2 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
3 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
5 * This modules exists as an interface between a Linux secondary partition
6 * running on an iSeries and the primary partition's Virtual Service
7 * Processor (VSP) object. The VSP has final authority over powering on/off
8 * all partitions in the iSeries. It also provides miscellaneous low-level
9 * machine facility type operations.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/bcd.h>
35 #include <linux/rtc.h>
38 #include <asm/uaccess.h>
40 #include <asm/abs_addr.h>
41 #include <asm/iseries/vio.h>
42 #include <asm/iseries/mf.h>
43 #include <asm/iseries/hv_lp_config.h>
44 #include <asm/iseries/it_lp_queue.h>
48 static int mf_initialized;
51 * This is the structure layout for the Machine Facilites LPAR event
61 u64 state; /* GetStateOut */
62 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
63 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
64 u64 page[4]; /* GetSrcHistoryIn */
65 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
66 SetAutoIplWhenPrimaryIplsIn,
67 WhiteButtonPowerOffIn,
68 Function08FastPowerOffIn,
69 IsSpcnRackPowerIncompleteOut */
76 } kern; /* SetKernelImageIn, GetKernelImageIn,
77 SetKernelCmdLineIn, GetKernelCmdLineIn */
78 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
84 struct completion com;
85 struct vsp_cmd_data *response;
99 typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
101 struct ce_msg_comp_data {
102 ce_msg_comp_hdlr handler;
109 struct ce_msg_comp_data *completion;
112 struct io_mf_lp_event {
113 struct HvLpEvent hp_lp_event;
114 u16 subtype_result_code;
118 struct alloc_data alloc;
119 struct ce_msg_data ce_msg;
120 struct vsp_cmd_data vsp_cmd;
124 #define subtype_data(a, b, c, d) \
125 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
128 * All outgoing event traffic is kept on a FIFO queue. The first
129 * pointer points to the one that is outstanding, and all new
130 * requests get stuck on the end. Also, we keep a certain number of
131 * preallocated pending events so that we can operate very early in
132 * the boot up sequence (before kmalloc is ready).
134 struct pending_event {
135 struct pending_event *next;
136 struct io_mf_lp_event event;
137 MFCompleteHandler hdlr;
139 unsigned dma_data_length;
140 unsigned remote_address;
142 static spinlock_t pending_event_spinlock;
143 static struct pending_event *pending_event_head;
144 static struct pending_event *pending_event_tail;
145 static struct pending_event *pending_event_avail;
146 #define PENDING_EVENT_PREALLOC_LEN 16
147 static struct pending_event pending_event_prealloc[PENDING_EVENT_PREALLOC_LEN];
150 * Put a pending event onto the available queue, so it can get reused.
151 * Attention! You must have the pending_event_spinlock before calling!
153 static void free_pending_event(struct pending_event *ev)
156 ev->next = pending_event_avail;
157 pending_event_avail = ev;
162 * Enqueue the outbound event onto the stack. If the queue was
163 * empty to begin with, we must also issue it via the Hypervisor
164 * interface. There is a section of code below that will touch
165 * the first stack pointer without the protection of the pending_event_spinlock.
166 * This is OK, because we know that nobody else will be modifying
167 * the first pointer when we do this.
169 static int signal_event(struct pending_event *ev)
174 struct pending_event *ev1;
177 /* enqueue the event */
180 spin_lock_irqsave(&pending_event_spinlock, flags);
181 if (pending_event_head == NULL)
182 pending_event_head = ev;
185 pending_event_tail->next = ev;
187 pending_event_tail = ev;
188 spin_unlock_irqrestore(&pending_event_spinlock, flags);
195 /* any DMA data to send beforehand? */
196 if (pending_event_head->dma_data_length > 0)
197 HvCallEvent_dmaToSp(pending_event_head->dma_data,
198 pending_event_head->remote_address,
199 pending_event_head->dma_data_length,
200 HvLpDma_Direction_LocalToRemote);
202 hv_rc = HvCallEvent_signalLpEvent(
203 &pending_event_head->event.hp_lp_event);
204 if (hv_rc != HvLpEvent_Rc_Good) {
205 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
206 "failed with %d\n", (int)hv_rc);
208 spin_lock_irqsave(&pending_event_spinlock, flags);
209 ev1 = pending_event_head;
210 pending_event_head = pending_event_head->next;
211 if (pending_event_head != NULL)
213 spin_unlock_irqrestore(&pending_event_spinlock, flags);
217 else if (ev1->hdlr != NULL)
218 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
220 spin_lock_irqsave(&pending_event_spinlock, flags);
221 free_pending_event(ev1);
222 spin_unlock_irqrestore(&pending_event_spinlock, flags);
230 * Allocate a new pending_event structure, and initialize it.
