unsigned long flags;
567
568         spin_lock_irqsave(&priv->irq_lock, flags);
569         __ipw_enable_interrupts(priv);
570         spin_unlock_irqrestore(&priv->irq_lock, flags);
571 }
572
573 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
574 {
575         unsigned long flags;
576
577         spin_lock_irqsave(&priv->irq_lock, flags);
578         __ipw_disable_interrupts(priv);
579         spin_unlock_irqrestore(&priv->irq_lock, flags);
580 }
581
582 static char *ipw_error_desc(u32 val)
583 {
584         switch (val) {
585         case IPW_FW_ERROR_OK:
586                 return "ERROR_OK";
587         case IPW_FW_ERROR_FAIL:
588                 return "ERROR_FAIL";
589         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
590                 return "MEMORY_UNDERFLOW";
591         case IPW_FW_ERROR_MEMORY_OVERFLOW:
592                 return "MEMORY_OVERFLOW";
593         case IPW_FW_ERROR_BAD_PARAM:
594                 return "BAD_PARAM";
595         case IPW_FW_ERROR_BAD_CHECKSUM:
596                 return "BAD_CHECKSUM";
597         case IPW_FW_ERROR_NMI_INTERRUPT:
598                 return "NMI_INTERRUPT";
599         case IPW_FW_ERROR_BAD_DATABASE:
600                 return "BAD_DATABASE";
601         case IPW_FW_ERROR_ALLOC_FAIL:
602                 return "ALLOC_FAIL";
603         case IPW_FW_ERROR_DMA_UNDERRUN:
604                 return "DMA_UNDERRUN";
605         case IPW_FW_ERROR_DMA_STATUS:
606                 return "DMA_STATUS";
607         case IPW_FW_ERROR_DINO_ERROR:
608                 return "DINO_ERROR";
609         case IPW_FW_ERROR_EEPROM_ERROR:
610                 return "EEPROM_ERROR";
611         case IPW_FW_ERROR_SYSASSERT:
612                 return "SYSASSERT";
613         case IPW_FW_ERROR_FATAL_ERROR:
614                 return "FATAL_ERROR";
615         default:
616                 return "UNKNOWN_ERROR";
617         }
618 }
619
620 static void ipw_dump_error_log(struct ipw_priv *priv,
621                                struct ipw_fw_error *error)
622 {
623         u32 i;
624
625         if (!error) {
626                 IPW_ERROR("Error allocating and capturing error log.  "
627                           "Nothing to dump.\n");
628                 return;
629         }
630
631         IPW_ERROR("Start IPW Error Log Dump:\n");
632         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
633                   error->status, error->config);
634
635         for (i = 0; i < error->elem_len; i++)
636                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
637                           ipw_error_desc(error->elem[i].desc),
638                           error->elem[i].time,
639                           error->elem[i].blink1,
640                           error->elem[i].blink2,
641                           error->elem[i].link1,
642                           error->elem[i].link2, error->elem[i].data);
643         for (i = 0; i < error->log_len; i++)
644                 IPW_ERROR("%i\t0x%08x\t%i\n",
645                           error->log[i].time,
646                           error->log[i].data, error->log[i].event);
647 }
648
649 static inline int ipw_is_init(struct ipw_priv *priv)
650 {
651         return (priv->status & STATUS_INIT) ? 1 : 0;
652 }
653
654 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
655 {
656         u32 addr, field_info, field_len, field_count, total_len;
657
658         IPW_DEBUG_ORD("ordinal = %i\n", ord);
659
660         if (!priv || !val || !len) {
661                 IPW_DEBUG_ORD("Invalid argument\n");
662                 return -EINVAL;
663         }
664
665         /* verify device ordinal tables have been initialized */
666         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
667                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
668                 return -EINVAL;
669         }
670
671         switch (IPW_ORD_TABLE_ID_MASK & ord) {
672         case IPW_ORD_TABLE_0_MASK:
673                 /*
674                  * TABLE 0: Direct access to a table of 32 bit values
675                  *
676                  * This is a very simple table with the data directly
677                  * read from the table
678                  */
679
680                 /* remove the table id from the ordinal */
681                 ord &= IPW_ORD_TABLE_VALUE_MASK;
682
683                 /* boundary check */
684                 if (ord > priv->table0_len) {
685                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
686                                       "max (%i)\n", ord, priv->table0_len);
687                         return -EINVAL;
688                 }
689
690                 /* verify we have enough room to store the value */
691                 if (*len < sizeof(u32)) {
692                         IPW_DEBUG_ORD("ordinal buffer length too small, "
693                                       "need %zd\n", sizeof(u32));
694                         return -EINVAL;
695                 }
696
697                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
698                               ord, priv->table0_addr + (ord << 2));
699
700                 *len = sizeof(u32);
701                 ord <<= 2;
702                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
703                 break;
704
705         case IPW_ORD_TABLE_1_MASK:
706                 /*
707                  * TABLE 1: Indirect access to a table of 32 bit values
708                  *
709                  * This is a fairly large table of u32 values each
710                  * representing starting addr for the data (which is
711                  * also a u32)
712                  */
713
714                 /* remove the table id from the ordinal */
715                 ord &= IPW_ORD_TABLE_VALUE_MASK;
716
717                 /* boundary check */
718                 if (ord > priv->table1_len) {
719                         IPW_DEBUG_ORD("ordinal value too long\n");
720                         return -EINVAL;
721                 }
722
723                 /* verify we have enough room to store the value */
724                 if (*len < sizeof(u32)) {
725                         IPW_DEBUG_ORD("ordinal buffer length too small, "
726                                       "need %zd\n", sizeof(u32));
727                         return -EINVAL;
728                 }
729
730                 *((u32 *) val) =
731                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
732                 *len = sizeof(u32);
733                 break;
734
735         case IPW_ORD_TABLE_2_MASK:
736                 /*
737                  * TABLE 2: Indirect access to a table of variable sized values
738                  *
739                  * This table consist of six values, each containing
740                  *     - dword containing the starting offset of the data
741                  *     - dword containing the lengh in the first 16bits
742                  *       and the count in the second 16bits
743                  */
744
745                 /* remove the table id from the ordinal */
746                 ord &= IPW_ORD_TABLE_VALUE_MASK;
747
748                 /* boundary check */
749                 if (ord > priv->table2_len) {
750                         IPW_DEBUG_ORD("ordinal value too long\n");
751                         return -EINVAL;
752                 }
753
754                 /* get the address of statistic */
755                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
756
757                 /* get the second DW of statistics ;
758                  * two 16-bit words - first is length, second is count */
759                 field_info =
760                     ipw_read_reg32(priv,
761                                    priv->table2_addr + (ord << 3) +
762                                    sizeof(u32));
763
764                 /* get each entry length */
765                 field_len = *((u16 *) & field_info);
766
767                 /* get number of entries */
768                 field_count = *(((u16 *) & field_info) + 1);
769
770                 /* abort if not enought memory */
771                 total_len = field_len * field_count;
772                 if (total_len > *len) {
773                         *len = total_len;
774                         return -EINVAL;
775                 }
776
777                 *len = total_len;
778                 if (!total_len)
779                         return 0;
780
781                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
782                               "field_info = 0x%08x\n",
783                               addr, total_len, field_info);
784                 ipw_read_indirect(priv, addr, val, total_len);
785                 break;
786
787         default:
788                 IPW_DEBUG_ORD("Invalid ordinal!\n");
789                 return -EINVAL;
790
791         }
792
793         return 0;
794 }
795
796 static void ipw_init_ordinals(struct ipw_priv *priv)
797 {
798         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
799         priv->table0_len = ipw_read32(priv, priv->table0_addr);
800
801         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
802                       priv->table0_addr, priv->table0_len);
803
804         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
805         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
806
807         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
808                       priv->table1_addr, priv->table1_len);
809
810         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
811         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
812         priv->table2_len &= 0x0000ffff; /* use first two bytes */
813
814         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
815                       priv->table2_addr, priv->table2_len);
816
817 }
818
819 static u32 ipw_register_toggle(u32 reg)
820 {
821         reg &= ~IPW_START_STANDBY;
822         if (reg & IPW_GATE_ODMA)
823                 reg &= ~IPW_GATE_ODMA;
824         if (reg & IPW_GATE_IDMA)
825                 reg &= ~IPW_GATE_IDMA;
826         if (reg & IPW_GATE_ADMA)
827                 reg &= ~IPW_GATE_ADMA;
828         return reg;
829 }
830
831 /*
832  * LED behavior:
833  * - On radio ON, turn on any LEDs that require to be on during start
834  * - On initialization, start unassociated blink
835  * - On association, disable unassociated blink
836  * - On disassociation, start unassociated blink
837  * - On radio OFF, turn off any LEDs started during radio on
838  *
839  */
840 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
841 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
842 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
843
844 static void ipw_led_link_on(struct ipw_priv *priv)
845 {
846         unsigned long flags;
847         u32 led;
848
849         /* If configured to not use LEDs, or nic_type is 1,
850          * then we don't toggle a LINK led */
851         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
852                 return;
853
854         spin_lock_irqsave(&priv->lock, flags);
855
856         if (!(priv->status & STATUS_RF_KILL_MASK) &&
857             !(priv->status & STATUS_LED_LINK_ON)) {
858                 IPW_DEBUG_LED("Link LED On\n");
859                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
860                 led |= priv->led_association_on;
861
862                 led = ipw_register_toggle(led);
863
864                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
865                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
866
867                 priv->status |= STATUS_LED_LINK_ON;
868
869                 /* If we aren't associated, schedule turning the LED off */
870                 if (!(priv->status & STATUS_ASSOCIATED))
871                         queue_delayed_work(priv->workqueue,
872                                            &priv->led_link_off,
873                                            LD_TIME_LINK_ON);
874         }
875
876         spin_unlock_irqrestore(&priv->lock, flags);
877 }
878
879 static void ipw_bg_led_link_on(struct work_struct *work)
880 {
881         struct ipw_priv *priv =
882                 container_of(work, struct ipw_priv, led_link_on.work);
883         mutex_lock(&priv->mutex);
884         ipw_led_link_on(priv);
885         mutex_unlock(&priv->mutex);
886 }
887
888 static void ipw_led_link_off(struct ipw_priv *priv)
889 {
890         unsigned long flags;
891         u32 led;
892
893         /* If configured not to use LEDs, or nic type is 1,
894          * then we don't goggle the LINK led. */
895         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
896                 return;
897
898         spin_lock_irqsave(&priv->lock, flags);
899
900         if (priv->status & STATUS_LED_LINK_ON) {
901                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
902                 led &= priv->led_association_off;
903                 led = ipw_register_toggle(led);
904
905                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
906                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
907
908                 IPW_DEBUG_LED("Link LED Off\n");
909
910                 priv->status &= ~STATUS_LED_LINK_ON;
911
912                 /* If we aren't associated and the radio is on, schedule
913                  * turning the LED on (blink while unassociated) */
914                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
915                     !(priv->status & STATUS_ASSOCIATED))
916                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
917                                            LD_TIME_LINK_OFF);
918
919         }
920
921         spin_unlock_irqrestore(&priv->lock, flags);
922 }
923
924 static void ipw_bg_led_link_off(struct work_struct *work)
925 {
926         struct ipw_priv *priv =
927                 container_of(work, struct ipw_priv, led_link_off.work);
928         mutex_lock(&priv->mutex);
929         ipw_led_link_off(priv);
930         mutex_unlock(&priv->mutex);
931 }
932
933 static void __ipw_led_activity_on(struct ipw_priv *priv)
934 {
935         u32 led;
936
937         if (priv->config & CFG_NO_LED)
938                 return;
939
940         if (priv->status & STATUS_RF_KILL_MASK)
941                 return;
942
943         if (!(priv->status & STATUS_LED_ACT_ON)) {
944                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
945                 led |= priv->led_activity_on;
946
947                 led = ipw_register_toggle(led);
948
949                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
950                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
951
952                 IPW_DEBUG_LED("Activity LED On\n");
953
954                 priv->status |= STATUS_LED_ACT_ON;
955
956                 cancel_delayed_work(&priv->led_act_off);
957                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
958                                    LD_TIME_ACT_ON);
959         } else {
960                 /* Reschedule LED off for full time period */
961                 cancel_delayed_work(&priv->led_act_off);
962                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
963                                    LD_TIME_ACT_ON);
964         }
965 }
966
967 #if 0
968 void ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&priv->lock, flags);
972         __ipw_led_activity_on(priv);
973         spin_unlock_irqrestore(&priv->lock, flags);
974 }
975 #endif  /*  0  */
976
977 static void ipw_led_activity_off(struct ipw_priv *priv)
978 {
979         unsigned long flags;
980         u32 led;
981
982         if (priv->config & CFG_NO_LED)
983                 return;
984
985         spin_lock_irqsave(&priv->lock, flags);
986
987         if (priv->status & STATUS_LED_ACT_ON) {
988                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
989                 led &= priv->led_activity_off;
990
991                 led = ipw_register_toggle(led);
992
993                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
994                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
995
996                 IPW_DEBUG_LED("Activity LED Off\n");
997
998                 priv->status &= ~STATUS_LED_ACT_ON;
999         }
1000
1001         spin_unlock_irqrestore(&priv->lock, flags);
1002 }
1003
1004 static void ipw_bg_led_activity_off(struct work_struct *work)
1005 {
1006         struct ipw_priv *priv =
1007                 container_of(work, struct ipw_priv, led_act_off.work);
1008         mutex_lock(&priv->mutex);
1009         ipw_led_activity_off(priv);
1010         mutex_unlock(&priv->mutex);
1011 }
1012
1013 static void ipw_led_band_on(struct ipw_priv *priv)
1014 {
1015         unsigned long flags;
1016         u32 led;
1017
1018         /* Only nic type 1 supports mode LEDs */
1019         if (priv->config & CFG_NO_LED ||
1020             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1021                 return;
1022
1023         spin_lock_irqsave(&priv->lock, flags);
1024
1025         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1026         if (priv->assoc_network->mode == IEEE_A) {
1027                 led |= priv->led_ofdm_on;
1028                 led &= priv->led_association_off;
1029                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1030         } else if (priv->assoc_network->mode == IEEE_G) {
1031                 led |= priv->led_ofdm_on;
1032                 led |= priv->led_association_on;
1033                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1034         } else {
1035                 led &= priv->led_ofdm_off;
1036                 led |= priv->led_association_on;
1037                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1038         }
1039
1040         led = ipw_register_toggle(led);
1041
1042         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1043         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1044
1045         spin_unlock_irqrestore(&priv->lock, flags);
1046 }
1047
1048 static void ipw_led_band_off(struct ipw_priv *priv)
1049 {
1050         unsigned long flags;
1051         u32 led;
1052
1053         /* Only nic type 1 supports mode LEDs */
1054         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1055                 return;
1056
1057         spin_lock_irqsave(&priv->lock, flags);
1058
1059         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1060         led &= priv->led_ofdm_off;
1061         led &= priv->led_association_off;
1062
1063         led = ipw_register_toggle(led);
1064
1065         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1066         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1067
1068         spin_unlock_irqrestore(&priv->lock, flags);
1069 }
1070
1071 static void ipw_led_radio_on(struct ipw_priv *priv)
1072 {
1073         ipw_led_link_on(priv);
1074 }
1075
1076 static void ipw_led_radio_off(struct ipw_priv *priv)
1077 {
1078         ipw_led_activity_off(priv);
1079         ipw_led_link_off(priv);
1080 }
1081
1082 static void ipw_led_link_up(struct ipw_priv *priv)
1083 {
1084         /* Set the Link Led on for all nic types */
1085         ipw_led_link_on(priv);
1086 }
1087
1088 static void ipw_led_link_down(struct ipw_priv *priv)
1089 {
1090         ipw_led_activity_off(priv);
1091         ipw_led_link_off(priv);
1092
1093         if (priv->status & STATUS_RF_KILL_MASK)
1094                 ipw_led_radio_off(priv);
1095 }
1096
1097 static void ipw_led_init(struct ipw_priv *priv)
1098 {
1099         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1100
1101         /* Set the default PINs for the link and activity leds */
1102         priv->led_activity_on = IPW_ACTIVITY_LED;
1103         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1104
1105         priv->led_association_on = IPW_ASSOCIATED_LED;
1106         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1107
1108         /* Set the default PINs for the OFDM leds */
1109         priv->led_ofdm_on = IPW_OFDM_LED;
1110         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1111
1112         switch (priv->nic_type) {
1113         case EEPROM_NIC_TYPE_1:
1114                 /* In this NIC type, the LEDs are reversed.... */
1115                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1116                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1117                 priv->led_association_on = IPW_ACTIVITY_LED;
1118                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1119
1120                 if (!(priv->config & CFG_NO_LED))
1121                         ipw_led_band_on(priv);
1122
1123                 /* And we don't blink link LEDs for this nic, so
1124                  * just return here */
1125                 return;
1126
1127         case EEPROM_NIC_TYPE_3:
1128         case EEPROM_NIC_TYPE_2:
1129         case EEPROM_NIC_TYPE_4:
1130         case EEPROM_NIC_TYPE_0:
1131                 break;
1132
1133         default:
1134                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1135                                priv->nic_type);
1136                 priv->nic_type = EEPROM_NIC_TYPE_0;
1137                 break;
1138         }
1139
1140         if (!(priv->config & CFG_NO_LED)) {
1141                 if (priv->status & STATUS_ASSOCIATED)
1142                         ipw_led_link_on(priv);
1143                 else
1144                         ipw_led_link_off(priv);
1145         }
1146 }
1147
1148 static void ipw_led_shutdown(struct ipw_priv *priv)
1149 {
1150         ipw_led_activity_off(priv);
1151         ipw_led_link_off(priv);
1152         ipw_led_band_off(priv);
1153         cancel_delayed_work(&priv->led_link_on);
1154         cancel_delayed_work(&priv->led_link_off);
1155         cancel_delayed_work(&priv->led_act_off);
1156 }
1157
1158 /*
1159  * The following adds a new attribute to the sysfs representation
1160  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1161  * used for controling the debug level.
1162  *
1163  * See the level definitions in ipw for details.
1164  */
1165 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1166 {
1167         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1168 }
1169
1170 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1171                                  size_t count)
1172 {
1173         char *p = (char *)buf;
1174         u32 val;
1175
1176         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1177                 p++;
1178                 if (p[0] == 'x' || p[0] == 'X')
1179                         p++;
1180                 val = simple_strtoul(p, &p, 16);
1181         } else
1182                 val = simple_strtoul(p, &p, 10);
1183         if (p == buf)
1184                 printk(KERN_INFO DRV_NAME
1185                        ": %s is not in hex or decimal form.\n", buf);
1186         else
1187                 ipw_debug_level = val;
1188
1189         return strnlen(buf, count);
1190 }
1191
1192 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1193                    show_debug_level, store_debug_level);
1194
1195 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1196 {
1197         /* length = 1st dword in log */
1198         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1199 }
1200
1201 static void ipw_capture_event_log(struct ipw_priv *priv,
1202                                   u32 log_len, struct ipw_event *log)
1203 {
1204         u32 base;
1205
1206         if (log_len) {
1207                 base = ipw_read32(priv, IPW_EVENT_LOG);
1208                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1209                                   (u8 *) log, sizeof(*log) * log_len);
1210         }
1211 }
1212
1213 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1214 {
1215         struct ipw_fw_error *error;
1216         u32 log_len = ipw_get_event_log_len(priv);
1217         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1218         u32 elem_len = ipw_read_reg32(priv, base);
1219
1220         error = kmalloc(sizeof(*error) +
1221                         sizeof(*error->elem) * elem_len +
1222                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1223         if (!error) {
1224                 IPW_ERROR("Memory allocation for firmware error log "
1225                           "failed.\n");
1226                 return NULL;
1227         }
1228         error->jiffies = jiffies;
1229         error->status = priv->status;
1230         error->config = priv->config;
1231         error->elem_len = elem_len;
1232         error->log_len = log_len;
1233         error->elem = (struct ipw_error_elem *)error->payload;
1234         error->log = (struct ipw_event *)(error->elem + elem_len);
1235
1236         ipw_capture_event_log(priv, log_len, error->log);
1237
1238         if (elem_len)
1239                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240                                   sizeof(*error->elem) * elem_len);
1241
1242         return error;
1243 }
1244
1245 static ssize_t show_event_log(struct device *d,
1246                               struct device_attribute *attr, char *buf)
1247 {
1248         struct ipw_priv *priv = dev_get_drvdata(d);
1249         u32 log_len = ipw_get_event_log_len(priv);
1250         u32 log_size;
1251         struct ipw_event *log;
1252         u32 len = 0, i;
1253
1254         /* not using min() because of its strict type checking */
1255         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256                         sizeof(*log) * log_len : PAGE_SIZE;
1257         log = kzalloc(log_size, GFP_KERNEL);
1258         if (!log) {
1259                 IPW_ERROR("Unable to allocate memory for log\n");
1260                 return 0;
1261         }
1262         log_len = log_size / sizeof(*log);
1263         ipw_capture_event_log(priv, log_len, log);
1264
1265         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266         for (i = 0; i < log_len; i++)
1267                 len += snprintf(buf + len, PAGE_SIZE - len,
1268                                 "\n%08X%08X%08X",
1269                                 log[i].time, log[i].event, log[i].data);
1270         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1271         kfree(log);
1272         return len;
1273 }
1274
1275 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1276
1277 static ssize_t show_error(struct device *d,
1278                           struct device_attribute *attr, char *buf)
1279 {
1280         struct ipw_priv *priv = dev_get_drvdata(d);
1281         u32 len = 0, i;
1282         if (!priv->error)
1283                 return 0;
1284         len += snprintf(buf + len, PAGE_SIZE - len,
1285                         "%08lX%08X%08X%08X",
1286                         priv->error->jiffies,
1287                         priv->error->status,
1288                         priv->error->config, priv->error->elem_len);
1289         for (i = 0; i < priv->error->elem_len; i++)
1290                 len += snprintf(buf + len, PAGE_SIZE - len,
1291                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1292                                 priv->error->elem[i].time,
1293                                 priv->error->elem[i].desc,
1294                                 priv->error->elem[i].blink1,
1295                                 priv->error->elem[i].blink2,
1296                                 priv->error->elem[i].link1,
1297                                 priv->error->elem[i].link2,
1298                                 priv->error->elem[i].data);
1299
1300         len += snprintf(buf + len, PAGE_SIZE - len,
1301                         "\n%08X", priv->error->log_len);
1302         for (i = 0; i < priv->error->log_len; i++)
1303                 len += snprintf(buf + len, PAGE_SIZE - len,
1304                                 "\n%08X%08X%08X",
1305                                 priv->error->log[i].time,
1306                                 priv->error->log[i].event,
1307                                 priv->error->log[i].data);
1308         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1309         return len;
1310 }
1311
1312 static ssize_t clear_error(struct device *d,
1313                            struct device_attribute *attr,
1314                            const char *buf, size_t count)
1315 {
1316         struct ipw_priv *priv = dev_get_drvdata(d);
1317
1318         kfree(priv->error);
1319         priv->error = NULL;
1320         return count;
1321 }
1322
1323 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1324
1325 static ssize_t show_cmd_log(struct device *d,
1326                             struct device_attribute *attr, char *buf)
1327 {
1328         struct ipw_priv *priv = dev_get_drvdata(d);
1329         u32 len = 0, i;
1330         if (!priv->cmdlog)
1331                 return 0;
1332         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1334              i = (i + 1) % priv->cmdlog_len) {
1335                 len +=
1336                     snprintf(buf + len, PAGE_SIZE - len,
1337                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339                              priv->cmdlog[i].cmd.len);
1340                 len +=
1341                     snprintk_buf(buf + len, PAGE_SIZE - len,
1342                                  (u8 *) priv->cmdlog[i].cmd.param,
1343                                  priv->cmdlog[i].cmd.len);
1344                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1345         }
1346         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1347         return len;
1348 }
1349
1350 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1351
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
1355 static ssize_t store_rtap_iface(struct device *d,
1356                          struct device_attribute *attr,
1357                          const char *buf, size_t count)
1358 {
1359         struct ipw_priv *priv = dev_get_drvdata(d);
1360         int rc = 0;
1361
1362         if (count < 1)
1363                 return -EINVAL;
1364
1365         switch (buf[0]) {
1366         case '0':
1367                 if (!rtap_iface)
1368                         return count;
1369
1370                 if (netif_running(priv->prom_net_dev)) {
1371                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1372                         return count;
1373                 }
1374
1375                 ipw_prom_free(priv);
1376                 rtap_iface = 0;
1377                 break;
1378
1379         case '1':
1380                 if (rtap_iface)
1381                         return count;
1382
1383                 rc = ipw_prom_alloc(priv);
1384                 if (!rc)
1385                         rtap_iface = 1;
1386                 break;
1387
1388         default:
1389                 return -EINVAL;
1390         }
1391
1392         if (rc) {
1393                 IPW_ERROR("Failed to register promiscuous network "
1394                           "device (error %d).\n", rc);
1395         }
1396
1397         return count;
1398 }
1399
1400 static ssize_t show_rtap_iface(struct device *d,
1401                         struct device_attribute *attr,
1402                         char *buf)
1403 {
1404         struct ipw_priv *priv = dev_get_drvdata(d);
1405         if (rtap_iface)
1406                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1407         else {
1408                 buf[0] = '-';
1409                 buf[1] = '1';
1410                 buf[2] = '\0';
1411                 return 3;
1412         }
1413 }
1414
1415 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1416                    store_rtap_iface);
1417
1418 static ssize_t store_rtap_filter(struct device *d,
1419                          struct device_attribute *attr,
1420                          const char *buf, size_t count)
1421 {
1422         struct ipw_priv *priv = dev_get_drvdata(d);
1423
1424         if (!priv->prom_priv) {
1425                 IPW_ERROR("Attempting to set filter without "
1426                           "rtap_iface enabled.\n");
1427                 return -EPERM;
1428         }
1429
1430         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1431
1432         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1433                        BIT_ARG16(priv->prom_priv->filter));
1434
1435         return count;
1436 }
1437
1438 static ssize_t show_rtap_filter(struct device *d,
1439                         struct device_attribute *attr,
1440                         char *buf)
1441 {
1442         struct ipw_priv *priv = dev_get_drvdata(d);
1443         return sprintf(buf, "0x%04X",
1444                        priv->prom_priv ? priv->prom_priv->filter : 0);
1445 }
1446
1447 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1448                    store_rtap_filter);
1449 #endif
1450
1451 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1452                              char *buf)
1453 {
1454         struct ipw_priv *priv = dev_get_drvdata(d);
1455         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1456 }
1457
1458 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1459                               const char *buf, size_t count)
1460 {
1461         struct ipw_priv *priv = dev_get_drvdata(d);
1462         struct net_device *dev = priv->net_dev;
1463         char buffer[] = "00000000";
1464         unsigned long len =
1465             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1466         unsigned long val;
1467         char *p = buffer;
1468
1469         IPW_DEBUG_INFO("enter\n");
1470
1471         strncpy(buffer, buf, len);
1472         buffer[len] = 0;
1473
1474         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1475                 p++;
1476                 if (p[0] == 'x' || p[0] == 'X')
1477                         p++;
1478                 val = simple_strtoul(p, &p, 16);
1479         } else
1480                 val = simple_strtoul(p, &p, 10);
1481         if (p == buffer) {
1482                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1483         } else {
1484                 priv->ieee->scan_age = val;
1485                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1486         }
1487
1488         IPW_DEBUG_INFO("exit\n");
1489         return len;
1490 }
1491
1492 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1493
1494 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1495                         char *buf)
1496 {
1497         struct ipw_priv *priv = dev_get_drvdata(d);
1498         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1499 }
1500
1501 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1502                          const char *buf, size_t count)
1503 {
1504         struct ipw_priv *priv = dev_get_drvdata(d);
1505
1506         IPW_DEBUG_INFO("enter\n");
1507
1508         if (count == 0)
1509                 return 0;
1510
1511         if (*buf == 0) {
1512                 IPW_DEBUG_LED("Disabling LED control.\n");
1513                 priv->config |= CFG_NO_LED;
1514                 ipw_led_shutdown(priv);
1515         } else {
1516                 IPW_DEBUG_LED("Enabling LED control.\n");
1517                 priv->config &= ~CFG_NO_LED;
1518                 ipw_led_init(priv);
1519         }
1520
1521         IPW_DEBUG_INFO("exit\n");
1522         return count;
1523 }
1524
1525 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1526
1527 static ssize_t show_status(struct device *d,
1528                            struct device_attribute *attr, char *buf)
1529 {
1530         struct ipw_priv *p = d->driver_data;
1531         return sprintf(buf, "0x%08x\n", (int)p->status);
1532 }
1533
1534 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1535
1536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1537                         char *buf)
1538 {
1539         struct ipw_priv *p = d->driver_data;
1540         return sprintf(buf, "0x%08x\n", (int)p->config);
1541 }
1542
1543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1544
1545 static ssize_t show_nic_type(struct device *d,
1546                              struct device_attribute *attr, char *buf)
1547 {
1548         struct ipw_priv *priv = d->driver_data;
1549         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1550 }
1551
1552 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1553
1554 static ssize_t show_ucode_version(struct device *d,
1555                                   struct device_attribute *attr, char *buf)
1556 {
1557         u32 len = sizeof(u32), tmp = 0;
1558         struct ipw_priv *p = d->driver_data;
1559
1560         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1561                 return 0;
1562
1563         return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1567
1568 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1569                         char *buf)
1570 {
1571         u32 len = sizeof(u32), tmp = 0;
1572         struct ipw_priv *p = d->driver_data;
1573
1574         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1575                 return 0;
1576
1577         return sprintf(buf, "0x%08x\n", tmp);
1578 }
1579
1580 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1581
1582 /*
1583  * Add a device attribute to view/control the delay between eeprom
1584  * operations.
1585  */
1586 static ssize_t show_eeprom_delay(struct device *d,
1587                                  struct device_attribute *attr, char *buf)
1588 {
1589         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1590         return sprintf(buf, "%i\n", n);
1591 }
1592 static ssize_t store_eeprom_delay(struct device *d,
1593                                   struct device_attribute *attr,
1594                                   const char *buf, size_t count)
1595 {
1596         struct ipw_priv *p = d->driver_data;
1597         sscanf(buf, "%i", &p->eeprom_delay);
1598         return strnlen(buf, count);
1599 }
1600
1601 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1602                    show_eeprom_delay, store_eeprom_delay);
1603
1604 static ssize_t show_command_event_reg(struct device *d,
1605                                       struct device_attribute *attr, char *buf)
1606 {
1607         u32 reg = 0;
1608         struct ipw_priv *p = d->driver_data;
1609
1610         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1611         return sprintf(buf, "0x%08x\n", reg);
1612 }
1613 static ssize_t store_command_event_reg(struct device *d,
1614                                        struct device_attribute *attr,
1615                                        const char *buf, size_t count)
1616 {
1617         u32 reg;
1618         struct ipw_priv *p = d->driver_data;
1619
1620         sscanf(buf, "%x", &reg);
1621         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1622         return strnlen(buf, count);
1623 }
1624
1625 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1626                    show_command_event_reg, store_command_event_reg);
1627
1628 static ssize_t show_mem_gpio_reg(struct device *d,
1629                                  struct device_attribute *attr, char *buf)
1630 {
1631         u32 reg = 0;
1632         struct ipw_priv *p = d->driver_data;
1633
1634         reg = ipw_read_reg32(p, 0x301100);
1635         return sprintf(buf, "0x%08x\n", reg);
1636 }
1637 static ssize_t store_mem_gpio_reg(struct device *d,
1638                                   struct device_attribute *attr,
1639                                   const char *buf, size_t count)
1640 {
1641         u32 reg;
1642         struct ipw_priv *p = d->driver_data;
1643
1644         sscanf(buf, "%x", &reg);
1645         ipw_write_reg32(p, 0x301100, reg);
1646         return strnlen(buf, count);
1647 }
1648
1649 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1650                    show_mem_gpio_reg, store_mem_gpio_reg);
1651
1652 static ssize_t show_indirect_dword(struct device *d,
1653                                    struct device_attribute *attr, char *buf)
1654 {
1655         u32 reg = 0;
1656         struct ipw_priv *priv = d->driver_data;
1657
1658         if (priv->status & STATUS_INDIRECT_DWORD)
1659                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1660         else
1661                 reg = 0;
1662
1663         return sprintf(buf, "0x%08x\n", reg);
1664 }
1665 static ssize_t store_indirect_dword(struct device *d,
1666                                     struct device_attribute *attr,
1667                                     const char *buf, size_t count)
1668 {
1669         struct ipw_priv *priv = d->driver_data;
1670
1671         sscanf(buf, "%x", &priv->indirect_dword);
1672         priv->status |= STATUS_INDIRECT_DWORD;
1673         return strnlen(buf, count);
1674 }
1675
1676 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1677                    show_indirect_dword, store_indirect_dword);
1678
1679 static ssize_t show_indirect_byte(struct device *d,
1680                                   struct device_attribute *attr, char *buf)
1681 {
1682         u8 reg = 0;
1683         struct ipw_priv *priv = d->driver_data;
1684
1685         if (priv->status & STATUS_INDIRECT_BYTE)
1686                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1687         else
1688                 reg = 0;
1689
1690         return sprintf(buf, "0x%02x\n", reg);
1691 }
1692 static ssize_t store_indirect_byte(struct device *d,
1693                                    struct device_attribute *attr,
1694                                    const char *buf, size_t count)
1695 {
1696         struct ipw_priv *priv = d->driver_data;
1697
1698         sscanf(buf, "%x", &priv->indirect_byte);
1699         priv->status |= STATUS_INDIRECT_BYTE;
1700         return strnlen(buf, count);
1701 }
1702
1703 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1704                    show_indirect_byte, store_indirect_byte);
1705
1706 static ssize_t show_direct_dword(struct device *d,
1707                                  struct device_attribute *attr, char *buf)
1708 {
1709         u32 reg = 0;
1710         struct ipw_priv *priv = d->driver_data;
1711
1712         if (priv->status & STATUS_DIRECT_DWORD)
1713                 reg = ipw_read32(priv, priv->direct_dword);
1714         else
1715                 reg = 0;
1716
1717         return sprintf(buf, "0x%08x\n", reg);
1718 }
1719 static ssize_t store_direct_dword(struct device *d,
1720                                   struct device_attribute *attr,
1721                                   const char *buf, size_t count)
1722 {
1723         struct ipw_priv *priv = d->driver_data;
1724
1725         sscanf(buf, "%x", &priv->direct_dword);
1726         priv->status |= STATUS_DIRECT_DWORD;
1727         return strnlen(buf, count);
1728 }
1729
1730 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1731                    show_direct_dword, store_direct_dword);
1732
1733 static int rf_kill_active(struct ipw_priv *priv)
1734 {
1735         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1736                 priv->status |= STATUS_RF_KILL_HW;
1737         else
1738                 priv->status &= ~STATUS_RF_KILL_HW;
1739
1740         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1741 }
1742
1743 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1744                             char *buf)
1745 {
1746         /* 0 - RF kill not enabled
1747            1 - SW based RF kill active (sysfs)
1748            2 - HW based RF kill active
1749            3 - Both HW and SW baed RF kill active */
1750         struct ipw_priv *priv = d->driver_data;
1751         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1752             (rf_kill_active(priv) ? 0x2 : 0x0);
1753         return sprintf(buf, "%i\n", val);
1754 }
1755
1756 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1757 {
1758         if ((disable_radio ? 1 : 0) ==
1759             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1760                 return 0;
1761
1762         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1763                           disable_radio ? "OFF" : "ON");
1764
1765         if (disable_radio) {
1766                 priv->status |= STATUS_RF_KILL_SW;
1767
1768                 if (priv->workqueue) {
1769                         cancel_delayed_work(&priv->request_scan);
1770                         cancel_delayed_work(&priv->request_direct_scan);
1771                         cancel_delayed_work(&priv->request_passive_scan);
1772                         cancel_delayed_work(&priv->scan_event);
1773                 }
1774                 queue_work(priv->workqueue, &priv->down);
1775         } else {
1776                 priv->status &= ~STATUS_RF_KILL_SW;
1777                 if (rf_kill_active(priv)) {
1778                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1779                                           "disabled by HW switch\n");
1780                         /* Make sure the RF_KILL check timer is running */
1781                         cancel_delayed_work(&priv->rf_kill);
1782                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1783                                            round_jiffies_relative(2 * HZ));
1784                 } else
1785                         queue_work(priv->workqueue, &priv->up);
1786         }
1787
1788         return 1;
1789 }
1790
1791 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1792                              const char *buf, size_t count)
1793 {
1794         struct ipw_priv *priv = d->driver_data;
1795
1796         ipw_radio_kill_sw(priv, buf[0] == '1');
1797
1798         return count;
1799 }
1800
1801 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1802
1803 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1804                                char *buf)
1805 {
1806         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1807         int pos = 0, len = 0;
1808         if (priv->config & CFG_SPEED_SCAN) {
1809                 while (priv->speed_scan[pos] != 0)
1810                         len += sprintf(&buf[len], "%d ",
1811                                        priv->speed_scan[pos++]);
1812                 return len + sprintf(&buf[len], "\n");
1813         }
1814
1815         return sprintf(buf, "0\n");
1816 }
1817
1818 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1819                                 const char *buf, size_t count)
1820 {
1821         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1822         int channel, pos = 0;
1823         const char *p = buf;
1824
1825         /* list of space separated channels to scan, optionally ending with 0 */
1826         while ((channel = simple_strtol(p, NULL, 0))) {
1827                 if (pos == MAX_SPEED_SCAN - 1) {
1828                         priv->speed_scan[pos] = 0;
1829                         break;
1830                 }
1831
1832                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1833                         priv->speed_scan[pos++] = channel;
1834                 else
1835                         IPW_WARNING("Skipping invalid channel request: %d\n",
1836                                     channel);
1837                 p = strchr(p, ' ');
1838                 if (!p)
1839                         break;
1840                 while (*p == ' ' || *p == '\t')
1841                         p++;
1842         }
1843
1844         if (pos == 0)
1845                 priv->config &= ~CFG_SPEED_SCAN;
1846         else {
1847                 priv->speed_scan_pos = 0;
1848                 priv->config |= CFG_SPEED_SCAN;
1849         }
1850
1851         return count;
1852 }
1853
1854 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1855                    store_speed_scan);
1856
1857 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1858                               char *buf)
1859 {
1860         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1861         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1862 }
1863
1864 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1865                                const char *buf, size_t count)
1866 {
1867         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1868         if (buf[0] == '1')
1869                 priv->config |= CFG_NET_STATS;
1870         else
1871                 priv->config &= ~CFG_NET_STATS;
1872
1873         return count;
1874 }
1875
1876 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1877                    show_net_stats, store_net_stats);
1878
1879 static ssize_t show_channels(struct device *d,
1880                              struct device_attribute *attr,
1881                              char *buf)
1882 {
1883         struct ipw_priv *priv = dev_get_drvdata(d);
1884         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1885         int len = 0, i;
1886
1887         len = sprintf(&buf[len],
1888                       "Displaying %d channels in 2.4Ghz band "
1889                       "(802.11bg):\n", geo->bg_channels);
1890
1891         for (i = 0; i < geo->bg_channels; i++) {
1892                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1893                                geo->bg[i].channel,
1894                                geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1895                                " (radar spectrum)" : "",
1896                                ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1897                                 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1898                                ? "" : ", IBSS",
1899                                geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1900                                "passive only" : "active/passive",
1901                                geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1902                                "B" : "B/G");
1903         }
1904
1905         len += sprintf(&buf[len],
1906                        "Displaying %d channels in 5.2Ghz band "
1907                        "(802.11a):\n", geo->a_channels);
1908         for (i = 0; i < geo->a_channels; i++) {
1909                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1910                                geo->a[i].channel,
1911                                geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1912                                " (radar spectrum)" : "",
1913                                ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1914                                 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1915                                ? "" : ", IBSS",
1916                                geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1917                                "passive only" : "active/passive");
1918         }
1919
1920         return len;
1921 }
1922
1923 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1924
1925 static void notify_wx_assoc_event(struct ipw_priv *priv)
1926 {
1927         union iwreq_data wrqu;
1928         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1929         if (priv->status & STATUS_ASSOCIATED)
1930                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1931         else
1932                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1933         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1934 }
1935
1936 static void ipw_irq_tasklet(struct ipw_priv *priv)
1937 {
1938         u32 inta, inta_mask, handled = 0;
1939         unsigned long flags;
1940         int rc = 0;
1941
1942         spin_lock_irqsave(&priv->irq_lock, flags);
1943
1944         inta = ipw_read32(priv, IPW_INTA_RW);
1945         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1946         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1947
1948         /* Add any cached INTA values that need to be handled */
1949         inta |= priv->isr_inta;
1950
1951         spin_unlock_irqrestore(&priv->irq_lock, flags);
1952
1953         spin_lock_irqsave(&priv->lock, flags);
1954
1955         /* handle all the justifications for the interrupt */
1956         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1957                 ipw_rx(priv);
1958                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1959         }
1960
1961         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1962                 IPW_DEBUG_HC("Command completed.\n");
1963                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1964                 priv->status &= ~STATUS_HCMD_ACTIVE;
1965                 wake_up_interruptible(&priv->wait_command_queue);
1966                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1967         }
1968
1969         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1970                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1971                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1972                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1973         }
1974
1975         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1976                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1977                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1978                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1979         }
1980
1981         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1982                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1983                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1984                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1985         }
1986
1987         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1988                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1989                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1990                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1991         }
1992
1993         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1994                 IPW_WARNING("STATUS_CHANGE\n");
1995                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1996         }
1997
1998         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1999                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2000                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2001         }
2002
2003         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2004                 IPW_WARNING("HOST_CMD_DONE\n");
2005                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2006         }
2007
2008         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2009                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2010                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2011         }
2012
2013         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2014                 IPW_WARNING("PHY_OFF_DONE\n");
2015                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2016         }
2017
2018         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2019                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2020                 priv->status |= STATUS_RF_KILL_HW;
2021                 wake_up_interruptible(&priv->wait_command_queue);
2022                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2023                 cancel_delayed_work(&priv->request_scan);
2024                 cancel_delayed_work(&priv->request_direct_scan);
2025                 cancel_delayed_work(&priv->request_passive_scan);
2026                 cancel_delayed_work(&priv->scan_event);
2027                 schedule_work(&priv->link_down);
2028                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2029                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2030         }
2031
2032         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2033                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2034                 if (priv->error) {
2035                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2036                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2037                                 struct ipw_fw_error *error =
2038                                     ipw_alloc_error_log(priv);
2039                                 ipw_dump_error_log(priv, error);
2040                                 kfree(error);
2041                         }
2042                 } else {
2043                         priv->error = ipw_alloc_error_log(priv);
2044                         if (priv->error)
2045                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2046                         else
2047                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2048                                              "log.\n");
2049                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2050                                 ipw_dump_error_log(priv, priv->error);
2051                 }
2052
2053                 /* XXX: If hardware encryption is for WPA/WPA2,
2054                  * we have to notify the supplicant. */
2055                 if (priv->ieee->sec.encrypt) {
2056                         priv->status &= ~STATUS_ASSOCIATED;
2057                         notify_wx_assoc_event(priv);
2058                 }
2059
2060                 /* Keep the restart process from trying to send host
2061                  * commands by clearing the INIT status bit */
2062                 priv->status &= ~STATUS_INIT;
2063
2064                 /* Cancel currently queued command. */
2065                 priv->status &= ~STATUS_HCMD_ACTIVE;
2066                 wake_up_interruptible(&priv->wait_command_queue);
2067
2068                 queue_work(priv->workqueue, &priv->adapter_restart);
2069                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2070         }
2071
2072         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2073                 IPW_ERROR("Parity error\n");
2074                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2075         }
2076
2077         if (handled != inta) {
2078                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2079         }
2080
2081         spin_unlock_irqrestore(&priv->lock, flags);
2082
2083         /* enable all interrupts */
2084         ipw_enable_interrupts(priv);
2085 }
2086
2087 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2088 static char *get_cmd_string(u8 cmd)
2089 {
2090         switch (cmd) {
2091                 IPW_CMD(HOST_COMPLETE);
2092                 IPW_CMD(POWER_DOWN);
2093                 IPW_CMD(SYSTEM_CONFIG);
2094                 IPW_CMD(MULTICAST_ADDRESS);
2095                 IPW_CMD(SSID);
2096                 IPW_CMD(ADAPTER_ADDRESS);
2097                 IPW_CMD(PORT_TYPE);
2098                 IPW_CMD(RTS_THRESHOLD);
2099                 IPW_CMD(FRAG_THRESHOLD);
2100                 IPW_CMD(POWER_MODE);
2101                 IPW_CMD(WEP_KEY);
2102                 IPW_CMD(TGI_TX_KEY);
2103                 IPW_CMD(SCAN_REQUEST);
2104                 IPW_CMD(SCAN_REQUEST_EXT);
2105                 IPW_CMD(ASSOCIATE);
2106                 IPW_CMD(SUPPORTED_RATES);
2107                 IPW_CMD(SCAN_ABORT);
2108                 IPW_CMD(TX_FLUSH);
2109                 IPW_CMD(QOS_PARAMETERS);
2110                 IPW_CMD(DINO_CONFIG);
2111                 IPW_CMD(RSN_CAPABILITIES);
2112                 IPW_CMD(RX_KEY);
2113                 IPW_CMD(CARD_DISABLE);
2114                 IPW_CMD(SEED_NUMBER);
2115                 IPW_CMD(TX_POWER);
2116                 IPW_CMD(COUNTRY_INFO);
2117                 IPW_CMD(AIRONET_INFO);
2118                 IPW_CMD(AP_TX_POWER);
2119                 IPW_CMD(CCKM_INFO);
2120                 IPW_CMD(CCX_VER_INFO);
2121                 IPW_CMD(SET_CALIBRATION);
2122                 IPW_CMD(SENSITIVITY_CALIB);
2123                 IPW_CMD(RETRY_LIMIT);
2124                 IPW_CMD(IPW_PRE_POWER_DOWN);
2125                 IPW_CMD(VAP_BEACON_TEMPLATE);
2126                 IPW_CMD(VAP_DTIM_PERIOD);
2127                 IPW_CMD(EXT_SUPPORTED_RATES);
2128                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2129                 IPW_CMD(VAP_QUIET_INTERVALS);
2130                 IPW_CMD(VAP_CHANNEL_SWITCH);
2131                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2132                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2133                 IPW_CMD(VAP_CF_PARAM_SET);
2134                 IPW_CMD(VAP_SET_BEACONING_STATE);
2135                 IPW_CMD(MEASUREMENT);
2136                 IPW_CMD(POWER_CAPABILITY);
2137                 IPW_CMD(SUPPORTED_CHANNELS);
2138                 IPW_CMD(TPC_REPORT);
2139                 IPW_CMD(WME_INFO);
2140                 IPW_CMD(PRODUCTION_COMMAND);
2141         default:
2142                 return "UNKNOWN";
2143         }
2144 }
2145
2146 #define HOST_COMPLETE_TIMEOUT HZ
2147
2148 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2149 {
2150         int rc = 0;
2151         unsigned long flags;
2152
2153         spin_lock_irqsave(&priv->lock, flags);
2154         if (priv->status & STATUS_HCMD_ACTIVE) {
2155                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2156                           get_cmd_string(cmd->cmd));
2157                 spin_unlock_irqrestore(&priv->lock, flags);
2158                 return -EAGAIN;
2159         }
2160
2161         priv->status |= STATUS_HCMD_ACTIVE;
2162
2163         if (priv->cmdlog) {
2164                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2165                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2166                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2167                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2168                        cmd->len);
2169                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2170         }
2171
2172         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2173                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2174                      priv->status);
2175
2176 #ifndef DEBUG_CMD_WEP_KEY
2177         if (cmd->cmd == IPW_CMD_WEP_KEY)
2178                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2179         else
2180 #endif
2181                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2182
2183         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2184         if (rc) {
2185                 priv->status &= ~STATUS_HCMD_ACTIVE;
2186                 IPW_ERROR("Failed to send %s: Reason %d\n",
2187                           get_cmd_string(cmd->cmd), rc);
2188                 spin_unlock_irqrestore(&priv->lock, flags);
2189                 goto exit;
2190         }
2191         spin_unlock_irqrestore(&priv->lock, flags);
2192
2193         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2194                                               !(priv->
2195                                                 status & STATUS_HCMD_ACTIVE),
2196                                               HOST_COMPLETE_TIMEOUT);
2197         if (rc == 0) {
2198                 spin_lock_irqsave(&priv->lock, flags);
2199                 if (priv->status & STATUS_HCMD_ACTIVE) {
2200                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2201                                   get_cmd_string(cmd->cmd));
2202                         priv->status &= ~STATUS_HCMD_ACTIVE;
2203                         spin_unlock_irqrestore(&priv->lock, flags);
2204                         rc = -EIO;
2205                         goto exit;
2206                 }
2207                 spin_unlock_irqrestore(&priv->lock, flags);
2208         } else
2209                 rc = 0;
2210
2211         if (priv->status & STATUS_RF_KILL_HW) {
2212                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2213                           get_cmd_string(cmd->cmd));
2214                 rc = -EIO;
2215                 goto exit;
2216         }
2217
2218       exit:
2219         if (priv->cmdlog) {
2220                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2221                 priv->cmdlog_pos %= priv->cmdlog_len;
2222         }
2223         return rc;
2224 }
2225
2226 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2227 {
2228         struct host_cmd cmd = {
2229                 .cmd = command,
2230         };
2231
2232         return __ipw_send_cmd(priv, &cmd);
2233 }
2234
2235 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2236                             void *data)
2237 {
2238         struct host_cmd cmd = {
2239                 .cmd = command,
2240                 .len = len,
2241                 .param = data,
2242         };
2243
2244         return __ipw_send_cmd(priv, &cmd);
2245 }
2246
2247 static int ipw_send_host_complete(struct ipw_priv *priv)
2248 {
2249         if (!priv) {
2250                 IPW_ERROR("Invalid args\n");
2251                 return -1;
2252         }
2253
2254         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2255 }
2256
2257 static int ipw_send_system_config(struct ipw_priv *priv)
2258 {
2259         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2260                                 sizeof(priv->sys_config),
2261                                 &priv->sys_config);
2262 }
2263
2264 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2265 {
2266         if (!priv || !ssid) {
2267                 IPW_ERROR("Invalid args\n");
2268                 return -1;
2269         }
2270
2271         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2272                                 ssid);
2273 }
2274
2275 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2276 {
2277         if (!priv || !mac) {
2278                 IPW_ERROR("Invalid args\n");
2279                 return -1;
2280         }
2281
2282         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2283                        priv->net_dev->name, mac);
2284
2285         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2286 }
2287
2288 /*
2289  * NOTE: This must be executed from our workqueue as it results in udelay
2290  * being called which may corrupt the keyboard if executed on default
2291  * workqueue
2292  */
2293 static void ipw_adapter_restart(void *adapter)
2294 {
2295         struct ipw_priv *priv = adapter;
2296
2297         if (priv->status & STATUS_RF_KILL_MASK)
2298                 return;
2299
2300         ipw_down(priv);
2301
2302         if (priv->assoc_network &&
2303             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2304                 ipw_remove_current_network(priv);
2305
2306         if (ipw_up(priv)) {
2307                 IPW_ERROR("Failed to up device\n");
2308                 return;
2309         }
2310 }
2311
2312 static void ipw_bg_adapter_restart(struct work_struct *work)
2313 {
2314         struct ipw_priv *priv =
2315                 container_of(work, struct ipw_priv, adapter_restart);
2316         mutex_lock(&priv->mutex);
2317         ipw_adapter_restart(priv);
2318         mutex_unlock(&priv->mutex);
2319 }
2320
2321 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2322
2323 static void ipw_scan_check(void *data)
2324 {
2325         struct ipw_priv *priv = data;
2326         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2327                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2328                                "adapter after (%dms).\n",
2329                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2330                 queue_work(priv->workqueue, &priv->adapter_restart);
2331         }
2332 }
2333
2334 static void ipw_bg_scan_check(struct work_struct *work)
2335 {
2336         struct ipw_priv *priv =
2337                 container_of(work, struct ipw_priv, scan_check.work);
2338         mutex_lock(&priv->mutex);
2339         ipw_scan_check(priv);
2340         mutex_unlock(&priv->mutex);
2341 }
2342
2343 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2344                                      struct ipw_scan_request_ext *request)
2345 {
2346         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2347                                 sizeof(*request), request);
2348 }
2349
2350 static int ipw_send_scan_abort(struct ipw_priv *priv)
2351 {
2352         if (!priv) {
2353                 IPW_ERROR("Invalid args\n");
2354                 return -1;
2355         }
2356
2357         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2358 }
2359
2360 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2361 {
2362         struct ipw_sensitivity_calib calib = {
2363                 .beacon_rssi_raw = cpu_to_le16(sens),
2364         };
2365
2366         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2367                                 &calib);
2368 }
2369
2370 static int ipw_send_associate(struct ipw_priv *priv,
2371                               struct ipw_associate *associate)
2372 {
2373         if (!priv || !associate) {
2374                 IPW_ERROR("Invalid args\n");
2375                 return -1;
2376         }
2377
2378         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2379                                 associate);
2380 }
2381
2382 static int ipw_send_supported_rates(struct ipw_priv *priv,
2383                                     struct ipw_supported_rates *rates)
2384 {
2385         if (!priv || !rates) {
2386                 IPW_ERROR("Invalid args\n");
2387                 return -1;
2388         }
2389
2390         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2391                                 rates);
2392 }
2393
2394 static int ipw_set_random_seed(struct ipw_priv *priv)
2395 {
2396         u32 val;
2397
2398         if (!priv) {
2399                 IPW_ERROR("Invalid args\n");
2400                 return -1;
2401         }
2402
2403         get_random_bytes(&val, sizeof(val));
2404
2405         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2406 }
2407
2408 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2409 {
2410         __le32 v = cpu_to_le32(phy_off);
2411         if (!priv) {
2412                 IPW_ERROR("Invalid args\n");
2413                 return -1;
2414         }
2415
2416         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2417 }
2418
2419 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2420 {
2421         if (!priv || !power) {
2422                 IPW_ERROR("Invalid args\n");
2423                 return -1;
2424         }
2425
2426         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2427 }
2428
2429 static int ipw_set_tx_power(struct ipw_priv *priv)
2430 {
2431         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2432         struct ipw_tx_power tx_power;
2433         s8 max_power;
2434         int i;
2435
2436         memset(&tx_power, 0, sizeof(tx_power));
2437
2438         /* configure device for 'G' band */
2439         tx_power.ieee_mode = IPW_G_MODE;
2440         tx_power.num_channels = geo->bg_channels;
2441         for (i = 0; i < geo->bg_channels; i++) {
2442                 max_power = geo->bg[i].max_power;
2443                 tx_power.channels_tx_power[i].channel_number =
2444                     geo->bg[i].channel;
2445                 tx_power.channels_tx_power[i].tx_power = max_power ?
