2 * Toshiba TMIO NAND flash controller driver
4 * Slightly murky pre-git history of the driver:
6 * Copyright (c) Ian Molton 2004, 2005, 2008
7 * Original work, independant of sharps code. Included hardware ECC support.
8 * Hard ECC did not work for writes in the early revisions.
9 * Copyright (c) Dirk Opfer 2005.
10 * Modifications developed from sharps code but
11 * NOT containing any, ported onto Ians base.
12 * Copyright (c) Chris Humbert 2005
13 * Copyright (c) Dmitry Baryshkov 2008
16 * Parts copyright Sebastian Carlier
18 * This file is licensed under
19 * the terms of the GNU General Public License version 2. This program
20 * is licensed "as is" without any warranty of any kind, whether express
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/tmio.h>
31 #include <linux/delay.h>
33 #include <linux/irq.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
41 /*--------------------------------------------------------------------------*/
44 * NAND Flash Host Controller Configuration Register
46 #define CCR_COMMAND 0x04 /* w Command */
47 #define CCR_BASE 0x10 /* l NAND Flash Control Reg Base Addr */
48 #define CCR_INTP 0x3d /* b Interrupt Pin */
49 #define CCR_INTE 0x48 /* b Interrupt Enable */
50 #define CCR_EC 0x4a /* b Event Control */
51 #define CCR_ICC 0x4c /* b Internal Clock Control */
52 #define CCR_ECCC 0x5b /* b ECC Control */
53 #define CCR_NFTC 0x60 /* b NAND Flash Transaction Control */
54 #define CCR_NFM 0x61 /* b NAND Flash Monitor */
55 #define CCR_NFPSC 0x62 /* b NAND Flash Power Supply Control */
56 #define CCR_NFDC 0x63 /* b NAND Flash Detect Control */
59 * NAND Flash Control Register
61 #define FCR_DATA 0x00 /* bwl Data Register */
62 #define FCR_MODE 0x04 /* b Mode Register */
63 #define FCR_STATUS 0x05 /* b Status Register */
64 #define FCR_ISR 0x06 /* b Interrupt Status Register */
65 #define FCR_IMR 0x07 /* b Interrupt Mask Register */
67 /* FCR_MODE Register Command List */
68 #define FCR_MODE_DATA 0x94 /* Data Data_Mode */
69 #define FCR_MODE_COMMAND 0x95 /* Data Command_Mode */
70 #define FCR_MODE_ADDRESS 0x96 /* Data Address_Mode */
72 #define FCR_MODE_HWECC_CALC 0xB4 /* HW-ECC Data */
73 #define FCR_MODE_HWECC_RESULT 0xD4 /* HW-ECC Calc result Read_Mode */
74 #define FCR_MODE_HWECC_RESET 0xF4 /* HW-ECC Reset */
76 #define FCR_MODE_POWER_ON 0x0C /* Power Supply ON to SSFDC card */
77 #define FCR_MODE_POWER_OFF 0x08 /* Power Supply OFF to SSFDC card */
79 #define FCR_MODE_LED_OFF 0x00 /* LED OFF */
80 #define FCR_MODE_LED_ON 0x04 /* LED ON */
82 #define FCR_MODE_EJECT_ON 0x68 /* Ejection events active */
83 #define FCR_MODE_EJECT_OFF 0x08 /* Ejection events ignored */
85 #define FCR_MODE_LOCK 0x6C /* Lock_Mode. Eject Switch Invalid */
86 #define FCR_MODE_UNLOCK 0x0C /* UnLock_Mode. Eject Switch is valid */
88 #define FCR_MODE_CONTROLLER_ID 0x40 /* Controller ID Read */
89 #define FCR_MODE_STANDBY 0x00 /* SSFDC card Changes Standby State */
91 #define FCR_MODE_WE 0x80
92 #define FCR_MODE_ECC1 0x40
93 #define FCR_MODE_ECC0 0x20
94 #define FCR_MODE_CE 0x10
95 #define FCR_MODE_PCNT1 0x08
96 #define FCR_MODE_PCNT0 0x04
97 #define FCR_MODE_ALE 0x02
98 #define FCR_MODE_CLE 0x01
100 #define FCR_STATUS_BUSY 0x80
102 /*--------------------------------------------------------------------------*/