232 static struct pending_event *new_pending_event(void)
234 struct pending_event *ev = NULL;
235 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
237 struct HvLpEvent *hev;
239 spin_lock_irqsave(&pending_event_spinlock, flags);
240 if (pending_event_avail != NULL) {
241 ev = pending_event_avail;
242 pending_event_avail = pending_event_avail->next;
244 spin_unlock_irqrestore(&pending_event_spinlock, flags);
246 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
248 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
249 sizeof(struct pending_event));
253 memset(ev, 0, sizeof(struct pending_event));
254 hev = &ev->event.hp_lp_event;
255 hev->flags = HV_LP_EVENT_VALID | HV_LP_EVENT_DO_ACK | HV_LP_EVENT_INT;
256 hev->xType = HvLpEvent_Type_MachineFac;
257 hev->xSourceLp = HvLpConfig_getLpIndex();
258 hev->xTargetLp = primary_lp;
259 hev->xSizeMinus1 = sizeof(ev->event) - 1;
260 hev->xRc = HvLpEvent_Rc_Good;
261 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
262 HvLpEvent_Type_MachineFac);
263 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
264 HvLpEvent_Type_MachineFac);
269 static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
271 struct pending_event *ev = new_pending_event();
273 struct vsp_rsp_data response;
278 init_completion(&response.com);
279 response.response = vsp_cmd;
280 ev->event.hp_lp_event.xSubtype = 6;
281 ev->event.hp_lp_event.x.xSubtypeData =
282 subtype_data('M', 'F', 'V', 'I');
283 ev->event.data.vsp_cmd.token = (u64)&response;
284 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
285 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
286 ev->event.data.vsp_cmd.result_code = 0xFF;
287 ev->event.data.vsp_cmd.reserved = 0;
288 memcpy(&(ev->event.data.vsp_cmd.sub_data),
289 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
292 rc = signal_event(ev);
294 wait_for_completion(&response.com);
300 * Send a 12-byte CE message to the primary partition VSP object
302 static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
304 struct pending_event *ev = new_pending_event();
309 ev->event.hp_lp_event.xSubtype = 0;
310 ev->event.hp_lp_event.x.xSubtypeData =
311 subtype_data('M', 'F', 'C', 'E');
312 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
313 ev->event.data.ce_msg.completion = completion;
314 return signal_event(ev);
318 * Send a 12-byte CE message (with no data) to the primary partition VSP object
320 static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
324 memset(ce_msg, 0, sizeof(ce_msg));
326 return signal_ce_msg(ce_msg, completion);
330 * Send a 12-byte CE message and DMA data to the primary partition VSP object
332 static int dma_and_signal_ce_msg(char *ce_msg,
333 struct ce_msg_comp_data *completion, void *dma_data,
334 unsigned dma_data_length, unsigned remote_address)
336 struct pending_event *ev = new_pending_event();
341 ev->event.hp_lp_event.xSubtype = 0;
342 ev->event.hp_lp_event.x.xSubtypeData =
343 subtype_data('M', 'F', 'C', 'E');
344 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
345 ev->event.data.ce_msg.completion = completion;
346 memcpy(ev->dma_data, dma_data, dma_data_length);
347 ev->dma_data_length = dma_data_length;
348 ev->remote_address = remote_address;
349 return signal_event(ev);
353 * Initiate a nice (hopefully) shutdown of Linux. We simply are
354 * going to try and send the init process a SIGINT signal. If
355 * this fails (why?), we'll simply force it off in a not-so-nice
358 static int shutdown(void)
360 int rc = kill_cad_pid(SIGINT, 1);
363 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
364 "hard shutdown commencing\n", rc);
367 printk(KERN_INFO "mf.c: init has been successfully notified "
368 "to proceed with shutdown\n");
373 * The primary partition VSP object is sending us a new
374 * event flow. Handle it...