2446                     min(max_power, priv->tx_power) : priv->tx_power;
2447         }
2448         if (ipw_send_tx_power(priv, &tx_power))
2449                 return -EIO;
2450
2451         /* configure device to also handle 'B' band */
2452         tx_power.ieee_mode = IPW_B_MODE;
2453         if (ipw_send_tx_power(priv, &tx_power))
2454                 return -EIO;
2455
2456         /* configure device to also handle 'A' band */
2457         if (priv->ieee->abg_true) {
2458                 tx_power.ieee_mode = IPW_A_MODE;
2459                 tx_power.num_channels = geo->a_channels;
2460                 for (i = 0; i < tx_power.num_channels; i++) {
2461                         max_power = geo->a[i].max_power;
2462                         tx_power.channels_tx_power[i].channel_number =
2463                             geo->a[i].channel;
2464                         tx_power.channels_tx_power[i].tx_power = max_power ?
2465                             min(max_power, priv->tx_power) : priv->tx_power;
2466                 }
2467                 if (ipw_send_tx_power(priv, &tx_power))
2468                         return -EIO;
2469         }
2470         return 0;
2471 }
2472
2473 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2474 {
2475         struct ipw_rts_threshold rts_threshold = {
2476                 .rts_threshold = cpu_to_le16(rts),
2477         };
2478
2479         if (!priv) {
2480                 IPW_ERROR("Invalid args\n");
2481                 return -1;
2482         }
2483
2484         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2485                                 sizeof(rts_threshold), &rts_threshold);
2486 }
2487
2488 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2489 {
2490         struct ipw_frag_threshold frag_threshold = {
2491                 .frag_threshold = cpu_to_le16(frag),
2492         };
2493
2494         if (!priv) {
2495                 IPW_ERROR("Invalid args\n");
2496                 return -1;
2497         }
2498
2499         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2500                                 sizeof(frag_threshold), &frag_threshold);
2501 }
2502
2503 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2504 {
2505         __le32 param;
2506
2507         if (!priv) {
2508                 IPW_ERROR("Invalid args\n");
2509                 return -1;
2510         }
2511
2512         /* If on battery, set to 3, if AC set to CAM, else user
2513          * level */
2514         switch (mode) {
2515         case IPW_POWER_BATTERY:
2516                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2517                 break;
2518         case IPW_POWER_AC:
2519                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2520                 break;
2521         default:
2522                 param = cpu_to_le32(mode);
2523                 break;
2524         }
2525
2526         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2527                                 &param);
2528 }
2529
2530 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2531 {
2532         struct ipw_retry_limit retry_limit = {
2533                 .short_retry_limit = slimit,
2534                 .long_retry_limit = llimit
2535         };
2536
2537         if (!priv) {
2538                 IPW_ERROR("Invalid args\n");
2539                 return -1;
2540         }
2541
2542         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2543                                 &retry_limit);
2544 }
2545
2546 /*
2547  * The IPW device contains a Microwire compatible EEPROM that stores
2548  * various data like the MAC address.  Usually the firmware has exclusive
2549  * access to the eeprom, but during device initialization (before the
2550  * device driver has sent the HostComplete command to the firmware) the
2551  * device driver has read access to the EEPROM by way of indirect addressing
2552  * through a couple of memory mapped registers.
2553  *
2554  * The following is a simplified implementation for pulling data out of the
2555  * the eeprom, along with some helper functions to find information in
2556  * the per device private data's copy of the eeprom.
2557  *
2558  * NOTE: To better understand how these functions work (i.e what is a chip
2559  *       select and why do have to keep driving the eeprom clock?), read
2560  *       just about any data sheet for a Microwire compatible EEPROM.
2561  */
2562
2563 /* write a 32 bit value into the indirect accessor register */
2564 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2565 {
2566         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2567
2568         /* the eeprom requires some time to complete the operation */
2569         udelay(p->eeprom_delay);
2570
2571         return;
2572 }
2573
2574 /* perform a chip select operation */
2575 static void eeprom_cs(struct ipw_priv *priv)
2576 {
2577         eeprom_write_reg(priv, 0);
2578         eeprom_write_reg(priv, EEPROM_BIT_CS);
2579         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2580         eeprom_write_reg(priv, EEPROM_BIT_CS);
2581 }
2582
2583 /* perform a chip select operation */
2584 static void eeprom_disable_cs(struct ipw_priv *priv)
2585 {
2586         eeprom_write_reg(priv, EEPROM_BIT_CS);
2587         eeprom_write_reg(priv, 0);
2588         eeprom_write_reg(priv, EEPROM_BIT_SK);
2589 }
2590
2591 /* push a single bit down to the eeprom */
2592 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2593 {
2594         int d = (bit ? EEPROM_BIT_DI : 0);
2595         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2596         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2597 }
2598
2599 /* push an opcode followed by an address down to the eeprom */
2600 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2601 {
2602         int i;
2603
2604         eeprom_cs(priv);
2605         eeprom_write_bit(priv, 1);
2606         eeprom_write_bit(priv, op & 2);
2607         eeprom_write_bit(priv, op & 1);
2608         for (i = 7; i >= 0; i--) {
2609                 eeprom_write_bit(priv, addr & (1 << i));
2610         }
2611 }
2612
2613 /* pull 16 bits off the eeprom, one bit at a time */
2614 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2615 {
2616         int i;
2617         u16 r = 0;
2618
2619         /* Send READ Opcode */
2620         eeprom_op(priv, EEPROM_CMD_READ, addr);
2621
2622         /* Send dummy bit */
2623         eeprom_write_reg(priv, EEPROM_BIT_CS);
2624
2625         /* Read the byte off the eeprom one bit at a time */
2626         for (i = 0; i < 16; i++) {
2627                 u32 data = 0;
2628                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2629                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2630                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2631                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2632         }
2633
2634         /* Send another dummy bit */
2635         eeprom_write_reg(priv, 0);
2636         eeprom_disable_cs(priv);
2637
2638         return r;
2639 }
2640
2641 /* helper function for pulling the mac address out of the private */
2642 /* data's copy of the eeprom data                                 */
2643 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2644 {
2645         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2646 }
2647
2648 /*
2649  * Either the device driver (i.e. the host) or the firmware can
2650  * load eeprom data into the designated region in SRAM.  If neither
2651  * happens then the FW will shutdown with a fatal error.
2652  *
2653  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2654  * bit needs region of shared SRAM needs to be non-zero.
2655  */
2656 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2657 {
2658         int i;
2659         __le16 *eeprom = (__le16 *) priv->eeprom;
2660
2661         IPW_DEBUG_TRACE(">>\n");
2662
2663         /* read entire contents of eeprom into private buffer */
2664         for (i = 0; i < 128; i++)
2665                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2666
2667         /*
2668            If the data looks correct, then copy it to our private
2669            copy.  Otherwise let the firmware know to perform the operation
2670            on its own.
2671          */
2672         if (priv->eeprom[EEPROM_VERSION] != 0) {
2673                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2674
2675                 /* write the eeprom data to sram */
2676                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2677                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2678
2679                 /* Do not load eeprom data on fatal error or suspend */
2680                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2681         } else {
2682                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2683
2684                 /* Load eeprom data on fatal error or suspend */
2685                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2686         }
2687
2688         IPW_DEBUG_TRACE("<<\n");
2689 }
2690
2691 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2692 {
2693         count >>= 2;
2694         if (!count)
2695                 return;
2696         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2697         while (count--)
2698                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2699 }
2700
2701 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2702 {
2703         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2704                         CB_NUMBER_OF_ELEMENTS_SMALL *
2705                         sizeof(struct command_block));
2706 }
2707
2708 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2709 {                               /* start dma engine but no transfers yet */
2710
2711         IPW_DEBUG_FW(">> : \n");
2712
2713         /* Start the dma */
2714         ipw_fw_dma_reset_command_blocks(priv);
2715
2716         /* Write CB base address */
2717         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2718
2719         IPW_DEBUG_FW("<< : \n");
2720         return 0;
2721 }
2722
2723 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2724 {
2725         u32 control = 0;
2726
2727         IPW_DEBUG_FW(">> :\n");
2728
2729         /* set the Stop and Abort bit */
2730         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2731         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2732         priv->sram_desc.last_cb_index = 0;
2733
2734         IPW_DEBUG_FW("<< \n");
2735 }
2736
2737 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2738                                           struct command_block *cb)
2739 {
2740         u32 address =
2741             IPW_SHARED_SRAM_DMA_CONTROL +
2742             (sizeof(struct command_block) * index);
2743         IPW_DEBUG_FW(">> :\n");
2744
2745         ipw_write_indirect(priv, address, (u8 *) cb,
2746                            (int)sizeof(struct command_block));
2747
2748         IPW_DEBUG_FW("<< :\n");
2749         return 0;
2750
2751 }
2752
2753 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2754 {
2755         u32 control = 0;
2756         u32 index = 0;
2757
2758         IPW_DEBUG_FW(">> :\n");
2759
2760         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2761                 ipw_fw_dma_write_command_block(priv, index,
2762                                                &priv->sram_desc.cb_list[index]);
2763
2764         /* Enable the DMA in the CSR register */
2765         ipw_clear_bit(priv, IPW_RESET_REG,
2766                       IPW_RESET_REG_MASTER_DISABLED |
2767                       IPW_RESET_REG_STOP_MASTER);
2768
2769         /* Set the Start bit. */
2770         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2771         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2772
2773         IPW_DEBUG_FW("<< :\n");
2774         return 0;
2775 }
2776
2777 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2778 {
2779         u32 address;
2780         u32 register_value = 0;
2781         u32 cb_fields_address = 0;
2782
2783         IPW_DEBUG_FW(">> :\n");
2784         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2785         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2786
2787         /* Read the DMA Controlor register */
2788         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2789         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2790
2791         /* Print the CB values */
2792         cb_fields_address = address;
2793         register_value = ipw_read_reg32(priv, cb_fields_address);
2794         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2795
2796         cb_fields_address += sizeof(u32);
2797         register_value = ipw_read_reg32(priv, cb_fields_address);
2798         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2799
2800         cb_fields_address += sizeof(u32);
2801         register_value = ipw_read_reg32(priv, cb_fields_address);
2802         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2803                           register_value);
2804
2805         cb_fields_address += sizeof(u32);
2806         register_value = ipw_read_reg32(priv, cb_fields_address);
2807         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2808
2809         IPW_DEBUG_FW(">> :\n");
2810 }
2811
2812 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2813 {
2814         u32 current_cb_address = 0;
2815         u32 current_cb_index = 0;
2816
2817         IPW_DEBUG_FW("<< :\n");
2818         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2819
2820         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2821             sizeof(struct command_block);
2822
2823         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2824                           current_cb_index, current_cb_address);
2825
2826         IPW_DEBUG_FW(">> :\n");
2827         return current_cb_index;
2828
2829 }
2830
2831 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2832                                         u32 src_address,
2833                                         u32 dest_address,
2834                                         u32 length,
2835                                         int interrupt_enabled, int is_last)
2836 {
2837
2838         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2839             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2840             CB_DEST_SIZE_LONG;
2841         struct command_block *cb;
2842         u32 last_cb_element = 0;
2843
2844         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2845                           src_address, dest_address, length);
2846
2847         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2848                 return -1;
2849
2850         last_cb_element = priv->sram_desc.last_cb_index;
2851         cb = &priv->sram_desc.cb_list[last_cb_element];
2852         priv->sram_desc.last_cb_index++;
2853
2854         /* Calculate the new CB control word */
2855         if (interrupt_enabled)
2856                 control |= CB_INT_ENABLED;
2857
2858         if (is_last)
2859                 control |= CB_LAST_VALID;
2860
2861         control |= length;
2862
2863         /* Calculate the CB Element's checksum value */
2864         cb->status = control ^ src_address ^ dest_address;
2865
2866         /* Copy the Source and Destination addresses */
2867         cb->dest_addr = dest_address;
2868         cb->source_addr = src_address;
2869
2870         /* Copy the Control Word last */
2871         cb->control = control;
2872
2873         return 0;
2874 }
2875
2876 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2877                                  u32 src_phys, u32 dest_address, u32 length)
2878 {
2879         u32 bytes_left = length;
2880         u32 src_offset = 0;
2881         u32 dest_offset = 0;
2882         int status = 0;
2883         IPW_DEBUG_FW(">> \n");
2884         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2885                           src_phys, dest_address, length);
2886         while (bytes_left > CB_MAX_LENGTH) {
2887                 status = ipw_fw_dma_add_command_block(priv,
2888                                                       src_phys + src_offset,
2889                                                       dest_address +
2890                                                       dest_offset,
2891                                                       CB_MAX_LENGTH, 0, 0);
2892                 if (status) {
2893                         IPW_DEBUG_FW_INFO(": Failed\n");
2894                         return -1;
2895                 } else
2896                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2897
2898                 src_offset += CB_MAX_LENGTH;
2899                 dest_offset += CB_MAX_LENGTH;
2900                 bytes_left -= CB_MAX_LENGTH;
2901         }
2902
2903         /* add the buffer tail */
2904         if (bytes_left > 0) {
2905                 status =
2906                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2907                                                  dest_address + dest_offset,
2908                                                  bytes_left, 0, 0);
2909                 if (status) {
2910                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2911                         return -1;
2912                 } else
2913                         IPW_DEBUG_FW_INFO
2914                             (": Adding new cb - the buffer tail\n");
2915         }
2916
2917         IPW_DEBUG_FW("<< \n");
2918         return 0;
2919 }
2920
2921 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2922 {
2923         u32 current_index = 0, previous_index;
2924         u32 watchdog = 0;
2925
2926         IPW_DEBUG_FW(">> : \n");
2927
2928         current_index = ipw_fw_dma_command_block_index(priv);
2929         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2930                           (int)priv->sram_desc.last_cb_index);
2931
2932         while (current_index < priv->sram_desc.last_cb_index) {
2933                 udelay(50);
2934                 previous_index = current_index;
2935                 current_index = ipw_fw_dma_command_block_index(priv);
2936
2937                 if (previous_index < current_index) {
2938                         watchdog = 0;
2939                         continue;
2940                 }
2941                 if (++watchdog > 400) {
2942                         IPW_DEBUG_FW_INFO("Timeout\n");
2943                         ipw_fw_dma_dump_command_block(priv);
2944                         ipw_fw_dma_abort(priv);
2945                         return -1;
2946                 }
2947         }
2948
2949         ipw_fw_dma_abort(priv);
2950
2951         /*Disable the DMA in the CSR register */
2952         ipw_set_bit(priv, IPW_RESET_REG,
2953                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2954
2955         IPW_DEBUG_FW("<< dmaWaitSync \n");
2956         return 0;
2957 }
2958
2959 static void ipw_remove_current_network(struct ipw_priv *priv)
2960 {
2961         struct list_head *element, *safe;
2962         struct ieee80211_network *network = NULL;
2963         unsigned long flags;
2964
2965         spin_lock_irqsave(&priv->ieee->lock, flags);
2966         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2967                 network = list_entry(element, struct ieee80211_network, list);
2968                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2969                         list_del(element);
2970                         list_add_tail(&network->list,
2971                                       &priv->ieee->network_free_list);
2972                 }
2973         }
2974         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2975 }
2976
2977 /**
2978  * Check that card is still alive.
2979  * Reads debug register from domain0.
2980  * If card is present, pre-defined value should
2981  * be found there.
2982  *
2983  * @param priv
2984  * @return 1 if card is present, 0 otherwise
2985  */
2986 static inline int ipw_alive(struct ipw_priv *priv)
2987 {
2988         return ipw_read32(priv, 0x90) == 0xd55555d5;
2989 }
2990
2991 /* timeout in msec, attempted in 10-msec quanta */
2992 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2993                                int timeout)
2994 {
2995         int i = 0;
2996
2997         do {
2998                 if ((ipw_read32(priv, addr) & mask) == mask)
2999                         return i;
3000                 mdelay(10);
3001                 i += 10;
3002         } while (i < timeout);
3003
3004         return -ETIME;
3005 }
3006
3007 /* These functions load the firmware and micro code for the operation of
3008  * the ipw hardware.  It assumes the buffer has all the bits for the
3009  * image and the caller is handling the memory allocation and clean up.
3010  */
3011
3012 static int ipw_stop_master(struct ipw_priv *priv)
3013 {
3014         int rc;
3015
3016         IPW_DEBUG_TRACE(">> \n");
3017         /* stop master. typical delay - 0 */
3018         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3019
3020         /* timeout is in msec, polled in 10-msec quanta */
3021         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3022                           IPW_RESET_REG_MASTER_DISABLED, 100);
3023         if (rc < 0) {
3024                 IPW_ERROR("wait for stop master failed after 100ms\n");
3025                 return -1;
3026         }
3027
3028         IPW_DEBUG_INFO("stop master %dms\n", rc);
3029
3030         return rc;
3031 }
3032
3033 static void ipw_arc_release(struct ipw_priv *priv)
3034 {
3035         IPW_DEBUG_TRACE(">> \n");
3036         mdelay(5);
3037
3038         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3039
3040         /* no one knows timing, for safety add some delay */
3041         mdelay(5);
3042 }
3043
3044 struct fw_chunk {
3045         __le32 address;
3046         __le32 length;
3047 };
3048
3049 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3050 {
3051         int rc = 0, i, addr;
3052         u8 cr = 0;
3053         __le16 *image;
3054
3055         image = (__le16 *) data;
3056
3057         IPW_DEBUG_TRACE(">> \n");
3058
3059         rc = ipw_stop_master(priv);
3060
3061         if (rc < 0)
3062                 return rc;
3063
3064         for (addr = IPW_SHARED_LOWER_BOUND;
3065              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3066                 ipw_write32(priv, addr, 0);
3067         }
3068
3069         /* no ucode (yet) */
3070         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3071         /* destroy DMA queues */
3072         /* reset sequence */
3073
3074         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3075         ipw_arc_release(priv);
3076         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3077         mdelay(1);
3078
3079         /* reset PHY */
3080         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3081         mdelay(1);
3082
3083         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3084         mdelay(1);
3085
3086         /* enable ucode store */
3087         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3088         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3089         mdelay(1);
3090
3091         /* write ucode */
3092         /**
3093          * @bug
3094          * Do NOT set indirect address register once and then
3095          * store data to indirect data register in the loop.
3096          * It seems very reasonable, but in this case DINO do not
3097          * accept ucode. It is essential to set address each time.
3098          */
3099         /* load new ipw uCode */
3100         for (i = 0; i < len / 2; i++)
3101                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3102                                 le16_to_cpu(image[i]));
3103
3104         /* enable DINO */
3105         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3106         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3107
3108         /* this is where the igx / win driver deveates from the VAP driver. */
3109
3110         /* wait for alive response */
3111         for (i = 0; i < 100; i++) {
3112                 /* poll for incoming data */
3113                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3114                 if (cr & DINO_RXFIFO_DATA)
3115                         break;
3116                 mdelay(1);
3117         }
3118
3119         if (cr & DINO_RXFIFO_DATA) {
3120                 /* alive_command_responce size is NOT multiple of 4 */
3121                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3122
3123                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3124                         response_buffer[i] =
3125                             cpu_to_le32(ipw_read_reg32(priv,
3126                                                        IPW_BASEBAND_RX_FIFO_READ));
3127                 memcpy(&priv->dino_alive, response_buffer,
3128                        sizeof(priv->dino_alive));
3129                 if (priv->dino_alive.alive_command == 1
3130                     && priv->dino_alive.ucode_valid == 1) {
3131                         rc = 0;
3132                         IPW_DEBUG_INFO
3133                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3134                              "of %02d/%02d/%02d %02d:%02d\n",
3135                              priv->dino_alive.software_revision,
3136                              priv->dino_alive.software_revision,
3137                              priv->dino_alive.device_identifier,
3138                              priv->dino_alive.device_identifier,
3139                              priv->dino_alive.time_stamp[0],
3140                              priv->dino_alive.time_stamp[1],
3141                              priv->dino_alive.time_stamp[2],
3142                              priv->dino_alive.time_stamp[3],
3143                              priv->dino_alive.time_stamp[4]);
3144                 } else {
3145                         IPW_DEBUG_INFO("Microcode is not alive\n");
3146                         rc = -EINVAL;
3147                 }
3148         } else {
3149                 IPW_DEBUG_INFO("No alive response from DINO\n");
3150                 rc = -ETIME;
3151         }
3152
3153         /* disable DINO, otherwise for some reason
3154            firmware have problem getting alive resp. */
3155         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3156
3157         return rc;
3158 }
3159
3160 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3161 {
3162         int rc = -1;
3163         int offset = 0;
3164         struct fw_chunk *chunk;
3165         dma_addr_t shared_phys;
3166         u8 *shared_virt;
3167
3168         IPW_DEBUG_TRACE("<< : \n");
3169         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3170
3171         if (!shared_virt)
3172                 return -ENOMEM;
3173
3174         memmove(shared_virt, data, len);
3175
3176         /* Start the Dma */
3177         rc = ipw_fw_dma_enable(priv);
3178
3179         /* the DMA is already ready this would be a bug. */
3180         BUG_ON(priv->sram_desc.last_cb_index > 0);
3181
3182         do {
3183                 chunk = (struct fw_chunk *)(data + offset);
3184                 offset += sizeof(struct fw_chunk);
3185                 /* build DMA packet and queue up for sending */
3186                 /* dma to chunk->address, the chunk->length bytes from data +
3187                  * offeset*/
3188                 /* Dma loading */
3189                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3190                                            le32_to_cpu(chunk->address),
3191                                            le32_to_cpu(chunk->length));
3192                 if (rc) {
3193                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3194                         goto out;
3195                 }
3196
3197                 offset += le32_to_cpu(chunk->length);
3198         } while (offset < len);
3199
3200         /* Run the DMA and wait for the answer */
3201         rc = ipw_fw_dma_kick(priv);
3202         if (rc) {
3203                 IPW_ERROR("dmaKick Failed\n");
3204                 goto out;
3205         }
3206
3207         rc = ipw_fw_dma_wait(priv);
3208         if (rc) {
3209                 IPW_ERROR("dmaWaitSync Failed\n");
3210                 goto out;
3211         }
3212       out:
3213         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3214         return rc;
3215 }
3216
3217 /* stop nic */
3218 static int ipw_stop_nic(struct ipw_priv *priv)
3219 {
3220         int rc = 0;
3221
3222         /* stop */
3223         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3224
3225         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3226                           IPW_RESET_REG_MASTER_DISABLED, 500);
3227         if (rc < 0) {
3228                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3229                 return rc;
3230         }
3231
3232         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3233
3234         return rc;
3235 }
3236
3237 static void ipw_start_nic(struct ipw_priv *priv)
3238 {
3239         IPW_DEBUG_TRACE(">>\n");
3240
3241         /* prvHwStartNic  release ARC */
3242         ipw_clear_bit(priv, IPW_RESET_REG,
3243                       IPW_RESET_REG_MASTER_DISABLED |
3244                       IPW_RESET_REG_STOP_MASTER |
3245                       CBD_RESET_REG_PRINCETON_RESET);
3246
3247         /* enable power management */
3248         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3249                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3250
3251         IPW_DEBUG_TRACE("<<\n");
3252 }
3253
3254 static int ipw_init_nic(struct ipw_priv *priv)
3255 {
3256         int rc;
3257
3258         IPW_DEBUG_TRACE(">>\n");
3259         /* reset */
3260         /*prvHwInitNic */
3261         /* set "initialization complete" bit to move adapter to D0 state */
3262         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3263
3264         /* low-level PLL activation */
3265         ipw_write32(priv, IPW_READ_INT_REGISTER,
3266                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3267
3268         /* wait for clock stabilization */
3269         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3270                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3271         if (rc < 0)
3272                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3273
3274         /* assert SW reset */
3275         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3276
3277         udelay(10);
3278
3279         /* set "initialization complete" bit to move adapter to D0 state */
3280         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3281
3282         IPW_DEBUG_TRACE(">>\n");
3283         return 0;
3284 }
3285
3286 /* Call this function from process context, it will sleep in request_firmware.
3287  * Probe is an ok place to call this from.
3288  */
3289 static int ipw_reset_nic(struct ipw_priv *priv)
3290 {
3291         int rc = 0;
3292         unsigned long flags;
3293
3294         IPW_DEBUG_TRACE(">>\n");
3295
3296         rc = ipw_init_nic(priv);
3297
3298         spin_lock_irqsave(&priv->lock, flags);
3299         /* Clear the 'host command active' bit... */
3300         priv->status &= ~STATUS_HCMD_ACTIVE;
3301         wake_up_interruptible(&priv->wait_command_queue);
3302         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3303         wake_up_interruptible(&priv->wait_state);
3304         spin_unlock_irqrestore(&priv->lock, flags);
3305
3306         IPW_DEBUG_TRACE("<<\n");
3307         return rc;
3308 }
3309
3310
3311 struct ipw_fw {
3312         __le32 ver;
3313         __le32 boot_size;
3314         __le32 ucode_size;
3315         __le32 fw_size;
3316         u8 data[0];
3317 };
3318
3319 static int ipw_get_fw(struct ipw_priv *priv,
3320                       const struct firmware **raw, const char *name)
3321 {
3322         struct ipw_fw *fw;
3323         int rc;
3324
3325         /* ask firmware_class module to get the boot firmware off disk */
3326         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3327         if (rc < 0) {
3328                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3329                 return rc;
3330         }
3331
3332         if ((*raw)->size < sizeof(*fw)) {
3333                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3334                 return -EINVAL;
3335         }
3336
3337         fw = (void *)(*raw)->data;
3338
3339         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3340             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3341                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3342                           name, (*raw)->size);
3343                 return -EINVAL;
3344         }
3345
3346         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3347                        name,
3348                        le32_to_cpu(fw->ver) >> 16,
3349                        le32_to_cpu(fw->ver) & 0xff,
3350                        (*raw)->size - sizeof(*fw));
3351         return 0;
3352 }
3353
3354 #define IPW_RX_BUF_SIZE (3000)
3355
3356 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3357                                       struct ipw_rx_queue *rxq)
3358 {
3359         unsigned long flags;
3360         int i;
3361
3362         spin_lock_irqsave(&rxq->lock, flags);
3363
3364         INIT_LIST_HEAD(&rxq->rx_free);
3365         INIT_LIST_HEAD(&rxq->rx_used);
3366
3367         /* Fill the rx_used queue with _all_ of the Rx buffers */
3368         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3369                 /* In the reset function, these buffers may have been allocated
3370                  * to an SKB, so we need to unmap and free potential storage */
3371                 if (rxq->pool[i].skb != NULL) {
3372                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3373                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3374                         dev_kfree_skb(rxq->pool[i].skb);
3375                         rxq->pool[i].skb = NULL;
3376                 }
3377                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3378         }
3379
3380         /* Set us so that we have processed and used all buffers, but have
3381          * not restocked the Rx queue with fresh buffers */
3382         rxq->read = rxq->write = 0;
3383         rxq->free_count = 0;
3384         spin_unlock_irqrestore(&rxq->lock, flags);
3385 }
3386
3387 #ifdef CONFIG_PM
3388 static int fw_loaded = 0;
3389 static const struct firmware *raw = NULL;
3390
3391 static void free_firmware(void)
3392 {
3393         if (fw_loaded) {
3394                 release_firmware(raw);
3395                 raw = NULL;
3396                 fw_loaded = 0;
3397         }
3398 }
3399 #else
3400 #define free_firmware() do {} while (0)
3401 #endif
3402
3403 static int ipw_load(struct ipw_priv *priv)
3404 {
3405 #ifndef CONFIG_PM
3406         const struct firmware *raw = NULL;
3407 #endif
3408         struct ipw_fw *fw;
3409         u8 *boot_img, *ucode_img, *fw_img;
3410         u8 *name = NULL;
3411         int rc = 0, retries = 3;
3412
3413         switch (priv->ieee->iw_mode) {
3414         case IW_MODE_ADHOC:
3415                 name = "ipw2200-ibss.fw";
3416                 break;
3417 #ifdef CONFIG_IPW2200_MONITOR
3418         case IW_MODE_MONITOR:
3419                 name = "ipw2200-sniffer.fw";
3420                 break;
3421 #endif
3422         case IW_MODE_INFRA:
3423                 name = "ipw2200-bss.fw";
3424                 break;
3425         }
3426
3427         if (!name) {
3428                 rc = -EINVAL;
3429                 goto error;
3430         }
3431
3432 #ifdef CONFIG_PM
3433         if (!fw_loaded) {
3434 #endif
3435                 rc = ipw_get_fw(priv, &raw, name);
3436                 if (rc < 0)
3437                         goto error;
3438 #ifdef CONFIG_PM
3439         }
3440 #endif
3441
3442         fw = (void *)raw->data;
3443         boot_img = &fw->data[0];
3444         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3445         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3446                            le32_to_cpu(fw->ucode_size)];
3447
3448         if (rc < 0)
3449                 goto error;
3450
3451         if (!priv->rxq)
3452                 priv->rxq = ipw_rx_queue_alloc(priv);
3453         else
3454                 ipw_rx_queue_reset(priv, priv->rxq);
3455         if (!priv->rxq) {
3456                 IPW_ERROR("Unable to initialize Rx queue\n");
3457                 goto error;
3458         }
3459
3460       retry:
3461         /* Ensure interrupts are disabled */
3462         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3463         priv->status &= ~STATUS_INT_ENABLED;
3464
3465         /* ack pending interrupts */
3466         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3467
3468         ipw_stop_nic(priv);
3469
3470         rc = ipw_reset_nic(priv);
3471         if (rc < 0) {
3472                 IPW_ERROR("Unable to reset NIC\n");
3473                 goto error;
3474         }
3475
3476         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3477                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3478
3479         /* DMA the initial boot firmware into the device */
3480         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3481         if (rc < 0) {
3482                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3483                 goto error;
3484         }
3485
3486         /* kick start the device */
3487         ipw_start_nic(priv);
3488
3489         /* wait for the device to finish its initial startup sequence */
3490         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3491                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3492         if (rc < 0) {
3493                 IPW_ERROR("device failed to boot initial fw image\n");
3494                 goto error;
3495         }
3496         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3497
3498         /* ack fw init done interrupt */
3499         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3500
3501         /* DMA the ucode into the device */
3502         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3503         if (rc < 0) {
3504                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3505                 goto error;
3506         }
3507
3508         /* stop nic */
3509         ipw_stop_nic(priv);
3510
3511         /* DMA bss firmware into the device */
3512         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3513         if (rc < 0) {
3514                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3515                 goto error;
3516         }
3517 #ifdef CONFIG_PM
3518         fw_loaded = 1;
3519 #endif
3520
3521         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3522
3523         rc = ipw_queue_reset(priv);
3524         if (rc < 0) {
3525                 IPW_ERROR("Unable to initialize queues\n");
3526                 goto error;
3527         }
3528
3529         /* Ensure interrupts are disabled */
3530         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3531         /* ack pending interrupts */
3532         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3533
3534         /* kick start the device */
3535         ipw_start_nic(priv);
3536
3537         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3538                 if (retries > 0) {
3539                         IPW_WARNING("Parity error.  Retrying init.\n");
3540                         retries--;
3541                         goto retry;
3542                 }
3543
3544                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3545                 rc = -EIO;
3546                 goto error;
3547         }
3548
3549         /* wait for the device */
3550         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3551                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3552         if (rc < 0) {
3553                 IPW_ERROR("device failed to start within 500ms\n");
3554                 goto error;
3555         }
3556         IPW_DEBUG_INFO("device response after %dms\n", rc);
3557
3558         /* ack fw init done interrupt */
3559         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3560
3561         /* read eeprom data and initialize the eeprom region of sram */
3562         priv->eeprom_delay = 1;
3563         ipw_eeprom_init_sram(priv);
3564
3565         /* enable interrupts */
3566         ipw_enable_interrupts(priv);
3567
3568         /* Ensure our queue has valid packets */
3569         ipw_rx_queue_replenish(priv);
3570
3571         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3572
3573         /* ack pending interrupts */
3574         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3575
3576 #ifndef CONFIG_PM
3577         release_firmware(raw);
3578 #endif
3579         return 0;
3580
3581       error:
3582         if (priv->rxq) {
3583                 ipw_rx_queue_free(priv, priv->rxq);
3584                 priv->rxq = NULL;
3585         }
3586         ipw_tx_queue_free(priv);
3587         if (raw)
3588                 release_firmware(raw);
3589 #ifdef CONFIG_PM
3590         fw_loaded = 0;
3591         raw = NULL;
3592 #endif
3593
3594         return rc;
3595 }
3596
3597 /**
3598  * DMA services
3599  *
3600  * Theory of operation
3601  *
3602  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3603  * 2 empty entries always kept in the buffer to protect from overflow.