106 struct nand_chip chip;
108 struct platform_device *dev;
112 unsigned long fcr_base;
116 /* for tmio_nand_read_byte */
118 unsigned read_good:1;
121 #define mtd_to_tmio(m) container_of(m, struct tmio_nand, mtd)
123 #ifdef CONFIG_MTD_CMDLINE_PARTS
124 static const char *part_probes[] = { "cmdlinepart", NULL };
127 /*--------------------------------------------------------------------------*/
129 static void tmio_nand_hwcontrol(struct mtd_info *mtd, int cmd,
132 struct tmio_nand *tmio = mtd_to_tmio(mtd);
133 struct nand_chip *chip = mtd->priv;
135 if (ctrl & NAND_CTRL_CHANGE) {
138 if (ctrl & NAND_NCE) {
139 mode = FCR_MODE_DATA;
142 mode |= FCR_MODE_CLE;
144 mode &= ~FCR_MODE_CLE;
147 mode |= FCR_MODE_ALE;
149 mode &= ~FCR_MODE_ALE;
151 mode = FCR_MODE_STANDBY;
154 tmio_iowrite8(mode, tmio->fcr + FCR_MODE);
158 if (cmd != NAND_CMD_NONE)
159 tmio_iowrite8(cmd, chip->IO_ADDR_W);
162 static int tmio_nand_dev_ready(struct mtd_info *mtd)
164 struct tmio_nand *tmio = mtd_to_tmio(mtd);
166 return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY);
169 static irqreturn_t tmio_irq(int irq, void *__tmio)
171 struct tmio_nand *tmio = __tmio;
172 struct nand_chip *nand_chip = &tmio->chip;
174 /* disable RDYREQ interrupt */
175 tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
177 if (unlikely(!waitqueue_active(&nand_chip->controller->wq)))
178 dev_warn(&tmio->dev->dev, "spurious interrupt\n");
180 wake_up(&nand_chip->controller->wq);
185 *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
186 *This interrupt is normally disabled, but for long operations like
187 *erase and write, we enable it to wake us up. The irq handler
188 *disables the interrupt.
191 tmio_nand_wait(struct mtd_info *mtd, struct nand_chip *nand_chip)
193 struct tmio_nand *tmio = mtd_to_tmio(mtd);
196 /* enable RDYREQ interrupt */
197 tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
198 tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
200 timeout = wait_event_timeout(nand_chip->controller->wq,
201 tmio_nand_dev_ready(mtd),
202 msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20));
204 if (unlikely(!tmio_nand_dev_ready(mtd))) {
205 tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
206 dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n",
207 nand_chip->state == FL_ERASING ? "erase" : "program",
208 nand_chip->state == FL_ERASING ? 400 : 20);
210 } else if (unlikely(!timeout)) {
211 tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
212 dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n");
215 nand_chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
216 return nand_chip->read_byte(mtd);
220 *The TMIO controller combines two 8-bit data bytes into one 16-bit
221 *word. This function separates them so nand_base.c works as expected,
222 *especially its NAND_CMD_READID routines.
224 *To prevent stale data from being read, tmio_nand_hwcontrol() clears
227 static u_char tmio_nand_read_byte(struct mtd_info *mtd)
229 struct tmio_nand *tmio = mtd_to_tmio(mtd);
232 if (tmio->read_good--)
235 data = tmio_ioread16(tmio->fcr + FCR_DATA);
236 tmio->read = data >> 8;
241 *The TMIO controller converts an 8-bit NAND interface to a 16-bit
242 *bus interface, so all data reads and writes must be 16-bit wide.