376 static void handle_int(struct io_mf_lp_event *event)
378 struct ce_msg_data *ce_msg_data;
379 struct ce_msg_data *pce_msg_data;
381 struct pending_event *pev;
383 /* ack the interrupt */
384 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
385 HvCallEvent_ackLpEvent(&event->hp_lp_event);
387 /* process interrupt */
388 switch (event->hp_lp_event.xSubtype) {
389 case 0: /* CE message */
390 ce_msg_data = &event->data.ce_msg;
391 switch (ce_msg_data->ce_msg[3]) {
392 case 0x5B: /* power control notification */
393 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
394 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
396 signal_ce_msg_simple(0xDB, NULL);
399 case 0xC0: /* get time */
400 spin_lock_irqsave(&pending_event_spinlock, flags);
401 pev = pending_event_head;
403 pending_event_head = pending_event_head->next;
404 spin_unlock_irqrestore(&pending_event_spinlock, flags);
407 pce_msg_data = &pev->event.data.ce_msg;
408 if (pce_msg_data->ce_msg[3] != 0x40)
410 if (pce_msg_data->completion != NULL) {
411 ce_msg_comp_hdlr handler =
412 pce_msg_data->completion->handler;
413 void *token = pce_msg_data->completion->token;
416 (*handler)(token, ce_msg_data);
418 spin_lock_irqsave(&pending_event_spinlock, flags);
419 free_pending_event(pev);
420 spin_unlock_irqrestore(&pending_event_spinlock, flags);
421 /* send next waiting event */
422 if (pending_event_head != NULL)
427 case 1: /* IT sys shutdown */
428 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
435 * The primary partition VSP object is acknowledging the receipt
436 * of a flow we sent to them. If there are other flows queued
437 * up, we must send another one now...
439 static void handle_ack(struct io_mf_lp_event *event)
442 struct pending_event *two = NULL;
443 unsigned long free_it = 0;
444 struct ce_msg_data *ce_msg_data;
445 struct ce_msg_data *pce_msg_data;
446 struct vsp_rsp_data *rsp;
448 /* handle current event */
449 if (pending_event_head == NULL) {
450 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
454 switch (event->hp_lp_event.xSubtype) {
456 ce_msg_data = &event->data.ce_msg;
457 if (ce_msg_data->ce_msg[3] != 0x40) {
461 if (ce_msg_data->ce_msg[2] == 0)
464 pce_msg_data = &pending_event_head->event.data.ce_msg;
465 if (pce_msg_data->completion != NULL) {
466 ce_msg_comp_hdlr handler =
467 pce_msg_data->completion->handler;
468 void *token = pce_msg_data->completion->token;
471 (*handler)(token, ce_msg_data);
474 case 4: /* allocate */
475 case 5: /* deallocate */
476 if (pending_event_head->hdlr != NULL)
477 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
482 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
484 printk(KERN_ERR "mf.c: no rsp\n");
487 if (rsp->response != NULL)
488 memcpy(rsp->response, &event->data.vsp_cmd,
489 sizeof(event->data.vsp_cmd));
494 /* remove from queue */
495 spin_lock_irqsave(&pending_event_spinlock, flags);
496 if ((pending_event_head != NULL) && (free_it == 1)) {
497 struct pending_event *oldHead = pending_event_head;
499 pending_event_head = pending_event_head->next;
500 two = pending_event_head;
501 free_pending_event(oldHead);
503 spin_unlock_irqrestore(&pending_event_spinlock, flags);
505 /* send next waiting event */
511 * This is the generic event handler we are registering with
512 * the Hypervisor. Ensure the flows are for us, and then
513 * parse it enough to know if it is an interrupt or an
516 static void hv_handler(struct HvLpEvent *event)
518 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
519 if (hvlpevent_is_ack(event))
520 handle_ack((struct io_mf_lp_event *)event);
522 handle_int((struct io_mf_lp_event *)event);
524 printk(KERN_ERR "mf.c: alien event received\n");
528 * Global kernel interface to allocate and seed events into the
531 void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
532 unsigned size, unsigned count, MFCompleteHandler hdlr,
535 struct pending_event *ev = new_pending_event();
541 ev->event.hp_lp_event.xSubtype = 4;
542 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
543 ev->event.hp_lp_event.x.xSubtypeData =
544 subtype_data('M', 'F', 'M', 'A');
545 ev->event.data.alloc.target_lp = target_lp;
546 ev->event.data.alloc.type = type;
547 ev->event.data.alloc.size = size;
548 ev->event.data.alloc.count = count;
550 rc = signal_event(ev);
552 if ((rc != 0) && (hdlr != NULL))
553 (*hdlr)(user_token, rc);
555 EXPORT_SYMBOL(mf_allocate_lp_events);
558 * Global kernel interface to unseed and deallocate events already in
561 void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
562 unsigned count, MFCompleteHandler hdlr, void *user_token)
564 struct pending_event *ev = new_pending_event();
570 ev->event.hp_lp_event.xSubtype = 5;
571 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
572 ev->event.hp_lp_event.x.xSubtypeData =
573 subtype_data('M', 'F', 'M', 'D');
574 ev->event.data.alloc.target_lp = target_lp;
575 ev->event.data.alloc.type = type;
576 ev->event.data.alloc.count = count;
578 rc = signal_event(ev);
580 if ((rc != 0) && (hdlr != NULL))
581 (*hdlr)(user_token, rc);
583 EXPORT_SYMBOL(mf_deallocate_lp_events);
586 * Global kernel interface to tell the VSP object in the primary
587 * partition to power this partition off.