3604  *
3605  * For Tx queue, there are low mark and high mark limits. If, after queuing
3606  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3607  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3608  * Tx queue resumed.
3609  *
3610  * The IPW operates with six queues, one receive queue in the device's
3611  * sram, one transmit queue for sending commands to the device firmware,
3612  * and four transmit queues for data.
3613  *
3614  * The four transmit queues allow for performing quality of service (qos)
3615  * transmissions as per the 802.11 protocol.  Currently Linux does not
3616  * provide a mechanism to the user for utilizing prioritized queues, so
3617  * we only utilize the first data transmit queue (queue1).
3618  */
3619
3620 /**
3621  * Driver allocates buffers of this size for Rx
3622  */
3623
3624 /**
3625  * ipw_rx_queue_space - Return number of free slots available in queue.
3626  */
3627 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3628 {
3629         int s = q->read - q->write;
3630         if (s <= 0)
3631                 s += RX_QUEUE_SIZE;
3632         /* keep some buffer to not confuse full and empty queue */
3633         s -= 2;
3634         if (s < 0)
3635                 s = 0;
3636         return s;
3637 }
3638
3639 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3640 {
3641         int s = q->last_used - q->first_empty;
3642         if (s <= 0)
3643                 s += q->n_bd;
3644         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3645         if (s < 0)
3646                 s = 0;
3647         return s;
3648 }
3649
3650 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3651 {
3652         return (++index == n_bd) ? 0 : index;
3653 }
3654
3655 /**
3656  * Initialize common DMA queue structure
3657  *
3658  * @param q                queue to init
3659  * @param count            Number of BD's to allocate. Should be power of 2
3660  * @param read_register    Address for 'read' register
3661  *                         (not offset within BAR, full address)
3662  * @param write_register   Address for 'write' register
3663  *                         (not offset within BAR, full address)
3664  * @param base_register    Address for 'base' register
3665  *                         (not offset within BAR, full address)
3666  * @param size             Address for 'size' register
3667  *                         (not offset within BAR, full address)
3668  */
3669 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3670                            int count, u32 read, u32 write, u32 base, u32 size)
3671 {
3672         q->n_bd = count;
3673
3674         q->low_mark = q->n_bd / 4;
3675         if (q->low_mark < 4)
3676                 q->low_mark = 4;
3677
3678         q->high_mark = q->n_bd / 8;
3679         if (q->high_mark < 2)
3680                 q->high_mark = 2;
3681
3682         q->first_empty = q->last_used = 0;
3683         q->reg_r = read;
3684         q->reg_w = write;
3685
3686         ipw_write32(priv, base, q->dma_addr);
3687         ipw_write32(priv, size, count);
3688         ipw_write32(priv, read, 0);
3689         ipw_write32(priv, write, 0);
3690
3691         _ipw_read32(priv, 0x90);
3692 }
3693
3694 static int ipw_queue_tx_init(struct ipw_priv *priv,
3695                              struct clx2_tx_queue *q,
3696                              int count, u32 read, u32 write, u32 base, u32 size)
3697 {
3698         struct pci_dev *dev = priv->pci_dev;
3699
3700         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3701         if (!q->txb) {
3702                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3703                 return -ENOMEM;
3704         }
3705
3706         q->bd =
3707             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3708         if (!q->bd) {
3709                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3710                           sizeof(q->bd[0]) * count);
3711                 kfree(q->txb);
3712                 q->txb = NULL;
3713                 return -ENOMEM;
3714         }
3715
3716         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3717         return 0;
3718 }
3719
3720 /**
3721  * Free one TFD, those at index [txq->q.last_used].
3722  * Do NOT advance any indexes
3723  *
3724  * @param dev
3725  * @param txq
3726  */
3727 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3728                                   struct clx2_tx_queue *txq)
3729 {
3730         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3731         struct pci_dev *dev = priv->pci_dev;
3732         int i;
3733
3734         /* classify bd */
3735         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3736                 /* nothing to cleanup after for host commands */
3737                 return;
3738
3739         /* sanity check */
3740         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3741                 IPW_ERROR("Too many chunks: %i\n",
3742                           le32_to_cpu(bd->u.data.num_chunks));
3743                 /** @todo issue fatal error, it is quite serious situation */
3744                 return;
3745         }
3746
3747         /* unmap chunks if any */
3748         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3749                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3750                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3751                                  PCI_DMA_TODEVICE);
3752                 if (txq->txb[txq->q.last_used]) {
3753                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3754                         txq->txb[txq->q.last_used] = NULL;
3755                 }
3756         }
3757 }
3758
3759 /**
3760  * Deallocate DMA queue.
3761  *
3762  * Empty queue by removing and destroying all BD's.
3763  * Free all buffers.
3764  *
3765  * @param dev
3766  * @param q
3767  */
3768 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3769 {
3770         struct clx2_queue *q = &txq->q;
3771         struct pci_dev *dev = priv->pci_dev;
3772
3773         if (q->n_bd == 0)
3774                 return;
3775
3776         /* first, empty all BD's */
3777         for (; q->first_empty != q->last_used;
3778              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3779                 ipw_queue_tx_free_tfd(priv, txq);
3780         }
3781
3782         /* free buffers belonging to queue itself */
3783         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3784                             q->dma_addr);
3785         kfree(txq->txb);
3786
3787         /* 0 fill whole structure */
3788         memset(txq, 0, sizeof(*txq));
3789 }
3790
3791 /**
3792  * Destroy all DMA queues and structures
3793  *
3794  * @param priv
3795  */
3796 static void ipw_tx_queue_free(struct ipw_priv *priv)
3797 {
3798         /* Tx CMD queue */
3799         ipw_queue_tx_free(priv, &priv->txq_cmd);
3800
3801         /* Tx queues */
3802         ipw_queue_tx_free(priv, &priv->txq[0]);
3803         ipw_queue_tx_free(priv, &priv->txq[1]);
3804         ipw_queue_tx_free(priv, &priv->txq[2]);
3805         ipw_queue_tx_free(priv, &priv->txq[3]);
3806 }
3807
3808 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3809 {
3810         /* First 3 bytes are manufacturer */
3811         bssid[0] = priv->mac_addr[0];
3812         bssid[1] = priv->mac_addr[1];
3813         bssid[2] = priv->mac_addr[2];
3814
3815         /* Last bytes are random */
3816         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3817
3818         bssid[0] &= 0xfe;       /* clear multicast bit */
3819         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3820 }
3821
3822 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3823 {
3824         struct ipw_station_entry entry;
3825         int i;
3826
3827         for (i = 0; i < priv->num_stations; i++) {
3828                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3829                         /* Another node is active in network */
3830                         priv->missed_adhoc_beacons = 0;
3831                         if (!(priv->config & CFG_STATIC_CHANNEL))
3832                                 /* when other nodes drop out, we drop out */
3833                                 priv->config &= ~CFG_ADHOC_PERSIST;
3834
3835                         return i;
3836                 }
3837         }
3838
3839         if (i == MAX_STATIONS)
3840                 return IPW_INVALID_STATION;
3841
3842         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3843
3844         entry.reserved = 0;
3845         entry.support_mode = 0;
3846         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3847         memcpy(priv->stations[i], bssid, ETH_ALEN);
3848         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3849                          &entry, sizeof(entry));
3850         priv->num_stations++;
3851
3852         return i;
3853 }
3854
3855 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3856 {
3857         int i;
3858
3859         for (i = 0; i < priv->num_stations; i++)
3860                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3861                         return i;
3862
3863         return IPW_INVALID_STATION;
3864 }
3865
3866 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3867 {
3868         int err;
3869
3870         if (priv->status & STATUS_ASSOCIATING) {
3871                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3872                 queue_work(priv->workqueue, &priv->disassociate);
3873                 return;
3874         }
3875
3876         if (!(priv->status & STATUS_ASSOCIATED)) {
3877                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3878                 return;
3879         }
3880
3881         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3882                         "on channel %d.\n",
3883                         priv->assoc_request.bssid,
3884                         priv->assoc_request.channel);
3885
3886         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3887         priv->status |= STATUS_DISASSOCIATING;
3888
3889         if (quiet)
3890                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3891         else
3892                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3893
3894         err = ipw_send_associate(priv, &priv->assoc_request);
3895         if (err) {
3896                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3897                              "failed.\n");
3898                 return;
3899         }
3900
3901 }
3902
3903 static int ipw_disassociate(void *data)
3904 {
3905         struct ipw_priv *priv = data;
3906         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3907                 return 0;
3908         ipw_send_disassociate(data, 0);
3909         netif_carrier_off(priv->net_dev);
3910         return 1;
3911 }
3912
3913 static void ipw_bg_disassociate(struct work_struct *work)
3914 {
3915         struct ipw_priv *priv =
3916                 container_of(work, struct ipw_priv, disassociate);
3917         mutex_lock(&priv->mutex);
3918         ipw_disassociate(priv);
3919         mutex_unlock(&priv->mutex);
3920 }
3921
3922 static void ipw_system_config(struct work_struct *work)
3923 {
3924         struct ipw_priv *priv =
3925                 container_of(work, struct ipw_priv, system_config);
3926
3927 #ifdef CONFIG_IPW2200_PROMISCUOUS
3928         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3929                 priv->sys_config.accept_all_data_frames = 1;
3930                 priv->sys_config.accept_non_directed_frames = 1;
3931                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3932                 priv->sys_config.accept_all_mgmt_frames = 1;
3933         }
3934 #endif
3935
3936         ipw_send_system_config(priv);
3937 }
3938
3939 struct ipw_status_code {
3940         u16 status;
3941         const char *reason;
3942 };
3943
3944 static const struct ipw_status_code ipw_status_codes[] = {
3945         {0x00, "Successful"},
3946         {0x01, "Unspecified failure"},
3947         {0x0A, "Cannot support all requested capabilities in the "
3948          "Capability information field"},
3949         {0x0B, "Reassociation denied due to inability to confirm that "
3950          "association exists"},
3951         {0x0C, "Association denied due to reason outside the scope of this "
3952          "standard"},
3953         {0x0D,
3954          "Responding station does not support the specified authentication "
3955          "algorithm"},
3956         {0x0E,
3957          "Received an Authentication frame with authentication sequence "
3958          "transaction sequence number out of expected sequence"},
3959         {0x0F, "Authentication rejected because of challenge failure"},
3960         {0x10, "Authentication rejected due to timeout waiting for next "
3961          "frame in sequence"},
3962         {0x11, "Association denied because AP is unable to handle additional "
3963          "associated stations"},
3964         {0x12,
3965          "Association denied due to requesting station not supporting all "
3966          "of the datarates in the BSSBasicServiceSet Parameter"},
3967         {0x13,
3968          "Association denied due to requesting station not supporting "
3969          "short preamble operation"},
3970         {0x14,
3971          "Association denied due to requesting station not supporting "
3972          "PBCC encoding"},
3973         {0x15,
3974          "Association denied due to requesting station not supporting "
3975          "channel agility"},
3976         {0x19,
3977          "Association denied due to requesting station not supporting "
3978          "short slot operation"},
3979         {0x1A,
3980          "Association denied due to requesting station not supporting "
3981          "DSSS-OFDM operation"},
3982         {0x28, "Invalid Information Element"},
3983         {0x29, "Group Cipher is not valid"},
3984         {0x2A, "Pairwise Cipher is not valid"},
3985         {0x2B, "AKMP is not valid"},
3986         {0x2C, "Unsupported RSN IE version"},
3987         {0x2D, "Invalid RSN IE Capabilities"},
3988         {0x2E, "Cipher suite is rejected per security policy"},
3989 };
3990
3991 static const char *ipw_get_status_code(u16 status)
3992 {
3993         int i;
3994         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3995                 if (ipw_status_codes[i].status == (status & 0xff))
3996                         return ipw_status_codes[i].reason;
3997         return "Unknown status value.";
3998 }
3999
4000 static void inline average_init(struct average *avg)
4001 {
4002         memset(avg, 0, sizeof(*avg));
4003 }
4004
4005 #define DEPTH_RSSI 8
4006 #define DEPTH_NOISE 16
4007 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4008 {
4009         return ((depth-1)*prev_avg +  val)/depth;
4010 }
4011
4012 static void average_add(struct average *avg, s16 val)
4013 {
4014         avg->sum -= avg->entries[avg->pos];
4015         avg->sum += val;
4016         avg->entries[avg->pos++] = val;
4017         if (unlikely(avg->pos == AVG_ENTRIES)) {
4018                 avg->init = 1;
4019                 avg->pos = 0;
4020         }
4021 }
4022
4023 static s16 average_value(struct average *avg)
4024 {
4025         if (!unlikely(avg->init)) {
4026                 if (avg->pos)
4027                         return avg->sum / avg->pos;
4028                 return 0;
4029         }
4030
4031         return avg->sum / AVG_ENTRIES;
4032 }
4033
4034 static void ipw_reset_stats(struct ipw_priv *priv)
4035 {
4036         u32 len = sizeof(u32);
4037
4038         priv->quality = 0;
4039
4040         average_init(&priv->average_missed_beacons);
4041         priv->exp_avg_rssi = -60;
4042         priv->exp_avg_noise = -85 + 0x100;
4043
4044         priv->last_rate = 0;
4045         priv->last_missed_beacons = 0;
4046         priv->last_rx_packets = 0;
4047         priv->last_tx_packets = 0;
4048         priv->last_tx_failures = 0;
4049
4050         /* Firmware managed, reset only when NIC is restarted, so we have to
4051          * normalize on the current value */
4052         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4053                         &priv->last_rx_err, &len);
4054         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4055                         &priv->last_tx_failures, &len);
4056
4057         /* Driver managed, reset with each association */
4058         priv->missed_adhoc_beacons = 0;
4059         priv->missed_beacons = 0;
4060         priv->tx_packets = 0;
4061         priv->rx_packets = 0;
4062
4063 }
4064
4065 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4066 {
4067         u32 i = 0x80000000;
4068         u32 mask = priv->rates_mask;
4069         /* If currently associated in B mode, restrict the maximum
4070          * rate match to B rates */
4071         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4072                 mask &= IEEE80211_CCK_RATES_MASK;
4073
4074         /* TODO: Verify that the rate is supported by the current rates
4075          * list. */
4076
4077         while (i && !(mask & i))
4078                 i >>= 1;
4079         switch (i) {
4080         case IEEE80211_CCK_RATE_1MB_MASK:
4081                 return 1000000;
4082         case IEEE80211_CCK_RATE_2MB_MASK:
4083                 return 2000000;
4084         case IEEE80211_CCK_RATE_5MB_MASK:
4085                 return 5500000;
4086         case IEEE80211_OFDM_RATE_6MB_MASK:
4087                 return 6000000;
4088         case IEEE80211_OFDM_RATE_9MB_MASK:
4089                 return 9000000;
4090         case IEEE80211_CCK_RATE_11MB_MASK:
4091                 return 11000000;
4092         case IEEE80211_OFDM_RATE_12MB_MASK:
4093                 return 12000000;
4094         case IEEE80211_OFDM_RATE_18MB_MASK:
4095                 return 18000000;
4096         case IEEE80211_OFDM_RATE_24MB_MASK:
4097                 return 24000000;
4098         case IEEE80211_OFDM_RATE_36MB_MASK:
4099                 return 36000000;
4100         case IEEE80211_OFDM_RATE_48MB_MASK:
4101                 return 48000000;
4102         case IEEE80211_OFDM_RATE_54MB_MASK:
4103                 return 54000000;
4104         }
4105
4106         if (priv->ieee->mode == IEEE_B)
4107                 return 11000000;
4108         else
4109                 return 54000000;
4110 }
4111
4112 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4113 {
4114         u32 rate, len = sizeof(rate);
4115         int err;
4116
4117         if (!(priv->status & STATUS_ASSOCIATED))
4118                 return 0;
4119
4120         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4121                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4122                                       &len);
4123                 if (err) {
4124                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4125                         return 0;
4126                 }
4127         } else
4128                 return ipw_get_max_rate(priv);
4129
4130         switch (rate) {
4131         case IPW_TX_RATE_1MB:
4132                 return 1000000;
4133         case IPW_TX_RATE_2MB:
4134                 return 2000000;
4135         case IPW_TX_RATE_5MB:
4136                 return 5500000;
4137         case IPW_TX_RATE_6MB:
4138                 return 6000000;
4139         case IPW_TX_RATE_9MB:
4140                 return 9000000;
4141         case IPW_TX_RATE_11MB:
4142                 return 11000000;
4143         case IPW_TX_RATE_12MB:
4144                 return 12000000;
4145         case IPW_TX_RATE_18MB:
4146                 return 18000000;
4147         case IPW_TX_RATE_24MB:
4148                 return 24000000;
4149         case IPW_TX_RATE_36MB:
4150                 return 36000000;
4151         case IPW_TX_RATE_48MB:
4152                 return 48000000;
4153         case IPW_TX_RATE_54MB:
4154                 return 54000000;
4155         }
4156
4157         return 0;
4158 }
4159
4160 #define IPW_STATS_INTERVAL (2 * HZ)
4161 static void ipw_gather_stats(struct ipw_priv *priv)
4162 {
4163         u32 rx_err, rx_err_delta, rx_packets_delta;
4164         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4165         u32 missed_beacons_percent, missed_beacons_delta;
4166         u32 quality = 0;
4167         u32 len = sizeof(u32);
4168         s16 rssi;
4169         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4170             rate_quality;
4171         u32 max_rate;
4172
4173         if (!(priv->status & STATUS_ASSOCIATED)) {
4174                 priv->quality = 0;
4175                 return;
4176         }
4177
4178         /* Update the statistics */
4179         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4180                         &priv->missed_beacons, &len);
4181         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4182         priv->last_missed_beacons = priv->missed_beacons;
4183         if (priv->assoc_request.beacon_interval) {
4184                 missed_beacons_percent = missed_beacons_delta *
4185                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4186                     (IPW_STATS_INTERVAL * 10);
4187         } else {
4188                 missed_beacons_percent = 0;
4189         }
4190         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4191
4192         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4193         rx_err_delta = rx_err - priv->last_rx_err;
4194         priv->last_rx_err = rx_err;
4195
4196         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4197         tx_failures_delta = tx_failures - priv->last_tx_failures;
4198         priv->last_tx_failures = tx_failures;
4199
4200         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4201         priv->last_rx_packets = priv->rx_packets;
4202
4203         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4204         priv->last_tx_packets = priv->tx_packets;
4205
4206         /* Calculate quality based on the following:
4207          *
4208          * Missed beacon: 100% = 0, 0% = 70% missed
4209          * Rate: 60% = 1Mbs, 100% = Max
4210          * Rx and Tx errors represent a straight % of total Rx/Tx
4211          * RSSI: 100% = > -50,  0% = < -80
4212          * Rx errors: 100% = 0, 0% = 50% missed
4213          *
4214          * The lowest computed quality is used.
4215          *
4216          */
4217 #define BEACON_THRESHOLD 5
4218         beacon_quality = 100 - missed_beacons_percent;
4219         if (beacon_quality < BEACON_THRESHOLD)
4220                 beacon_quality = 0;
4221         else
4222                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4223                     (100 - BEACON_THRESHOLD);
4224         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4225                         beacon_quality, missed_beacons_percent);
4226
4227         priv->last_rate = ipw_get_current_rate(priv);
4228         max_rate = ipw_get_max_rate(priv);
4229         rate_quality = priv->last_rate * 40 / max_rate + 60;
4230         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4231                         rate_quality, priv->last_rate / 1000000);
4232
4233         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4234                 rx_quality = 100 - (rx_err_delta * 100) /
4235                     (rx_packets_delta + rx_err_delta);
4236         else
4237                 rx_quality = 100;
4238         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4239                         rx_quality, rx_err_delta, rx_packets_delta);
4240
4241         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4242                 tx_quality = 100 - (tx_failures_delta * 100) /
4243                     (tx_packets_delta + tx_failures_delta);
4244         else
4245                 tx_quality = 100;
4246         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4247                         tx_quality, tx_failures_delta, tx_packets_delta);
4248
4249         rssi = priv->exp_avg_rssi;
4250         signal_quality =
4251             (100 *
4252              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4253              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4254              (priv->ieee->perfect_rssi - rssi) *
4255              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4256               62 * (priv->ieee->perfect_rssi - rssi))) /
4257             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4258              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4259         if (signal_quality > 100)
4260                 signal_quality = 100;
4261         else if (signal_quality < 1)
4262                 signal_quality = 0;
4263
4264         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4265                         signal_quality, rssi);
4266
4267         quality = min(beacon_quality,
4268                       min(rate_quality,
4269                           min(tx_quality, min(rx_quality, signal_quality))));
4270         if (quality == beacon_quality)
4271                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4272                                 quality);
4273         if (quality == rate_quality)
4274                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4275                                 quality);
4276         if (quality == tx_quality)
4277                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4278                                 quality);
4279         if (quality == rx_quality)
4280                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4281                                 quality);
4282         if (quality == signal_quality)
4283                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4284                                 quality);
4285
4286         priv->quality = quality;
4287
4288         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4289                            IPW_STATS_INTERVAL);
4290 }
4291
4292 static void ipw_bg_gather_stats(struct work_struct *work)
4293 {
4294         struct ipw_priv *priv =
4295                 container_of(work, struct ipw_priv, gather_stats.work);
4296         mutex_lock(&priv->mutex);
4297         ipw_gather_stats(priv);
4298         mutex_unlock(&priv->mutex);
4299 }
4300
4301 /* Missed beacon behavior:
4302  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4303  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4304  * Above disassociate threshold, give up and stop scanning.
4305  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4306 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4307                                             int missed_count)
4308 {
4309         priv->notif_missed_beacons = missed_count;
4310
4311         if (missed_count > priv->disassociate_threshold &&
4312             priv->status & STATUS_ASSOCIATED) {
4313                 /* If associated and we've hit the missed
4314                  * beacon threshold, disassociate, turn
4315                  * off roaming, and abort any active scans */
4316                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4317                           IPW_DL_STATE | IPW_DL_ASSOC,
4318                           "Missed beacon: %d - disassociate\n", missed_count);
4319                 priv->status &= ~STATUS_ROAMING;
4320                 if (priv->status & STATUS_SCANNING) {
4321                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4322                                   IPW_DL_STATE,
4323                                   "Aborting scan with missed beacon.\n");
4324                         queue_work(priv->workqueue, &priv->abort_scan);
4325                 }
4326
4327                 queue_work(priv->workqueue, &priv->disassociate);
4328                 return;
4329         }
4330
4331         if (priv->status & STATUS_ROAMING) {
4332                 /* If we are currently roaming, then just
4333                  * print a debug statement... */
4334                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4335                           "Missed beacon: %d - roam in progress\n",
4336                           missed_count);
4337                 return;
4338         }
4339
4340         if (roaming &&
4341             (missed_count > priv->roaming_threshold &&
4342              missed_count <= priv->disassociate_threshold)) {
4343                 /* If we are not already roaming, set the ROAM
4344                  * bit in the status and kick off a scan.
4345                  * This can happen several times before we reach
4346                  * disassociate_threshold. */
4347                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4348                           "Missed beacon: %d - initiate "
4349                           "roaming\n", missed_count);
4350                 if (!(priv->status & STATUS_ROAMING)) {
4351                         priv->status |= STATUS_ROAMING;
4352                         if (!(priv->status & STATUS_SCANNING))
4353                                 queue_delayed_work(priv->workqueue,
4354                                                    &priv->request_scan, 0);
4355                 }
4356                 return;
4357         }
4358
4359         if (priv->status & STATUS_SCANNING &&
4360             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4361                 /* Stop scan to keep fw from getting
4362                  * stuck (only if we aren't roaming --
4363                  * otherwise we'll never scan more than 2 or 3
4364                  * channels..) */
4365                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4366                           "Aborting scan with missed beacon.\n");
4367                 queue_work(priv->workqueue, &priv->abort_scan);
4368         }
4369
4370         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4371 }
4372
4373 static void ipw_scan_event(struct work_struct *work)
4374 {
4375         union iwreq_data wrqu;
4376
4377         struct ipw_priv *priv =
4378                 container_of(work, struct ipw_priv, scan_event.work);
4379
4380         wrqu.data.length = 0;
4381         wrqu.data.flags = 0;
4382         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4383 }
4384
4385 static void handle_scan_event(struct ipw_priv *priv)
4386 {
4387         /* Only userspace-requested scan completion events go out immediately */
4388         if (!priv->user_requested_scan) {
4389                 if (!delayed_work_pending(&priv->scan_event))
4390                         queue_delayed_work(priv->workqueue, &priv->scan_event,
4391                                          round_jiffies_relative(msecs_to_jiffies(4000)));
4392         } else {
4393                 union iwreq_data wrqu;
4394
4395                 priv->user_requested_scan = 0;
4396                 cancel_delayed_work(&priv->scan_event);
4397
4398                 wrqu.data.length = 0;
4399                 wrqu.data.flags = 0;
4400                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4401         }
4402 }
4403
4404 /**
4405  * Handle host notification packet.
4406  * Called from interrupt routine
4407  */
4408 static void ipw_rx_notification(struct ipw_priv *priv,
4409                                        struct ipw_rx_notification *notif)
4410 {
4411         DECLARE_SSID_BUF(ssid);
4412         u16 size = le16_to_cpu(notif->size);
4413         notif->size = le16_to_cpu(notif->size);
4414
4415         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4416
4417         switch (notif->subtype) {
4418         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4419                         struct notif_association *assoc = &notif->u.assoc;
4420
4421                         switch (assoc->state) {
4422                         case CMAS_ASSOCIATED:{
4423                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4424                                                   IPW_DL_ASSOC,
4425                                                   "associated: '%s' %pM \n",
4426                                                   print_ssid(ssid, priv->essid,
4427                                                              priv->essid_len),
4428                                                   priv->bssid);
4429
4430                                         switch (priv->ieee->iw_mode) {
4431                                         case IW_MODE_INFRA:
4432                                                 memcpy(priv->ieee->bssid,
4433                                                        priv->bssid, ETH_ALEN);
4434                                                 break;
4435
4436                                         case IW_MODE_ADHOC:
4437                                                 memcpy(priv->ieee->bssid,
4438                                                        priv->bssid, ETH_ALEN);
4439
4440                                                 /* clear out the station table */
4441                                                 priv->num_stations = 0;
4442
4443                                                 IPW_DEBUG_ASSOC
4444                                                     ("queueing adhoc check\n");
4445                                                 queue_delayed_work(priv->
4446                                                                    workqueue,
4447                                                                    &priv->
4448                                                                    adhoc_check,
4449                                                                    le16_to_cpu(priv->
4450                                                                    assoc_request.
4451                                                                    beacon_interval));
4452                                                 break;
4453                                         }
4454
4455                                         priv->status &= ~STATUS_ASSOCIATING;
4456                                         priv->status |= STATUS_ASSOCIATED;
4457                                         queue_work(priv->workqueue,
4458                                                    &priv->system_config);
4459
4460 #ifdef CONFIG_IPW2200_QOS
4461 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4462                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4463                                         if ((priv->status & STATUS_AUTH) &&
4464                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4465                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4466                                                 if ((sizeof
4467                                                      (struct
4468                                                       ieee80211_assoc_response)
4469                                                      <= size)
4470                                                     && (size <= 2314)) {
4471                                                         struct
4472                                                         ieee80211_rx_stats
4473                                                             stats = {
4474                                                                 .len = size - 1,
4475                                                         };
4476
4477                                                         IPW_DEBUG_QOS
4478                                                             ("QoS Associate "
4479                                                              "size %d\n", size);
4480                                                         ieee80211_rx_mgt(priv->
4481                                                                          ieee,
4482                                                                          (struct
4483                                                                           ieee80211_hdr_4addr
4484                                                                           *)
4485                                                                          &notif->u.raw, &stats);
4486                                                 }
4487                                         }
4488 #endif
4489
4490                                         schedule_work(&priv->link_up);
4491
4492                                         break;
4493                                 }
4494
4495                         case CMAS_AUTHENTICATED:{
4496                                         if (priv->
4497                                             status & (STATUS_ASSOCIATED |
4498                                                       STATUS_AUTH)) {
4499                                                 struct notif_authenticate *auth
4500                                                     = &notif->u.auth;
4501                                                 IPW_DEBUG(IPW_DL_NOTIF |
4502                                                           IPW_DL_STATE |
4503                                                           IPW_DL_ASSOC,
4504                                                           "deauthenticated: '%s' "
4505                                                           "%pM"
4506                                                           ": (0x%04X) - %s \n",
4507                                                           print_ssid(ssid,
4508                                                                      priv->
4509                                                                      essid,
4510                                                                      priv->
4511                                                                      essid_len),
4512                                                           priv->bssid,
4513                                                           le16_to_cpu(auth->status),
4514                                                           ipw_get_status_code
4515                                                           (le16_to_cpu
4516                                                            (auth->status)));
4517
4518                                                 priv->status &=
4519                                                     ~(STATUS_ASSOCIATING |
4520                                                       STATUS_AUTH |
4521                                                       STATUS_ASSOCIATED);
4522
4523                                                 schedule_work(&priv->link_down);
4524                                                 break;
4525                                         }
4526
4527                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4528                                                   IPW_DL_ASSOC,
4529                                                   "authenticated: '%s' %pM\n",
4530                                                   print_ssid(ssid, priv->essid,
4531                                                              priv->essid_len),
4532                                                   priv->bssid);
4533                                         break;
4534                                 }
4535
4536                         case CMAS_INIT:{
4537                                         if (priv->status & STATUS_AUTH) {
4538                                                 struct
4539                                                     ieee80211_assoc_response
4540                                                 *resp;
4541                                                 resp =
4542                                                     (struct
4543                                                      ieee80211_assoc_response
4544                                                      *)&notif->u.raw;
4545                                                 IPW_DEBUG(IPW_DL_NOTIF |
4546                                                           IPW_DL_STATE |
4547                                                           IPW_DL_ASSOC,
4548                                                           "association failed (0x%04X): %s\n",
4549                                                           le16_to_cpu(resp->status),
4550                                                           ipw_get_status_code
4551                                                           (le16_to_cpu
4552                                                            (resp->status)));
4553                                         }
4554
4555                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4556                                                   IPW_DL_ASSOC,
4557                                                   "disassociated: '%s' %pM \n",
4558                                                   print_ssid(ssid, priv->essid,
4559                                                              priv->essid_len),
4560                                                   priv->bssid);
4561
4562                                         priv->status &=
4563                                             ~(STATUS_DISASSOCIATING |
4564                                               STATUS_ASSOCIATING |
4565                                               STATUS_ASSOCIATED | STATUS_AUTH);
4566                                         if (priv->assoc_network
4567                                             && (priv->assoc_network->
4568                                                 capability &
4569                                                 WLAN_CAPABILITY_IBSS))
4570                                                 ipw_remove_current_network
4571                                                     (priv);
4572
4573                                         schedule_work(&priv->link_down);
4574
4575                                         break;
4576                                 }
4577
4578                         case CMAS_RX_ASSOC_RESP:
4579                                 break;
4580
4581                         default:
4582                                 IPW_ERROR("assoc: unknown (%d)\n",
4583                                           assoc->state);
4584                                 break;
4585                         }
4586
4587                         break;
4588                 }
4589
4590         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4591                         struct notif_authenticate *auth = &notif->u.auth;
4592                         switch (auth->state) {
4593                         case CMAS_AUTHENTICATED:
4594                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4595                                           "authenticated: '%s' %pM \n",
4596                                           print_ssid(ssid, priv->essid,
4597                                                      priv->essid_len),
4598                                           priv->bssid);
4599                                 priv->status |= STATUS_AUTH;
4600                                 break;
4601
4602                         case CMAS_INIT:
4603                                 if (priv->status & STATUS_AUTH) {
4604                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4605                                                   IPW_DL_ASSOC,
4606                                                   "authentication failed (0x%04X): %s\n",
4607                                                   le16_to_cpu(auth->status),
4608                                                   ipw_get_status_code(le16_to_cpu
4609                                                                       (auth->
4610                                                                        status)));
4611                                 }
4612                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4613                                           IPW_DL_ASSOC,
4614                                           "deauthenticated: '%s' %pM\n",
4615                                           print_ssid(ssid, priv->essid,
4616                                                      priv->essid_len),
4617                                           priv->bssid);
4618
4619                                 priv->status &= ~(STATUS_ASSOCIATING |
4620                                                   STATUS_AUTH |
4621                                                   STATUS_ASSOCIATED);
4622
4623                                 schedule_work(&priv->link_down);
4624                                 break;
4625
4626                         case CMAS_TX_AUTH_SEQ_1:
4627                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4628                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4629                                 break;
4630                         case CMAS_RX_AUTH_SEQ_2:
4631                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4632                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4633                                 break;
4634                         case CMAS_AUTH_SEQ_1_PASS:
4635                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4636                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4637                                 break;
4638                         case CMAS_AUTH_SEQ_1_FAIL:
4639                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4640                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4641                                 break;
4642                         case CMAS_TX_AUTH_SEQ_3:
4643                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4644                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4645                                 break;
4646                         case CMAS_RX_AUTH_SEQ_4:
4647                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4648                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4649                                 break;
4650                         case CMAS_AUTH_SEQ_2_PASS:
4651                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4652                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4653                                 break;
4654                         case CMAS_AUTH_SEQ_2_FAIL:
4655                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4656                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4657                                 break;
4658                         case CMAS_TX_ASSOC:
4659                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4660                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4661                                 break;
4662                         case CMAS_RX_ASSOC_RESP:
4663                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4664                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4665
4666                                 break;
4667                         case CMAS_ASSOCIATED:
4668                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4669                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4670                                 break;
4671                         default:
4672                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4673                                                 auth->state);
4674                                 break;
4675                         }
4676                         break;
4677                 }
4678
4679         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4680                         struct notif_channel_result *x =
4681                             &notif->u.channel_result;
4682
4683                         if (size == sizeof(*x)) {
4684                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4685                                                x->channel_num);
4686                         } else {
4687                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4688                                                "(should be %zd)\n",
4689                                                size, sizeof(*x));
4690                         }
4691                         break;
4692                 }
4693
4694         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4695                         struct notif_scan_complete *x = &notif->u.scan_complete;
4696                         if (size == sizeof(*x)) {
4697                                 IPW_DEBUG_SCAN
4698                                     ("Scan completed: type %d, %d channels, "
4699                                      "%d status\n", x->scan_type,
4700                                      x->num_channels, x->status);
4701                         } else {
4702                                 IPW_ERROR("Scan completed of wrong size %d "
4703                                           "(should be %zd)\n",
4704                                           size, sizeof(*x));
4705                         }
4706
4707                         priv->status &=
4708                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4709
4710                         wake_up_interruptible(&priv->wait_state);
4711                         cancel_delayed_work(&priv->scan_check);
4712
4713                         if (priv->status & STATUS_EXIT_PENDING)
4714                                 break;
4715
4716                         priv->ieee->scans++;
4717
4718 #ifdef CONFIG_IPW2200_MONITOR
4719                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4720                                 priv->status |= STATUS_SCAN_FORCED;
4721                                 queue_delayed_work(priv->workqueue,
4722                                                    &priv->request_scan, 0);
4723                                 break;
4724                         }
4725                         priv->status &= ~STATUS_SCAN_FORCED;
4726 #endif                          /* CONFIG_IPW2200_MONITOR */
4727
4728                         /* Do queued direct scans first */
4729                         if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4730                                 queue_delayed_work(priv->workqueue,
4731                                                    &priv->request_direct_scan, 0);
4732                         }
4733
4734                         if (!(priv->status & (STATUS_ASSOCIATED |
4735                                               STATUS_ASSOCIATING |
4736                                               STATUS_ROAMING |
4737                                               STATUS_DISASSOCIATING)))
4738                                 queue_work(priv->workqueue, &priv->associate);
4739                         else if (priv->status & STATUS_ROAMING) {
4740                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4741                                         /* If a scan completed and we are in roam mode, then
4742                                          * the scan that completed was the one requested as a
4743                                          * result of entering roam... so, schedule the
4744                                          * roam work */
4745                                         queue_work(priv->workqueue,
4746                                                    &priv->roam);
4747                                 else
4748                                         /* Don't schedule if we aborted the scan */
4749                                         priv->status &= ~STATUS_ROAMING;
4750                         } else if (priv->status & STATUS_SCAN_PENDING)
4751                                 queue_delayed_work(priv->workqueue,
4752                                                    &priv->request_scan, 0);
4753                         else if (priv->config & CFG_BACKGROUND_SCAN
4754                                  && priv->status & STATUS_ASSOCIATED)
4755                                 queue_delayed_work(priv->workqueue,
4756                                                    &priv->request_scan,
4757                                                    round_jiffies_relative(HZ));
4758
4759                         /* Send an empty event to user space.
4760                          * We don't send the received data on the event because
4761                          * it would require us to do complex transcoding, and
4762                          * we want to minimise the work done in the irq handler
4763                          * Use a request to extract the data.
4764                          * Also, we generate this even for any scan, regardless
4765                          * on how the scan was initiated. User space can just
4766                          * sync on periodic scan to get fresh data...
4767                          * Jean II */
4768                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4769                                 handle_scan_event(priv);
4770                         break;
4771                 }
4772
4773         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4774                         struct notif_frag_length *x = &notif->u.frag_len;
4775
4776                         if (size == sizeof(*x))
4777                                 IPW_ERROR("Frag length: %d\n",
4778                                           le16_to_cpu(x->frag_length));
4779                         else
4780                                 IPW_ERROR("Frag length of wrong size %d "
4781                                           "(should be %zd)\n",
4782                                           size, sizeof(*x));
4783                         break;
4784                 }
4785
4786         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4787                         struct notif_link_deterioration *x =
4788                             &notif->u.link_deterioration;
4789
4790                         if (size == sizeof(*x)) {
4791                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4792                                         "link deterioration: type %d, cnt %d\n",
4793                                         x->silence_notification_type,
4794                                         x->silence_count);
4795                                 memcpy(&priv->last_link_deterioration, x,
4796                                        sizeof(*x));
4797                         } else {
4798                                 IPW_ERROR("Link Deterioration of wrong size %d "
4799                                           "(should be %zd)\n",
4800                                           size, sizeof(*x));
4801                         }
4802                         break;
4803                 }
4804
4805         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4806                         IPW_ERROR("Dino config\n");
4807                         if (priv->hcmd
4808                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4809                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4810
4811                         break;
4812                 }
4813
4814         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4815                         struct notif_beacon_state *x = &notif->u.beacon_state;
4816                         if (size != sizeof(*x)) {
4817                                 IPW_ERROR
4818                                     ("Beacon state of wrong size %d (should "
4819                                      "be %zd)\n", size, sizeof(*x));
4820                                 break;
4821                         }
4822
4823                         if (le32_to_cpu(x->state) ==
4824                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4825                                 ipw_handle_missed_beacon(priv,
4826                                                          le32_to_cpu(x->
4827                                                                      number));
4828
4829                         break;
4830                 }
4831
4832         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4833                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4834                         if (size == sizeof(*x)) {
4835                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4836                                           "0x%02x station %d\n",
4837                                           x->key_state, x->security_type,
4838                                           x->station_index);
4839                                 break;
4840                         }
4841
4842                         IPW_ERROR
4843                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4844                              size, sizeof(*x));
4845                         break;
4846                 }
4847
4848         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4849                         struct notif_calibration *x = &notif->u.calibration;
4850
4851                         if (size == sizeof(*x)) {
4852                                 memcpy(&priv->calib, x, sizeof(*x));
4853                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4854                                 break;
4855                         }
4856
4857                         IPW_ERROR
4858                             ("Calibration of wrong size %d (should be %zd)\n",
4859                              size, sizeof(*x));
4860                         break;
4861                 }
4862
4863         case HOST_NOTIFICATION_NOISE_STATS:{
4864                         if (size == sizeof(u32)) {
4865                                 priv->exp_avg_noise =
4866                                     exponential_average(priv->exp_avg_noise,
4867                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4868                                     DEPTH_NOISE);
4869                                 break;
4870                         }
4871
4872                         IPW_ERROR
4873                             ("Noise stat is wrong size %d (should be %zd)\n",
4874                              size, sizeof(u32));
4875                         break;
4876                 }
4877
4878         default:
4879                 IPW_DEBUG_NOTIF("Unknown notification: "
4880                                 "subtype=%d,flags=0x%2x,size=%d\n",
4881                                 notif->subtype, notif->flags, size);
4882         }
4883 }
4884
4885 /**
4886  * Destroys all DMA structures and initialise them again
4887  *
4888  * @param priv
4889  * @return error code
4890  */
4891 static int ipw_queue_reset(struct ipw_priv *priv)
4892 {
4893         int rc = 0;
4894         /** @todo customize queue sizes */
4895         int nTx = 64, nTxCmd = 8;
4896         ipw_tx_queue_free(priv);
4897         /* Tx CMD queue */
4898         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4899                                IPW_TX_CMD_QUEUE_READ_INDEX,
4900                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4901                                IPW_TX_CMD_QUEUE_BD_BASE,
4902                                IPW_TX_CMD_QUEUE_BD_SIZE);
4903         if (rc) {
4904                 IPW_ERROR("Tx Cmd queue init failed\n");
4905                 goto error;
4906         }
4907         /* Tx queue(s) */
4908         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4909                                IPW_TX_QUEUE_0_READ_INDEX,
4910                                IPW_TX_QUEUE_0_WRITE_INDEX,
4911                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4912         if (rc) {
4913                 IPW_ERROR("Tx 0 queue init failed\n");
4914                 goto error;
4915         }
4916         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4917                                IPW_TX_QUEUE_1_READ_INDEX,
4918                                IPW_TX_QUEUE_1_WRITE_INDEX,
4919                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4920         if (rc) {
4921                 IPW_ERROR("Tx 1 queue init failed\n");
4922                 goto error;
4923         }
4924         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4925                                IPW_TX_QUEUE_2_READ_INDEX,
4926                                IPW_TX_QUEUE_2_WRITE_INDEX,
4927                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4928         if (rc) {
4929                 IPW_ERROR("Tx 2 queue init failed\n");
4930                 goto error;
4931         }
4932         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4933                                IPW_TX_QUEUE_3_READ_INDEX,
4934                                IPW_TX_QUEUE_3_WRITE_INDEX,
4935                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4936         if (rc) {
4937                 IPW_ERROR("Tx 3 queue init failed\n");
4938                 goto error;
4939         }
4940         /* statistics */
4941         priv->rx_bufs_min = 0;
4942         priv->rx_pend_max = 0;
4943         return rc;
4944
4945       error:
4946         ipw_tx_queue_free(priv);
4947         return rc;
4948 }
4949
4950 /**
4951  * Reclaim Tx queue entries no more used by NIC.