589 void mf_power_off(void)
591 printk(KERN_INFO "mf.c: Down it goes...\n");
592 signal_ce_msg_simple(0x4d, NULL);
598 * Global kernel interface to tell the VSP object in the primary
599 * partition to reboot this partition.
601 void mf_reboot(char *cmd)
603 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
604 signal_ce_msg_simple(0x4e, NULL);
610 * Display a single word SRC onto the VSP control panel.
612 void mf_display_src(u32 word)
616 memset(ce, 0, sizeof(ce));
623 signal_ce_msg(ce, NULL);
627 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
629 static __init void mf_display_progress_src(u16 value)
634 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
635 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
636 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
637 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
638 "\x00\x00\x00\x00PROGxxxx ",
641 src[7] = value & 255;
642 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
643 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
644 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
645 src[47] = "0123456789ABCDEF"[value & 15];
646 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
650 * Clear the VSP control panel. Used to "erase" an SRC that was
651 * previously displayed.
653 static void mf_clear_src(void)
655 signal_ce_msg_simple(0x4b, NULL);
658 void __init mf_display_progress(u16 value)
666 mf_display_progress_src(value);
670 * Initialization code here.
672 void __init mf_init(void)
676 spin_lock_init(&pending_event_spinlock);
678 for (i = 0; i < PENDING_EVENT_PREALLOC_LEN; i++)
679 free_pending_event(&pending_event_prealloc[i]);
681 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
683 /* virtual continue ack */
684 signal_ce_msg_simple(0x57, NULL);
689 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
693 struct rtc_time_data {
694 struct completion com;
695 struct ce_msg_data ce_msg;
699 static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
701 struct rtc_time_data *rtc = token;
703 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
708 static int mf_set_rtc(struct rtc_time *tm)
711 u8 day, mon, hour, min, sec, y1, y2;
714 year = 1900 + tm->tm_year;
722 mon = tm->tm_mon + 1;
732 memset(ce_time, 0, sizeof(ce_time));
742 return signal_ce_msg(ce_time, NULL);
745 static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
760 if ((ce_msg[2] == 0xa9) ||
761 (ce_msg[2] == 0xaf)) {
762 /* TOD clock is not set */
800 static int mf_get_rtc(struct rtc_time *tm)
802 struct ce_msg_comp_data ce_complete;
803 struct rtc_time_data rtc_data;
806 memset(&ce_complete, 0, sizeof(ce_complete));
807 memset(&rtc_data, 0, sizeof(rtc_data));
808 init_completion(&rtc_data.com);
809 ce_complete.handler = &get_rtc_time_complete;
810 ce_complete.token = &rtc_data;
811 rc = signal_ce_msg_simple(0x40, &ce_complete);
814 wait_for_completion(&rtc_data.com);
815 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
818 struct boot_rtc_time_data {
820 struct ce_msg_data ce_msg;
824 static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
826 struct boot_rtc_time_data *rtc = token;
828 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
833 static int mf_get_boot_rtc(struct rtc_time *tm)
835 struct ce_msg_comp_data ce_complete;
836 struct boot_rtc_time_data rtc_data;
839 memset(&ce_complete, 0, sizeof(ce_complete));
840 memset(&rtc_data, 0, sizeof(rtc_data));
842 ce_complete.handler = &get_boot_rtc_time_complete;
843 ce_complete.token = &rtc_data;
844 rc = signal_ce_msg_simple(0x40, &ce_complete);
847 /* We need to poll here as we are not yet taking interrupts */
848 while (rtc_data.busy) {
849 if (hvlpevent_is_pending())
850 process_hvlpevents();
852 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
855 #ifdef CONFIG_PROC_FS
857 static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
858 int count, int *eof, void *data)
862 struct vsp_cmd_data vsp_cmd;
866 /* The HV appears to return no more than 256 bytes of command line */
869 if ((off + count) > 256)
872 dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
874 if (dma_mapping_error(dma_addr))
876 memset(page, 0, off + count);
877 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
879 vsp_cmd.sub_data.kern.token = dma_addr;
880 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
881 vsp_cmd.sub_data.kern.side = (u64)data;
882 vsp_cmd.sub_data.kern.length = off + count;
884 rc = signal_vsp_instruction(&vsp_cmd);
885 dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
889 if (vsp_cmd.result_code != 0)
893 while (len < (off + count)) {
894 if ((*p == '\0') || (*p == '\n')) {
914 static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
916 struct vsp_cmd_data vsp_cmd;
921 dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
923 memset(buffer, 0, len);
924 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
926 vsp_cmd.sub_data.kern.token = dma_addr;
927 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
928 vsp_cmd.sub_data.kern.side = side;
929 vsp_cmd.sub_data.kern.offset = offset;
930 vsp_cmd.sub_data.kern.length = len;
932 rc = signal_vsp_instruction(&vsp_cmd);
934 if (vsp_cmd.result_code == 0)
935 *size = vsp_cmd.sub_data.length_out;
940 dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
945 static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
946 int count, int *eof, void *data)
948 int sizeToGet = count;
950 if (!capable(CAP_SYS_ADMIN))
953 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
954 if (sizeToGet != 0) {
966 static int proc_mf_dump_side(char *page, char **start, off_t off,
967 int count, int *eof, void *data)
970 char mf_current_side = ' ';
971 struct vsp_cmd_data vsp_cmd;
973 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
975 vsp_cmd.sub_data.ipl_type = 0;
978 if (signal_vsp_instruction(&vsp_cmd) == 0) {
979 if (vsp_cmd.result_code == 0) {
980 switch (vsp_cmd.sub_data.ipl_type) {
981 case 0: mf_current_side = 'A';
983 case 1: mf_current_side = 'B';
985 case 2: mf_current_side = 'C';
987 default: mf_current_side = 'D';
993 len = sprintf(page, "%c\n", mf_current_side);
995 if (len <= (off + count))
1006 static int proc_mf_change_side(struct file *file, const char __user *buffer,
1007 unsigned long count, void *data)
1011 struct vsp_cmd_data vsp_cmd;
1013 if (!capable(CAP_SYS_ADMIN))
1019 if (get_user(side, buffer))
1023 case 'A': newSide = 0;
1025 case 'B': newSide = 1;
1027 case 'C': newSide = 2;
1029 case 'D': newSide = 3;
1032 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1036 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1037 vsp_cmd.sub_data.ipl_type = newSide;
1040 (void)signal_vsp_instruction(&vsp_cmd);
1046 static void mf_getSrcHistory(char *buffer, int size)
1048 struct IplTypeReturnStuff return_stuff;
1049 struct pending_event *ev = new_pending_event();
1053 pages[0] = kmalloc(4096, GFP_ATOMIC);
1054 pages[1] = kmalloc(4096, GFP_ATOMIC);
1055 pages[2] = kmalloc(4096, GFP_ATOMIC);
1056 pages[3] = kmalloc(4096, GFP_ATOMIC);
1057 if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1058 || (pages[2] == NULL) || (pages[3] == NULL))
1061 return_stuff.xType = 0;
1062 return_stuff.xRc = 0;
1063 return_stuff.xDone = 0;
1064 ev->event.hp_lp_event.xSubtype = 6;
1065 ev->event.hp_lp_event.x.xSubtypeData =
1066 subtype_data('M', 'F', 'V', 'I');
1067 ev->event.data.vsp_cmd.xEvent = &return_stuff;
1068 ev->event.data.vsp_cmd.cmd = 4;
1069 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1070 ev->event.data.vsp_cmd.result_code = 0xFF;
1071 ev->event.data.vsp_cmd.reserved = 0;
1072 ev->event.data.vsp_cmd.sub_data.page[0] = iseries_hv_addr(pages[0]);
1073 ev->event.data.vsp_cmd.sub_data.page[1] = iseries_hv_addr(pages[1]);
1074 ev->event.data.vsp_cmd.sub_data.page[2] = iseries_hv_addr(pages[2]);
1075 ev->event.data.vsp_cmd.sub_data.page[3] = iseries_hv_addr(pages[3]);
1077 if (signal_event(ev) != 0)