4952  *
4953  * When FW advances 'R' index, all entries between old and
4954  * new 'R' index need to be reclaimed. As result, some free space
4955  * forms. If there is enough free space (> low mark), wake Tx queue.
4956  *
4957  * @note Need to protect against garbage in 'R' index
4958  * @param priv
4959  * @param txq
4960  * @param qindex
4961  * @return Number of used entries remains in the queue
4962  */
4963 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4964                                 struct clx2_tx_queue *txq, int qindex)
4965 {
4966         u32 hw_tail;
4967         int used;
4968         struct clx2_queue *q = &txq->q;
4969
4970         hw_tail = ipw_read32(priv, q->reg_r);
4971         if (hw_tail >= q->n_bd) {
4972                 IPW_ERROR
4973                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4974                      hw_tail, q->n_bd);
4975                 goto done;
4976         }
4977         for (; q->last_used != hw_tail;
4978              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4979                 ipw_queue_tx_free_tfd(priv, txq);
4980                 priv->tx_packets++;
4981         }
4982       done:
4983         if ((ipw_tx_queue_space(q) > q->low_mark) &&
4984             (qindex >= 0))
4985                 netif_wake_queue(priv->net_dev);
4986         used = q->first_empty - q->last_used;
4987         if (used < 0)
4988                 used += q->n_bd;
4989
4990         return used;
4991 }
4992
4993 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4994                              int len, int sync)
4995 {
4996         struct clx2_tx_queue *txq = &priv->txq_cmd;
4997         struct clx2_queue *q = &txq->q;
4998         struct tfd_frame *tfd;
4999
5000         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5001                 IPW_ERROR("No space for Tx\n");
5002                 return -EBUSY;
5003         }
5004
5005         tfd = &txq->bd[q->first_empty];
5006         txq->txb[q->first_empty] = NULL;
5007
5008         memset(tfd, 0, sizeof(*tfd));
5009         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5010         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5011         priv->hcmd_seq++;
5012         tfd->u.cmd.index = hcmd;
5013         tfd->u.cmd.length = len;
5014         memcpy(tfd->u.cmd.payload, buf, len);
5015         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5016         ipw_write32(priv, q->reg_w, q->first_empty);
5017         _ipw_read32(priv, 0x90);
5018
5019         return 0;
5020 }
5021
5022 /*
5023  * Rx theory of operation
5024  *
5025  * The host allocates 32 DMA target addresses and passes the host address
5026  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5027  * 0 to 31
5028  *
5029  * Rx Queue Indexes
5030  * The host/firmware share two index registers for managing the Rx buffers.
5031  *
5032  * The READ index maps to the first position that the firmware may be writing
5033  * to -- the driver can read up to (but not including) this position and get
5034  * good data.
5035  * The READ index is managed by the firmware once the card is enabled.
5036  *
5037  * The WRITE index maps to the last position the driver has read from -- the
5038  * position preceding WRITE is the last slot the firmware can place a packet.
5039  *
5040  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5041  * WRITE = READ.
5042  *
5043  * During initialization the host sets up the READ queue position to the first
5044  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5045  *
5046  * When the firmware places a packet in a buffer it will advance the READ index
5047  * and fire the RX interrupt.  The driver can then query the READ index and
5048  * process as many packets as possible, moving the WRITE index forward as it
5049  * resets the Rx queue buffers with new memory.
5050  *
5051  * The management in the driver is as follows:
5052  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5053  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5054  *   to replensish the ipw->rxq->rx_free.
5055  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5056  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5057  *   'processed' and 'read' driver indexes as well)
5058  * + A received packet is processed and handed to the kernel network stack,
5059  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5060  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5061  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5062  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5063  *   were enough free buffers and RX_STALLED is set it is cleared.
5064  *
5065  *
5066  * Driver sequence:
5067  *
5068  * ipw_rx_queue_alloc()       Allocates rx_free
5069  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5070  *                            ipw_rx_queue_restock
5071  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5072  *                            queue, updates firmware pointers, and updates
5073  *                            the WRITE index.  If insufficient rx_free buffers
5074  *                            are available, schedules ipw_rx_queue_replenish
5075  *
5076  * -- enable interrupts --
5077  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5078  *                            READ INDEX, detaching the SKB from the pool.
5079  *                            Moves the packet buffer from queue to rx_used.
5080  *                            Calls ipw_rx_queue_restock to refill any empty
5081  *                            slots.
5082  * ...
5083  *
5084  */
5085
5086 /*
5087  * If there are slots in the RX queue that  need to be restocked,
5088  * and we have free pre-allocated buffers, fill the ranks as much
5089  * as we can pulling from rx_free.
5090  *
5091  * This moves the 'write' index forward to catch up with 'processed', and
5092  * also updates the memory address in the firmware to reference the new
5093  * target buffer.
5094  */
5095 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5096 {
5097         struct ipw_rx_queue *rxq = priv->rxq;
5098         struct list_head *element;
5099         struct ipw_rx_mem_buffer *rxb;
5100         unsigned long flags;
5101         int write;
5102
5103         spin_lock_irqsave(&rxq->lock, flags);
5104         write = rxq->write;
5105         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5106                 element = rxq->rx_free.next;
5107                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5108                 list_del(element);
5109
5110                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5111                             rxb->dma_addr);
5112                 rxq->queue[rxq->write] = rxb;
5113                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5114                 rxq->free_count--;
5115         }
5116         spin_unlock_irqrestore(&rxq->lock, flags);
5117
5118         /* If the pre-allocated buffer pool is dropping low, schedule to
5119          * refill it */
5120         if (rxq->free_count <= RX_LOW_WATERMARK)
5121                 queue_work(priv->workqueue, &priv->rx_replenish);
5122
5123         /* If we've added more space for the firmware to place data, tell it */
5124         if (write != rxq->write)
5125                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5126 }
5127
5128 /*
5129  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5130  * Also restock the Rx queue via ipw_rx_queue_restock.
5131  *
5132  * This is called as a scheduled work item (except for during intialization)
5133  */
5134 static void ipw_rx_queue_replenish(void *data)
5135 {
5136         struct ipw_priv *priv = data;
5137         struct ipw_rx_queue *rxq = priv->rxq;
5138         struct list_head *element;
5139         struct ipw_rx_mem_buffer *rxb;
5140         unsigned long flags;
5141
5142         spin_lock_irqsave(&rxq->lock, flags);
5143         while (!list_empty(&rxq->rx_used)) {
5144                 element = rxq->rx_used.next;
5145                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5146                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5147                 if (!rxb->skb) {
5148                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5149                                priv->net_dev->name);
5150                         /* We don't reschedule replenish work here -- we will
5151                          * call the restock method and if it still needs
5152                          * more buffers it will schedule replenish */
5153                         break;
5154                 }
5155                 list_del(element);
5156
5157                 rxb->dma_addr =
5158                     pci_map_single(priv->pci_dev, rxb->skb->data,
5159                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5160
5161                 list_add_tail(&rxb->list, &rxq->rx_free);
5162                 rxq->free_count++;
5163         }
5164         spin_unlock_irqrestore(&rxq->lock, flags);
5165
5166         ipw_rx_queue_restock(priv);
5167 }
5168
5169 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5170 {
5171         struct ipw_priv *priv =
5172                 container_of(work, struct ipw_priv, rx_replenish);
5173         mutex_lock(&priv->mutex);
5174         ipw_rx_queue_replenish(priv);
5175         mutex_unlock(&priv->mutex);
5176 }
5177
5178 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5179  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5180  * This free routine walks the list of POOL entries and if SKB is set to
5181  * non NULL it is unmapped and freed
5182  */
5183 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5184 {
5185         int i;
5186
5187         if (!rxq)
5188                 return;
5189
5190         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5191                 if (rxq->pool[i].skb != NULL) {
5192                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5193                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5194                         dev_kfree_skb(rxq->pool[i].skb);
5195                 }
5196         }
5197
5198         kfree(rxq);
5199 }
5200
5201 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5202 {
5203         struct ipw_rx_queue *rxq;
5204         int i;
5205
5206         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5207         if (unlikely(!rxq)) {
5208                 IPW_ERROR("memory allocation failed\n");
5209                 return NULL;
5210         }
5211         spin_lock_init(&rxq->lock);
5212         INIT_LIST_HEAD(&rxq->rx_free);
5213         INIT_LIST_HEAD(&rxq->rx_used);
5214
5215         /* Fill the rx_used queue with _all_ of the Rx buffers */
5216         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5217                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5218
5219         /* Set us so that we have processed and used all buffers, but have
5220          * not restocked the Rx queue with fresh buffers */
5221         rxq->read = rxq->write = 0;
5222         rxq->free_count = 0;
5223
5224         return rxq;
5225 }
5226
5227 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5228 {
5229         rate &= ~IEEE80211_BASIC_RATE_MASK;
5230         if (ieee_mode == IEEE_A) {
5231                 switch (rate) {
5232                 case IEEE80211_OFDM_RATE_6MB:
5233                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5234                             1 : 0;
5235                 case IEEE80211_OFDM_RATE_9MB:
5236                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5237                             1 : 0;
5238                 case IEEE80211_OFDM_RATE_12MB:
5239                         return priv->
5240                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5241                 case IEEE80211_OFDM_RATE_18MB:
5242                         return priv->
5243                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5244                 case IEEE80211_OFDM_RATE_24MB:
5245                         return priv->
5246                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5247                 case IEEE80211_OFDM_RATE_36MB:
5248                         return priv->
5249                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5250                 case IEEE80211_OFDM_RATE_48MB:
5251                         return priv->
5252                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5253                 case IEEE80211_OFDM_RATE_54MB:
5254                         return priv->
5255                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5256                 default:
5257                         return 0;
5258                 }
5259         }
5260
5261         /* B and G mixed */
5262         switch (rate) {
5263         case IEEE80211_CCK_RATE_1MB:
5264                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5265         case IEEE80211_CCK_RATE_2MB:
5266                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5267         case IEEE80211_CCK_RATE_5MB:
5268                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5269         case IEEE80211_CCK_RATE_11MB:
5270                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5271         }
5272
5273         /* If we are limited to B modulations, bail at this point */
5274         if (ieee_mode == IEEE_B)
5275                 return 0;
5276
5277         /* G */
5278         switch (rate) {
5279         case IEEE80211_OFDM_RATE_6MB:
5280                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5281         case IEEE80211_OFDM_RATE_9MB:
5282                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5283         case IEEE80211_OFDM_RATE_12MB:
5284                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5285         case IEEE80211_OFDM_RATE_18MB:
5286                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5287         case IEEE80211_OFDM_RATE_24MB:
5288                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5289         case IEEE80211_OFDM_RATE_36MB:
5290                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5291         case IEEE80211_OFDM_RATE_48MB:
5292                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5293         case IEEE80211_OFDM_RATE_54MB:
5294                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5295         }
5296
5297         return 0;
5298 }
5299
5300 static int ipw_compatible_rates(struct ipw_priv *priv,
5301                                 const struct ieee80211_network *network,
5302                                 struct ipw_supported_rates *rates)
5303 {
5304         int num_rates, i;
5305
5306         memset(rates, 0, sizeof(*rates));
5307         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5308         rates->num_rates = 0;
5309         for (i = 0; i < num_rates; i++) {
5310                 if (!ipw_is_rate_in_mask(priv, network->mode,
5311                                          network->rates[i])) {
5312
5313                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5314                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5315                                                "rate %02X\n",
5316                                                network->rates[i]);
5317                                 rates->supported_rates[rates->num_rates++] =
5318                                     network->rates[i];
5319                                 continue;
5320                         }
5321
5322                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5323                                        network->rates[i], priv->rates_mask);
5324                         continue;
5325                 }
5326
5327                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5328         }
5329
5330         num_rates = min(network->rates_ex_len,
5331                         (u8) (IPW_MAX_RATES - num_rates));
5332         for (i = 0; i < num_rates; i++) {
5333                 if (!ipw_is_rate_in_mask(priv, network->mode,
5334                                          network->rates_ex[i])) {
5335                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5336                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5337                                                "rate %02X\n",
5338                                                network->rates_ex[i]);
5339                                 rates->supported_rates[rates->num_rates++] =
5340                                     network->rates[i];
5341                                 continue;
5342                         }
5343
5344                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5345                                        network->rates_ex[i], priv->rates_mask);
5346                         continue;
5347                 }
5348
5349                 rates->supported_rates[rates->num_rates++] =
5350                     network->rates_ex[i];
5351         }
5352
5353         return 1;
5354 }
5355
5356 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5357                                   const struct ipw_supported_rates *src)
5358 {
5359         u8 i;
5360         for (i = 0; i < src->num_rates; i++)
5361                 dest->supported_rates[i] = src->supported_rates[i];
5362         dest->num_rates = src->num_rates;
5363 }
5364
5365 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5366  * mask should ever be used -- right now all callers to add the scan rates are
5367  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5368 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5369                                    u8 modulation, u32 rate_mask)
5370 {
5371         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5372             IEEE80211_BASIC_RATE_MASK : 0;
5373
5374         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5375                 rates->supported_rates[rates->num_rates++] =
5376                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5377
5378         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5379                 rates->supported_rates[rates->num_rates++] =
5380                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5381
5382         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5383                 rates->supported_rates[rates->num_rates++] = basic_mask |
5384                     IEEE80211_CCK_RATE_5MB;
5385
5386         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5387                 rates->supported_rates[rates->num_rates++] = basic_mask |
5388                     IEEE80211_CCK_RATE_11MB;
5389 }
5390
5391 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5392                                     u8 modulation, u32 rate_mask)
5393 {
5394         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5395             IEEE80211_BASIC_RATE_MASK : 0;
5396
5397         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5398                 rates->supported_rates[rates->num_rates++] = basic_mask |
5399                     IEEE80211_OFDM_RATE_6MB;
5400
5401         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5402                 rates->supported_rates[rates->num_rates++] =
5403                     IEEE80211_OFDM_RATE_9MB;
5404
5405         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5406                 rates->supported_rates[rates->num_rates++] = basic_mask |
5407                     IEEE80211_OFDM_RATE_12MB;
5408
5409         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5410                 rates->supported_rates[rates->num_rates++] =
5411                     IEEE80211_OFDM_RATE_18MB;
5412
5413         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5414                 rates->supported_rates[rates->num_rates++] = basic_mask |
5415                     IEEE80211_OFDM_RATE_24MB;
5416
5417         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5418                 rates->supported_rates[rates->num_rates++] =
5419                     IEEE80211_OFDM_RATE_36MB;
5420
5421         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5422                 rates->supported_rates[rates->num_rates++] =
5423                     IEEE80211_OFDM_RATE_48MB;
5424
5425         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5426                 rates->supported_rates[rates->num_rates++] =
5427                     IEEE80211_OFDM_RATE_54MB;
5428 }
5429
5430 struct ipw_network_match {
5431         struct ieee80211_network *network;
5432         struct ipw_supported_rates rates;
5433 };
5434
5435 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5436                                   struct ipw_network_match *match,
5437                                   struct ieee80211_network *network,
5438                                   int roaming)
5439 {
5440         struct ipw_supported_rates rates;
5441         DECLARE_SSID_BUF(ssid);
5442
5443         /* Verify that this network's capability is compatible with the
5444          * current mode (AdHoc or Infrastructure) */
5445         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5446              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5447                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5448                                 "capability mismatch.\n",
5449                                 print_ssid(ssid, network->ssid,
5450                                            network->ssid_len),
5451                                 network->bssid);
5452                 return 0;
5453         }
5454
5455         if (unlikely(roaming)) {
5456                 /* If we are roaming, then ensure check if this is a valid
5457                  * network to try and roam to */
5458                 if ((network->ssid_len != match->network->ssid_len) ||
5459                     memcmp(network->ssid, match->network->ssid,
5460                            network->ssid_len)) {
5461                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5462                                         "because of non-network ESSID.\n",
5463                                         print_ssid(ssid, network->ssid,
5464                                                    network->ssid_len),
5465                                         network->bssid);
5466                         return 0;
5467                 }
5468         } else {
5469                 /* If an ESSID has been configured then compare the broadcast
5470                  * ESSID to ours */
5471                 if ((priv->config & CFG_STATIC_ESSID) &&
5472                     ((network->ssid_len != priv->essid_len) ||
5473                      memcmp(network->ssid, priv->essid,
5474                             min(network->ssid_len, priv->essid_len)))) {
5475                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5476
5477                         strncpy(escaped,
5478                                 print_ssid(ssid, network->ssid,
5479                                            network->ssid_len),
5480                                 sizeof(escaped));
5481                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5482                                         "because of ESSID mismatch: '%s'.\n",
5483                                         escaped, network->bssid,
5484                                         print_ssid(ssid, priv->essid,
5485                                                    priv->essid_len));
5486                         return 0;
5487                 }
5488         }
5489
5490         /* If the old network rate is better than this one, don't bother
5491          * testing everything else. */
5492
5493         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5494                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5495                                 "current network.\n",
5496                                 print_ssid(ssid, match->network->ssid,
5497                                            match->network->ssid_len));
5498                 return 0;
5499         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5500                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5501                                 "current network.\n",
5502                                 print_ssid(ssid, match->network->ssid,
5503                                            match->network->ssid_len));
5504                 return 0;
5505         }
5506
5507         /* Now go through and see if the requested network is valid... */
5508         if (priv->ieee->scan_age != 0 &&
5509             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5510                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5511                                 "because of age: %ums.\n",
5512                                 print_ssid(ssid, network->ssid,
5513                                            network->ssid_len),
5514                                 network->bssid,
5515                                 jiffies_to_msecs(jiffies -
5516                                                  network->last_scanned));
5517                 return 0;
5518         }
5519
5520         if ((priv->config & CFG_STATIC_CHANNEL) &&
5521             (network->channel != priv->channel)) {
5522                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5523                                 "because of channel mismatch: %d != %d.\n",
5524                                 print_ssid(ssid, network->ssid,
5525                                            network->ssid_len),
5526                                 network->bssid,
5527                                 network->channel, priv->channel);
5528                 return 0;
5529         }
5530
5531         /* Verify privacy compatability */
5532         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5533             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5534                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5535                                 "because of privacy mismatch: %s != %s.\n",
5536                                 print_ssid(ssid, network->ssid,
5537                                            network->ssid_len),
5538                                 network->bssid,
5539                                 priv->
5540                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5541                                 network->
5542                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5543                                 "off");
5544                 return 0;
5545         }
5546
5547         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5548                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5549                                 "because of the same BSSID match: %pM"
5550                                 ".\n", print_ssid(ssid, network->ssid,
5551                                                   network->ssid_len),
5552                                 network->bssid,
5553                                 priv->bssid);
5554                 return 0;
5555         }
5556
5557         /* Filter out any incompatible freq / mode combinations */
5558         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5559                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5560                                 "because of invalid frequency/mode "
5561                                 "combination.\n",
5562                                 print_ssid(ssid, network->ssid,
5563                                            network->ssid_len),
5564                                 network->bssid);
5565                 return 0;
5566         }
5567
5568         /* Ensure that the rates supported by the driver are compatible with
5569          * this AP, including verification of basic rates (mandatory) */
5570         if (!ipw_compatible_rates(priv, network, &rates)) {
5571                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5572                                 "because configured rate mask excludes "
5573                                 "AP mandatory rate.\n",
5574                                 print_ssid(ssid, network->ssid,
5575                                            network->ssid_len),
5576                                 network->bssid);
5577                 return 0;
5578         }
5579
5580         if (rates.num_rates == 0) {
5581                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5582                                 "because of no compatible rates.\n",
5583                                 print_ssid(ssid, network->ssid,
5584                                            network->ssid_len),
5585                                 network->bssid);
5586                 return 0;
5587         }
5588
5589         /* TODO: Perform any further minimal comparititive tests.  We do not
5590          * want to put too much policy logic here; intelligent scan selection
5591          * should occur within a generic IEEE 802.11 user space tool.  */
5592
5593         /* Set up 'new' AP to this network */
5594         ipw_copy_rates(&match->rates, &rates);
5595         match->network = network;
5596         IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5597                         print_ssid(ssid, network->ssid, network->ssid_len),
5598                         network->bssid);
5599
5600         return 1;
5601 }
5602
5603 static void ipw_merge_adhoc_network(struct work_struct *work)
5604 {
5605         DECLARE_SSID_BUF(ssid);
5606         struct ipw_priv *priv =
5607                 container_of(work, struct ipw_priv, merge_networks);
5608         struct ieee80211_network *network = NULL;
5609         struct ipw_network_match match = {
5610                 .network = priv->assoc_network
5611         };
5612
5613         if ((priv->status & STATUS_ASSOCIATED) &&
5614             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5615                 /* First pass through ROAM process -- look for a better
5616                  * network */
5617                 unsigned long flags;
5618
5619                 spin_lock_irqsave(&priv->ieee->lock, flags);
5620                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5621                         if (network != priv->assoc_network)
5622                                 ipw_find_adhoc_network(priv, &match, network,
5623                                                        1);
5624                 }
5625                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5626
5627                 if (match.network == priv->assoc_network) {
5628                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5629                                         "merge to.\n");
5630                         return;
5631                 }
5632
5633                 mutex_lock(&priv->mutex);
5634                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5635                         IPW_DEBUG_MERGE("remove network %s\n",
5636                                         print_ssid(ssid, priv->essid,
5637                                                    priv->essid_len));
5638                         ipw_remove_current_network(priv);
5639                 }
5640
5641                 ipw_disassociate(priv);
5642                 priv->assoc_network = match.network;
5643                 mutex_unlock(&priv->mutex);
5644                 return;
5645         }
5646 }
5647
5648 static int ipw_best_network(struct ipw_priv *priv,
5649                             struct ipw_network_match *match,
5650                             struct ieee80211_network *network, int roaming)
5651 {
5652         struct ipw_supported_rates rates;
5653         DECLARE_SSID_BUF(ssid);
5654
5655         /* Verify that this network's capability is compatible with the
5656          * current mode (AdHoc or Infrastructure) */
5657         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5658              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5659             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5660              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5661                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5662                                 "capability mismatch.\n",
5663                                 print_ssid(ssid, network->ssid,
5664                                            network->ssid_len),
5665                                 network->bssid);
5666                 return 0;
5667         }
5668
5669         if (unlikely(roaming)) {
5670                 /* If we are roaming, then ensure check if this is a valid
5671                  * network to try and roam to */
5672                 if ((network->ssid_len != match->network->ssid_len) ||
5673                     memcmp(network->ssid, match->network->ssid,
5674                            network->ssid_len)) {
5675                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5676                                         "because of non-network ESSID.\n",
5677                                         print_ssid(ssid, network->ssid,
5678                                                    network->ssid_len),
5679                                         network->bssid);
5680                         return 0;
5681                 }
5682         } else {
5683                 /* If an ESSID has been configured then compare the broadcast
5684                  * ESSID to ours */
5685                 if ((priv->config & CFG_STATIC_ESSID) &&
5686                     ((network->ssid_len != priv->essid_len) ||
5687                      memcmp(network->ssid, priv->essid,
5688                             min(network->ssid_len, priv->essid_len)))) {
5689                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5690                         strncpy(escaped,
5691                                 print_ssid(ssid, network->ssid,
5692                                            network->ssid_len),
5693                                 sizeof(escaped));
5694                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5695                                         "because of ESSID mismatch: '%s'.\n",
5696                                         escaped, network->bssid,
5697                                         print_ssid(ssid, priv->essid,
5698                                                    priv->essid_len));
5699                         return 0;
5700                 }
5701         }
5702
5703         /* If the old network rate is better than this one, don't bother
5704          * testing everything else. */
5705         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5706                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5707                 strncpy(escaped,
5708                         print_ssid(ssid, network->ssid, network->ssid_len),
5709                         sizeof(escaped));
5710                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5711                                 "'%s (%pM)' has a stronger signal.\n",
5712                                 escaped, network->bssid,
5713                                 print_ssid(ssid, match->network->ssid,
5714                                            match->network->ssid_len),
5715                                 match->network->bssid);
5716                 return 0;
5717         }
5718
5719         /* If this network has already had an association attempt within the
5720          * last 3 seconds, do not try and associate again... */
5721         if (network->last_associate &&
5722             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5723                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5724                                 "because of storming (%ums since last "
5725                                 "assoc attempt).\n",
5726                                 print_ssid(ssid, network->ssid,
5727                                            network->ssid_len),
5728                                 network->bssid,
5729                                 jiffies_to_msecs(jiffies -
5730                                                  network->last_associate));
5731                 return 0;
5732         }
5733
5734         /* Now go through and see if the requested network is valid... */
5735         if (priv->ieee->scan_age != 0 &&
5736             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5737                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5738                                 "because of age: %ums.\n",
5739                                 print_ssid(ssid, network->ssid,
5740                                            network->ssid_len),
5741                                 network->bssid,
5742                                 jiffies_to_msecs(jiffies -
5743                                                  network->last_scanned));
5744                 return 0;
5745         }
5746
5747         if ((priv->config & CFG_STATIC_CHANNEL) &&
5748             (network->channel != priv->channel)) {
5749                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5750                                 "because of channel mismatch: %d != %d.\n",
5751                                 print_ssid(ssid, network->ssid,
5752                                            network->ssid_len),
5753                                 network->bssid,
5754                                 network->channel, priv->channel);
5755                 return 0;
5756         }
5757
5758         /* Verify privacy compatability */
5759         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5760             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5761                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5762                                 "because of privacy mismatch: %s != %s.\n",
5763                                 print_ssid(ssid, network->ssid,
5764                                            network->ssid_len),
5765                                 network->bssid,
5766                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5767                                 "off",
5768                                 network->capability &
5769                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5770                 return 0;
5771         }
5772
5773         if ((priv->config & CFG_STATIC_BSSID) &&
5774             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5775                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5776                                 "because of BSSID mismatch: %pM.\n",
5777                                 print_ssid(ssid, network->ssid,
5778                                            network->ssid_len),
5779                                 network->bssid, priv->bssid);
5780                 return 0;
5781         }
5782
5783         /* Filter out any incompatible freq / mode combinations */
5784         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5785                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5786                                 "because of invalid frequency/mode "
5787                                 "combination.\n",
5788                                 print_ssid(ssid, network->ssid,
5789                                            network->ssid_len),
5790                                 network->bssid);
5791                 return 0;
5792         }
5793
5794         /* Filter out invalid channel in current GEO */
5795         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5796                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5797                                 "because of invalid channel in current GEO\n",
5798                                 print_ssid(ssid, network->ssid,
5799                                            network->ssid_len),
5800                                 network->bssid);
5801                 return 0;
5802         }
5803
5804         /* Ensure that the rates supported by the driver are compatible with
5805          * this AP, including verification of basic rates (mandatory) */
5806         if (!ipw_compatible_rates(priv, network, &rates)) {
5807                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5808                                 "because configured rate mask excludes "
5809                                 "AP mandatory rate.\n",
5810                                 print_ssid(ssid, network->ssid,
5811                                            network->ssid_len),
5812                                 network->bssid);
5813                 return 0;
5814         }
5815
5816         if (rates.num_rates == 0) {
5817                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5818                                 "because of no compatible rates.\n",
5819                                 print_ssid(ssid, network->ssid,
5820                                            network->ssid_len),
5821                                 network->bssid);
5822                 return 0;
5823         }
5824
5825         /* TODO: Perform any further minimal comparititive tests.  We do not
5826          * want to put too much policy logic here; intelligent scan selection
5827          * should occur within a generic IEEE 802.11 user space tool.  */
5828
5829         /* Set up 'new' AP to this network */
5830         ipw_copy_rates(&match->rates, &rates);
5831         match->network = network;
5832
5833         IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5834                         print_ssid(ssid, network->ssid, network->ssid_len),
5835                         network->bssid);
5836
5837         return 1;
5838 }
5839
5840 static void ipw_adhoc_create(struct ipw_priv *priv,
5841                              struct ieee80211_network *network)
5842 {
5843         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5844         int i;
5845
5846         /*
5847          * For the purposes of scanning, we can set our wireless mode
5848          * to trigger scans across combinations of bands, but when it
5849          * comes to creating a new ad-hoc network, we have tell the FW
5850          * exactly which band to use.
5851          *
5852          * We also have the possibility of an invalid channel for the
5853          * chossen band.  Attempting to create a new ad-hoc network
5854          * with an invalid channel for wireless mode will trigger a
5855          * FW fatal error.
5856          *
5857          */
5858         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5859         case IEEE80211_52GHZ_BAND:
5860                 network->mode = IEEE_A;
5861                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5862                 BUG_ON(i == -1);
5863                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5864                         IPW_WARNING("Overriding invalid channel\n");
5865                         priv->channel = geo->a[0].channel;
5866                 }
5867                 break;
5868
5869         case IEEE80211_24GHZ_BAND:
5870                 if (priv->ieee->mode & IEEE_G)
5871                         network->mode = IEEE_G;
5872                 else
5873                         network->mode = IEEE_B;
5874                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5875                 BUG_ON(i == -1);
5876                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5877                         IPW_WARNING("Overriding invalid channel\n");
5878                         priv->channel = geo->bg[0].channel;
5879                 }
5880                 break;
5881
5882         default:
5883                 IPW_WARNING("Overriding invalid channel\n");
5884                 if (priv->ieee->mode & IEEE_A) {
5885                         network->mode = IEEE_A;
5886                         priv->channel = geo->a[0].channel;
5887                 } else if (priv->ieee->mode & IEEE_G) {
5888                         network->mode = IEEE_G;
5889                         priv->channel = geo->bg[0].channel;
5890                 } else {
5891                         network->mode = IEEE_B;
5892                         priv->channel = geo->bg[0].channel;
5893                 }
5894                 break;
5895         }
5896
5897         network->channel = priv->channel;
5898         priv->config |= CFG_ADHOC_PERSIST;
5899         ipw_create_bssid(priv, network->bssid);
5900         network->ssid_len = priv->essid_len;
5901         memcpy(network->ssid, priv->essid, priv->essid_len);
5902         memset(&network->stats, 0, sizeof(network->stats));
5903         network->capability = WLAN_CAPABILITY_IBSS;
5904         if (!(priv->config & CFG_PREAMBLE_LONG))
5905                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5906         if (priv->capability & CAP_PRIVACY_ON)
5907                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5908         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5909         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5910         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5911         memcpy(network->rates_ex,
5912                &priv->rates.supported_rates[network->rates_len],
5913                network->rates_ex_len);
5914         network->last_scanned = 0;
5915         network->flags = 0;
5916         network->last_associate = 0;
5917         network->time_stamp[0] = 0;
5918         network->time_stamp[1] = 0;
5919         network->beacon_interval = 100; /* Default */
5920         network->listen_interval = 10;  /* Default */
5921         network->atim_window = 0;       /* Default */
5922         network->wpa_ie_len = 0;
5923         network->rsn_ie_len = 0;
5924 }
5925
5926 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5927 {
5928         struct ipw_tgi_tx_key key;
5929
5930         if (!(priv->ieee->sec.flags & (1 << index)))
5931                 return;
5932
5933         key.key_id = index;
5934         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5935         key.security_type = type;
5936         key.station_index = 0;  /* always 0 for BSS */
5937         key.flags = 0;
5938         /* 0 for new key; previous value of counter (after fatal error) */
5939         key.tx_counter[0] = cpu_to_le32(0);
5940         key.tx_counter[1] = cpu_to_le32(0);
5941
5942         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5943 }
5944
5945 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5946 {
5947         struct ipw_wep_key key;
5948         int i;
5949
5950         key.cmd_id = DINO_CMD_WEP_KEY;
5951         key.seq_num = 0;
5952
5953         /* Note: AES keys cannot be set for multiple times.
5954          * Only set it at the first time. */
5955         for (i = 0; i < 4; i++) {
5956                 key.key_index = i | type;
5957                 if (!(priv->ieee->sec.flags & (1 << i))) {
5958                         key.key_size = 0;
5959                         continue;
5960                 }
5961
5962                 key.key_size = priv->ieee->sec.key_sizes[i];
5963                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5964
5965                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5966         }
5967 }
5968
5969 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5970 {
5971         if (priv->ieee->host_encrypt)
5972                 return;
5973
5974         switch (level) {
5975         case SEC_LEVEL_3:
5976                 priv->sys_config.disable_unicast_decryption = 0;
5977                 priv->ieee->host_decrypt = 0;
5978                 break;
5979         case SEC_LEVEL_2:
5980                 priv->sys_config.disable_unicast_decryption = 1;
5981                 priv->ieee->host_decrypt = 1;
5982                 break;
5983         case SEC_LEVEL_1:
5984                 priv->sys_config.disable_unicast_decryption = 0;
5985                 priv->ieee->host_decrypt = 0;
5986                 break;
5987         case SEC_LEVEL_0:
5988                 priv->sys_config.disable_unicast_decryption = 1;
5989                 break;
5990         default:
5991                 break;
5992         }
5993 }
5994
5995 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5996 {
5997         if (priv->ieee->host_encrypt)
5998                 return;
5999
6000         switch (level) {
6001         case SEC_LEVEL_3:
6002                 priv->sys_config.disable_multicast_decryption = 0;
6003                 break;
6004         case SEC_LEVEL_2:
6005                 priv->sys_config.disable_multicast_decryption = 1;
6006                 break;
6007         case SEC_LEVEL_1:
6008                 priv->sys_config.disable_multicast_decryption = 0;
6009                 break;
6010         case SEC_LEVEL_0:
6011                 priv->sys_config.disable_multicast_decryption = 1;
6012                 break;
6013         default:
6014                 break;
6015         }
6016 }
6017
6018 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6019 {
6020         switch (priv->ieee->sec.level) {
6021         case SEC_LEVEL_3:
6022                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6023                         ipw_send_tgi_tx_key(priv,
6024                                             DCT_FLAG_EXT_SECURITY_CCM,
6025                                             priv->ieee->sec.active_key);
6026
6027                 if (!priv->ieee->host_mc_decrypt)
6028                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6029                 break;
6030         case SEC_LEVEL_2:
6031                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6032                         ipw_send_tgi_tx_key(priv,
6033                                             DCT_FLAG_EXT_SECURITY_TKIP,
6034                                             priv->ieee->sec.active_key);
6035                 break;
6036         case SEC_LEVEL_1:
6037                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6038                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6039                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6040                 break;
6041         case SEC_LEVEL_0:
6042         default:
6043                 break;
6044         }
6045 }
6046
6047 static void ipw_adhoc_check(void *data)
6048 {
6049         struct ipw_priv *priv = data;
6050
6051         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6052             !(priv->config & CFG_ADHOC_PERSIST)) {
6053                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6054                           IPW_DL_STATE | IPW_DL_ASSOC,
6055                           "Missed beacon: %d - disassociate\n",
6056                           priv->missed_adhoc_beacons);
6057                 ipw_remove_current_network(priv);
6058                 ipw_disassociate(priv);
6059                 return;
6060         }
6061
6062         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6063                            le16_to_cpu(priv->assoc_request.beacon_interval));
6064 }
6065
6066 static void ipw_bg_adhoc_check(struct work_struct *work)
6067 {
6068         struct ipw_priv *priv =
6069                 container_of(work, struct ipw_priv, adhoc_check.work);
6070         mutex_lock(&priv->mutex);
6071         ipw_adhoc_check(priv);
6072         mutex_unlock(&priv->mutex);
6073 }
6074
6075 static void ipw_debug_config(struct ipw_priv *priv)
6076 {
6077         DECLARE_SSID_BUF(ssid);
6078         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6079                        "[CFG 0x%08X]\n", priv->config);
6080         if (priv->config & CFG_STATIC_CHANNEL)
6081                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6082         else
6083                 IPW_DEBUG_INFO("Channel unlocked.\n");
6084         if (priv->config & CFG_STATIC_ESSID)
6085                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6086                                print_ssid(ssid, priv->essid, priv->essid_len));
6087         else
6088                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6089         if (priv->config & CFG_STATIC_BSSID)
6090                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6091         else
6092                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6093         if (priv->capability & CAP_PRIVACY_ON)
6094                 IPW_DEBUG_INFO("PRIVACY on\n");
6095         else
6096                 IPW_DEBUG_INFO("PRIVACY off\n");
6097         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6098 }
6099
6100 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6101 {
6102         /* TODO: Verify that this works... */
6103         struct ipw_fixed_rate fr = {
6104                 .tx_rates = priv->rates_mask
6105         };
6106         u32 reg;
6107         u16 mask = 0;
6108
6109         /* Identify 'current FW band' and match it with the fixed
6110          * Tx rates */
6111
6112         switch (priv->ieee->freq_band) {
6113         case IEEE80211_52GHZ_BAND:      /* A only */
6114                 /* IEEE_A */
6115                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6116                         /* Invalid fixed rate mask */
6117                         IPW_DEBUG_WX
6118                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6119                         fr.tx_rates = 0;
6120                         break;
6121                 }
6122
6123                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6124                 break;
6125
6126         default:                /* 2.4Ghz or Mixed */
6127                 /* IEEE_B */
6128                 if (mode == IEEE_B) {
6129                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6130                                 /* Invalid fixed rate mask */
6131                                 IPW_DEBUG_WX
6132                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6133                                 fr.tx_rates = 0;
6134                         }
6135                         break;
6136                 }
6137
6138                 /* IEEE_G */
6139                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6140                                     IEEE80211_OFDM_RATES_MASK)) {
6141                         /* Invalid fixed rate mask */
6142                         IPW_DEBUG_WX
6143                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6144                         fr.tx_rates = 0;
6145                         break;
6146                 }
6147
6148                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6149                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6150                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6151                 }
6152
6153                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6154                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6155                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6156                 }
6157
6158                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6159                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6160                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6161                 }
6162
6163                 fr.tx_rates |= mask;
6164                 break;
6165         }
6166
6167         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6168         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6169 }
6170
6171 static void ipw_abort_scan(struct ipw_priv *priv)
6172 {
6173         int err;
6174
6175         if (priv->status & STATUS_SCAN_ABORTING) {
6176                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6177                 return;
6178         }
6179         priv->status |= STATUS_SCAN_ABORTING;
6180
6181         err = ipw_send_scan_abort(priv);
6182         if (err)
6183                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6184 }
6185
6186 static void ipw_add_scan_channels(struct ipw_priv *priv,
6187                                   struct ipw_scan_request_ext *scan,
6188                                   int scan_type)
6189 {
6190         int channel_index = 0;
6191         const struct ieee80211_geo *geo;
6192         int i;
6193
6194         geo = ieee80211_get_geo(priv->ieee);
6195
6196         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6197                 int start = channel_index;
6198                 for (i = 0; i < geo->a_channels; i++) {
6199                         if ((priv->status & STATUS_ASSOCIATED) &&
6200                             geo->a[i].channel == priv->channel)
6201                                 continue;
6202                         channel_index++;
6203                         scan->channels_list[channel_index] = geo->a[i].channel;
6204                         ipw_set_scan_type(scan, channel_index,
6205                                           geo->a[i].
6206                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6207                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6208                                           scan_type);
6209                 }
6210
6211                 if (start != channel_index) {
6212                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6213                             (channel_index - start);
6214                         channel_index++;
6215                 }
6216         }
6217
6218         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6219                 int start = channel_index;
6220                 if (priv->config & CFG_SPEED_SCAN) {
6221                         int index;
6222                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6223                                 /* nop out the list */
6224                                 [0] = 0
6225                         };
6226
6227                         u8 channel;
6228                         while (channel_index < IPW_SCAN_CHANNELS) {
6229                                 channel =
6230                                     priv->speed_scan[priv->speed_scan_pos];
6231                                 if (channel == 0) {
6232                                         priv->speed_scan_pos = 0;
6233                                         channel = priv->speed_scan[0];
6234                                 }
6235                                 if ((priv->status & STATUS_ASSOCIATED) &&
6236                                     channel == priv->channel) {
6237                                         priv->speed_scan_pos++;
6238                                         continue;
6239                                 }
6240
6241                                 /* If this channel has already been
6242                                  * added in scan, break from loop
6243                                  * and this will be the first channel
6244                                  * in the next scan.
6245                                  */
6246                                 if (channels[channel - 1] != 0)
6247                                         break;
6248
6249                                 channels[channel - 1] = 1;
6250                                 priv->speed_scan_pos++;
6251                                 channel_index++;
6252                                 scan->channels_list[channel_index] = channel;
6253                                 index =
6254                                     ieee80211_channel_to_index(priv->ieee, channel);
6255                                 ipw_set_scan_type(scan, channel_index,
6256                                                   geo->bg[index].
6257                                                   flags &
6258                                                   IEEE80211_CH_PASSIVE_ONLY ?
6259                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6260                                                   : scan_type);
6261                         }
6262                 } else {
6263                         for (i = 0; i < geo->bg_channels; i++) {
6264                                 if ((priv->status & STATUS_ASSOCIATED) &&
6265                                     geo->bg[i].channel == priv->channel)
6266                                         continue;
6267                                 channel_index++;
6268                                 scan->channels_list[channel_index] =
6269                                     geo->bg[i].channel;
6270                                 ipw_set_scan_type(scan, channel_index,
6271                                                   geo->bg[i].
6272                                                   flags &
6273                                                   IEEE80211_CH_PASSIVE_ONLY ?
6274                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6275                                                   : scan_type);
6276                         }
6277                 }
6278
6279                 if (start != channel_index) {
6280                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6281                             (channel_index - start);
6282                 }
6283         }
6284 }
6285
6286 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6287 {
6288         /* staying on passive channels longer than the DTIM interval during a
6289          * scan, while associated, causes the firmware to cancel the scan
6290          * without notification. Hence, don't stay on passive channels longer
6291          * than the beacon interval.
6292          */
6293         if (priv->status & STATUS_ASSOCIATED
6294             && priv->assoc_network->beacon_interval > 10)
6295                 return priv->assoc_network->beacon_interval - 10;
6296         else
6297                 return 120;
6298 }
6299
6300 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6301 {
6302         struct ipw_scan_request_ext scan;
6303         int err = 0, scan_type;
6304
6305         if (!(priv->status & STATUS_INIT) ||
6306             (priv->status & STATUS_EXIT_PENDING))
6307                 return 0;
6308
6309         mutex_lock(&priv->mutex);
6310
6311         if (direct && (priv->direct_scan_ssid_len == 0)) {
6312                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6313                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6314                 goto done;
6315         }
6316
6317         if (priv->status & STATUS_SCANNING) {
6318                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6319                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6320                                         STATUS_SCAN_PENDING;
6321                 goto done;
6322         }
6323
6324         if (!(priv->status & STATUS_SCAN_FORCED) &&
6325             priv->status & STATUS_SCAN_ABORTING) {
6326                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6327                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6328                                         STATUS_SCAN_PENDING;
6329                 goto done;
6330         }
6331
6332         if (priv->status & STATUS_RF_KILL_MASK) {
6333                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6334                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6335                                         STATUS_SCAN_PENDING;
6336                 goto done;
6337         }
6338
6339         memset(&scan, 0, sizeof(scan));
6340         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6341
6342         if (type == IW_SCAN_TYPE_PASSIVE) {
6343                 IPW_DEBUG_WX("use passive scanning\n");
6344                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6345                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6346                         cpu_to_le16(ipw_passive_dwell_time(priv));
6347                 ipw_add_scan_channels(priv, &scan, scan_type);
6348                 goto send_request;
6349         }
6350
6351         /* Use active scan by default. */
6352         if (priv->config & CFG_SPEED_SCAN)
6353                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6354                         cpu_to_le16(30);
6355         else
6356                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6357                         cpu_to_le16(20);
6358
6359         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6360                 cpu_to_le16(20);
6361
6362         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6363                 cpu_to_le16(ipw_passive_dwell_time(priv));
6364         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6365
6366 #ifdef CONFIG_IPW2200_MONITOR
6367         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6368                 u8 channel;
6369                 u8 band = 0;
6370
6371                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6372                 case IEEE80211_52GHZ_BAND:
6373                         band = (u8) (IPW_A_MODE << 6) | 1;
6374                         channel = priv->channel;
6375                         break;
6376
6377                 case IEEE80211_24GHZ_BAND:
6378                         band = (u8) (IPW_B_MODE << 6) | 1;
6379                         channel = priv->channel;
6380                         break;
6381
6382                 default:
6383                         band = (u8) (IPW_B_MODE << 6) | 1;
6384                         channel = 9;
6385                         break;
6386                 }
6387
6388                 scan.channels_list[0] = band;
6389                 scan.channels_list[1] = channel;
6390                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6391
6392                 /* NOTE:  The card will sit on this channel for this time
6393                  * period.  Scan aborts are timing sensitive and frequently
6394                  * result in firmware restarts.  As such, it is best to
6395                  * set a small dwell_time here and just keep re-issuing
6396                  * scans.  Otherwise fast channel hopping will not actually
6397                  * hop channels.
6398                  *
6399                  * TODO: Move SPEED SCAN support to all modes and bands */
6400                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6401                         cpu_to_le16(2000);
6402         } else {
6403 #endif                          /* CONFIG_IPW2200_MONITOR */
6404                 /* Honor direct scans first, otherwise if we are roaming make
6405                  * this a direct scan for the current network.  Finally,
6406                  * ensure that every other scan is a fast channel hop scan */
6407                 if (direct) {
6408                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6409                                             priv->direct_scan_ssid_len);
6410                         if (err) {
6411                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6412                                              "failed\n");
6413                                 goto done;
6414                         }
6415
6416                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6417                 } else if ((priv->status & STATUS_ROAMING)
6418                            || (!(priv->status & STATUS_ASSOCIATED)
6419                                && (priv->config & CFG_STATIC_ESSID)
6420                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6421                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6422                         if (err) {
6423                                 IPW_DEBUG_HC("Attempt to send SSID command "
6424                                              "failed.\n");
6425                                 goto done;
6426                         }
6427
6428                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6429                 } else
6430                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6431
6432                 ipw_add_scan_channels(priv, &scan, scan_type);
6433 #ifdef CONFIG_IPW2200_MONITOR
6434         }
6435 #endif
6436
6437 send_request:
6438         err = ipw_send_scan_request_ext(priv, &scan);
6439         if (err) {
6440                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6441                 goto done;
6442         }
6443
6444         priv->status |= STATUS_SCANNING;
6445         if (direct) {
6446                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6447                 priv->direct_scan_ssid_len = 0;
6448         } else
6449                 priv->status &= ~STATUS_SCAN_PENDING;
6450
6451         queue_delayed_work(priv->workqueue, &priv->scan_check,
6452                            IPW_SCAN_CHECK_WATCHDOG);
6453 done:
6454         mutex_unlock(&priv->mutex);
6455         return err;
6456 }
6457
6458 static void ipw_request_passive_scan(struct work_struct *work)
6459 {
6460         struct ipw_priv *priv =
6461                 container_of(work, struct ipw_priv, request_passive_scan.work);
6462         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6463 }
6464
6465 static void ipw_request_scan(struct work_struct *work)
6466 {
6467         struct ipw_priv *priv =
6468                 container_of(work, struct ipw_priv, request_scan.work);
6469         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6470 }
6471
6472 static void ipw_request_direct_scan(struct work_struct *work)
6473 {
6474         struct ipw_priv *priv =
6475                 container_of(work, struct ipw_priv, request_direct_scan.work);
6476         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6477 }
6478
6479 static void ipw_bg_abort_scan(struct work_struct *work)
6480 {
6481         struct ipw_priv *priv =
6482                 container_of(work, struct ipw_priv, abort_scan);
6483         mutex_lock(&priv->mutex);
6484         ipw_abort_scan(priv);
6485         mutex_unlock(&priv->mutex);
6486 }
6487
6488 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6489 {
6490         /* This is called when wpa_supplicant loads and closes the driver
6491          * interface. */
6492         priv->ieee->wpa_enabled = value;
6493         return 0;
6494 }
6495
6496 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6497 {
6498         struct ieee80211_device *ieee = priv->ieee;
6499         struct ieee80211_security sec = {
6500                 .flags = SEC_AUTH_MODE,
6501         };
6502         int ret = 0;
6503
6504         if (value & IW_AUTH_ALG_SHARED_KEY) {
6505                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6506                 ieee->open_wep = 0;
6507         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6508                 sec.auth_mode = WLAN_AUTH_OPEN;
6509                 ieee->open_wep = 1;
6510         } else if (value & IW_AUTH_ALG_LEAP) {
6511                 sec.auth_mode = WLAN_AUTH_LEAP;
6512                 ieee->open_wep = 1;
6513         } else
6514                 return -EINVAL;
6515
6516         if (ieee->set_security)
6517                 ieee->set_security(ieee->dev, &sec);
6518         else
6519                 ret = -EOPNOTSUPP;
6520
6521         return ret;
6522 }
6523
6524 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6525                                 int wpa_ie_len)
6526 {
6527         /* make sure WPA is enabled */
6528         ipw_wpa_enable(priv, 1);
6529 }
6530
6531 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6532                             char *capabilities, int length)
6533 {
6534         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6535
6536         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6537                                 capabilities);
6538 }
6539
6540 /*
6541  * WE-18 support
6542  */
6543
6544 /* SIOCSIWGENIE */
6545 static int ipw_wx_set_genie(struct net_device *dev,
6546                             struct iw_request_info *info,
6547                             union iwreq_data *wrqu, char *extra)
6548 {
6549         struct ipw_priv *priv = ieee80211_priv(dev);
6550         struct ieee80211_device *ieee = priv->ieee;
6551         u8 *buf;
6552         int err = 0;
6553
6554         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6555             (wrqu->data.length && extra == NULL))
6556                 return -EINVAL;
6557
6558         if (wrqu->data.length) {
6559                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6560                 if (buf == NULL) {
6561                         err = -ENOMEM;
6562                         goto out;
6563                 }
6564
6565                 memcpy(buf, extra, wrqu->data.length);
6566                 kfree(ieee->wpa_ie);
6567                 ieee->wpa_ie = buf;
6568                 ieee->wpa_ie_len = wrqu->data.length;
6569         } else {
6570                 kfree(ieee->wpa_ie);
6571                 ieee->wpa_ie = NULL;
6572                 ieee->wpa_ie_len = 0;
6573         }
6574
6575         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6576       out:
6577         return err;
6578 }
6579
6580 /* SIOCGIWGENIE */
6581 static int ipw_wx_get_genie(struct net_device *dev,
6582                             struct iw_request_info *info,
6583                             union iwreq_data *wrqu, char *extra)
6584 {
6585         struct ipw_priv *priv = ieee80211_priv(dev);
6586         struct ieee80211_device *ieee = priv->ieee;
6587         int err = 0;
6588
6589         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6590                 wrqu->data.length = 0;
6591                 goto out;
6592         }
6593
6594         if (wrqu->data.length < ieee->wpa_ie_len) {
6595                 err = -E2BIG;
6596                 goto out;
6597         }
6598
6599         wrqu->data.length = ieee->wpa_ie_len;
6600         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6601
6602       out:
6603         return err;
6604 }
6605
6606 static int wext_cipher2level(int cipher)
6607 {
6608         switch (cipher) {
6609         case IW_AUTH_CIPHER_NONE:
6610                 return SEC_LEVEL_0;
6611         case IW_AUTH_CIPHER_WEP40:
6612         case IW_AUTH_CIPHER_WEP104:
6613                 return SEC_LEVEL_1;
6614         case IW_AUTH_CIPHER_TKIP:
6615                 return SEC_LEVEL_2;
6616         case IW_AUTH_CIPHER_CCMP:
6617                 return SEC_LEVEL_3;
6618         default:
6619                 return -1;
6620         }
6621 }
6622
6623 /* SIOCSIWAUTH */
6624 static int ipw_wx_set_auth(struct net_device *dev,
6625                            struct iw_request_info *info,
6626                            union iwreq_data *wrqu, char *extra)
6627 {
6628         struct ipw_priv *priv = ieee80211_priv(dev);
6629         struct ieee80211_device *ieee = priv->ieee;
6630         struct iw_param *param = &wrqu->param;
6631         struct lib80211_crypt_data *crypt;
6632         unsigned long flags;
6633         int ret = 0;
6634
6635         switch (param->flags & IW_AUTH_INDEX) {
6636         case IW_AUTH_WPA_VERSION:
6637                 break;
6638         case IW_AUTH_CIPHER_PAIRWISE:
6639                 ipw_set_hw_decrypt_unicast(priv,
6640                                            wext_cipher2level(param->value));
6641                 break;
6642         case IW_AUTH_CIPHER_GROUP:
6643                 ipw_set_hw_decrypt_multicast(priv,
6644                                              wext_cipher2level(param->value));
6645                 break;
6646         case IW_AUTH_KEY_MGMT:
6647                 /*
6648                  * ipw2200 does not use these parameters
6649                  */
6650                 break;
6651
6652         case IW_AUTH_TKIP_COUNTERMEASURES:
6653                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6654                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6655                         break;
6656
6657                 flags = crypt->ops->get_flags(crypt->priv);
6658
6659                 if (param->value)
6660                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6661                 else
6662                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6663
6664                 crypt->ops->set_flags(flags, crypt->priv);
6665
6666                 break;
6667
6668         case IW_AUTH_DROP_UNENCRYPTED:{
6669                         /* HACK:
6670                          *
6671                          * wpa_supplicant calls set_wpa_enabled when the driver
6672                          * is loaded and unloaded, regardless of if WPA is being
6673                          * used.  No other calls are made which can be used to
6674                          * determine if encryption will be used or not prior to
6675                          * association being expected.  If encryption is not being
6676                          * used, drop_unencrypted is set to false, else true -- we
6677                          * can use this to determine if the CAP_PRIVACY_ON bit should
6678                          * be set.
6679                          */
6680                         struct ieee80211_security sec = {
6681                                 .flags = SEC_ENABLED,
6682                                 .enabled = param->value,
6683                         };
6684                         priv->ieee->drop_unencrypted = param->value;
6685                         /* We only change SEC_LEVEL for open mode. Others
6686                          * are set by ipw_wpa_set_encryption.
6687                          */
6688                         if (!param->value) {
6689                                 sec.flags |= SEC_LEVEL;
6690                                 sec.level = SEC_LEVEL_0;
6691                         } else {
6692                                 sec.flags |= SEC_LEVEL;
6693                                 sec.level = SEC_LEVEL_1;
6694                         }
6695                         if (priv->ieee->set_security)
6696                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6697                         break;
6698                 }
6699
6700         case IW_AUTH_80211_AUTH_ALG:
6701                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6702                 break;
6703
6704         case IW_AUTH_WPA_ENABLED:
6705                 ret = ipw_wpa_enable(priv, param->value);
6706                 ipw_disassociate(priv);
6707                 break;
6708
6709         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6710                 ieee->ieee802_1x = param->value;
6711                 break;
6712
6713         case IW_AUTH_PRIVACY_INVOKED:
6714                 ieee->privacy_invoked = param->value;
6715                 break;
6716
6717         default:
6718                 return -EOPNOTSUPP;
6719         }
6720         return ret;
6721 }
6722
6723 /* SIOCGIWAUTH */
6724 static int ipw_wx_get_auth(struct net_device *dev,
6725                            struct iw_request_info *info,
6726                            union iwreq_data *wrqu, char *extra)
6727 {
6728         struct ipw_priv *priv = ieee80211_priv(dev);
6729         struct ieee80211_device *ieee = priv->ieee;
6730         struct lib80211_crypt_data *crypt;
6731         struct iw_param *param = &wrqu->param;
6732         int ret = 0;
6733
6734         switch (param->flags & IW_AUTH_INDEX) {
6735         case IW_AUTH_WPA_VERSION:
6736         case IW_AUTH_CIPHER_PAIRWISE:
6737         case IW_AUTH_CIPHER_GROUP:
6738         case IW_AUTH_KEY_MGMT:
6739                 /*
6740                  * wpa_supplicant will control these internally
6741                  */
6742                 ret = -EOPNOTSUPP;
6743                 break;
6744
6745         case IW_AUTH_TKIP_COUNTERMEASURES:
6746                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6747                 if (!crypt || !crypt->ops->get_flags)
6748                         break;
6749
6750                 param->value = (crypt->ops->get_flags(crypt->priv) &
6751                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6752
6753                 break;
6754
6755         case IW_AUTH_DROP_UNENCRYPTED:
6756                 param->value = ieee->drop_unencrypted;
6757                 break;
6758
6759         case IW_AUTH_80211_AUTH_ALG:
6760                 param->value = ieee->sec.auth_mode;
6761                 break;
6762
6763         case IW_AUTH_WPA_ENABLED:
6764                 param->value = ieee->wpa_enabled;
6765                 break;
6766
6767         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6768                 param->value = ieee->ieee802_1x;
6769                 break;
6770
6771         case IW_AUTH_ROAMING_CONTROL:
6772         case IW_AUTH_PRIVACY_INVOKED:
6773                 param->value = ieee->privacy_invoked;
6774                 break;
6775
6776         default:
6777                 return -EOPNOTSUPP;
6778         }
6779         return 0;
6780 }
6781
6782 /* SIOCSIWENCODEEXT */
6783 static int ipw_wx_set_encodeext(struct net_device *dev,
6784                                 struct iw_request_info *info,
6785                                 union iwreq_data *wrqu, char *extra)
6786 {
6787         struct ipw_priv *priv = ieee80211_priv(dev);
6788         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6789
6790         if (hwcrypto) {
6791                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6792                         /* IPW HW can't build TKIP MIC,
6793                            host decryption still needed */
6794                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6795                                 priv->ieee->host_mc_decrypt = 1;
6796                         else {
6797                                 priv->ieee->host_encrypt = 0;
6798                                 priv->ieee->host_encrypt_msdu = 1;
6799                                 priv->ieee->host_decrypt = 1;
6800                         }
6801                 } else {
6802                         priv->ieee->host_encrypt = 0;
6803                         priv->ieee->host_encrypt_msdu = 0;
6804                         priv->ieee->host_decrypt = 0;
6805                         priv->ieee->host_mc_decrypt = 0;
6806                 }
6807         }
6808
6809         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6810 }
6811
6812 /* SIOCGIWENCODEEXT */
6813 static int ipw_wx_get_encodeext(struct net_device *dev,
6814                                 struct iw_request_info *info,
6815                                 union iwreq_data *wrqu, char *extra)
6816 {
6817         struct ipw_priv *priv = ieee80211_priv(dev);
6818         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6819 }
6820
6821 /* SIOCSIWMLME */
6822 static int ipw_wx_set_mlme(struct net_device *dev,
6823                            struct iw_request_info *info,
6824                            union iwreq_data *wrqu, char *extra)
6825 {
6826         struct ipw_priv *priv = ieee80211_priv(dev);
6827         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6828         __le16 reason;
6829
6830         reason = cpu_to_le16(mlme->reason_code);
6831
6832         switch (mlme->cmd) {
6833         case IW_MLME_DEAUTH:
6834                 /* silently ignore */
6835                 break;
6836
6837         case IW_MLME_DISASSOC:
6838                 ipw_disassociate(priv);
6839                 break;
6840
6841         default:
6842                 return -EOPNOTSUPP;
6843         }
6844         return 0;
6845 }
6846
6847 #ifdef CONFIG_IPW2200_QOS
6848
6849 /* QoS */
6850 /*
6851 * get the modulation type of the current network or
6852 * the card current mode
6853 */
6854 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6855 {
6856         u8 mode = 0;
6857
6858         if (priv->status & STATUS_ASSOCIATED) {
6859                 unsigned long flags;
6860
6861                 spin_lock_irqsave(&priv->ieee->lock, flags);
6862                 mode = priv->assoc_network->mode;
6863                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6864         } else {
6865                 mode = priv->ieee->mode;
6866         }
6867         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6868         return mode;
6869 }
6870
6871 /*
6872 * Handle management frame beacon and probe response
6873 */
6874 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6875                                          int active_network,
6876                                          struct ieee80211_network *network)
6877 {
6878         u32 size = sizeof(struct ieee80211_qos_parameters);
6879
6880         if (network->capability & WLAN_CAPABILITY_IBSS)
6881                 network->qos_data.active = network->qos_data.supported;
6882
6883         if (network->flags & NETWORK_HAS_QOS_MASK) {
6884                 if (active_network &&
6885                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6886                         network->qos_data.active = network->qos_data.supported;
6887
6888                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6889                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6890                     (network->qos_data.old_param_count !=
6891                      network->qos_data.param_count)) {
6892                         network->qos_data.old_param_count =
6893                             network->qos_data.param_count;
6894                         schedule_work(&priv->qos_activate);
6895                         IPW_DEBUG_QOS("QoS parameters change call "
6896                                       "qos_activate\n");
6897                 }
6898         } else {
6899                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6900                         memcpy(&network->qos_data.parameters,
6901                                &def_parameters_CCK, size);
6902                 else
6903                         memcpy(&network->qos_data.parameters,
6904                                &def_parameters_OFDM, size);
6905
6906                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6907                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6908                         schedule_work(&priv->qos_activate);
6909                 }
6910
6911                 network->qos_data.active = 0;
6912                 network->qos_data.supported = 0;
6913         }
6914         if ((priv->status & STATUS_ASSOCIATED) &&
6915             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6916                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6917                         if (network->capability & WLAN_CAPABILITY_IBSS)
6918                                 if ((network->ssid_len ==
6919                                      priv->assoc_network->ssid_len) &&
6920                                     !memcmp(network->ssid,
6921                                             priv->assoc_network->ssid,
6922                                             network->ssid_len)) {
6923                                         queue_work(priv->workqueue,
6924                                                    &priv->merge_networks);
6925                                 }
6926         }
6927
6928         return 0;
6929 }
6930
6931 /*
6932 * This function set up the firmware to support QoS. It sends
6933 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6934 */
6935 static int ipw_qos_activate(struct ipw_priv *priv,
6936                             struct ieee80211_qos_data *qos_network_data)
6937 {
6938         int err;
6939         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6940         struct ieee80211_qos_parameters *active_one = NULL;
6941         u32 size = sizeof(struct ieee80211_qos_parameters);
6942         u32 burst_duration;
6943         int i;
6944         u8 type;
6945
6946         type = ipw_qos_current_mode(priv);
6947
6948         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6949         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6950         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6951         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6952
6953         if (qos_network_data == NULL) {
6954                 if (type == IEEE_B) {
6955                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6956                         active_one = &def_parameters_CCK;
6957                 } else
6958                         active_one = &def_parameters_OFDM;
6959
6960                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6961                 burst_duration = ipw_qos_get_burst_duration(priv);
6962                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6963                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6964                             cpu_to_le16(burst_duration);
6965         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6966                 if (type == IEEE_B) {
6967                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6968                                       type);
6969                         if (priv->qos_data.qos_enable == 0)
6970                                 active_one = &def_parameters_CCK;
6971                         else
6972                                 active_one = priv->qos_data.def_qos_parm_CCK;
6973                 } else {
6974                         if (priv->qos_data.qos_enable == 0)
6975                                 active_one = &def_parameters_OFDM;
6976                         else
6977                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6978                 }
6979                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6980         } else {
6981                 unsigned long flags;
6982                 int active;
6983
6984                 spin_lock_irqsave(&priv->ieee->lock, flags);
6985                 active_one = &(qos_network_data->parameters);
6986                 qos_network_data->old_param_count =
6987                     qos_network_data->param_count;
6988                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6989                 active = qos_network_data->supported;
6990                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6991
6992                 if (active == 0) {
6993                         burst_duration = ipw_qos_get_burst_duration(priv);
6994                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6995                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6996                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6997                 }
6998         }
6999
7000         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7001         err = ipw_send_qos_params_command(priv,
7002                                           (struct ieee80211_qos_parameters *)
7003                                           &(qos_parameters[0]));
7004         if (err)
7005                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7006
7007         return err;
7008 }
7009
7010 /*
7011 * send IPW_CMD_WME_INFO to the firmware
7012 */
7013 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7014 {
7015         int ret = 0;
7016         struct ieee80211_qos_information_element qos_info;
7017
7018         if (priv == NULL)
7019                 return -1;
7020
7021         qos_info.elementID = QOS_ELEMENT_ID;
7022         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7023
7024         qos_info.version = QOS_VERSION_1;
7025         qos_info.ac_info = 0;
7026
7027         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7028         qos_info.qui_type = QOS_OUI_TYPE;
7029         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7030
7031         ret = ipw_send_qos_info_command(priv, &qos_info);
7032         if (ret != 0) {
7033                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7034         }
7035         return ret;
7036 }
7037
7038 /*
7039 * Set the QoS parameter with the association request structure
7040 */
7041 static int ipw_qos_association(struct ipw_priv *priv,
7042                                struct ieee80211_network *network)
7043 {
7044         int err = 0;
7045         struct ieee80211_qos_data *qos_data = NULL;
7046         struct ieee80211_qos_data ibss_data = {
7047                 .supported = 1,
7048                 .active = 1,
7049         };
7050
7051         switch (priv->ieee->iw_mode) {
7052         case IW_MODE_ADHOC:
7053                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7054
7055                 qos_data = &ibss_data;
7056                 break;
7057
7058         case IW_MODE_INFRA:
7059                 qos_data = &network->qos_data;
7060                 break;
7061
7062         default:
7063                 BUG();
7064                 break;
7065         }
7066
7067         err = ipw_qos_activate(priv, qos_data);
7068         if (err) {
7069                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7070                 return err;
7071         }
7072
7073         if (priv->qos_data.qos_enable && qos_data->supported) {
7074                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7075                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7076                 return ipw_qos_set_info_element(priv);
7077         }
7078
7079         return 0;
7080 }
7081
7082 /*
7083 * handling the beaconing responses. if we get different QoS setting
7084 * off the network from the associated setting, adjust the QoS
7085 * setting
7086 */
7087 static int ipw_qos_association_resp(struct ipw_priv *priv,
7088                                     struct ieee80211_network *network)
7089 {
7090         int ret = 0;
7091         unsigned long flags;
7092         u32 size = sizeof(struct ieee80211_qos_parameters);
7093         int set_qos_param = 0;
7094
7095         if ((priv == NULL) || (network == NULL) ||
7096             (priv->assoc_network == NULL))
7097                 return ret;
7098
7099         if (!(priv->status & STATUS_ASSOCIATED))
7100                 return ret;
7101
7102         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7103                 return ret;
7104
7105         spin_lock_irqsave(&priv->ieee->lock, flags);
7106         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7107                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7108                        sizeof(struct ieee80211_qos_data));
7109                 priv->assoc_network->qos_data.active = 1;
7110                 if ((network->qos_data.old_param_count !=
7111                      network->qos_data.param_count)) {
7112                         set_qos_param = 1;
7113                         network->qos_data.old_param_count =
7114                             network->qos_data.param_count;
7115                 }
7116
7117         } else {
7118                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7119                         memcpy(&priv->assoc_network->qos_data.parameters,
7120                                &def_parameters_CCK, size);
7121                 else
7122                         memcpy(&priv->assoc_network->qos_data.parameters,
7123                                &def_parameters_OFDM, size);
7124                 priv->assoc_network->qos_data.active = 0;
7125                 priv->assoc_network->qos_data.supported = 0;
7126                 set_qos_param = 1;
7127         }
7128
7129         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7130
7131         if (set_qos_param == 1)
7132                 schedule_work(&priv->qos_activate);
7133
7134         return ret;
7135 }
7136
7137 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7138 {
7139         u32 ret = 0;
7140
7141         if ((priv == NULL))
7142                 return 0;
7143
7144         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7145                 ret = priv->qos_data.burst_duration_CCK;
7146         else
7147                 ret = priv->qos_data.burst_duration_OFDM;
7148
7149         return ret;
7150 }
7151
7152 /*
7153 * Initialize the setting of QoS global
7154 */
7155 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7156                          int burst_enable, u32 burst_duration_CCK,
7157                          u32 burst_duration_OFDM)
7158 {
7159         priv->qos_data.qos_enable = enable;
7160
7161         if (priv->qos_data.qos_enable) {
7162                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7163                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7164                 IPW_DEBUG_QOS("QoS is enabled\n");
7165         } else {
7166                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7167                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7168                 IPW_DEBUG_QOS("QoS is not enabled\n");
7169         }
7170
7171         priv->qos_data.burst_enable = burst_enable;
7172
7173         if (burst_enable) {
7174                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7175                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7176         } else {
7177                 priv->qos_data.burst_duration_CCK = 0;
7178                 priv->qos_data.burst_duration_OFDM = 0;
7179         }
7180 }
7181
7182 /*
7183 * map the packet priority to the right TX Queue
7184 */
7185 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7186 {
7187         if (priority > 7 || !priv->qos_data.qos_enable)
7188                 priority = 0;
7189
7190         return from_priority_to_tx_queue[priority] - 1;
7191 }
7192
7193 static int ipw_is_qos_active(struct net_device *dev,
7194                              struct sk_buff *skb)
7195 {
7196         struct ipw_priv *priv = ieee80211_priv(dev);
7197         struct ieee80211_qos_data *qos_data = NULL;
7198         int active, supported;
7199         u8 *daddr = skb->data + ETH_ALEN;
7200         int unicast = !is_multicast_ether_addr(daddr);
7201
7202         if (!(priv->status & STATUS_ASSOCIATED))
7203                 return 0;
7204
7205         qos_data = &priv->assoc_network->qos_data;
7206
7207         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7208                 if (unicast == 0)
7209                         qos_data->active = 0;
7210                 else
7211                         qos_data->active = qos_data->supported;
7212         }
7213         active = qos_data->active;
7214         supported = qos_data->supported;
7215         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7216                       "unicast %d\n",
7217                       priv->qos_data.qos_enable, active, supported, unicast);
7218         if (active && priv->qos_data.qos_enable)
7219                 return 1;
7220
7221         return 0;
7222
7223 }
7224 /*
7225 * add QoS parameter to the TX command
7226 */
7227 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7228                                         u16 priority,
7229                                         struct tfd_data *tfd)
7230 {
7231         int tx_queue_id = 0;
7232
7233
7234         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7235         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7236
7237         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7238                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7239                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7240         }
7241         return 0;
7242 }
7243
7244 /*
7245 * background support to run QoS activate functionality
7246 */
7247 static void ipw_bg_qos_activate(struct work_struct *work)
7248 {
7249         struct ipw_priv *priv =
7250                 container_of(work, struct ipw_priv, qos_activate);
7251
7252         if (priv == NULL)
7253                 return;
7254
7255         mutex_lock(&priv->mutex);
7256
7257         if (priv->status & STATUS_ASSOCIATED)
7258                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7259
7260         mutex_unlock(&priv->mutex);
7261 }
7262
7263 static int ipw_handle_probe_response(struct net_device *dev,
7264                                      struct ieee80211_probe_response *resp,
7265                                      struct ieee80211_network *network)
7266 {
7267         struct ipw_priv *priv = ieee80211_priv(dev);
7268         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7269                               (network == priv->assoc_network));
7270
7271         ipw_qos_handle_probe_response(priv, active_network, network);
7272
7273         return 0;
7274 }
7275
7276 static int ipw_handle_beacon(struct net_device *dev,
7277                              struct ieee80211_beacon *resp,
7278                              struct ieee80211_network *network)
7279 {
7280         struct ipw_priv *priv = ieee80211_priv(dev);
7281         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7282                               (network == priv->assoc_network));
7283
7284         ipw_qos_handle_probe_response(priv, active_network, network);
7285
7286         return 0;
7287 }
7288
7289 static int ipw_handle_assoc_response(struct net_device *dev,
7290                                      struct ieee80211_assoc_response *resp,
7291                                      struct ieee80211_network *network)
7292 {
7293         struct ipw_priv *priv = ieee80211_priv(dev);
7294         ipw_qos_association_resp(priv, network);
7295         return 0;
7296 }
7297
7298 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7299                                        *qos_param)
7300 {
7301         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7302                                 sizeof(*qos_param) * 3, qos_param);
7303 }
7304
7305 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7306                                      *qos_param)
7307 {
7308         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7309                                 qos_param);
7310 }
7311
7312 #endif                          /* CONFIG_IPW2200_QOS */
7313
7314 static int ipw_associate_network(struct ipw_priv *priv,
7315                                  struct ieee80211_network *network,
7316                                  struct ipw_supported_rates *rates, int roaming)
7317 {
7318         int err;
7319         DECLARE_SSID_BUF(ssid);
7320
7321         if (priv->config & CFG_FIXED_RATE)
7322                 ipw_set_fixed_rate(priv, network->mode);
7323
7324         if (!(priv->config & CFG_STATIC_ESSID)) {
7325                 priv->essid_len = min(network->ssid_len,
7326                                       (u8) IW_ESSID_MAX_SIZE);
7327                 memcpy(priv->essid, network->ssid, priv->essid_len);
7328         }
7329
7330         network->last_associate = jiffies;
7331
7332         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7333         priv->assoc_request.channel = network->channel;
7334         priv->assoc_request.auth_key = 0;
7335
7336         if ((priv->capability & CAP_PRIVACY_ON) &&
7337             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7338                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7339                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7340
7341                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7342                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7343
7344         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7345                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7346                 priv->assoc_request.auth_type = AUTH_LEAP;
7347         else
7348                 priv->assoc_request.auth_type = AUTH_OPEN;
7349
7350         if (priv->ieee->wpa_ie_len) {
7351                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7352                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7353                                  priv->ieee->wpa_ie_len);
7354         }
7355
7356         /*
7357          * It is valid for our ieee device to support multiple modes, but
7358          * when it comes to associating to a given network we have to choose
7359          * just one mode.
7360          */
7361         if (network->mode & priv->ieee->mode & IEEE_A)
7362                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7363         else if (network->mode & priv->ieee->mode & IEEE_G)
7364                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7365         else if (network->mode & priv->ieee->mode & IEEE_B)
7366                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7367
7368         priv->assoc_request.capability = cpu_to_le16(network->capability);
7369         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7370             && !(priv->config & CFG_PREAMBLE_LONG)) {
7371                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7372         } else {
7373                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7374
7375                 /* Clear the short preamble if we won't be supporting it */
7376                 priv->assoc_request.capability &=
7377                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7378         }
7379
7380         /* Clear capability bits that aren't used in Ad Hoc */
7381         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7382                 priv->assoc_request.capability &=
7383                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7384
7385         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7386                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7387                         roaming ? "Rea" : "A",
7388                         print_ssid(ssid, priv->essid, priv->essid_len),
7389                         network->channel,
7390                         ipw_modes[priv->assoc_request.ieee_mode],
7391                         rates->num_rates,
7392                         (priv->assoc_request.preamble_length ==
7393                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7394                         network->capability &
7395                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7396                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7397                         priv->capability & CAP_PRIVACY_ON ?
7398                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7399                          "(open)") : "",
7400                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7401                         priv->capability & CAP_PRIVACY_ON ?
7402                         '1' + priv->ieee->sec.active_key : '.',
7403                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7404
7405         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7406         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7407             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7408                 priv->assoc_request.assoc_type = HC_IBSS_START;
7409                 priv->assoc_request.assoc_tsf_msw = 0;
7410                 priv->assoc_request.assoc_tsf_lsw = 0;
7411         } else {
7412                 if (unlikely(roaming))
7413                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7414                 else
7415                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7416                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7417                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7418         }
7419
7420         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7421
7422         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7423                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7424                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7425         } else {
7426                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7427                 priv->assoc_request.atim_window = 0;
7428         }
7429
7430         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7431
7432         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7433         if (err) {
7434                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7435                 return err;
7436         }
7437
7438         rates->ieee_mode = priv->assoc_request.ieee_mode;
7439         rates->purpose = IPW_RATE_CONNECT;
7440         ipw_send_supported_rates(priv, rates);
7441
7442         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7443                 priv->sys_config.dot11g_auto_detection = 1;
7444         else
7445                 priv->sys_config.dot11g_auto_detection = 0;
7446
7447         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7448                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7449         else
7450                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7451
7452         err = ipw_send_system_config(priv);
7453         if (err) {
7454                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7455                 return err;
7456         }
7457
7458         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7459         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7460         if (err) {
7461                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7462                 return err;
7463         }
7464
7465         /*
7466          * If preemption is enabled, it is possible for the association
7467          * to complete before we return from ipw_send_associate.  Therefore
7468          * we have to be sure and update our priviate data first.
7469          */
7470         priv->channel = network->channel;
7471         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7472         priv->status |= STATUS_ASSOCIATING;
7473         priv->status &= ~STATUS_SECURITY_UPDATED;
7474
7475         priv->assoc_network = network;
7476
7477 #ifdef CONFIG_IPW2200_QOS
7478         ipw_qos_association(priv, network);
7479 #endif
7480
7481         err = ipw_send_associate(priv, &priv->assoc_request);
7482         if (err) {
7483                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7484                 return err;
7485         }
7486
7487         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7488                   print_ssid(ssid, priv->essid, priv->essid_len),
7489                   priv->bssid);
7490
7491         return 0;
7492 }
7493
7494 static void ipw_roam(void *data)
7495 {
7496         struct ipw_priv *priv = data;
7497         struct ieee80211_network *network = NULL;
7498         struct ipw_network_match match = {
7499                 .network = priv->assoc_network
7500         };
7501
7502         /* The roaming process is as follows:
7503          *
7504          * 1.  Missed beacon threshold triggers the roaming process by
7505          *     setting the status ROAM bit and requesting a scan.
7506          * 2.  When the scan completes, it schedules the ROAM work
7507          * 3.  The ROAM work looks at all of the known networks for one that
7508          *     is a better network than the currently associated.  If none
7509          *     found, the ROAM process is over (ROAM bit cleared)
7510          * 4.  If a better network is found, a disassociation request is
7511          *     sent.
7512          * 5.  When the disassociation completes, the roam work is again
7513          *     scheduled.  The second time through, the driver is no longer
7514          *     associated, and the newly selected network is sent an
7515          *     association request.
7516          * 6.  At this point ,the roaming process is complete and the ROAM
7517          *     status bit is cleared.
7518          */
7519
7520         /* If we are no longer associated, and the roaming bit is no longer
7521          * set, then we are not actively roaming, so just return */
7522         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7523                 return;
7524
7525         if (priv->status & STATUS_ASSOCIATED) {
7526                 /* First pass through ROAM process -- look for a better
7527                  * network */
7528                 unsigned long flags;
7529                 u8 rssi = priv->assoc_network->stats.rssi;
7530                 priv->assoc_network->stats.rssi = -128;
7531                 spin_lock_irqsave(&priv->ieee->lock, flags);
7532                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7533                         if (network != priv->assoc_network)
7534                                 ipw_best_network(priv, &match, network, 1);
7535                 }
7536                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7537                 priv->assoc_network->stats.rssi = rssi;
7538
7539                 if (match.network == priv->assoc_network) {
7540                         IPW_DEBUG_ASSOC("No better APs in this network to "
7541                                         "roam to.\n");
7542                         priv->status &= ~STATUS_ROAMING;
7543                         ipw_debug_config(priv);
7544                         return;
7545                 }
7546
7547                 ipw_send_disassociate(priv, 1);
7548                 priv->assoc_network = match.network;
7549
7550                 return;
7551         }
7552
7553         /* Second pass through ROAM process -- request association */
7554         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7555         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7556         priv->status &= ~STATUS_ROAMING;
7557 }
7558
7559 static void ipw_bg_roam(struct work_struct *work)
7560 {
7561         struct ipw_priv *priv =
7562                 container_of(work, struct ipw_priv, roam);
7563         mutex_lock(&priv->mutex);
7564         ipw_roam(priv);
7565         mutex_unlock(&priv->mutex);
7566 }
7567
7568 static int ipw_associate(void *data)
7569 {
7570         struct ipw_priv *priv = data;
7571
7572         struct ieee80211_network *network = NULL;
7573         struct ipw_network_match match = {
7574                 .network = NULL
7575         };
7576         struct ipw_supported_rates *rates;
7577         struct list_head *element;
7578         unsigned long flags;
7579         DECLARE_SSID_BUF(ssid);
7580
7581         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7582                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7583                 return 0;
7584         }
7585
7586         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7587                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7588                                 "progress)\n");
7589                 return 0;
7590         }
7591
7592         if (priv->status & STATUS_DISASSOCIATING) {
7593                 IPW_DEBUG_ASSOC("Not attempting association (in "
7594                                 "disassociating)\n ");
7595                 queue_work(priv->workqueue, &priv->associate);
7596                 return 0;
7597         }
7598
7599         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7600                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7601                                 "initialized)\n");
7602                 return 0;
7603         }
7604
7605         if (!(priv->config & CFG_ASSOCIATE) &&
7606             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7607                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7608                 return 0;
7609         }
7610
7611         /* Protect our use of the network_list */
7612         spin_lock_irqsave(&priv->ieee->lock, flags);
7613         list_for_each_entry(network, &priv->ieee->network_list, list)
7614             ipw_best_network(priv, &match, network, 0);
7615
7616         network = match.network;
7617         rates = &match.rates;
7618
7619         if (network == NULL &&
7620             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7621             priv->config & CFG_ADHOC_CREATE &&
7622             priv->config & CFG_STATIC_ESSID &&
7623             priv->config & CFG_STATIC_CHANNEL) {
7624                 /* Use oldest network if the free list is empty */
7625                 if (list_empty(&priv->ieee->network_free_list)) {
7626                         struct ieee80211_network *oldest = NULL;
7627                         struct ieee80211_network *target;
7628
7629                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7630                                 if ((oldest == NULL) ||
7631                                     (target->last_scanned < oldest->last_scanned))
7632                                         oldest = target;
7633                         }
7634
7635                         /* If there are no more slots, expire the oldest */
7636                         list_del(&oldest->list);
7637                         target = oldest;
7638                         IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7639                                         "network list.\n",
7640                                         print_ssid(ssid, target->ssid,
7641                                                    target->ssid_len),
7642                                         target->bssid);
7643                         list_add_tail(&target->list,
7644                                       &priv->ieee->network_free_list);
7645                 }
7646
7647                 element = priv->ieee->network_free_list.next;
7648                 network = list_entry(element, struct ieee80211_network, list);
7649                 ipw_adhoc_create(priv, network);
7650                 rates = &priv->rates;
7651                 list_del(element);
7652                 list_add_tail(&network->list, &priv->ieee->network_list);
7653         }
7654         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7655
7656         /* If we reached the end of the list, then we don't have any valid
7657          * matching APs */
7658         if (!network) {
7659                 ipw_debug_config(priv);
7660
7661                 if (!(priv->status & STATUS_SCANNING)) {
7662                         if (!(priv->config & CFG_SPEED_SCAN))
7663                                 queue_delayed_work(priv->workqueue,
7664                                                    &priv->request_scan,
7665                                                    SCAN_INTERVAL);
7666                         else
7667                                 queue_delayed_work(priv->workqueue,
7668                                                    &priv->request_scan, 0);
7669                 }
7670
7671                 return 0;
7672         }
7673
7674         ipw_associate_network(priv, network, rates, 0);
7675
7676         return 1;
7677 }
7678
7679 static void ipw_bg_associate(struct work_struct *work)
7680 {
7681         struct ipw_priv *priv =
7682                 container_of(work, struct ipw_priv, associate);
7683         mutex_lock(&priv->mutex);
7684         ipw_associate(priv);
7685         mutex_unlock(&priv->mutex);
7686 }
7687
7688 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7689                                       struct sk_buff *skb)
7690 {
7691         struct ieee80211_hdr *hdr;
7692         u16 fc;
7693
7694         hdr = (struct ieee80211_hdr *)skb->data;
7695         fc = le16_to_cpu(hdr->frame_control);
7696         if (!(fc & IEEE80211_FCTL_PROTECTED))
7697                 return;
7698
7699         fc &= ~IEEE80211_FCTL_PROTECTED;
7700         hdr->frame_control = cpu_to_le16(fc);
7701         switch (priv->ieee->sec.level) {
7702         case SEC_LEVEL_3:
7703                 /* Remove CCMP HDR */
7704                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7705                         skb->data + IEEE80211_3ADDR_LEN + 8,
7706                         skb->len - IEEE80211_3ADDR_LEN - 8);
7707                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7708                 break;
7709         case SEC_LEVEL_2:
7710                 break;
7711         case SEC_LEVEL_1:
7712                 /* Remove IV */
7713                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7714                         skb->data + IEEE80211_3ADDR_LEN + 4,
7715                         skb->len - IEEE80211_3ADDR_LEN - 4);
7716                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7717                 break;
7718         case SEC_LEVEL_0:
7719                 break;
7720         default:
7721                 printk(KERN_ERR "Unknow security level %d\n",
7722                        priv->ieee->sec.level);
7723                 break;
7724         }
7725 }
7726
7727 static void ipw_handle_data_packet(struct ipw_priv *priv,
7728                                    struct ipw_rx_mem_buffer *rxb,
7729                                    struct ieee80211_rx_stats *stats)
7730 {
7731         struct net_device *dev = priv->net_dev;
7732         struct ieee80211_hdr_4addr *hdr;
7733         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7734
7735         /* We received data from the HW, so stop the watchdog */
7736         dev->trans_start = jiffies;
7737
7738         /* We only process data packets if the
7739          * interface is open */
7740         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7741                      skb_tailroom(rxb->skb))) {
7742                 dev->stats.rx_errors++;
7743                 priv->wstats.discard.misc++;
7744                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7745                 return;
7746         } else if (unlikely(!netif_running(priv->net_dev))) {
7747                 dev->stats.rx_dropped++;
7748                 priv->wstats.discard.misc++;
7749                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7750                 return;
7751         }
7752
7753         /* Advance skb->data to the start of the actual payload */
7754         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7755
7756         /* Set the size of the skb to the size of the frame */
7757         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7758
7759         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7760
7761         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7762         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7763         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7764             (is_multicast_ether_addr(hdr->addr1) ?