1080 while (return_stuff.xDone != 1)
1082 if (return_stuff.xRc == 0)
1083 memcpy(buffer, pages[0], size);
1091 static int proc_mf_dump_src(char *page, char **start, off_t off,
1092 int count, int *eof, void *data)
1097 mf_getSrcHistory(page, count);
1106 *start = page + off;
1113 static int proc_mf_change_src(struct file *file, const char __user *buffer,
1114 unsigned long count, void *data)
1118 if (!capable(CAP_SYS_ADMIN))
1121 if ((count < 4) && (count != 1)) {
1122 printk(KERN_ERR "mf_proc: invalid src\n");
1126 if (count > (sizeof(stkbuf) - 1))
1127 count = sizeof(stkbuf) - 1;
1128 if (copy_from_user(stkbuf, buffer, count))
1131 if ((count == 1) && (*stkbuf == '\0'))
1134 mf_display_src(*(u32 *)stkbuf);
1139 static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1140 unsigned long count, void *data)
1142 struct vsp_cmd_data vsp_cmd;
1143 dma_addr_t dma_addr;
1147 if (!capable(CAP_SYS_ADMIN))
1151 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1158 if (copy_from_user(page, buffer, count))
1161 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1163 vsp_cmd.sub_data.kern.token = dma_addr;
1164 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1165 vsp_cmd.sub_data.kern.side = (u64)data;
1166 vsp_cmd.sub_data.kern.length = count;
1168 (void)signal_vsp_instruction(&vsp_cmd);
1172 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1177 static ssize_t proc_mf_change_vmlinux(struct file *file,
1178 const char __user *buf,
1179 size_t count, loff_t *ppos)
1181 struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
1183 dma_addr_t dma_addr;
1185 struct vsp_cmd_data vsp_cmd;
1188 if (!capable(CAP_SYS_ADMIN))
1192 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1196 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1200 if (copy_from_user(page, buf, count))
1203 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1205 vsp_cmd.sub_data.kern.token = dma_addr;
1206 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1207 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1208 vsp_cmd.sub_data.kern.offset = *ppos;
1209 vsp_cmd.sub_data.kern.length = count;
1211 rc = signal_vsp_instruction(&vsp_cmd);
1215 if (vsp_cmd.result_code != 0)
1221 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1226 static struct file_operations proc_vmlinux_operations = {
1227 .write = proc_mf_change_vmlinux,
1230 static int __init mf_proc_init(void)
1232 struct proc_dir_entry *mf_proc_root;
1233 struct proc_dir_entry *ent;
1234 struct proc_dir_entry *mf;
1238 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1243 for (i = 0; i < 4; i++) {
1245 mf = proc_mkdir(name, mf_proc_root);
1249 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1253 ent->data = (void *)(long)i;
1254 ent->read_proc = proc_mf_dump_cmdline;
1255 ent->write_proc = proc_mf_change_cmdline;
1257 if (i == 3) /* no vmlinux entry for 'D' */
1260 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1264 ent->data = (void *)(long)i;
1265 ent->proc_fops = &proc_vmlinux_operations;
1268 ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1272 ent->data = (void *)0;
1273 ent->read_proc = proc_mf_dump_side;
1274 ent->write_proc = proc_mf_change_side;
1276 ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1280 ent->data = (void *)0;
1281 ent->read_proc = proc_mf_dump_src;
1282 ent->write_proc = proc_mf_change_src;
1287 __initcall(mf_proc_init);
1289 #endif /* CONFIG_PROC_FS */
1292 * Get the RTC from the virtual service processor
1293 * This requires flowing LpEvents to the primary partition
1295 void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1302 * Set the RTC in the virtual service processor
1303 * This requires flowing LpEvents to the primary partition
1305 int iSeries_set_rtc_time(struct rtc_time *tm)
1311 unsigned long iSeries_get_boot_time(void)
1315 mf_get_boot_rtc(&tm);
1316 return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
1317 tm.tm_hour, tm.tm_min, tm.tm_sec);