7765              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7766                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7767
7768         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7769                 dev->stats.rx_errors++;
7770         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7771                 rxb->skb = NULL;
7772                 __ipw_led_activity_on(priv);
7773         }
7774 }
7775
7776 #ifdef CONFIG_IPW2200_RADIOTAP
7777 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7778                                            struct ipw_rx_mem_buffer *rxb,
7779                                            struct ieee80211_rx_stats *stats)
7780 {
7781         struct net_device *dev = priv->net_dev;
7782         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7783         struct ipw_rx_frame *frame = &pkt->u.frame;
7784
7785         /* initial pull of some data */
7786         u16 received_channel = frame->received_channel;
7787         u8 antennaAndPhy = frame->antennaAndPhy;
7788         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7789         u16 pktrate = frame->rate;
7790
7791         /* Magic struct that slots into the radiotap header -- no reason
7792          * to build this manually element by element, we can write it much
7793          * more efficiently than we can parse it. ORDER MATTERS HERE */
7794         struct ipw_rt_hdr *ipw_rt;
7795
7796         short len = le16_to_cpu(pkt->u.frame.length);
7797
7798         /* We received data from the HW, so stop the watchdog */
7799         dev->trans_start = jiffies;
7800
7801         /* We only process data packets if the
7802          * interface is open */
7803         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7804                      skb_tailroom(rxb->skb))) {
7805                 dev->stats.rx_errors++;
7806                 priv->wstats.discard.misc++;
7807                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7808                 return;
7809         } else if (unlikely(!netif_running(priv->net_dev))) {
7810                 dev->stats.rx_dropped++;
7811                 priv->wstats.discard.misc++;
7812                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7813                 return;
7814         }
7815
7816         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7817          * that now */
7818         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7819                 /* FIXME: Should alloc bigger skb instead */
7820                 dev->stats.rx_dropped++;
7821                 priv->wstats.discard.misc++;
7822                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7823                 return;
7824         }
7825
7826         /* copy the frame itself */
7827         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7828                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7829
7830         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7831
7832         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7833         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7834         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7835
7836         /* Big bitfield of all the fields we provide in radiotap */
7837         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7838              (1 << IEEE80211_RADIOTAP_TSFT) |
7839              (1 << IEEE80211_RADIOTAP_FLAGS) |
7840              (1 << IEEE80211_RADIOTAP_RATE) |
7841              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7842              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7843              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7844              (1 << IEEE80211_RADIOTAP_ANTENNA));
7845
7846         /* Zero the flags, we'll add to them as we go */
7847         ipw_rt->rt_flags = 0;
7848         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7849                                frame->parent_tsf[2] << 16 |
7850                                frame->parent_tsf[1] << 8  |
7851                                frame->parent_tsf[0]);
7852
7853         /* Convert signal to DBM */
7854         ipw_rt->rt_dbmsignal = antsignal;
7855         ipw_rt->rt_dbmnoise = frame->noise;
7856
7857         /* Convert the channel data and set the flags */
7858         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7859         if (received_channel > 14) {    /* 802.11a */
7860                 ipw_rt->rt_chbitmask =
7861                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7862         } else if (antennaAndPhy & 32) {        /* 802.11b */
7863                 ipw_rt->rt_chbitmask =
7864                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7865         } else {                /* 802.11g */
7866                 ipw_rt->rt_chbitmask =
7867                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7868         }
7869
7870         /* set the rate in multiples of 500k/s */
7871         switch (pktrate) {
7872         case IPW_TX_RATE_1MB:
7873                 ipw_rt->rt_rate = 2;
7874                 break;
7875         case IPW_TX_RATE_2MB:
7876                 ipw_rt->rt_rate = 4;
7877                 break;
7878         case IPW_TX_RATE_5MB:
7879                 ipw_rt->rt_rate = 10;
7880                 break;
7881         case IPW_TX_RATE_6MB:
7882                 ipw_rt->rt_rate = 12;
7883                 break;
7884         case IPW_TX_RATE_9MB:
7885                 ipw_rt->rt_rate = 18;
7886                 break;
7887         case IPW_TX_RATE_11MB:
7888                 ipw_rt->rt_rate = 22;
7889                 break;
7890         case IPW_TX_RATE_12MB:
7891                 ipw_rt->rt_rate = 24;
7892                 break;
7893         case IPW_TX_RATE_18MB:
7894                 ipw_rt->rt_rate = 36;
7895                 break;
7896         case IPW_TX_RATE_24MB:
7897                 ipw_rt->rt_rate = 48;
7898                 break;
7899         case IPW_TX_RATE_36MB:
7900                 ipw_rt->rt_rate = 72;
7901                 break;
7902         case IPW_TX_RATE_48MB:
7903                 ipw_rt->rt_rate = 96;
7904                 break;
7905         case IPW_TX_RATE_54MB:
7906                 ipw_rt->rt_rate = 108;
7907                 break;
7908         default:
7909                 ipw_rt->rt_rate = 0;
7910                 break;
7911         }
7912
7913         /* antenna number */
7914         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7915
7916         /* set the preamble flag if we have it */
7917         if ((antennaAndPhy & 64))
7918                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7919
7920         /* Set the size of the skb to the size of the frame */
7921         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7922
7923         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7924
7925         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7926                 dev->stats.rx_errors++;
7927         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7928                 rxb->skb = NULL;
7929                 /* no LED during capture */
7930         }
7931 }
7932 #endif
7933
7934 #ifdef CONFIG_IPW2200_PROMISCUOUS
7935 #define ieee80211_is_probe_response(fc) \
7936    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7937     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7938
7939 #define ieee80211_is_management(fc) \
7940    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7941
7942 #define ieee80211_is_control(fc) \
7943    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7944
7945 #define ieee80211_is_data(fc) \
7946    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7947
7948 #define ieee80211_is_assoc_request(fc) \
7949    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7950
7951 #define ieee80211_is_reassoc_request(fc) \
7952    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7953
7954 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7955                                       struct ipw_rx_mem_buffer *rxb,
7956                                       struct ieee80211_rx_stats *stats)
7957 {
7958         struct net_device *dev = priv->prom_net_dev;
7959         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7960         struct ipw_rx_frame *frame = &pkt->u.frame;
7961         struct ipw_rt_hdr *ipw_rt;
7962
7963         /* First cache any information we need before we overwrite
7964          * the information provided in the skb from the hardware */
7965         struct ieee80211_hdr *hdr;
7966         u16 channel = frame->received_channel;
7967         u8 phy_flags = frame->antennaAndPhy;
7968         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7969         s8 noise = frame->noise;
7970         u8 rate = frame->rate;
7971         short len = le16_to_cpu(pkt->u.frame.length);
7972         struct sk_buff *skb;
7973         int hdr_only = 0;
7974         u16 filter = priv->prom_priv->filter;
7975
7976         /* If the filter is set to not include Rx frames then return */
7977         if (filter & IPW_PROM_NO_RX)
7978                 return;
7979
7980         /* We received data from the HW, so stop the watchdog */
7981         dev->trans_start = jiffies;
7982
7983         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7984                 dev->stats.rx_errors++;
7985                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7986                 return;
7987         }
7988
7989         /* We only process data packets if the interface is open */
7990         if (unlikely(!netif_running(dev))) {
7991                 dev->stats.rx_dropped++;
7992                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7993                 return;
7994         }
7995
7996         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7997          * that now */
7998         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7999                 /* FIXME: Should alloc bigger skb instead */
8000                 dev->stats.rx_dropped++;
8001                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8002                 return;
8003         }
8004
8005         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8006         if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
8007                 if (filter & IPW_PROM_NO_MGMT)
8008                         return;
8009                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8010                         hdr_only = 1;
8011         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
8012                 if (filter & IPW_PROM_NO_CTL)
8013                         return;
8014                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8015                         hdr_only = 1;
8016         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
8017                 if (filter & IPW_PROM_NO_DATA)
8018                         return;
8019                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8020                         hdr_only = 1;
8021         }
8022
8023         /* Copy the SKB since this is for the promiscuous side */
8024         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8025         if (skb == NULL) {
8026                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8027                 return;
8028         }
8029
8030         /* copy the frame data to write after where the radiotap header goes */
8031         ipw_rt = (void *)skb->data;
8032
8033         if (hdr_only)
8034                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8035
8036         memcpy(ipw_rt->payload, hdr, len);
8037
8038         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8039         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8040         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8041
8042         /* Set the size of the skb to the size of the frame */
8043         skb_put(skb, sizeof(*ipw_rt) + len);
8044
8045         /* Big bitfield of all the fields we provide in radiotap */
8046         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8047              (1 << IEEE80211_RADIOTAP_TSFT) |
8048              (1 << IEEE80211_RADIOTAP_FLAGS) |
8049              (1 << IEEE80211_RADIOTAP_RATE) |
8050              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8051              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8052              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8053              (1 << IEEE80211_RADIOTAP_ANTENNA));
8054
8055         /* Zero the flags, we'll add to them as we go */
8056         ipw_rt->rt_flags = 0;
8057         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8058                                frame->parent_tsf[2] << 16 |
8059                                frame->parent_tsf[1] << 8  |
8060                                frame->parent_tsf[0]);
8061
8062         /* Convert to DBM */
8063         ipw_rt->rt_dbmsignal = signal;
8064         ipw_rt->rt_dbmnoise = noise;
8065
8066         /* Convert the channel data and set the flags */
8067         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8068         if (channel > 14) {     /* 802.11a */
8069                 ipw_rt->rt_chbitmask =
8070                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8071         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8072                 ipw_rt->rt_chbitmask =
8073                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8074         } else {                /* 802.11g */
8075                 ipw_rt->rt_chbitmask =
8076                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8077         }
8078
8079         /* set the rate in multiples of 500k/s */
8080         switch (rate) {
8081         case IPW_TX_RATE_1MB:
8082                 ipw_rt->rt_rate = 2;
8083                 break;
8084         case IPW_TX_RATE_2MB:
8085                 ipw_rt->rt_rate = 4;
8086                 break;
8087         case IPW_TX_RATE_5MB:
8088                 ipw_rt->rt_rate = 10;
8089                 break;
8090         case IPW_TX_RATE_6MB:
8091                 ipw_rt->rt_rate = 12;
8092                 break;
8093         case IPW_TX_RATE_9MB:
8094                 ipw_rt->rt_rate = 18;
8095                 break;
8096         case IPW_TX_RATE_11MB:
8097                 ipw_rt->rt_rate = 22;
8098                 break;
8099         case IPW_TX_RATE_12MB:
8100                 ipw_rt->rt_rate = 24;
8101                 break;
8102         case IPW_TX_RATE_18MB:
8103                 ipw_rt->rt_rate = 36;
8104                 break;
8105         case IPW_TX_RATE_24MB:
8106                 ipw_rt->rt_rate = 48;
8107                 break;
8108         case IPW_TX_RATE_36MB:
8109                 ipw_rt->rt_rate = 72;
8110                 break;
8111         case IPW_TX_RATE_48MB:
8112                 ipw_rt->rt_rate = 96;
8113                 break;
8114         case IPW_TX_RATE_54MB:
8115                 ipw_rt->rt_rate = 108;
8116                 break;
8117         default:
8118                 ipw_rt->rt_rate = 0;
8119                 break;
8120         }
8121
8122         /* antenna number */
8123         ipw_rt->rt_antenna = (phy_flags & 3);
8124
8125         /* set the preamble flag if we have it */
8126         if (phy_flags & (1 << 6))
8127                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8128
8129         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8130
8131         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8132                 dev->stats.rx_errors++;
8133                 dev_kfree_skb_any(skb);
8134         }
8135 }
8136 #endif
8137
8138 static int is_network_packet(struct ipw_priv *priv,
8139                                     struct ieee80211_hdr_4addr *header)
8140 {
8141         /* Filter incoming packets to determine if they are targetted toward
8142          * this network, discarding packets coming from ourselves */
8143         switch (priv->ieee->iw_mode) {
8144         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8145                 /* packets from our adapter are dropped (echo) */
8146                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8147                         return 0;
8148
8149                 /* {broad,multi}cast packets to our BSSID go through */
8150                 if (is_multicast_ether_addr(header->addr1))
8151                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8152
8153                 /* packets to our adapter go through */
8154                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8155                                ETH_ALEN);
8156
8157         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8158                 /* packets from our adapter are dropped (echo) */
8159                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8160                         return 0;
8161
8162                 /* {broad,multi}cast packets to our BSS go through */
8163                 if (is_multicast_ether_addr(header->addr1))
8164                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8165
8166                 /* packets to our adapter go through */
8167                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8168                                ETH_ALEN);
8169         }
8170
8171         return 1;
8172 }
8173
8174 #define IPW_PACKET_RETRY_TIME HZ
8175
8176 static  int is_duplicate_packet(struct ipw_priv *priv,
8177                                       struct ieee80211_hdr_4addr *header)
8178 {
8179         u16 sc = le16_to_cpu(header->seq_ctl);
8180         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8181         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8182         u16 *last_seq, *last_frag;
8183         unsigned long *last_time;
8184
8185         switch (priv->ieee->iw_mode) {
8186         case IW_MODE_ADHOC:
8187                 {
8188                         struct list_head *p;
8189                         struct ipw_ibss_seq *entry = NULL;
8190                         u8 *mac = header->addr2;
8191                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8192
8193                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8194                                 entry =
8195                                     list_entry(p, struct ipw_ibss_seq, list);
8196                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8197                                         break;
8198                         }
8199                         if (p == &priv->ibss_mac_hash[index]) {
8200                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8201                                 if (!entry) {
8202                                         IPW_ERROR
8203                                             ("Cannot malloc new mac entry\n");
8204                                         return 0;
8205                                 }
8206                                 memcpy(entry->mac, mac, ETH_ALEN);
8207                                 entry->seq_num = seq;
8208                                 entry->frag_num = frag;
8209                                 entry->packet_time = jiffies;
8210                                 list_add(&entry->list,
8211                                          &priv->ibss_mac_hash[index]);
8212                                 return 0;
8213                         }
8214                         last_seq = &entry->seq_num;
8215                         last_frag = &entry->frag_num;
8216                         last_time = &entry->packet_time;
8217                         break;
8218                 }
8219         case IW_MODE_INFRA:
8220                 last_seq = &priv->last_seq_num;
8221                 last_frag = &priv->last_frag_num;
8222                 last_time = &priv->last_packet_time;
8223                 break;
8224         default:
8225                 return 0;
8226         }
8227         if ((*last_seq == seq) &&
8228             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8229                 if (*last_frag == frag)
8230                         goto drop;
8231                 if (*last_frag + 1 != frag)
8232                         /* out-of-order fragment */
8233                         goto drop;
8234         } else
8235                 *last_seq = seq;
8236
8237         *last_frag = frag;
8238         *last_time = jiffies;
8239         return 0;
8240
8241       drop:
8242         /* Comment this line now since we observed the card receives
8243          * duplicate packets but the FCTL_RETRY bit is not set in the
8244          * IBSS mode with fragmentation enabled.
8245          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8246         return 1;
8247 }
8248
8249 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8250                                    struct ipw_rx_mem_buffer *rxb,
8251                                    struct ieee80211_rx_stats *stats)
8252 {
8253         struct sk_buff *skb = rxb->skb;
8254         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8255         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8256             (skb->data + IPW_RX_FRAME_SIZE);
8257
8258         ieee80211_rx_mgt(priv->ieee, header, stats);
8259
8260         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8261             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8262               IEEE80211_STYPE_PROBE_RESP) ||
8263              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8264               IEEE80211_STYPE_BEACON))) {
8265                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8266                         ipw_add_station(priv, header->addr2);
8267         }
8268
8269         if (priv->config & CFG_NET_STATS) {
8270                 IPW_DEBUG_HC("sending stat packet\n");
8271
8272                 /* Set the size of the skb to the size of the full
8273                  * ipw header and 802.11 frame */
8274                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8275                         IPW_RX_FRAME_SIZE);
8276
8277                 /* Advance past the ipw packet header to the 802.11 frame */
8278                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8279
8280                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8281                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8282
8283                 skb->dev = priv->ieee->dev;
8284
8285                 /* Point raw at the ieee80211_stats */
8286                 skb_reset_mac_header(skb);
8287
8288                 skb->pkt_type = PACKET_OTHERHOST;
8289                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8290                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8291                 netif_rx(skb);
8292                 rxb->skb = NULL;
8293         }
8294 }
8295
8296 /*
8297  * Main entry function for recieving a packet with 80211 headers.  This
8298  * should be called when ever the FW has notified us that there is a new
8299  * skb in the recieve queue.
8300  */
8301 static void ipw_rx(struct ipw_priv *priv)
8302 {
8303         struct ipw_rx_mem_buffer *rxb;
8304         struct ipw_rx_packet *pkt;
8305         struct ieee80211_hdr_4addr *header;
8306         u32 r, w, i;
8307         u8 network_packet;
8308         u8 fill_rx = 0;
8309
8310         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8311         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8312         i = priv->rxq->read;
8313
8314         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8315                 fill_rx = 1;
8316
8317         while (i != r) {
8318                 rxb = priv->rxq->queue[i];
8319                 if (unlikely(rxb == NULL)) {
8320                         printk(KERN_CRIT "Queue not allocated!\n");
8321                         break;
8322                 }
8323                 priv->rxq->queue[i] = NULL;
8324
8325                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8326                                             IPW_RX_BUF_SIZE,
8327                                             PCI_DMA_FROMDEVICE);
8328
8329                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8330                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8331                              pkt->header.message_type,
8332                              pkt->header.rx_seq_num, pkt->header.control_bits);
8333
8334                 switch (pkt->header.message_type) {
8335                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8336                                 struct ieee80211_rx_stats stats = {
8337                                         .rssi = pkt->u.frame.rssi_dbm -
8338                                             IPW_RSSI_TO_DBM,
8339                                         .signal =
8340                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8341                                             IPW_RSSI_TO_DBM + 0x100,
8342                                         .noise =
8343                                             le16_to_cpu(pkt->u.frame.noise),
8344                                         .rate = pkt->u.frame.rate,
8345                                         .mac_time = jiffies,
8346                                         .received_channel =
8347                                             pkt->u.frame.received_channel,
8348                                         .freq =
8349                                             (pkt->u.frame.
8350                                              control & (1 << 0)) ?
8351                                             IEEE80211_24GHZ_BAND :
8352                                             IEEE80211_52GHZ_BAND,
8353                                         .len = le16_to_cpu(pkt->u.frame.length),
8354                                 };
8355
8356                                 if (stats.rssi != 0)
8357                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8358                                 if (stats.signal != 0)
8359                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8360                                 if (stats.noise != 0)
8361                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8362                                 if (stats.rate != 0)
8363                                         stats.mask |= IEEE80211_STATMASK_RATE;
8364
8365                                 priv->rx_packets++;
8366
8367 #ifdef CONFIG_IPW2200_PROMISCUOUS
8368         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8369                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8370 #endif
8371
8372 #ifdef CONFIG_IPW2200_MONITOR
8373                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8374 #ifdef CONFIG_IPW2200_RADIOTAP
8375
8376                 ipw_handle_data_packet_monitor(priv,
8377                                                rxb,
8378                                                &stats);
8379 #else
8380                 ipw_handle_data_packet(priv, rxb,
8381                                        &stats);
8382 #endif
8383                                         break;
8384                                 }
8385 #endif
8386
8387                                 header =
8388                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8389                                                                    data +
8390                                                                    IPW_RX_FRAME_SIZE);
8391                                 /* TODO: Check Ad-Hoc dest/source and make sure
8392                                  * that we are actually parsing these packets
8393                                  * correctly -- we should probably use the
8394                                  * frame control of the packet and disregard
8395                                  * the current iw_mode */
8396
8397                                 network_packet =
8398                                     is_network_packet(priv, header);
8399                                 if (network_packet && priv->assoc_network) {
8400                                         priv->assoc_network->stats.rssi =
8401                                             stats.rssi;
8402                                         priv->exp_avg_rssi =
8403                                             exponential_average(priv->exp_avg_rssi,
8404                                             stats.rssi, DEPTH_RSSI);
8405                                 }
8406
8407                                 IPW_DEBUG_RX("Frame: len=%u\n",
8408                                              le16_to_cpu(pkt->u.frame.length));
8409
8410                                 if (le16_to_cpu(pkt->u.frame.length) <
8411                                     ieee80211_get_hdrlen(le16_to_cpu(
8412                                                     header->frame_ctl))) {
8413                                         IPW_DEBUG_DROP
8414                                             ("Received packet is too small. "
8415                                              "Dropping.\n");
8416                                         priv->net_dev->stats.rx_errors++;
8417                                         priv->wstats.discard.misc++;
8418                                         break;
8419                                 }
8420
8421                                 switch (WLAN_FC_GET_TYPE
8422                                         (le16_to_cpu(header->frame_ctl))) {
8423
8424                                 case IEEE80211_FTYPE_MGMT:
8425                                         ipw_handle_mgmt_packet(priv, rxb,
8426                                                                &stats);
8427                                         break;
8428
8429                                 case IEEE80211_FTYPE_CTL:
8430                                         break;
8431
8432                                 case IEEE80211_FTYPE_DATA:
8433                                         if (unlikely(!network_packet ||
8434                                                      is_duplicate_packet(priv,
8435                                                                          header)))
8436                                         {
8437                                                 IPW_DEBUG_DROP("Dropping: "
8438                                                                "%pM, "
8439                                                                "%pM, "
8440                                                                "%pM\n",
8441                                                                header->addr1,
8442                                                                header->addr2,
8443                                                                header->addr3);
8444                                                 break;
8445                                         }
8446
8447                                         ipw_handle_data_packet(priv, rxb,
8448                                                                &stats);
8449
8450                                         break;
8451                                 }
8452                                 break;
8453                         }
8454
8455                 case RX_HOST_NOTIFICATION_TYPE:{
8456                                 IPW_DEBUG_RX
8457                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8458                                      pkt->u.notification.subtype,
8459                                      pkt->u.notification.flags,
8460                                      le16_to_cpu(pkt->u.notification.size));
8461                                 ipw_rx_notification(priv, &pkt->u.notification);
8462                                 break;
8463                         }
8464
8465                 default:
8466                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8467                                      pkt->header.message_type);
8468                         break;
8469                 }
8470
8471                 /* For now we just don't re-use anything.  We can tweak this
8472                  * later to try and re-use notification packets and SKBs that
8473                  * fail to Rx correctly */
8474                 if (rxb->skb != NULL) {
8475                         dev_kfree_skb_any(rxb->skb);
8476                         rxb->skb = NULL;
8477                 }
8478
8479                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8480                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8481                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8482
8483                 i = (i + 1) % RX_QUEUE_SIZE;
8484
8485                 /* If there are a lot of unsued frames, restock the Rx queue
8486                  * so the ucode won't assert */
8487                 if (fill_rx) {
8488                         priv->rxq->read = i;
8489                         ipw_rx_queue_replenish(priv);
8490                 }
8491         }
8492
8493         /* Backtrack one entry */
8494         priv->rxq->read = i;
8495         ipw_rx_queue_restock(priv);
8496 }
8497
8498 #define DEFAULT_RTS_THRESHOLD     2304U
8499 #define MIN_RTS_THRESHOLD         1U
8500 #define MAX_RTS_THRESHOLD         2304U
8501 #define DEFAULT_BEACON_INTERVAL   100U
8502 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8503 #define DEFAULT_LONG_RETRY_LIMIT  4U
8504
8505 /**
8506  * ipw_sw_reset
8507  * @option: options to control different reset behaviour
8508  *          0 = reset everything except the 'disable' module_param
8509  *          1 = reset everything and print out driver info (for probe only)
8510  *          2 = reset everything
8511  */
8512 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8513 {
8514         int band, modulation;
8515         int old_mode = priv->ieee->iw_mode;
8516
8517         /* Initialize module parameter values here */
8518         priv->config = 0;
8519
8520         /* We default to disabling the LED code as right now it causes
8521          * too many systems to lock up... */
8522         if (!led)
8523                 priv->config |= CFG_NO_LED;
8524
8525         if (associate)
8526                 priv->config |= CFG_ASSOCIATE;
8527         else
8528                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8529
8530         if (auto_create)
8531                 priv->config |= CFG_ADHOC_CREATE;
8532         else
8533                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8534
8535         priv->config &= ~CFG_STATIC_ESSID;
8536         priv->essid_len = 0;
8537         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8538
8539         if (disable && option) {
8540                 priv->status |= STATUS_RF_KILL_SW;
8541                 IPW_DEBUG_INFO("Radio disabled.\n");
8542         }
8543
8544         if (channel != 0) {
8545                 priv->config |= CFG_STATIC_CHANNEL;
8546                 priv->channel = channel;
8547                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8548                 /* TODO: Validate that provided channel is in range */
8549         }
8550 #ifdef CONFIG_IPW2200_QOS
8551         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8552                      burst_duration_CCK, burst_duration_OFDM);
8553 #endif                          /* CONFIG_IPW2200_QOS */
8554
8555         switch (mode) {
8556         case 1:
8557                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8558                 priv->net_dev->type = ARPHRD_ETHER;
8559
8560                 break;
8561 #ifdef CONFIG_IPW2200_MONITOR
8562         case 2:
8563                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8564 #ifdef CONFIG_IPW2200_RADIOTAP
8565                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8566 #else
8567                 priv->net_dev->type = ARPHRD_IEEE80211;
8568 #endif
8569                 break;
8570 #endif
8571         default:
8572         case 0:
8573                 priv->net_dev->type = ARPHRD_ETHER;
8574                 priv->ieee->iw_mode = IW_MODE_INFRA;
8575                 break;
8576         }
8577
8578         if (hwcrypto) {
8579                 priv->ieee->host_encrypt = 0;
8580                 priv->ieee->host_encrypt_msdu = 0;
8581                 priv->ieee->host_decrypt = 0;
8582                 priv->ieee->host_mc_decrypt = 0;
8583         }
8584         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8585
8586         /* IPW2200/2915 is abled to do hardware fragmentation. */
8587         priv->ieee->host_open_frag = 0;
8588
8589         if ((priv->pci_dev->device == 0x4223) ||
8590             (priv->pci_dev->device == 0x4224)) {
8591                 if (option == 1)
8592                         printk(KERN_INFO DRV_NAME
8593                                ": Detected Intel PRO/Wireless 2915ABG Network "
8594                                "Connection\n");
8595                 priv->ieee->abg_true = 1;
8596                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8597                 modulation = IEEE80211_OFDM_MODULATION |
8598                     IEEE80211_CCK_MODULATION;
8599                 priv->adapter = IPW_2915ABG;
8600                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8601         } else {
8602                 if (option == 1)
8603                         printk(KERN_INFO DRV_NAME
8604                                ": Detected Intel PRO/Wireless 2200BG Network "
8605                                "Connection\n");
8606
8607                 priv->ieee->abg_true = 0;
8608                 band = IEEE80211_24GHZ_BAND;
8609                 modulation = IEEE80211_OFDM_MODULATION |
8610                     IEEE80211_CCK_MODULATION;
8611                 priv->adapter = IPW_2200BG;
8612                 priv->ieee->mode = IEEE_G | IEEE_B;
8613         }
8614
8615         priv->ieee->freq_band = band;
8616         priv->ieee->modulation = modulation;
8617
8618         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8619
8620         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8621         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8622
8623         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8624         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8625         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8626
8627         /* If power management is turned on, default to AC mode */
8628         priv->power_mode = IPW_POWER_AC;
8629         priv->tx_power = IPW_TX_POWER_DEFAULT;
8630
8631         return old_mode == priv->ieee->iw_mode;
8632 }
8633
8634 /*
8635  * This file defines the Wireless Extension handlers.  It does not
8636  * define any methods of hardware manipulation and relies on the
8637  * functions defined in ipw_main to provide the HW interaction.
8638  *
8639  * The exception to this is the use of the ipw_get_ordinal()
8640  * function used to poll the hardware vs. making unecessary calls.
8641  *
8642  */
8643
8644 static int ipw_wx_get_name(struct net_device *dev,
8645                            struct iw_request_info *info,
8646                            union iwreq_data *wrqu, char *extra)
8647 {
8648         struct ipw_priv *priv = ieee80211_priv(dev);
8649         mutex_lock(&priv->mutex);
8650         if (priv->status & STATUS_RF_KILL_MASK)
8651                 strcpy(wrqu->name, "radio off");
8652         else if (!(priv->status & STATUS_ASSOCIATED))
8653                 strcpy(wrqu->name, "unassociated");
8654         else
8655                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8656                          ipw_modes[priv->assoc_request.ieee_mode]);
8657         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8658         mutex_unlock(&priv->mutex);
8659         return 0;
8660 }
8661
8662 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8663 {
8664         if (channel == 0) {
8665                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8666                 priv->config &= ~CFG_STATIC_CHANNEL;
8667                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8668                                 "parameters.\n");
8669                 ipw_associate(priv);
8670                 return 0;
8671         }
8672
8673         priv->config |= CFG_STATIC_CHANNEL;
8674
8675         if (priv->channel == channel) {
8676                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8677                                channel);
8678                 return 0;
8679         }
8680
8681         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8682         priv->channel = channel;
8683
8684 #ifdef CONFIG_IPW2200_MONITOR
8685         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8686                 int i;
8687                 if (priv->status & STATUS_SCANNING) {
8688                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8689                                        "channel change.\n");
8690                         ipw_abort_scan(priv);
8691                 }
8692
8693                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8694                         udelay(10);
8695
8696                 if (priv->status & STATUS_SCANNING)
8697                         IPW_DEBUG_SCAN("Still scanning...\n");
8698                 else
8699                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8700                                        1000 - i);
8701
8702                 return 0;
8703         }
8704 #endif                          /* CONFIG_IPW2200_MONITOR */
8705
8706         /* Network configuration changed -- force [re]association */
8707         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8708         if (!ipw_disassociate(priv))
8709                 ipw_associate(priv);
8710
8711         return 0;
8712 }
8713
8714 static int ipw_wx_set_freq(struct net_device *dev,
8715                            struct iw_request_info *info,
8716                            union iwreq_data *wrqu, char *extra)
8717 {
8718         struct ipw_priv *priv = ieee80211_priv(dev);
8719         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8720         struct iw_freq *fwrq = &wrqu->freq;
8721         int ret = 0, i;
8722         u8 channel, flags;
8723         int band;
8724
8725         if (fwrq->m == 0) {
8726                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8727                 mutex_lock(&priv->mutex);
8728                 ret = ipw_set_channel(priv, 0);
8729                 mutex_unlock(&priv->mutex);
8730                 return ret;
8731         }
8732         /* if setting by freq convert to channel */
8733         if (fwrq->e == 1) {
8734                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8735                 if (channel == 0)
8736                         return -EINVAL;
8737         } else
8738                 channel = fwrq->m;
8739
8740         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8741                 return -EINVAL;
8742
8743         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8744                 i = ieee80211_channel_to_index(priv->ieee, channel);
8745                 if (i == -1)
8746                         return -EINVAL;
8747
8748                 flags = (band == IEEE80211_24GHZ_BAND) ?
8749                     geo->bg[i].flags : geo->a[i].flags;
8750                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8751                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8752                         return -EINVAL;
8753                 }
8754         }
8755
8756         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8757         mutex_lock(&priv->mutex);
8758         ret = ipw_set_channel(priv, channel);
8759         mutex_unlock(&priv->mutex);
8760         return ret;
8761 }
8762
8763 static int ipw_wx_get_freq(struct net_device *dev,
8764                            struct iw_request_info *info,
8765                            union iwreq_data *wrqu, char *extra)
8766 {
8767         struct ipw_priv *priv = ieee80211_priv(dev);
8768
8769         wrqu->freq.e = 0;
8770
8771         /* If we are associated, trying to associate, or have a statically
8772          * configured CHANNEL then return that; otherwise return ANY */
8773         mutex_lock(&priv->mutex);
8774         if (priv->config & CFG_STATIC_CHANNEL ||
8775             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8776                 int i;
8777
8778                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8779                 BUG_ON(i == -1);
8780                 wrqu->freq.e = 1;
8781
8782                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8783                 case IEEE80211_52GHZ_BAND:
8784                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8785                         break;
8786
8787                 case IEEE80211_24GHZ_BAND:
8788                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8789                         break;
8790
8791                 default:
8792                         BUG();
8793                 }
8794         } else
8795                 wrqu->freq.m = 0;
8796
8797         mutex_unlock(&priv->mutex);
8798         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8799         return 0;
8800 }
8801
8802 static int ipw_wx_set_mode(struct net_device *dev,
8803                            struct iw_request_info *info,
8804                            union iwreq_data *wrqu, char *extra)
8805 {
8806         struct ipw_priv *priv = ieee80211_priv(dev);
8807         int err = 0;
8808
8809         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8810
8811         switch (wrqu->mode) {
8812 #ifdef CONFIG_IPW2200_MONITOR
8813         case IW_MODE_MONITOR:
8814 #endif
8815         case IW_MODE_ADHOC:
8816         case IW_MODE_INFRA:
8817                 break;
8818         case IW_MODE_AUTO:
8819                 wrqu->mode = IW_MODE_INFRA;
8820                 break;
8821         default:
8822                 return -EINVAL;
8823         }
8824         if (wrqu->mode == priv->ieee->iw_mode)
8825                 return 0;
8826
8827         mutex_lock(&priv->mutex);
8828
8829         ipw_sw_reset(priv, 0);
8830
8831 #ifdef CONFIG_IPW2200_MONITOR
8832         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8833                 priv->net_dev->type = ARPHRD_ETHER;
8834
8835         if (wrqu->mode == IW_MODE_MONITOR)
8836 #ifdef CONFIG_IPW2200_RADIOTAP
8837                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8838 #else
8839                 priv->net_dev->type = ARPHRD_IEEE80211;
8840 #endif
8841 #endif                          /* CONFIG_IPW2200_MONITOR */
8842
8843         /* Free the existing firmware and reset the fw_loaded
8844          * flag so ipw_load() will bring in the new firmware */
8845         free_firmware();
8846
8847         priv->ieee->iw_mode = wrqu->mode;
8848
8849         queue_work(priv->workqueue, &priv->adapter_restart);
8850         mutex_unlock(&priv->mutex);
8851         return err;
8852 }
8853
8854 static int ipw_wx_get_mode(struct net_device *dev,
8855                            struct iw_request_info *info,
8856                            union iwreq_data *wrqu, char *extra)
8857 {
8858         struct ipw_priv *priv = ieee80211_priv(dev);
8859         mutex_lock(&priv->mutex);
8860         wrqu->mode = priv->ieee->iw_mode;
8861         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8862         mutex_unlock(&priv->mutex);
8863         return 0;
8864 }
8865
8866 /* Values are in microsecond */
8867 static const s32 timeout_duration[] = {
8868         350000,
8869         250000,
8870         75000,
8871         37000,
8872         25000,
8873 };
8874
8875 static const s32 period_duration[] = {
8876         400000,
8877         700000,
8878         1000000,
8879         1000000,
8880         1000000
8881 };
8882
8883 static int ipw_wx_get_range(struct net_device *dev,
8884                             struct iw_request_info *info,
8885                             union iwreq_data *wrqu, char *extra)
8886 {
8887         struct ipw_priv *priv = ieee80211_priv(dev);
8888         struct iw_range *range = (struct iw_range *)extra;
8889         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8890         int i = 0, j;
8891
8892         wrqu->data.length = sizeof(*range);
8893         memset(range, 0, sizeof(*range));
8894
8895         /* 54Mbs == ~27 Mb/s real (802.11g) */
8896         range->throughput = 27 * 1000 * 1000;
8897
8898         range->max_qual.qual = 100;
8899         /* TODO: Find real max RSSI and stick here */
8900         range->max_qual.level = 0;
8901         range->max_qual.noise = 0;
8902         range->max_qual.updated = 7;    /* Updated all three */
8903
8904         range->avg_qual.qual = 70;
8905         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8906         range->avg_qual.level = 0;      /* FIXME to real average level */
8907         range->avg_qual.noise = 0;
8908         range->avg_qual.updated = 7;    /* Updated all three */
8909         mutex_lock(&priv->mutex);
8910         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8911
8912         for (i = 0; i < range->num_bitrates; i++)
8913                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8914                     500000;
8915
8916         range->max_rts = DEFAULT_RTS_THRESHOLD;
8917         range->min_frag = MIN_FRAG_THRESHOLD;
8918         range->max_frag = MAX_FRAG_THRESHOLD;
8919
8920         range->encoding_size[0] = 5;
8921         range->encoding_size[1] = 13;
8922         range->num_encoding_sizes = 2;
8923         range->max_encoding_tokens = WEP_KEYS;
8924
8925         /* Set the Wireless Extension versions */
8926         range->we_version_compiled = WIRELESS_EXT;
8927         range->we_version_source = 18;
8928
8929         i = 0;
8930         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8931                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8932                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8933                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8934                                 continue;
8935
8936                         range->freq[i].i = geo->bg[j].channel;
8937                         range->freq[i].m = geo->bg[j].freq * 100000;
8938                         range->freq[i].e = 1;
8939                         i++;
8940                 }
8941         }
8942
8943         if (priv->ieee->mode & IEEE_A) {
8944                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8945                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8946                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8947                                 continue;
8948
8949                         range->freq[i].i = geo->a[j].channel;
8950                         range->freq[i].m = geo->a[j].freq * 100000;
8951                         range->freq[i].e = 1;
8952                         i++;
8953                 }
8954         }
8955
8956         range->num_channels = i;
8957         range->num_frequency = i;
8958
8959         mutex_unlock(&priv->mutex);
8960
8961         /* Event capability (kernel + driver) */
8962         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8963                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8964                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8965                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8966         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8967
8968         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8969                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8970
8971         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8972
8973         IPW_DEBUG_WX("GET Range\n");
8974         return 0;
8975 }
8976
8977 static int ipw_wx_set_wap(struct net_device *dev,
8978                           struct iw_request_info *info,
8979                           union iwreq_data *wrqu, char *extra)
8980 {
8981         struct ipw_priv *priv = ieee80211_priv(dev);
8982
8983         static const unsigned char any[] = {
8984                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8985         };
8986         static const unsigned char off[] = {
8987                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8988         };
8989
8990         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8991                 return -EINVAL;
8992         mutex_lock(&priv->mutex);
8993         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8994             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8995                 /* we disable mandatory BSSID association */
8996                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8997                 priv->config &= ~CFG_STATIC_BSSID;
8998                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8999                                 "parameters.\n");
9000                 ipw_associate(priv);
9001                 mutex_unlock(&priv->mutex);
9002                 return 0;
9003         }
9004
9005         priv->config |= CFG_STATIC_BSSID;
9006         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9007                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9008                 mutex_unlock(&priv->mutex);
9009                 return 0;
9010         }
9011
9012         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9013                      wrqu->ap_addr.sa_data);
9014
9015         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9016
9017         /* Network configuration changed -- force [re]association */
9018         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9019         if (!ipw_disassociate(priv))
9020                 ipw_associate(priv);
9021
9022         mutex_unlock(&priv->mutex);
9023         return 0;
9024 }
9025
9026 static int ipw_wx_get_wap(struct net_device *dev,
9027                           struct iw_request_info *info,
9028                           union iwreq_data *wrqu, char *extra)
9029 {
9030         struct ipw_priv *priv = ieee80211_priv(dev);
9031
9032         /* If we are associated, trying to associate, or have a statically
9033          * configured BSSID then return that; otherwise return ANY */
9034         mutex_lock(&priv->mutex);
9035         if (priv->config & CFG_STATIC_BSSID ||
9036             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9037                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9038                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9039         } else
9040                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9041
9042         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9043                      wrqu->ap_addr.sa_data);
9044         mutex_unlock(&priv->mutex);
9045         return 0;
9046 }
9047
9048 static int ipw_wx_set_essid(struct net_device *dev,
9049                             struct iw_request_info *info,
9050                             union iwreq_data *wrqu, char *extra)
9051 {
9052         struct ipw_priv *priv = ieee80211_priv(dev);
9053         int length;
9054         DECLARE_SSID_BUF(ssid);
9055
9056         mutex_lock(&priv->mutex);
9057
9058         if (!wrqu->essid.flags)
9059         {
9060                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9061                 ipw_disassociate(priv);
9062                 priv->config &= ~CFG_STATIC_ESSID;
9063                 ipw_associate(priv);
9064                 mutex_unlock(&priv->mutex);
9065                 return 0;
9066         }
9067
9068         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9069
9070         priv->config |= CFG_STATIC_ESSID;
9071
9072         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9073             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9074                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9075                 mutex_unlock(&priv->mutex);
9076                 return 0;
9077         }
9078
9079         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9080                      print_ssid(ssid, extra, length), length);
9081
9082         priv->essid_len = length;
9083         memcpy(priv->essid, extra, priv->essid_len);
9084
9085         /* Network configuration changed -- force [re]association */
9086         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9087         if (!ipw_disassociate(priv))
9088                 ipw_associate(priv);
9089
9090         mutex_unlock(&priv->mutex);
9091         return 0;
9092 }
9093
9094 static int ipw_wx_get_essid(struct net_device *dev,
9095                             struct iw_request_info *info,
9096                             union iwreq_data *wrqu, char *extra)
9097 {
9098         struct ipw_priv *priv = ieee80211_priv(dev);
9099         DECLARE_SSID_BUF(ssid);
9100
9101         /* If we are associated, trying to associate, or have a statically
9102          * configured ESSID then return that; otherwise return ANY */
9103         mutex_lock(&priv->mutex);
9104         if (priv->config & CFG_STATIC_ESSID ||
9105             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9106                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9107                              print_ssid(ssid, priv->essid, priv->essid_len));
9108                 memcpy(extra, priv->essid, priv->essid_len);
9109                 wrqu->essid.length = priv->essid_len;
9110                 wrqu->essid.flags = 1;  /* active */
9111         } else {
9112                 IPW_DEBUG_WX("Getting essid: ANY\n");
9113                 wrqu->essid.length = 0;
9114                 wrqu->essid.flags = 0;  /* active */
9115         }
9116         mutex_unlock(&priv->mutex);
9117         return 0;
9118 }
9119
9120 static int ipw_wx_set_nick(struct net_device *dev,
9121                            struct iw_request_info *info,
9122                            union iwreq_data *wrqu, char *extra)
9123 {
9124         struct ipw_priv *priv = ieee80211_priv(dev);
9125
9126         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9127         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9128                 return -E2BIG;
9129         mutex_lock(&priv->mutex);
9130         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9131         memset(priv->nick, 0, sizeof(priv->nick));
9132         memcpy(priv->nick, extra, wrqu->data.length);
9133         IPW_DEBUG_TRACE("<<\n");
9134         mutex_unlock(&priv->mutex);
9135         return 0;
9136
9137 }
9138
9139 static int ipw_wx_get_nick(struct net_device *dev,
9140                            struct iw_request_info *info,
9141                            union iwreq_data *wrqu, char *extra)
9142 {
9143         struct ipw_priv *priv = ieee80211_priv(dev);
9144         IPW_DEBUG_WX("Getting nick\n");
9145         mutex_lock(&priv->mutex);
9146         wrqu->data.length = strlen(priv->nick);
9147         memcpy(extra, priv->nick, wrqu->data.length);
9148         wrqu->data.flags = 1;   /* active */
9149         mutex_unlock(&priv->mutex);
9150         return 0;
9151 }
9152
9153 static int ipw_wx_set_sens(struct net_device *dev,
9154                             struct iw_request_info *info,
9155                             union iwreq_data *wrqu, char *extra)
9156 {
9157         struct ipw_priv *priv = ieee80211_priv(dev);
9158         int err = 0;
9159
9160         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9161         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9162         mutex_lock(&priv->mutex);
9163
9164         if (wrqu->sens.fixed == 0)
9165         {
9166                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9167                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9168                 goto out;
9169         }
9170         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9171             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9172                 err = -EINVAL;
9173                 goto out;
9174         }
9175
9176         priv->roaming_threshold = wrqu->sens.value;
9177         priv->disassociate_threshold = 3*wrqu->sens.value;
9178       out:
9179         mutex_unlock(&priv->mutex);
9180         return err;
9181 }
9182
9183 static int ipw_wx_get_sens(struct net_device *dev,
9184                             struct iw_request_info *info,
9185                             union iwreq_data *wrqu, char *extra)
9186 {
9187         struct ipw_priv *priv = ieee80211_priv(dev);
9188         mutex_lock(&priv->mutex);
9189         wrqu->sens.fixed = 1;
9190         wrqu->sens.value = priv->roaming_threshold;
9191         mutex_unlock(&priv->mutex);
9192
9193         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9194                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9195
9196         return 0;
9197 }
9198
9199 static int ipw_wx_set_rate(struct net_device *dev,
9200                            struct iw_request_info *info,
9201                            union iwreq_data *wrqu, char *extra)
9202 {
9203         /* TODO: We should use semaphores or locks for access to priv */
9204         struct ipw_priv *priv = ieee80211_priv(dev);
9205         u32 target_rate = wrqu->bitrate.value;
9206         u32 fixed, mask;
9207
9208         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9209         /* value = X, fixed = 1 means only rate X */
9210         /* value = X, fixed = 0 means all rates lower equal X */
9211
9212         if (target_rate == -1) {
9213                 fixed = 0;
9214                 mask = IEEE80211_DEFAULT_RATES_MASK;
9215                 /* Now we should reassociate */
9216                 goto apply;
9217         }
9218
9219         mask = 0;
9220         fixed = wrqu->bitrate.fixed;
9221
9222         if (target_rate == 1000000 || !fixed)
9223                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9224         if (target_rate == 1000000)
9225                 goto apply;
9226
9227         if (target_rate == 2000000 || !fixed)
9228                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9229         if (target_rate == 2000000)
9230                 goto apply;
9231
9232         if (target_rate == 5500000 || !fixed)
9233                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9234         if (target_rate == 5500000)
9235                 goto apply;
9236
9237         if (target_rate == 6000000 || !fixed)
9238                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9239         if (target_rate == 6000000)
9240                 goto apply;
9241
9242         if (target_rate == 9000000 || !fixed)
9243                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9244         if (target_rate == 9000000)
9245                 goto apply;
9246
9247         if (target_rate == 11000000 || !fixed)
9248                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9249         if (target_rate == 11000000)
9250                 goto apply;
9251
9252         if (target_rate == 12000000 || !fixed)
9253                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9254         if (target_rate == 12000000)
9255                 goto apply;
9256
9257         if (target_rate == 18000000 || !fixed)
9258                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9259         if (target_rate == 18000000)
9260                 goto apply;
9261
9262         if (target_rate == 24000000 || !fixed)
9263                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9264         if (target_rate == 24000000)
9265                 goto apply;
9266
9267         if (target_rate == 36000000 || !fixed)
9268                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9269         if (target_rate == 36000000)
9270                 goto apply;
9271
9272         if (target_rate == 48000000 || !fixed)
9273                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9274         if (target_rate == 48000000)
9275                 goto apply;
9276
9277         if (target_rate == 54000000 || !fixed)
9278                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9279         if (target_rate == 54000000)
9280                 goto apply;
9281
9282         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9283         return -EINVAL;
9284
9285       apply:
9286         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9287                      mask, fixed ? "fixed" : "sub-rates");
9288         mutex_lock(&priv->mutex);
9289         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9290                 priv->config &= ~CFG_FIXED_RATE;
9291                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9292         } else
9293                 priv->config |= CFG_FIXED_RATE;
9294
9295         if (priv->rates_mask == mask) {
9296                 IPW_DEBUG_WX("Mask set to current mask.\n");
9297                 mutex_unlock(&priv->mutex);
9298                 return 0;
9299         }
9300
9301         priv->rates_mask = mask;
9302
9303         /* Network configuration changed -- force [re]association */
9304         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9305         if (!ipw_disassociate(priv))
9306                 ipw_associate(priv);
9307
9308         mutex_unlock(&priv->mutex);
9309         return 0;
9310 }
9311
9312 static int ipw_wx_get_rate(struct net_device *dev,
9313                            struct iw_request_info *info,
9314                            union iwreq_data *wrqu, char *extra)
9315 {
9316         struct ipw_priv *priv = ieee80211_priv(dev);
9317         mutex_lock(&priv->mutex);
9318         wrqu->bitrate.value = priv->last_rate;
9319         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9320         mutex_unlock(&priv->mutex);
9321         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9322         return 0;
9323 }
9324
9325 static int ipw_wx_set_rts(struct net_device *dev,
9326                           struct iw_request_info *info,
9327                           union iwreq_data *wrqu, char *extra)
9328 {
9329         struct ipw_priv *priv = ieee80211_priv(dev);
9330         mutex_lock(&priv->mutex);
9331         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9332                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9333         else {
9334                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9335                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9336                         mutex_unlock(&priv->mutex);
9337                         return -EINVAL;
9338                 }
9339                 priv->rts_threshold = wrqu->rts.value;
9340         }
9341
9342         ipw_send_rts_threshold(priv, priv->rts_threshold);
9343         mutex_unlock(&priv->mutex);
9344         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9345         return 0;
9346 }
9347
9348 static int ipw_wx_get_rts(struct net_device *dev,
9349                           struct iw_request_info *info,
9350                           union iwreq_data *wrqu, char *extra)
9351 {
9352         struct ipw_priv *priv = ieee80211_priv(dev);
9353         mutex_lock(&priv->mutex);
9354         wrqu->rts.value = priv->rts_threshold;
9355         wrqu->rts.fixed = 0;    /* no auto select */
9356         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9357         mutex_unlock(&priv->mutex);
9358         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9359         return 0;
9360 }
9361
9362 static int ipw_wx_set_txpow(struct net_device *dev,
9363                             struct iw_request_info *info,
9364                             union iwreq_data *wrqu, char *extra)
9365 {
9366         struct ipw_priv *priv = ieee80211_priv(dev);
9367         int err = 0;
9368
9369         mutex_lock(&priv->mutex);
9370         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9371                 err = -EINPROGRESS;
9372                 goto out;
9373         }
9374
9375         if (!wrqu->power.fixed)
9376                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9377
9378         if (wrqu->power.flags != IW_TXPOW_DBM) {
9379                 err = -EINVAL;
9380                 goto out;
9381         }
9382
9383         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9384             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9385                 err = -EINVAL;
9386                 goto out;
9387         }
9388
9389         priv->tx_power = wrqu->power.value;
9390         err = ipw_set_tx_power(priv);
9391       out:
9392         mutex_unlock(&priv->mutex);
9393         return err;
9394 }
9395
9396 static int ipw_wx_get_txpow(struct net_device *dev,
9397                             struct iw_request_info *info,
9398                             union iwreq_data *wrqu, char *extra)
9399 {
9400         struct ipw_priv *priv = ieee80211_priv(dev);
9401         mutex_lock(&priv->mutex);
9402         wrqu->power.value = priv->tx_power;
9403         wrqu->power.fixed = 1;
9404         wrqu->power.flags = IW_TXPOW_DBM;
9405         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9406         mutex_unlock(&priv->mutex);
9407
9408         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9409                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9410
9411         return 0;
9412 }
9413
9414 static int ipw_wx_set_frag(struct net_device *dev,
9415                            struct iw_request_info *info,
9416                            union iwreq_data *wrqu, char *extra)
9417 {
9418         struct ipw_priv *priv = ieee80211_priv(dev);
9419         mutex_lock(&priv->mutex);
9420         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9421                 priv->ieee->fts = DEFAULT_FTS;
9422         else {
9423                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9424                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9425                         mutex_unlock(&priv->mutex);
9426                         return -EINVAL;
9427                 }
9428
9429                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9430         }
9431
9432         ipw_send_frag_threshold(priv, wrqu->frag.value);
9433         mutex_unlock(&priv->mutex);
9434         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9435         return 0;
9436 }
9437
9438 static int ipw_wx_get_frag(struct net_device *dev,
9439                            struct iw_request_info *info,
9440                            union iwreq_data *wrqu, char *extra)
9441 {
9442         struct ipw_priv *priv = ieee80211_priv(dev);
9443         mutex_lock(&priv->mutex);
9444         wrqu->frag.value = priv->ieee->fts;
9445         wrqu->frag.fixed = 0;   /* no auto select */
9446         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9447         mutex_unlock(&priv->mutex);
9448         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9449
9450         return 0;
9451 }
9452
9453 static int ipw_wx_set_retry(struct net_device *dev,
9454                             struct iw_request_info *info,
9455                             union iwreq_data *wrqu, char *extra)
9456 {
9457         struct ipw_priv *priv = ieee80211_priv(dev);
9458
9459         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9460                 return -EINVAL;
9461
9462         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9463                 return 0;
9464
9465         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9466                 return -EINVAL;
9467
9468         mutex_lock(&priv->mutex);
9469         if (wrqu->retry.flags & IW_RETRY_SHORT)
9470                 priv->short_retry_limit = (u8) wrqu->retry.value;
9471         else if (wrqu->retry.flags & IW_RETRY_LONG)
9472                 priv->long_retry_limit = (u8) wrqu->retry.value;
9473         else {
9474                 priv->short_retry_limit = (u8) wrqu->retry.value;
9475                 priv->long_retry_limit = (u8) wrqu->retry.value;
9476         }
9477
9478         ipw_send_retry_limit(priv, priv->short_retry_limit,
9479                              priv->long_retry_limit);
9480         mutex_unlock(&priv->mutex);
9481         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9482                      priv->short_retry_limit, priv->long_retry_limit);
9483         return 0;
9484 }
9485
9486 static int ipw_wx_get_retry(struct net_device *dev,
9487                             struct iw_request_info *info,
9488                             union iwreq_data *wrqu, char *extra)
9489 {
9490         struct ipw_priv *priv = ieee80211_priv(dev);
9491
9492         mutex_lock(&priv->mutex);
9493         wrqu->retry.disabled = 0;
9494
9495         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9496                 mutex_unlock(&priv->mutex);
9497                 return -EINVAL;
9498         }
9499
9500         if (wrqu->retry.flags & IW_RETRY_LONG) {
9501                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9502                 wrqu->retry.value = priv->long_retry_limit;
9503         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9504                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9505                 wrqu->retry.value = priv->short_retry_limit;
9506         } else {
9507                 wrqu->retry.flags = IW_RETRY_LIMIT;
9508                 wrqu->retry.value = priv->short_retry_limit;
9509         }
9510         mutex_unlock(&priv->mutex);
9511
9512         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9513
9514         return 0;
9515 }
9516
9517 static int ipw_wx_set_scan(struct net_device *dev,
9518                            struct iw_request_info *info,
9519                            union iwreq_data *wrqu, char *extra)
9520 {
9521         struct ipw_priv *priv = ieee80211_priv(dev);
9522         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9523         struct delayed_work *work = NULL;
9524
9525         mutex_lock(&priv->mutex);
9526
9527         priv->user_requested_scan = 1;
9528
9529         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9530                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9531                         int len = min((int)req->essid_len,
9532                                       (int)sizeof(priv->direct_scan_ssid));
9533                         memcpy(priv->direct_scan_ssid, req->essid, len);
9534                         priv->direct_scan_ssid_len = len;
9535                         work = &priv->request_direct_scan;
9536                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9537                         work = &priv->request_passive_scan;
9538                 }
9539         } else {
9540                 /* Normal active broadcast scan */
9541                 work = &priv->request_scan;
9542         }
9543
9544         mutex_unlock(&priv->mutex);
9545
9546         IPW_DEBUG_WX("Start scan\n");
9547
9548         queue_delayed_work(priv->workqueue, work, 0);
9549
9550         return 0;
9551 }
9552
9553 static int ipw_wx_get_scan(struct net_device *dev,
9554                            struct iw_request_info *info,
9555                            union iwreq_data *wrqu, char *extra)
9556 {
9557         struct ipw_priv *priv = ieee80211_priv(dev);
9558         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9559 }
9560
9561 static int ipw_wx_set_encode(struct net_device *dev,
9562                              struct iw_request_info *info,
9563                              union iwreq_data *wrqu, char *key)
9564 {
9565         struct ipw_priv *priv = ieee80211_priv(dev);
9566         int ret;
9567         u32 cap = priv->capability;
9568
9569         mutex_lock(&priv->mutex);
9570         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9571
9572         /* In IBSS mode, we need to notify the firmware to update
9573          * the beacon info after we changed the capability. */
9574         if (cap != priv->capability &&
9575             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9576             priv->status & STATUS_ASSOCIATED)
9577                 ipw_disassociate(priv);
9578
9579         mutex_unlock(&priv->mutex);
9580         return ret;
9581 }
9582
9583 static int ipw_wx_get_encode(struct net_device *dev,
9584                              struct iw_request_info *info,
9585                              union iwreq_data *wrqu, char *key)
9586 {
9587         struct ipw_priv *priv = ieee80211_priv(dev);
9588         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9589 }
9590
9591 static int ipw_wx_set_power(struct net_device *dev,
9592                             struct iw_request_info *info,
9593                             union iwreq_data *wrqu, char *extra)
9594 {
9595         struct ipw_priv *priv = ieee80211_priv(dev);
9596         int err;
9597         mutex_lock(&priv->mutex);
9598         if (wrqu->power.disabled) {
9599                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9600                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9601                 if (err) {
9602                         IPW_DEBUG_WX("failed setting power mode.\n");
9603                         mutex_unlock(&priv->mutex);
9604                         return err;
9605                 }
9606                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9607                 mutex_unlock(&priv->mutex);
9608                 return 0;
9609         }
9610
9611         switch (wrqu->power.flags & IW_POWER_MODE) {
9612         case IW_POWER_ON:       /* If not specified */
9613         case IW_POWER_MODE:     /* If set all mask */
9614         case IW_POWER_ALL_R:    /* If explicitly state all */
9615                 break;
9616         default:                /* Otherwise we don't support it */
9617                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9618                              wrqu->power.flags);
9619                 mutex_unlock(&priv->mutex);
9620                 return -EOPNOTSUPP;
9621         }
9622
9623         /* If the user hasn't specified a power management mode yet, default
9624          * to BATTERY */
9625         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9626                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9627         else
9628                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9629
9630         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9631         if (err) {
9632                 IPW_DEBUG_WX("failed setting power mode.\n");
9633                 mutex_unlock(&priv->mutex);
9634                 return err;
9635         }
9636
9637         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9638         mutex_unlock(&priv->mutex);
9639         return 0;
9640 }
9641
9642 static int ipw_wx_get_power(struct net_device *dev,
9643                             struct iw_request_info *info,
9644                             union iwreq_data *wrqu, char *extra)
9645 {
9646         struct ipw_priv *priv = ieee80211_priv(dev);
9647         mutex_lock(&priv->mutex);
9648         if (!(priv->power_mode & IPW_POWER_ENABLED))
9649                 wrqu->power.disabled = 1;
9650         else
9651                 wrqu->power.disabled = 0;
9652
9653         mutex_unlock(&priv->mutex);
9654         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9655
9656         return 0;
9657 }
9658
9659 static int ipw_wx_set_powermode(struct net_device *dev,
9660                                 struct iw_request_info *info,
9661                                 union iwreq_data *wrqu, char *extra)
9662 {
9663         struct ipw_priv *priv = ieee80211_priv(dev);
9664         int mode = *(int *)extra;
9665         int err;
9666
9667         mutex_lock(&priv->mutex);
9668         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9669                 mode = IPW_POWER_AC;
9670
9671         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9672                 err = ipw_send_power_mode(priv, mode);
9673                 if (err) {
9674                         IPW_DEBUG_WX("failed setting power mode.\n");
9675                         mutex_unlock(&priv->mutex);
9676                         return err;
9677                 }
9678                 priv->power_mode = IPW_POWER_ENABLED | mode;
9679         }
9680         mutex_unlock(&priv->mutex);
9681         return 0;
9682 }
9683
9684 #define MAX_WX_STRING 80
9685 static int ipw_wx_get_powermode(struct net_device *dev,
9686                                 struct iw_request_info *info,
9687                                 union iwreq_data *wrqu, char *extra)
9688 {
9689         struct ipw_priv *priv = ieee80211_priv(dev);
9690         int level = IPW_POWER_LEVEL(priv->power_mode);
9691         char *p = extra;
9692
9693         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9694
9695         switch (level) {
9696         case IPW_POWER_AC:
9697                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9698                 break;
9699         case IPW_POWER_BATTERY:
9700                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9701                 break;
9702         default:
9703                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9704                               "(Timeout %dms, Period %dms)",
9705                               timeout_duration[level - 1] / 1000,
9706                               period_duration[level - 1] / 1000);
9707         }
9708
9709         if (!(priv->power_mode & IPW_POWER_ENABLED))
9710                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9711
9712         wrqu->data.length = p - extra + 1;
9713
9714         return 0;
9715 }
9716
9717 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9718                                     struct iw_request_info *info,
9719                                     union iwreq_data *wrqu, char *extra)
9720 {
9721         struct ipw_priv *priv = ieee80211_priv(dev);
9722         int mode = *(int *)extra;
9723         u8 band = 0, modulation = 0;
9724
9725         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9726                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9727                 return -EINVAL;
9728         }
9729         mutex_lock(&priv->mutex);
9730         if (priv->adapter == IPW_2915ABG) {
9731                 priv->ieee->abg_true = 1;
9732                 if (mode & IEEE_A) {
9733                         band |= IEEE80211_52GHZ_BAND;
9734                         modulation |= IEEE80211_OFDM_MODULATION;
9735                 } else
9736                         priv->ieee->abg_true = 0;
9737         } else {
9738                 if (mode & IEEE_A) {
9739                         IPW_WARNING("Attempt to set 2200BG into "
9740                                     "802.11a mode\n");
9741                         mutex_unlock(&priv->mutex);
9742                         return -EINVAL;
9743                 }
9744
9745                 priv->ieee->abg_true = 0;
9746         }
9747
9748         if (mode & IEEE_B) {
9749                 band |= IEEE80211_24GHZ_BAND;
9750                 modulation |= IEEE80211_CCK_MODULATION;
9751         } else
9752                 priv->ieee->abg_true = 0;
9753
9754         if (mode & IEEE_G) {
9755                 band |= IEEE80211_24GHZ_BAND;
9756                 modulation |= IEEE80211_OFDM_MODULATION;
9757         } else
9758                 priv->ieee->abg_true = 0;
9759
9760         priv->ieee->mode = mode;
9761         priv->ieee->freq_band = band;
9762         priv->ieee->modulation = modulation;
9763         init_supported_rates(priv, &priv->rates);
9764
9765         /* Network configuration changed -- force [re]association */
9766         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9767         if (!ipw_disassociate(priv)) {
9768                 ipw_send_supported_rates(priv, &priv->rates);
9769                 ipw_associate(priv);
9770         }
9771
9772         /* Update the band LEDs */
9773         ipw_led_band_on(priv);
9774
9775         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9776                      mode & IEEE_A ? 'a' : '.',
9777                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9778         mutex_unlock(&priv->mutex);
9779         return 0;
9780 }
9781
9782 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9783                                     struct iw_request_info *info,
9784                                     union iwreq_data *wrqu, char *extra)
9785 {
9786         struct ipw_priv *priv = ieee80211_priv(dev);
9787         mutex_lock(&priv->mutex);
9788         switch (priv->ieee->mode) {
9789         case IEEE_A:
9790                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9791                 break;
9792         case IEEE_B:
9793                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9794                 break;
9795         case IEEE_A | IEEE_B:
9796                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9797                 break;
9798         case IEEE_G:
9799                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9800                 break;
9801         case IEEE_A | IEEE_G:
9802                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9803                 break;
9804         case IEEE_B | IEEE_G:
9805                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9806                 break;
9807         case IEEE_A | IEEE_B | IEEE_G:
9808                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9809                 break;
9810         default:
9811                 strncpy(extra, "unknown", MAX_WX_STRING);
9812                 break;
9813         }
9814
9815         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9816
9817         wrqu->data.length = strlen(extra) + 1;
9818         mutex_unlock(&priv->mutex);
9819
9820         return 0;
9821 }
9822
9823 static int ipw_wx_set_preamble(struct net_device *dev,
9824                                struct iw_request_info *info,
9825                                union iwreq_data *wrqu, char *extra)
9826 {
9827         struct ipw_priv *priv = ieee80211_priv(dev);
9828         int mode = *(int *)extra;
9829         mutex_lock(&priv->mutex);
9830         /* Switching from SHORT -> LONG requires a disassociation */
9831         if (mode == 1) {
9832                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9833                         priv->config |= CFG_PREAMBLE_LONG;
9834
9835                         /* Network configuration changed -- force [re]association */
9836                         IPW_DEBUG_ASSOC
9837                             ("[re]association triggered due to preamble change.\n");
9838                         if (!ipw_disassociate(priv))
9839                                 ipw_associate(priv);
9840                 }
9841                 goto done;
9842         }
9843
9844         if (mode == 0) {
9845                 priv->config &= ~CFG_PREAMBLE_LONG;
9846                 goto done;
9847         }
9848         mutex_unlock(&priv->mutex);
9849         return -EINVAL;
9850
9851       done:
9852         mutex_unlock(&priv->mutex);
9853         return 0;
9854 }
9855
9856 static int ipw_wx_get_preamble(struct net_device *dev,
9857                                struct iw_request_info *info,
9858                                union iwreq_data *wrqu, char *extra)
9859 {
9860         struct ipw_priv *priv = ieee80211_priv(dev);
9861         mutex_lock(&priv->mutex);
9862         if (priv->config & CFG_PREAMBLE_LONG)
9863                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9864         else
9865                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9866         mutex_unlock(&priv->mutex);
9867         return 0;
9868 }
9869
9870 #ifdef CONFIG_IPW2200_MONITOR
9871 static int ipw_wx_set_monitor(struct net_device *dev,
9872                               struct iw_request_info *info,
9873                               union iwreq_data *wrqu, char *extra)
9874 {
9875         struct ipw_priv *priv = ieee80211_priv(dev);
9876         int *parms = (int *)extra;
9877         int enable = (parms[0] > 0);
9878         mutex_lock(&priv->mutex);
9879         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9880         if (enable) {
9881                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9882 #ifdef CONFIG_IPW2200_RADIOTAP
9883                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9884 #else
9885                         priv->net_dev->type = ARPHRD_IEEE80211;
9886 #endif
9887                         queue_work(priv->workqueue, &priv->adapter_restart);
9888                 }
9889
9890                 ipw_set_channel(priv, parms[1]);
9891         } else {
9892                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9893                         mutex_unlock(&priv->mutex);
9894                         return 0;
9895                 }
9896                 priv->net_dev->type = ARPHRD_ETHER;
9897                 queue_work(priv->workqueue, &priv->adapter_restart);
9898         }
9899         mutex_unlock(&priv->mutex);
9900         return 0;
9901 }
9902
9903 #endif                          /* CONFIG_IPW2200_MONITOR */
9904
9905 static int ipw_wx_reset(struct net_device *dev,
9906                         struct iw_request_info *info,
9907                         union iwreq_data *wrqu, char *extra)
9908 {
9909         struct ipw_priv *priv = ieee80211_priv(dev);
9910         IPW_DEBUG_WX("RESET\n");
9911         queue_work(priv->workqueue, &priv->adapter_restart);
9912         return 0;
9913 }
9914
9915 static int ipw_wx_sw_reset(struct net_device *dev,
9916                            struct iw_request_info *info,
9917                            union iwreq_data *wrqu, char *extra)
9918 {
9919         struct ipw_priv *priv = ieee80211_priv(dev);
9920         union iwreq_data wrqu_sec = {
9921                 .encoding = {
9922                              .flags = IW_ENCODE_DISABLED,
9923                              },
9924         };
9925         int ret;
9926
9927         IPW_DEBUG_WX("SW_RESET\n");
9928
9929         mutex_lock(&priv->mutex);
9930
9931         ret = ipw_sw_reset(priv, 2);
9932         if (!ret) {
9933                 free_firmware();
9934                 ipw_adapter_restart(priv);
9935         }
9936
9937         /* The SW reset bit might have been toggled on by the 'disable'
9938          * module parameter, so take appropriate action */
9939         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9940
9941         mutex_unlock(&priv->mutex);
9942         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9943         mutex_lock(&priv->mutex);
9944
9945         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9946                 /* Configuration likely changed -- force [re]association */
9947                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9948                                 "reset.\n");
9949                 if (!ipw_disassociate(priv))
9950                         ipw_associate(priv);
9951         }
9952
9953         mutex_unlock(&priv->mutex);
9954
9955         return 0;
9956 }
9957
9958 /* Rebase the WE IOCTLs to zero for the handler array */
9959 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9960 static iw_handler ipw_wx_handlers[] = {
9961         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9962         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9963         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9964         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9965         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9966         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9967         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9968         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9969         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9970         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9971         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9972         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9973         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9974         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9975         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9976         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9977         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9978         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9979         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9980         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9981         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9982         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9983         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9984         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9985         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9986         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9987         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9988         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9989         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9990         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9991         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9992         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9993         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9994         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9995         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9996         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9997         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9998         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9999         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10000         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10001         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10002 };
10003
10004 enum {
10005         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10006         IPW_PRIV_GET_POWER,
10007         IPW_PRIV_SET_MODE,
10008         IPW_PRIV_GET_MODE,
10009         IPW_PRIV_SET_PREAMBLE,
10010         IPW_PRIV_GET_PREAMBLE,
10011         IPW_PRIV_RESET,
10012         IPW_PRIV_SW_RESET,
10013 #ifdef CONFIG_IPW2200_MONITOR
10014         IPW_PRIV_SET_MONITOR,
10015 #endif
10016 };
10017
10018 static struct iw_priv_args ipw_priv_args[] = {
10019         {
10020          .cmd = IPW_PRIV_SET_POWER,
10021          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10022          .name = "set_power"},
10023         {
10024          .cmd = IPW_PRIV_GET_POWER,
10025          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10026          .name = "get_power"},
10027         {
10028          .cmd = IPW_PRIV_SET_MODE,
10029          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10030          .name = "set_mode"},
10031         {
10032          .cmd = IPW_PRIV_GET_MODE,
10033          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10034          .name = "get_mode"},
10035         {
10036          .cmd = IPW_PRIV_SET_PREAMBLE,
10037          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10038          .name = "set_preamble"},
10039         {
10040          .cmd = IPW_PRIV_GET_PREAMBLE,
10041          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10042          .name = "get_preamble"},
10043         {
10044          IPW_PRIV_RESET,
10045          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10046         {
10047          IPW_PRIV_SW_RESET,
10048          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10049 #ifdef CONFIG_IPW2200_MONITOR
10050         {
10051          IPW_PRIV_SET_MONITOR,
10052          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10053 #endif                          /* CONFIG_IPW2200_MONITOR */
10054 };
10055
10056 static iw_handler ipw_priv_handler[] = {
10057         ipw_wx_set_powermode,
10058         ipw_wx_get_powermode,
10059         ipw_wx_set_wireless_mode,
10060         ipw_wx_get_wireless_mode,
10061         ipw_wx_set_preamble,
10062         ipw_wx_get_preamble,
10063         ipw_wx_reset,
10064         ipw_wx_sw_reset,
10065 #ifdef CONFIG_IPW2200_MONITOR
10066         ipw_wx_set_monitor,
10067 #endif
10068 };
10069
10070 static struct iw_handler_def ipw_wx_handler_def = {
10071         .standard = ipw_wx_handlers,
10072         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10073         .num_private = ARRAY_SIZE(ipw_priv_handler),
10074         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10075         .private = ipw_priv_handler,
10076         .private_args = ipw_priv_args,
10077         .get_wireless_stats = ipw_get_wireless_stats,
10078 };
10079
10080 /*
10081  * Get wireless statistics.
10082  * Called by /proc/net/wireless
10083  * Also called by SIOCGIWSTATS
10084  */
10085 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10086 {
10087         struct ipw_priv *priv = ieee80211_priv(dev);
10088         struct iw_statistics *wstats;
10089
10090         wstats = &priv->wstats;
10091
10092         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10093          * netdev->get_wireless_stats seems to be called before fw is
10094          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10095          * and associated; if not associcated, the values are all meaningless
10096          * anyway, so set them all to NULL and INVALID */
10097         if (!(priv->status & STATUS_ASSOCIATED)) {
10098                 wstats->miss.beacon = 0;
10099                 wstats->discard.retries = 0;
10100                 wstats->qual.qual = 0;
10101                 wstats->qual.level = 0;
10102                 wstats->qual.noise = 0;
10103                 wstats->qual.updated = 7;
10104                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10105                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10106                 return wstats;
10107         }
10108
10109         wstats->qual.qual = priv->quality;
10110         wstats->qual.level = priv->exp_avg_rssi;
10111         wstats->qual.noise = priv->exp_avg_noise;
10112         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10113             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10114
10115         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10116         wstats->discard.retries = priv->last_tx_failures;
10117         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10118
10119 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10120         goto fail_get_ordinal;
10121         wstats->discard.retries += tx_retry; */
10122
10123         return wstats;
10124 }
10125
10126 /* net device stuff */
10127
10128 static  void init_sys_config(struct ipw_sys_config *sys_config)
10129 {
10130         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10131         sys_config->bt_coexistence = 0;
10132         sys_config->answer_broadcast_ssid_probe = 0;
10133         sys_config->accept_all_data_frames = 0;
10134         sys_config->accept_non_directed_frames = 1;
10135         sys_config->exclude_unicast_unencrypted = 0;
10136         sys_config->disable_unicast_decryption = 1;
10137         sys_config->exclude_multicast_unencrypted = 0;
10138         sys_config->disable_multicast_decryption = 1;
10139         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10140                 antenna = CFG_SYS_ANTENNA_BOTH;
10141         sys_config->antenna_diversity = antenna;
10142         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10143         sys_config->dot11g_auto_detection = 0;
10144         sys_config->enable_cts_to_self = 0;
10145         sys_config->bt_coexist_collision_thr = 0;
10146         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10147         sys_config->silence_threshold = 0x1e;
10148 }
10149
10150 static int ipw_net_open(struct net_device *dev)
10151 {
10152         IPW_DEBUG_INFO("dev->open\n");
10153         netif_start_queue(dev);
10154         return 0;
10155 }
10156
10157 static int ipw_net_stop(struct net_device *dev)
10158 {
10159         IPW_DEBUG_INFO("dev->close\n");
10160         netif_stop_queue(dev);
10161         return 0;
10162 }
10163
10164 /*
10165 todo:
10166
10167 modify to send one tfd per fragment instead of using chunking.  otherwise
10168 we need to heavily modify the ieee80211_skb_to_txb.
10169 */
10170
10171 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10172                              int pri)
10173 {
10174         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10175             txb->fragments[0]->data;
10176         int i = 0;
10177         struct tfd_frame *tfd;
10178 #ifdef CONFIG_IPW2200_QOS
10179         int tx_id = ipw_get_tx_queue_number(priv, pri);
10180         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10181 #else
10182         struct clx2_tx_queue *txq = &priv->txq[0];
10183 #endif
10184         struct clx2_queue *q = &txq->q;
10185         u8 id, hdr_len, unicast;
10186         u16 remaining_bytes;
10187         int fc;
10188
10189         if (!(priv->status & STATUS_ASSOCIATED))
10190                 goto drop;
10191
10192         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10193         switch (priv->ieee->iw_mode) {
10194         case IW_MODE_ADHOC:
10195                 unicast = !is_multicast_ether_addr(hdr->addr1);
10196                 id = ipw_find_station(priv, hdr->addr1);
10197                 if (id == IPW_INVALID_STATION) {
10198                         id = ipw_add_station(priv, hdr->addr1);
10199                         if (id == IPW_INVALID_STATION) {
10200                                 IPW_WARNING("Attempt to send data to "
10201                                             "invalid cell: %pM\n",
10202                                             hdr->addr1);
10203                                 goto drop;
10204                         }
10205                 }
10206                 break;
10207
10208         case IW_MODE_INFRA:
10209         default:
10210                 unicast = !is_multicast_ether_addr(hdr->addr3);
10211                 id = 0;
10212                 break;
10213         }
10214
10215         tfd = &txq->bd[q->first_empty];
10216         txq->txb[q->first_empty] = txb;
10217         memset(tfd, 0, sizeof(*tfd));
10218         tfd->u.data.station_number = id;
10219
10220         tfd->control_flags.message_type = TX_FRAME_TYPE;
10221         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10222
10223         tfd->u.data.cmd_id = DINO_CMD_TX;
10224         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10225         remaining_bytes = txb->payload_size;
10226
10227         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10228                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10229         else
10230                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10231
10232         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10233                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10234
10235         fc = le16_to_cpu(hdr->frame_ctl);
10236         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10237
10238         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10239
10240         if (likely(unicast))
10241                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10242
10243         if (txb->encrypted && !priv->ieee->host_encrypt) {
10244                 switch (priv->ieee->sec.level) {
10245                 case SEC_LEVEL_3:
10246                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10247                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10248                         /* XXX: ACK flag must be set for CCMP even if it
10249                          * is a multicast/broadcast packet, because CCMP
10250                          * group communication encrypted by GTK is
10251                          * actually done by the AP. */
10252                         if (!unicast)
10253                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10254
10255                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10256                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10257                         tfd->u.data.key_index = 0;
10258                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10259                         break;
10260                 case SEC_LEVEL_2:
10261                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10262                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10263                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10264                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10265                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10266                         break;
10267                 case SEC_LEVEL_1:
10268                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10269                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10270                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10271                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10272                             40)
10273                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10274                         else
10275                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10276                         break;
10277                 case SEC_LEVEL_0:
10278                         break;
10279                 default:
10280                         printk(KERN_ERR "Unknow security level %d\n",
10281                                priv->ieee->sec.level);
10282                         break;
10283                 }
10284         } else
10285                 /* No hardware encryption */
10286                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10287
10288 #ifdef CONFIG_IPW2200_QOS
10289         if (fc & IEEE80211_STYPE_QOS_DATA)
10290                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10291 #endif                          /* CONFIG_IPW2200_QOS */
10292
10293         /* payload */
10294         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10295                                                  txb->nr_frags));
10296         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10297                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10298         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10299                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10300                                i, le32_to_cpu(tfd->u.data.num_chunks),
10301                                txb->fragments[i]->len - hdr_len);
10302                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10303                              i, tfd->u.data.num_chunks,
10304                              txb->fragments[i]->len - hdr_len);
10305                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10306                            txb->fragments[i]->len - hdr_len);
10307
10308                 tfd->u.data.chunk_ptr[i] =
10309                     cpu_to_le32(pci_map_single
10310                                 (priv->pci_dev,
10311                                  txb->fragments[i]->data + hdr_len,
10312                                  txb->fragments[i]->len - hdr_len,
10313                                  PCI_DMA_TODEVICE));
10314                 tfd->u.data.chunk_len[i] =
10315                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10316         }
10317
10318         if (i != txb->nr_frags) {
10319                 struct sk_buff *skb;
10320                 u16 remaining_bytes = 0;
10321                 int j;
10322
10323                 for (j = i; j < txb->nr_frags; j++)
10324                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10325
10326                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10327                        remaining_bytes);
10328                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10329                 if (skb != NULL) {
10330                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10331                         for (j = i; j < txb->nr_frags; j++) {
10332                                 int size = txb->fragments[j]->len - hdr_len;
10333
10334                                 printk(KERN_INFO "Adding frag %d %d...\n",
10335                                        j, size);
10336                                 memcpy(skb_put(skb, size),
10337                                        txb->fragments[j]->data + hdr_len, size);
10338                         }
10339                         dev_kfree_skb_any(txb->fragments[i]);
10340                         txb->fragments[i] = skb;
10341                         tfd->u.data.chunk_ptr[i] =
10342                             cpu_to_le32(pci_map_single
10343                                         (priv->pci_dev, skb->data,
10344                                          remaining_bytes,
10345                                          PCI_DMA_TODEVICE));
10346
10347                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10348                 }
10349         }
10350
10351         /* kick DMA */
10352         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10353         ipw_write32(priv, q->reg_w, q->first_empty);
10354
10355         if (ipw_tx_queue_space(q) < q->high_mark)
10356                 netif_stop_queue(priv->net_dev);
10357
10358         return NETDEV_TX_OK;
10359
10360       drop:
10361         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10362         ieee80211_txb_free(txb);
10363         return NETDEV_TX_OK;
10364 }
10365
10366 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10367 {
10368         struct ipw_priv *priv = ieee80211_priv(dev);
10369 #ifdef CONFIG_IPW2200_QOS
10370         int tx_id = ipw_get_tx_queue_number(priv, pri);
10371         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10372 #else
10373         struct clx2_tx_queue *txq = &priv->txq[0];
10374 #endif                          /* CONFIG_IPW2200_QOS */
10375
10376         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10377                 return 1;
10378
10379         return 0;
10380 }
10381
10382 #ifdef CONFIG_IPW2200_PROMISCUOUS
10383 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10384                                       struct ieee80211_txb *txb)
10385 {
10386         struct ieee80211_rx_stats dummystats;
10387         struct ieee80211_hdr *hdr;
10388         u8 n;
10389         u16 filter = priv->prom_priv->filter;
10390         int hdr_only = 0;
10391
10392         if (filter & IPW_PROM_NO_TX)
10393                 return;
10394
10395         memset(&dummystats, 0, sizeof(dummystats));
10396
10397         /* Filtering of fragment chains is done agains the first fragment */
10398         hdr = (void *)txb->fragments[0]->data;
10399         if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10400                 if (filter & IPW_PROM_NO_MGMT)
10401                         return;
10402                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10403                         hdr_only = 1;
10404         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10405                 if (filter & IPW_PROM_NO_CTL)
10406                         return;
10407                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10408                         hdr_only = 1;
10409         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10410                 if (filter & IPW_PROM_NO_DATA)
10411                         return;
10412                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10413                         hdr_only = 1;
10414         }
10415
10416         for(n=0; n<txb->nr_frags; ++n) {
10417                 struct sk_buff *src = txb->fragments[n];
10418                 struct sk_buff *dst;
10419                 struct ieee80211_radiotap_header *rt_hdr;
10420                 int len;
10421
10422                 if (hdr_only) {
10423                         hdr = (void *)src->data;
10424                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10425                 } else
10426                         len = src->len;
10427
10428                 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10429                 if (!dst)
10430                         continue;
10431
10432                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10433
10434                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10435                 rt_hdr->it_pad = 0;
10436                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10437                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10438
10439                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10440                         ieee80211chan2mhz(priv->channel));
10441                 if (priv->channel > 14)         /* 802.11a */
10442                         *(__le16*)skb_put(dst, sizeof(u16)) =
10443                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10444                                              IEEE80211_CHAN_5GHZ);
10445                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10446                         *(__le16*)skb_put(dst, sizeof(u16)) =
10447                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10448                                              IEEE80211_CHAN_2GHZ);
10449                 else            /* 802.11g */
10450                         *(__le16*)skb_put(dst, sizeof(u16)) =
10451                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10452                                  IEEE80211_CHAN_2GHZ);
10453
10454                 rt_hdr->it_len = cpu_to_le16(dst->len);
10455
10456                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10457
10458                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10459                         dev_kfree_skb_any(dst);
10460         }
10461 }
10462 #endif
10463
10464 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10465                                    struct net_device *dev, int pri)
10466 {
10467         struct ipw_priv *priv = ieee80211_priv(dev);
10468         unsigned long flags;
10469         int ret;
10470
10471         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10472         spin_lock_irqsave(&priv->lock, flags);
10473
10474 #ifdef CONFIG_IPW2200_PROMISCUOUS
10475         if (rtap_iface && netif_running(priv->prom_net_dev))
10476                 ipw_handle_promiscuous_tx(priv, txb);
10477 #endif
10478
10479         ret = ipw_tx_skb(priv, txb, pri);
10480         if (ret == NETDEV_TX_OK)
10481                 __ipw_led_activity_on(priv);
10482         spin_unlock_irqrestore(&priv->lock, flags);
10483
10484         return ret;
10485 }
10486
10487 static void ipw_net_set_multicast_list(struct net_device *dev)
10488 {
10489
10490 }
10491
10492 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10493 {
10494         struct ipw_priv *priv = ieee80211_priv(dev);
10495         struct sockaddr *addr = p;
10496
10497         if (!is_valid_ether_addr(addr->sa_data))
10498                 return -EADDRNOTAVAIL;
10499         mutex_lock(&priv->mutex);
10500         priv->config |= CFG_CUSTOM_MAC;
10501         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10502         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10503                priv->net_dev->name, priv->mac_addr);
10504         queue_work(priv->workqueue, &priv->adapter_restart);
10505         mutex_unlock(&priv->mutex);
10506         return 0;
10507 }
10508
10509 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10510                                     struct ethtool_drvinfo *info)
10511 {
10512         struct ipw_priv *p = ieee80211_priv(dev);
10513         char vers[64];
10514         char date[32];
10515         u32 len;
10516
10517         strcpy(info->driver, DRV_NAME);
10518         strcpy(info->version, DRV_VERSION);
10519
10520         len = sizeof(vers);
10521         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10522         len = sizeof(date);
10523         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10524
10525         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10526                  vers, date);
10527         strcpy(info->bus_info, pci_name(p->pci_dev));
10528         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10529 }
10530
10531 static u32 ipw_ethtool_get_link(struct net_device *dev)
10532 {
10533         struct ipw_priv *priv = ieee80211_priv(dev);
10534         return (priv->status & STATUS_ASSOCIATED) != 0;
10535 }
10536
10537 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10538 {
10539         return IPW_EEPROM_IMAGE_SIZE;
10540 }
10541
10542 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10543                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10544 {
10545         struct ipw_priv *p = ieee80211_priv(dev);
10546
10547         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10548                 return -EINVAL;
10549         mutex_lock(&p->mutex);
10550         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10551         mutex_unlock(&p->mutex);
10552         return 0;
10553 }
10554
10555 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10556                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10557 {
10558         struct ipw_priv *p = ieee80211_priv(dev);
10559         int i;
10560
10561         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10562                 return -EINVAL;
10563         mutex_lock(&p->mutex);
10564         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10565         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10566                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10567         mutex_unlock(&p->mutex);
10568         return 0;
10569 }
10570
10571 static const struct ethtool_ops ipw_ethtool_ops = {
10572         .get_link = ipw_ethtool_get_link,
10573         .get_drvinfo = ipw_ethtool_get_drvinfo,
10574         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10575         .get_eeprom = ipw_ethtool_get_eeprom,
10576         .set_eeprom = ipw_ethtool_set_eeprom,
10577 };
10578
10579 static irqreturn_t ipw_isr(int irq, void *data)
10580 {
10581         struct ipw_priv *priv = data;
10582         u32 inta, inta_mask;
10583
10584         if (!priv)
10585                 return IRQ_NONE;
10586
10587         spin_lock(&priv->irq_lock);
10588
10589         if (!(priv->status & STATUS_INT_ENABLED)) {
10590                 /* IRQ is disabled */
10591                 goto none;
10592         }
10593
10594         inta = ipw_read32(priv, IPW_INTA_RW);
10595         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10596
10597         if (inta == 0xFFFFFFFF) {
10598                 /* Hardware disappeared */
10599                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10600                 goto none;
10601         }
10602
10603         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10604                 /* Shared interrupt */
10605                 goto none;
10606         }
10607
10608         /* tell the device to stop sending interrupts */
10609         __ipw_disable_interrupts(priv);
10610
10611         /* ack current interrupts */
10612         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10613         ipw_write32(priv, IPW_INTA_RW, inta);
10614
10615         /* Cache INTA value for our tasklet */
10616         priv->isr_inta = inta;
10617
10618         tasklet_schedule(&priv->irq_tasklet);
10619
10620         spin_unlock(&priv->irq_lock);
10621
10622         return IRQ_HANDLED;
10623       none:
10624         spin_unlock(&priv->irq_lock);
10625         return IRQ_NONE;
10626 }
10627
10628 static void ipw_rf_kill(void *adapter)
10629 {
10630         struct ipw_priv *priv = adapter;
10631         unsigned long flags;
10632
10633         spin_lock_irqsave(&priv->lock, flags);
10634
10635         if (rf_kill_active(priv)) {
10636                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10637                 if (priv->workqueue)
10638                         queue_delayed_work(priv->workqueue,
10639                                            &priv->rf_kill, 2 * HZ);
10640                 goto exit_unlock;
10641         }
10642
10643         /* RF Kill is now disabled, so bring the device back up */
10644
10645         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10646                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10647                                   "device\n");
10648
10649                 /* we can not do an adapter restart while inside an irq lock */
10650                 queue_work(priv->workqueue, &priv->adapter_restart);
10651         } else
10652                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10653                                   "enabled\n");
10654
10655       exit_unlock:
10656         spin_unlock_irqrestore(&priv->lock, flags);
10657 }
10658
10659 static void ipw_bg_rf_kill(struct work_struct *work)
10660 {
10661         struct ipw_priv *priv =
10662                 container_of(work, struct ipw_priv, rf_kill.work);
10663         mutex_lock(&priv->mutex);
10664         ipw_rf_kill(priv);
10665         mutex_unlock(&priv->mutex);
10666 }
10667
10668 static void ipw_link_up(struct ipw_priv *priv)
10669 {
10670         priv->last_seq_num = -1;
10671         priv->last_frag_num = -1;
10672         priv->last_packet_time = 0;
10673
10674         netif_carrier_on(priv->net_dev);
10675
10676         cancel_delayed_work(&priv->request_scan);
10677         cancel_delayed_work(&priv->request_direct_scan);
10678         cancel_delayed_work(&priv->request_passive_scan);
10679         cancel_delayed_work(&priv->scan_event);
10680         ipw_reset_stats(priv);
10681         /* Ensure the rate is updated immediately */
10682         priv->last_rate = ipw_get_current_rate(priv);
10683         ipw_gather_stats(priv);
10684         ipw_led_link_up(priv);
10685         notify_wx_assoc_event(priv);
10686
10687         if (priv->config & CFG_BACKGROUND_SCAN)
10688                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10689 }
10690
10691 static void ipw_bg_link_up(struct work_struct *work)
10692 {
10693         struct ipw_priv *priv =
10694                 container_of(work, struct ipw_priv, link_up);
10695         mutex_lock(&priv->mutex);
10696         ipw_link_up(priv);
10697         mutex_unlock(&priv->mutex);
10698 }
10699
10700 static void ipw_link_down(struct ipw_priv *priv)
10701 {
10702         ipw_led_link_down(priv);
10703         netif_carrier_off(priv->net_dev);
10704         notify_wx_assoc_event(priv);
10705
10706         /* Cancel any queued work ... */
10707         cancel_delayed_work(&priv->request_scan);
10708         cancel_delayed_work(&priv->request_direct_scan);
10709         cancel_delayed_work(&priv->request_passive_scan);
10710         cancel_delayed_work(&priv->adhoc_check);
10711         cancel_delayed_work(&priv->gather_stats);
10712
10713         ipw_reset_stats(priv);
10714
10715         if (!(priv->status & STATUS_EXIT_PENDING)) {
10716                 /* Queue up another scan... */
10717                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10718         } else
10719                 cancel_delayed_work(&priv->scan_event);
10720 }
10721
10722 static void ipw_bg_link_down(struct work_struct *work)
10723 {
10724         struct ipw_priv *priv =
10725                 container_of(work, struct ipw_priv, link_down);
10726         mutex_lock(&priv->mutex);
10727         ipw_link_down(priv);
10728         mutex_unlock(&priv->mutex);
10729 }
10730
10731 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10732 {
10733         int ret = 0;
10734
10735         priv->workqueue = create_workqueue(DRV_NAME);
10736         init_waitqueue_head(&priv->wait_command_queue);
10737         init_waitqueue_head(&priv->wait_state);
10738
10739         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10740         INIT_WORK(&priv->associate, ipw_bg_associate);
10741         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10742         INIT_WORK(&priv->system_config, ipw_system_config);
10743         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10744         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10745         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10746         INIT_WORK(&priv->up, ipw_bg_up);
10747         INIT_WORK(&priv->down, ipw_bg_down);
10748         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10749         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10750         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10751         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10752         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10753         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10754         INIT_WORK(&priv->roam, ipw_bg_roam);
10755         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10756         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10757         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10758         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10759         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10760         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10761         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10762
10763 #ifdef CONFIG_IPW2200_QOS
10764         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10765 #endif                          /* CONFIG_IPW2200_QOS */
10766
10767         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10768                      ipw_irq_tasklet, (unsigned long)priv);
10769
10770         return ret;
10771 }
10772
10773 static void shim__set_security(struct net_device *dev,
10774                                struct ieee80211_security *sec)
10775 {
10776         struct ipw_priv *priv = ieee80211_priv(dev);
10777         int i;
10778         for (i = 0; i < 4; i++) {
10779                 if (sec->flags & (1 << i)) {
10780                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10781                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10782                         if (sec->key_sizes[i] == 0)
10783                                 priv->ieee->sec.flags &= ~(1 << i);
10784                         else {
10785                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10786                                        sec->key_sizes[i]);
10787                                 priv->ieee->sec.flags |= (1 << i);
10788                         }
10789                         priv->status |= STATUS_SECURITY_UPDATED;
10790                 } else if (sec->level != SEC_LEVEL_1)
10791                         priv->ieee->sec.flags &= ~(1 << i);
10792         }
10793
10794         if (sec->flags & SEC_ACTIVE_KEY) {
10795                 if (sec->active_key <= 3) {
10796                         priv->ieee->sec.active_key = sec->active_key;
10797                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10798                 } else
10799                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10800                 priv->status |= STATUS_SECURITY_UPDATED;
10801         } else
10802                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10803
10804         if ((sec->flags & SEC_AUTH_MODE) &&
10805             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10806                 priv->ieee->sec.auth_mode = sec->auth_mode;
10807                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10808                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10809                         priv->capability |= CAP_SHARED_KEY;
10810                 else
10811                         priv->capability &= ~CAP_SHARED_KEY;
10812                 priv->status |= STATUS_SECURITY_UPDATED;
10813         }
10814
10815         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10816                 priv->ieee->sec.flags |= SEC_ENABLED;
10817                 priv->ieee->sec.enabled = sec->enabled;
10818                 priv->status |= STATUS_SECURITY_UPDATED;
10819                 if (sec->enabled)
10820                         priv->capability |= CAP_PRIVACY_ON;
10821                 else
10822                         priv->capability &= ~CAP_PRIVACY_ON;
10823         }
10824
10825         if (sec->flags & SEC_ENCRYPT)
10826                 priv->ieee->sec.encrypt = sec->encrypt;
10827
10828         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10829                 priv->ieee->sec.level = sec->level;
10830                 priv->ieee->sec.flags |= SEC_LEVEL;
10831                 priv->status |= STATUS_SECURITY_UPDATED;
10832         }
10833
10834         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10835                 ipw_set_hwcrypto_keys(priv);
10836
10837         /* To match current functionality of ipw2100 (which works well w/
10838          * various supplicants, we don't force a disassociate if the
10839          * privacy capability changes ... */
10840 #if 0
10841         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10842             (((priv->assoc_request.capability &
10843                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10844              (!(priv->assoc_request.capability &
10845                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10846                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10847                                 "change.\n");
10848                 ipw_disassociate(priv);
10849         }
10850 #endif
10851 }
10852
10853 static int init_supported_rates(struct ipw_priv *priv,
10854                                 struct ipw_supported_rates *rates)
10855 {
10856         /* TODO: Mask out rates based on priv->rates_mask */
10857
10858         memset(rates, 0, sizeof(*rates));
10859         /* configure supported rates */
10860         switch (priv->ieee->freq_band) {
10861         case IEEE80211_52GHZ_BAND:
10862                 rates->ieee_mode = IPW_A_MODE;
10863                 rates->purpose = IPW_RATE_CAPABILITIES;
10864                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10865                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10866                 break;
10867
10868         default:                /* Mixed or 2.4Ghz */
10869                 rates->ieee_mode = IPW_G_MODE;
10870                 rates->purpose = IPW_RATE_CAPABILITIES;
10871                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10872                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10873                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10874                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10875                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10876                 }
10877                 break;
10878         }
10879
10880         return 0;
10881 }
10882
10883 static int ipw_config(struct ipw_priv *priv)
10884 {
10885         /* This is only called from ipw_up, which resets/reloads the firmware
10886            so, we don't need to first disable the card before we configure
10887            it */
10888         if (ipw_set_tx_power(priv))
10889                 goto error;
10890
10891         /* initialize adapter address */
10892         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10893                 goto error;
10894
10895         /* set basic system config settings */
10896         init_sys_config(&priv->sys_config);
10897
10898         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10899          * Does not support BT priority yet (don't abort or defer our Tx) */
10900         if (bt_coexist) {
10901                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10902
10903                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10904                         priv->sys_config.bt_coexistence
10905                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10906                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10907                         priv->sys_config.bt_coexistence
10908                             |= CFG_BT_COEXISTENCE_OOB;
10909         }
10910
10911 #ifdef CONFIG_IPW2200_PROMISCUOUS
10912         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10913                 priv->sys_config.accept_all_data_frames = 1;
10914                 priv->sys_config.accept_non_directed_frames = 1;
10915                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10916                 priv->sys_config.accept_all_mgmt_frames = 1;
10917         }
10918 #endif
10919
10920         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10921                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10922         else
10923                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10924
10925         if (ipw_send_system_config(priv))
10926                 goto error;
10927
10928         init_supported_rates(priv, &priv->rates);
10929         if (ipw_send_supported_rates(priv, &priv->rates))
10930                 goto error;
10931
10932         /* Set request-to-send threshold */
10933         if (priv->rts_threshold) {
10934                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10935                         goto error;
10936         }
10937 #ifdef CONFIG_IPW2200_QOS
10938         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10939         ipw_qos_activate(priv, NULL);
10940 #endif                          /* CONFIG_IPW2200_QOS */
10941
10942         if (ipw_set_random_seed(priv))
10943                 goto error;
10944
10945         /* final state transition to the RUN state */
10946         if (ipw_send_host_complete(priv))
10947                 goto error;
10948
10949         priv->status |= STATUS_INIT;
10950
10951         ipw_led_init(priv);
10952         ipw_led_radio_on(priv);
10953         priv->notif_missed_beacons = 0;
10954
10955         /* Set hardware WEP key if it is configured. */
10956         if ((priv->capability & CAP_PRIVACY_ON) &&
10957             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10958             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10959                 ipw_set_hwcrypto_keys(priv);
10960
10961         return 0;
10962
10963       error:
10964         return -EIO;
10965 }
10966
10967 /*
10968  * NOTE:
10969  *
10970  * These tables have been tested in conjunction with the
10971  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10972  *
10973  * Altering this values, using it on other hardware, or in geographies
10974  * not intended for resale of the above mentioned Intel adapters has
10975  * not been tested.
10976  *
10977  * Remember to update the table in README.ipw2200 when changing this
10978  * table.
10979  *
10980  */
10981 static const struct ieee80211_geo ipw_geos[] = {
10982         {                       /* Restricted */
10983          "---",
10984          .bg_channels = 11,
10985          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10986                 {2427, 4}, {2432, 5}, {2437, 6},
10987                 {2442, 7}, {2447, 8}, {2452, 9},
10988                 {2457, 10}, {2462, 11}},
10989          },
10990
10991         {                       /* Custom US/Canada */
10992          "ZZF",
10993          .bg_channels = 11,
10994          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10995                 {2427, 4}, {2432, 5}, {2437, 6},
10996                 {2442, 7}, {2447, 8}, {2452, 9},
10997                 {2457, 10}, {2462, 11}},
10998          .a_channels = 8,
10999          .a = {{5180, 36},
11000                {5200, 40},
11001                {5220, 44},
11002                {5240, 48},
11003                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11004                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11005                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11006                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11007          },
11008
11009         {                       /* Rest of World */
11010          "ZZD",
11011          .bg_channels = 13,
11012          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11013                 {2427, 4}, {2432, 5}, {2437, 6},
11014                 {2442, 7}, {2447, 8}, {2452, 9},
11015                 {2457, 10}, {2462, 11}, {2467, 12},
11016                 {2472, 13}},
11017          },
11018
11019         {                       /* Custom USA & Europe & High */
11020          "ZZA",
11021          .bg_channels = 11,
11022          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11023                 {2427, 4}, {2432, 5}, {2437, 6},
11024                 {2442, 7}, {2447, 8}, {2452, 9},
11025                 {2457, 10}, {2462, 11}},
11026          .a_channels = 13,
11027          .a = {{5180, 36},
11028                {5200, 40},
11029                {5220, 44},
11030                {5240, 48},
11031                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11032                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11033                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11034                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11035                {5745, 149},
11036                {5765, 153},
11037                {5785, 157},
11038                {5805, 161},
11039                {5825, 165}},
11040          },
11041
11042         {                       /* Custom NA & Europe */
11043          "ZZB",
11044          .bg_channels = 11,
11045          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11046                 {2427, 4}, {2432, 5}, {2437, 6},
11047                 {2442, 7}, {2447, 8}, {2452, 9},
11048                 {2457, 10}, {2462, 11}},
11049          .a_channels = 13,
11050          .a = {{5180, 36},
11051                {5200, 40},
11052                {5220, 44},
11053                {5240, 48},
11054                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11055                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11056                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11057                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11058                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11059                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11060                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11061                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11062                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11063          },
11064
11065         {                       /* Custom Japan */
11066          "ZZC",
11067          .bg_channels = 11,
11068          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11069                 {2427, 4}, {2432, 5}, {2437, 6},
11070                 {2442, 7}, {2447, 8}, {2452, 9},
11071                 {2457, 10}, {2462, 11}},
11072          .a_channels = 4,
11073          .a = {{5170, 34}, {5190, 38},
11074                {5210, 42}, {5230, 46}},
11075          },
11076
11077         {                       /* Custom */
11078          "ZZM",
11079          .bg_channels = 11,
11080          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11081                 {2427, 4}, {2432, 5}, {2437, 6},
11082                 {2442, 7}, {2447, 8}, {2452, 9},
11083                 {2457, 10}, {2462, 11}},
11084          },
11085
11086         {                       /* Europe */
11087          "ZZE",
11088          .bg_channels = 13,
11089          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11090                 {2427, 4}, {2432, 5}, {2437, 6},
11091                 {2442, 7}, {2447, 8}, {2452, 9},
11092                 {2457, 10}, {2462, 11}, {2467, 12},
11093                 {2472, 13}},
11094          .a_channels = 19,
11095          .a = {{5180, 36},
11096                {5200, 40},
11097                {5220, 44},
11098                {5240, 48},
11099                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11100                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11101                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11102                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11103                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11104                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11105                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11106                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11107                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11108                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11109                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11110                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11111                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11112                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11113                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11114          },
11115
11116         {                       /* Custom Japan */
11117          "ZZJ",
11118          .bg_channels = 14,
11119          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11120                 {2427, 4}, {2432, 5}, {2437, 6},
11121                 {2442, 7}, {2447, 8}, {2452, 9},
11122                 {2457, 10}, {2462, 11}, {2467, 12},
11123                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11124          .a_channels = 4,
11125          .a = {{5170, 34}, {5190, 38},
11126                {5210, 42}, {5230, 46}},
11127          },
11128
11129         {                       /* Rest of World */
11130          "ZZR",
11131          .bg_channels = 14,
11132          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11133                 {2427, 4}, {2432, 5}, {2437, 6},
11134                 {2442, 7}, {2447, 8}, {2452, 9},
11135                 {2457, 10}, {2462, 11}, {2467, 12},
11136                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11137                              IEEE80211_CH_PASSIVE_ONLY}},
11138          },
11139
11140         {                       /* High Band */
11141          "ZZH",
11142          .bg_channels = 13,
11143          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11144                 {2427, 4}, {2432, 5}, {2437, 6},
11145                 {2442, 7}, {2447, 8}, {2452, 9},
11146                 {2457, 10}, {2462, 11},
11147                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11148                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11149          .a_channels = 4,
11150          .a = {{5745, 149}, {5765, 153},
11151                {5785, 157}, {5805, 161}},
11152          },
11153
11154         {                       /* Custom Europe */
11155          "ZZG",
11156          .bg_channels = 13,
11157          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11158                 {2427, 4}, {2432, 5}, {2437, 6},
11159                 {2442, 7}, {2447, 8}, {2452, 9},
11160                 {2457, 10}, {2462, 11},
11161                 {2467, 12}, {2472, 13}},
11162          .a_channels = 4,
11163          .a = {{5180, 36}, {5200, 40},
11164                {5220, 44}, {5240, 48}},
11165          },
11166
11167         {                       /* Europe */
11168          "ZZK",
11169          .bg_channels = 13,
11170          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11171                 {2427, 4}, {2432, 5}, {2437, 6},
11172                 {2442, 7}, {2447, 8}, {2452, 9},
11173                 {2457, 10}, {2462, 11},
11174                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11175                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11176          .a_channels = 24,
11177          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11178                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11179                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11180                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11181                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11182                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11183                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11184                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11185                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11186                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11187                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11188                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11189                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11190                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11191                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11192                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11193                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11194                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11195                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11196                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11197                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11198                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11199                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11200                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11201          },
11202
11203         {                       /* Europe */
11204          "ZZL",
11205          .bg_channels = 11,
11206          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11207                 {2427, 4}, {2432, 5}, {2437, 6},
11208                 {2442, 7}, {2447, 8}, {2452, 9},
11209                 {2457, 10}, {2462, 11}},
11210          .a_channels = 13,
11211          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11212                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11213                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11214                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11215                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11216                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11217                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11218                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11219                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11220                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11221                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11222                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11223                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11224          }
11225 };
11226
11227 #define MAX_HW_RESTARTS 5
11228 static int ipw_up(struct ipw_priv *priv)
11229 {
11230         int rc, i, j;
11231
11232         /* Age scan list entries found before suspend */
11233         if (priv->suspend_time) {
11234                 ieee80211_networks_age(priv->ieee, priv->suspend_time);
11235                 priv->suspend_time = 0;
11236         }
11237
11238         if (priv->status & STATUS_EXIT_PENDING)
11239                 return -EIO;
11240
11241         if (cmdlog && !priv->cmdlog) {
11242                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11243                                        GFP_KERNEL);
11244                 if (priv->cmdlog == NULL) {
11245                         IPW_ERROR("Error allocating %d command log entries.\n",
11246                                   cmdlog);
11247                         return -ENOMEM;
11248                 } else {
11249                         priv->cmdlog_len = cmdlog;
11250                 }
11251         }
11252
11253         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11254                 /* Load the microcode, firmware, and eeprom.
11255                  * Also start the clocks. */
11256                 rc = ipw_load(priv);
11257                 if (rc) {
11258                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11259                         return rc;
11260                 }
11261
11262                 ipw_init_ordinals(priv);
11263                 if (!(priv->config & CFG_CUSTOM_MAC))
11264                         eeprom_parse_mac(priv, priv->mac_addr);
11265                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11266
11267                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11268                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11269                                     ipw_geos[j].name, 3))
11270                                 break;
11271                 }
11272                 if (j == ARRAY_SIZE(ipw_geos)) {
11273                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11274                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11275                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11276                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11277                         j = 0;
11278                 }
11279                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11280                         IPW_WARNING("Could not set geography.");
11281                         return 0;
11282                 }
11283
11284                 if (priv->status & STATUS_RF_KILL_SW) {
11285                         IPW_WARNING("Radio disabled by module parameter.\n");
11286                         return 0;
11287                 } else if (rf_kill_active(priv)) {
11288                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11289                                     "Kill switch must be turned off for "
11290                                     "wireless networking to work.\n");
11291                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11292                                            2 * HZ);
11293                         return 0;
11294                 }
11295
11296                 rc = ipw_config(priv);
11297                 if (!rc) {
11298                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11299
11300                         /* If configure to try and auto-associate, kick
11301                          * off a scan. */
11302                         queue_delayed_work(priv->workqueue,
11303                                            &priv->request_scan, 0);
11304
11305                         return 0;
11306                 }
11307
11308                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11309                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11310                                i, MAX_HW_RESTARTS);
11311
11312                 /* We had an error bringing up the hardware, so take it
11313                  * all the way back down so we can try again */
11314                 ipw_down(priv);
11315         }
11316
11317         /* tried to restart and config the device for as long as our
11318          * patience could withstand */
11319         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11320
11321         return -EIO;
11322 }
11323
11324 static void ipw_bg_up(struct work_struct *work)
11325 {
11326         struct ipw_priv *priv =
11327                 container_of(work, struct ipw_priv, up);
11328         mutex_lock(&priv->mutex);
11329         ipw_up(priv);
11330         mutex_unlock(&priv->mutex);
11331 }
11332
11333 static void ipw_deinit(struct ipw_priv *priv)
11334 {
11335         int i;
11336
11337         if (priv->status & STATUS_SCANNING) {
11338                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11339                 ipw_abort_scan(priv);
11340         }
11341
11342         if (priv->status & STATUS_ASSOCIATED) {
11343                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11344                 ipw_disassociate(priv);
11345         }
11346
11347         ipw_led_shutdown(priv);
11348
11349         /* Wait up to 1s for status to change to not scanning and not
11350          * associated (disassociation can take a while for a ful 802.11
11351          * exchange */
11352         for (i = 1000; i && (priv->status &
11353                              (STATUS_DISASSOCIATING |
11354                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11355                 udelay(10);
11356
11357         if (priv->status & (STATUS_DISASSOCIATING |
11358                             STATUS_ASSOCIATED | STATUS_SCANNING))
11359                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11360         else
11361                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11362
11363         /* Attempt to disable the card */
11364         ipw_send_card_disable(priv, 0);
11365
11366         priv->status &= ~STATUS_INIT;
11367 }
11368
11369 static void ipw_down(struct ipw_priv *priv)
11370 {
11371         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11372
11373         priv->status |= STATUS_EXIT_PENDING;
11374
11375         if (ipw_is_init(priv))
11376                 ipw_deinit(priv);
11377
11378         /* Wipe out the EXIT_PENDING status bit if we are not actually
11379          * exiting the module */
11380         if (!exit_pending)
11381                 priv->status &= ~STATUS_EXIT_PENDING;
11382
11383         /* tell the device to stop sending interrupts */
11384         ipw_disable_interrupts(priv);
11385
11386         /* Clear all bits but the RF Kill */
11387         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11388         netif_carrier_off(priv->net_dev);
11389
11390         ipw_stop_nic(priv);
11391
11392         ipw_led_radio_off(priv);
11393 }
11394
11395 static void ipw_bg_down(struct work_struct *work)
11396 {
11397         struct ipw_priv *priv =
11398                 container_of(work, struct ipw_priv, down);
11399         mutex_lock(&priv->mutex);
11400         ipw_down(priv);
11401         mutex_unlock(&priv->mutex);
11402 }
11403
11404 /* Called by register_netdev() */
11405 static int ipw_net_init(struct net_device *dev)
11406 {
11407         struct ipw_priv *priv = ieee80211_priv(dev);
11408         mutex_lock(&priv->mutex);
11409
11410         if (ipw_up(priv)) {
11411                 mutex_unlock(&priv->mutex);
11412                 return -EIO;
11413         }
11414
11415         mutex_unlock(&priv->mutex);
11416         return 0;
11417 }
11418
11419 /* PCI driver stuff */
11420 static struct pci_device_id card_ids[] = {
11421         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11422         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11423         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11424         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11425         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11426         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11427         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11428         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11429         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11430         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11431         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11432         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11433         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11434         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11435         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11436         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11437         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11438         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11439         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11440         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11441         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11442         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11443
11444         /* required last entry */
11445         {0,}
11446 };
11447
11448 MODULE_DEVICE_TABLE(pci, card_ids);
11449
11450 static struct attribute *ipw_sysfs_entries[] = {
11451         &dev_attr_rf_kill.attr,
11452         &dev_attr_direct_dword.attr,
11453         &dev_attr_indirect_byte.attr,
11454         &dev_attr_indirect_dword.attr,
11455         &dev_attr_mem_gpio_reg.attr,
11456         &dev_attr_command_event_reg.attr,
11457         &dev_attr_nic_type.attr,
11458         &dev_attr_status.attr,
11459         &dev_attr_cfg.attr,
11460         &dev_attr_error.attr,
11461         &dev_attr_event_log.attr,
11462         &dev_attr_cmd_log.attr,
11463         &dev_attr_eeprom_delay.attr,
11464         &dev_attr_ucode_version.attr,
11465         &dev_attr_rtc.attr,
11466         &dev_attr_scan_age.attr,
11467         &dev_attr_led.attr,
11468         &dev_attr_speed_scan.attr,
11469         &dev_attr_net_stats.attr,
11470         &dev_attr_channels.attr,
11471 #ifdef CONFIG_IPW2200_PROMISCUOUS
11472         &dev_attr_rtap_iface.attr,
11473         &dev_attr_rtap_filter.attr,
11474 #endif
11475         NULL
11476 };
11477
11478 static struct attribute_group ipw_attribute_group = {
11479         .name = NULL,           /* put in device directory */
11480         .attrs = ipw_sysfs_entries,
11481 };
11482
11483 #ifdef CONFIG_IPW2200_PROMISCUOUS
11484 static int ipw_prom_open(struct net_device *dev)
11485 {
11486         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11487         struct ipw_priv *priv = prom_priv->priv;
11488
11489         IPW_DEBUG_INFO("prom dev->open\n");
11490         netif_carrier_off(dev);
11491
11492         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11493                 priv->sys_config.accept_all_data_frames = 1;
11494                 priv->sys_config.accept_non_directed_frames = 1;
11495                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11496                 priv->sys_config.accept_all_mgmt_frames = 1;
11497
11498                 ipw_send_system_config(priv);
11499         }
11500
11501         return 0;
11502 }
11503
11504 static int ipw_prom_stop(struct net_device *dev)
11505 {
11506         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11507         struct ipw_priv *priv = prom_priv->priv;
11508
11509         IPW_DEBUG_INFO("prom dev->stop\n");
11510
11511         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11512                 priv->sys_config.accept_all_data_frames = 0;
11513                 priv->sys_config.accept_non_directed_frames = 0;
11514                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11515                 priv->sys_config.accept_all_mgmt_frames = 0;
11516
11517                 ipw_send_system_config(priv);
11518         }
11519
11520         return 0;
11521 }
11522
11523 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11524 {
11525         IPW_DEBUG_INFO("prom dev->xmit\n");
11526         return -EOPNOTSUPP;
11527 }
11528
11529 static const struct net_device_ops ipw_prom_netdev_ops = {
11530         .ndo_open               = ipw_prom_open,
11531         .ndo_stop               = ipw_prom_stop,
11532         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11533         .ndo_change_mtu         = ieee80211_change_mtu,
11534         .ndo_set_mac_address    = eth_mac_addr,
11535         .ndo_validate_addr      = eth_validate_addr,
11536 };
11537
11538 static int ipw_prom_alloc(struct ipw_priv *priv)
11539 {
11540         int rc = 0;
11541
11542         if (priv->prom_net_dev)
11543                 return -EPERM;
11544
11545         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11546         if (priv->prom_net_dev == NULL)
11547                 return -ENOMEM;
11548
11549         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11550         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11551         priv->prom_priv->priv = priv;
11552
11553         strcpy(priv->prom_net_dev->name, "rtap%d");
11554         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11555
11556         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11557         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11558
11559         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11560         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11561
11562         rc = register_netdev(priv->prom_net_dev);
11563         if (rc) {
11564                 free_ieee80211(priv->prom_net_dev);
11565                 priv->prom_net_dev = NULL;
11566                 return rc;
11567         }
11568
11569         return 0;
11570 }
11571
11572 static void ipw_prom_free(struct ipw_priv *priv)
11573 {
11574         if (!priv->prom_net_dev)
11575                 return;
11576
11577         unregister_netdev(priv->prom_net_dev);
11578         free_ieee80211(priv->prom_net_dev);
11579
11580         priv->prom_net_dev = NULL;
11581 }
11582
11583 #endif
11584
11585 static const struct net_device_ops ipw_netdev_ops = {
11586         .ndo_init               = ipw_net_init,
11587         .ndo_open               = ipw_net_open,
11588         .ndo_stop               = ipw_net_stop,
11589         .ndo_set_multicast_list = ipw_net_set_multicast_list,
11590         .ndo_set_mac_address    = ipw_net_set_mac_address,
11591         .ndo_start_xmit         = ieee80211_xmit,
11592         .ndo_change_mtu         = ieee80211_change_mtu,
11593         .ndo_validate_addr      = eth_validate_addr,
11594 };
11595
11596 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11597                                    const struct pci_device_id *ent)
11598 {
11599         int err = 0;
11600         struct net_device *net_dev;
11601         void __iomem *base;
11602         u32 length, val;
11603         struct ipw_priv *priv;
11604         int i;
11605
11606         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11607         if (net_dev == NULL) {
11608                 err = -ENOMEM;
11609                 goto out;
11610         }
11611
11612         priv = ieee80211_priv(net_dev);
11613         priv->ieee = netdev_priv(net_dev);
11614
11615         priv->net_dev = net_dev;
11616         priv->pci_dev = pdev;
11617         ipw_debug_level = debug;
11618         spin_lock_init(&priv->irq_lock);
11619         spin_lock_init(&priv->lock);
11620         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11621                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11622
11623         mutex_init(&priv->mutex);
11624         if (pci_enable_device(pdev)) {
11625                 err = -ENODEV;
11626                 goto out_free_ieee80211;
11627         }
11628
11629         pci_set_master(pdev);
11630
11631         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11632         if (!err)
11633                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11634         if (err) {
11635                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11636                 goto out_pci_disable_device;
11637         }
11638
11639         pci_set_drvdata(pdev, priv);
11640
11641         err = pci_request_regions(pdev, DRV_NAME);
11642         if (err)
11643                 goto out_pci_disable_device;
11644
11645         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11646          * PCI Tx retries from interfering with C3 CPU state */
11647         pci_read_config_dword(pdev, 0x40, &val);
11648         if ((val & 0x0000ff00) != 0)
11649                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11650
11651         length = pci_resource_len(pdev, 0);
11652         priv->hw_len = length;
11653
11654         base = pci_ioremap_bar(pdev, 0);
11655         if (!base) {
11656                 err = -ENODEV;
11657                 goto out_pci_release_regions;
11658         }
11659
11660         priv->hw_base = base;
11661         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11662         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11663
11664         err = ipw_setup_deferred_work(priv);
11665         if (err) {
11666                 IPW_ERROR("Unable to setup deferred work\n");
11667                 goto out_iounmap;
11668         }
11669
11670         ipw_sw_reset(priv, 1);
11671
11672         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11673         if (err) {
11674                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11675                 goto out_destroy_workqueue;
11676         }
11677
11678         SET_NETDEV_DEV(net_dev, &pdev->dev);
11679
11680         mutex_lock(&priv->mutex);
11681
11682         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11683         priv->ieee->set_security = shim__set_security;
11684         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11685
11686 #ifdef CONFIG_IPW2200_QOS
11687         priv->ieee->is_qos_active = ipw_is_qos_active;
11688         priv->ieee->handle_probe_response = ipw_handle_beacon;
11689         priv->ieee->handle_beacon = ipw_handle_probe_response;
11690         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11691 #endif                          /* CONFIG_IPW2200_QOS */
11692
11693         priv->ieee->perfect_rssi = -20;
11694         priv->ieee->worst_rssi = -85;
11695
11696         net_dev->netdev_ops = &ipw_netdev_ops;
11697         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11698         net_dev->wireless_data = &priv->wireless_data;
11699         net_dev->wireless_handlers = &ipw_wx_handler_def;
11700         net_dev->ethtool_ops = &ipw_ethtool_ops;
11701         net_dev->irq = pdev->irq;
11702         net_dev->base_addr = (unsigned long)priv->hw_base;
11703         net_dev->mem_start = pci_resource_start(pdev, 0);
11704         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11705
11706         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11707         if (err) {
11708                 IPW_ERROR("failed to create sysfs device attributes\n");
11709                 mutex_unlock(&priv->mutex);
11710                 goto out_release_irq;
11711         }
11712
11713         mutex_unlock(&priv->mutex);
11714         err = register_netdev(net_dev);
11715         if (err) {
11716                 IPW_ERROR("failed to register network device\n");
11717                 goto out_remove_sysfs;
11718         }
11719
11720 #ifdef CONFIG_IPW2200_PROMISCUOUS
11721         if (rtap_iface) {
11722                 err = ipw_prom_alloc(priv);
11723                 if (err) {
11724                         IPW_ERROR("Failed to register promiscuous network "
11725                                   "device (error %d).\n", err);
11726                         unregister_netdev(priv->net_dev);
11727                         goto out_remove_sysfs;
11728                 }
11729         }
11730 #endif
11731
11732         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11733                "channels, %d 802.11a channels)\n",
11734                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11735                priv->ieee->geo.a_channels);
11736
11737         return 0;
11738
11739       out_remove_sysfs:
11740         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11741       out_release_irq:
11742         free_irq(pdev->irq, priv);
11743       out_destroy_workqueue:
11744         destroy_workqueue(priv->workqueue);
11745         priv->workqueue = NULL;
11746       out_iounmap:
11747         iounmap(priv->hw_base);
11748       out_pci_release_regions:
11749         pci_release_regions(pdev);
11750       out_pci_disable_device:
11751         pci_disable_device(pdev);
11752         pci_set_drvdata(pdev, NULL);
11753       out_free_ieee80211:
11754         free_ieee80211(priv->net_dev);
11755       out:
11756         return err;
11757 }
11758
11759 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11760 {
11761         struct ipw_priv *priv = pci_get_drvdata(pdev);
11762         struct list_head *p, *q;
11763         int i;
11764
11765         if (!priv)
11766                 return;
11767
11768         mutex_lock(&priv->mutex);
11769
11770         priv->status |= STATUS_EXIT_PENDING;
11771         ipw_down(priv);
11772         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11773
11774         mutex_unlock(&priv->mutex);
11775
11776         unregister_netdev(priv->net_dev);
11777
11778         if (priv->rxq) {
11779                 ipw_rx_queue_free(priv, priv->rxq);
11780                 priv->rxq = NULL;
11781         }
11782         ipw_tx_queue_free(priv);
11783
11784         if (priv->cmdlog) {
11785                 kfree(priv->cmdlog);
11786                 priv->cmdlog = NULL;
11787         }
11788         /* ipw_down will ensure that there is no more pending work
11789          * in the workqueue's, so we can safely remove them now. */
11790         cancel_delayed_work(&priv->adhoc_check);
11791         cancel_delayed_work(&priv->gather_stats);
11792         cancel_delayed_work(&priv->request_scan);
11793         cancel_delayed_work(&priv->request_direct_scan);
11794         cancel_delayed_work(&priv->request_passive_scan);
11795         cancel_delayed_work(&priv->scan_event);
11796         cancel_delayed_work(&priv->rf_kill);
11797         cancel_delayed_work(&priv->scan_check);
11798         destroy_workqueue(priv->workqueue);
11799         priv->workqueue = NULL;
11800
11801         /* Free MAC hash list for ADHOC */
11802         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11803                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11804                         list_del(p);
11805                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11806                 }
11807         }
11808
11809         kfree(priv->error);
11810         priv->error = NULL;
11811
11812 #ifdef CONFIG_IPW2200_PROMISCUOUS
11813         ipw_prom_free(priv);
11814 #endif
11815
11816         free_irq(pdev->irq, priv);
11817         iounmap(priv->hw_base);
11818         pci_release_regions(pdev);
11819         pci_disable_device(pdev);
11820         pci_set_drvdata(pdev, NULL);
11821         free_ieee80211(priv->net_dev);
11822         free_firmware();
11823 }
11824
11825 #ifdef CONFIG_PM
11826 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11827 {
11828         struct ipw_priv *priv = pci_get_drvdata(pdev);
11829         struct net_device *dev = priv->net_dev;
11830
11831         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11832
11833         /* Take down the device; powers it off, etc. */
11834         ipw_down(priv);
11835
11836         /* Remove the PRESENT state of the device */
11837         netif_device_detach(dev);
11838
11839         pci_save_state(pdev);
11840         pci_disable_device(pdev);
11841         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11842
11843         priv->suspend_at = get_seconds();
11844
11845         return 0;
11846 }
11847
11848 static int ipw_pci_resume(struct pci_dev *pdev)
11849 {
11850         struct ipw_priv *priv = pci_get_drvdata(pdev);
11851         struct net_device *dev = priv->net_dev;
11852         int err;
11853         u32 val;
11854
11855         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11856
11857         pci_set_power_state(pdev, PCI_D0);
11858         err = pci_enable_device(pdev);
11859         if (err) {
11860                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11861                        dev->name);
11862                 return err;
11863         }
11864         pci_restore_state(pdev);
11865
11866         /*
11867          * Suspend/Resume resets the PCI configuration space, so we have to
11868          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11869          * from interfering with C3 CPU state. pci_restore_state won't help
11870          * here since it only restores the first 64 bytes pci config header.
11871          */
11872         pci_read_config_dword(pdev, 0x40, &val);
11873         if ((val & 0x0000ff00) != 0)
11874                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11875
11876         /* Set the device back into the PRESENT state; this will also wake
11877          * the queue of needed */
11878         netif_device_attach(dev);
11879
11880         priv->suspend_time = get_seconds() - priv->suspend_at;
11881
11882         /* Bring the device back up */
11883         queue_work(priv->workqueue, &priv->up);
11884
11885         return 0;
11886 }
11887 #endif
11888
11889 static void ipw_pci_shutdown(struct pci_dev *pdev)
11890 {
11891         struct ipw_priv *priv = pci_get_drvdata(pdev);
11892
11893         /* Take down the device; powers it off, etc. */
11894         ipw_down(priv);
11895
11896         pci_disable_device(pdev);
11897 }
11898
11899 /* driver initialization stuff */
11900 static struct pci_driver ipw_driver = {
11901         .name = DRV_NAME,
11902         .id_table = card_ids,
11903         .probe = ipw_pci_probe,
11904         .remove = __devexit_p(ipw_pci_remove),
11905 #ifdef CONFIG_PM
11906         .suspend = ipw_pci_suspend,
11907         .resume = ipw_pci_resume,
11908 #endif
11909         .shutdown = ipw_pci_shutdown,
11910 };
11911
11912 static int __init ipw_init(void)
11913 {
11914         int ret;
11915
11916         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11917         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11918
11919         ret = pci_register_driver(&ipw_driver);
11920         if (ret) {
11921                 IPW_ERROR("Unable to initialize PCI module\n");
11922                 return ret;
11923         }
11924
11925         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11926         if (ret) {
11927                 IPW_ERROR("Unable to create driver sysfs file\n");
11928                 pci_unregister_driver(&ipw_driver);
11929                 return ret;
11930         }
11931
11932         return ret;
11933 }
11934
11935 static void __exit ipw_exit(void)
11936 {
11937         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11938         pci_unregister_driver(&ipw_driver);
11939 }
11940
11941 module_param(disable, int, 0444);
11942 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11943
11944 module_param(associate, int, 0444);
11945 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11946
11947 module_param(auto_create, int, 0444);
11948 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11949
11950 module_param(led, int, 0444);
11951 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11952
11953 module_param(debug, int, 0444);
11954 MODULE_PARM_DESC(debug, "debug output mask");
11955
11956 module_param(channel, int, 0444);
11957 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11958
11959 #ifdef CONFIG_IPW2200_PROMISCUOUS
11960 module_param(rtap_iface, int, 0444);
11961 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11962 #endif
11963
11964 #ifdef CONFIG_IPW2200_QOS
11965 module_param(qos_enable, int, 0444);
11966 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11967
11968 module_param(qos_burst_enable, int, 0444);
11969 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11970
11971 module_param(qos_no_ack_mask, int, 0444);
11972 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11973
11974 module_param(burst_duration_CCK, int, 0444);
11975 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11976
11977 module_param(burst_duration_OFDM, int, 0444);
11978 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11979 #endif                          /* CONFIG_IPW2200_QOS */
11980
11981 #ifdef CONFIG_IPW2200_MONITOR
11982 module_param(mode, int, 0444);
11983 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11984 #else
11985 module_param(mode, int, 0444);
11986 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11987 #endif
11988
11989 module_param(bt_coexist, int, 0444);
11990 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11991
11992 module_param(hwcrypto, int, 0444);
11993 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11994
11995 module_param(cmdlog, int, 0444);
11996 MODULE_PARM_DESC(cmdlog,
11997                  "allocate a ring buffer for logging firmware commands");
11998
11999 module_param(roaming, int, 0444);
12000 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12001
12002 module_param(antenna, int, 0444);
12003 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12004
12005 module_exit(ipw_exit);
12006 module_init(ipw_init);