243 *Thus, we implement 16-bit versions of the read, write, and verify
247 tmio_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
249 struct tmio_nand *tmio = mtd_to_tmio(mtd);
251 tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
254 static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
256 struct tmio_nand *tmio = mtd_to_tmio(mtd);
258 tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
262 tmio_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
264 struct tmio_nand *tmio = mtd_to_tmio(mtd);
265 u16 *p = (u16 *) buf;
267 for (len >>= 1; len; len--)
268 if (*(p++) != tmio_ioread16(tmio->fcr + FCR_DATA))
273 static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode)
275 struct tmio_nand *tmio = mtd_to_tmio(mtd);
277 tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE);
278 tmio_ioread8(tmio->fcr + FCR_DATA); /* dummy read */
279 tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE);
282 static int tmio_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
285 struct tmio_nand *tmio = mtd_to_tmio(mtd);
288 tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE);
290 ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
291 ecc_code[1] = ecc; /* 000-255 LP7-0 */
292 ecc_code[0] = ecc >> 8; /* 000-255 LP15-8 */
293 ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
294 ecc_code[2] = ecc; /* 000-255 CP5-0,11b */
295 ecc_code[4] = ecc >> 8; /* 256-511 LP7-0 */
296 ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
297 ecc_code[3] = ecc; /* 256-511 LP15-8 */
298 ecc_code[5] = ecc >> 8; /* 256-511 CP5-0,11b */
300 tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE);
304 static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio)
306 struct mfd_cell *cell = (struct mfd_cell *)dev->dev.platform_data;
310 ret = cell->enable(dev);
315 /* (4Ch) CLKRUN Enable 1st spcrunc */
316 tmio_iowrite8(0x81, tmio->ccr + CCR_ICC);
318 /* (10h)BaseAddress 0x1000 spba.spba2 */
319 tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE);
320 tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2);
322 /* (04h)Command Register I/O spcmd */
323 tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND);
325 /* (62h) Power Supply Control ssmpwc */
326 /* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
327 tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC);
329 /* (63h) Detect Control ssmdtc */
330 tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC);
332 /* Interrupt status register clear sintst */
333 tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
335 /* After power supply, Media are reset smode */
336 tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE);
337 tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE);
338 tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA);
340 /* Standby Mode smode */
341 tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE);
348 static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio)
350 struct mfd_cell *cell = (struct mfd_cell *)dev->dev.platform_data;
352 tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE);
357 static int tmio_probe(struct platform_device *dev)
359 struct mfd_cell *cell = (struct mfd_cell *)dev->dev.platform_data;
360 struct tmio_nand_data *data = cell->driver_data;
361 struct resource *fcr = platform_get_resource(dev,
363 struct resource *ccr = platform_get_resource(dev,
365 int irq = platform_get_irq(dev, 0);
366 struct tmio_nand *tmio;
367 struct mtd_info *mtd;
368 struct nand_chip *nand_chip;
369 #ifdef CONFIG_MTD_PARTITIONS
370 struct mtd_partition *parts;
376 dev_warn(&dev->dev, "NULL platform data!\n");
378 tmio = kzalloc(sizeof *tmio, GFP_KERNEL);
386 platform_set_drvdata(dev, tmio);
388 nand_chip = &tmio->chip;
389 mtd->priv = nand_chip;
390 mtd->name = "tmio-nand";
392 tmio->ccr = ioremap(ccr->start, ccr->end - ccr->start + 1);
398 tmio->fcr_base = fcr->start & 0xfffff;
399 tmio->fcr = ioremap(fcr->start, fcr->end - fcr->start + 1);
405 retval = tmio_hw_init(dev, tmio);
409 /* Set address of NAND IO lines */
410 nand_chip->IO_ADDR_R = tmio->fcr;
411 nand_chip->IO_ADDR_W = tmio->fcr;
413 /* Set address of hardware control function */
414 nand_chip->cmd_ctrl = tmio_nand_hwcontrol;
415 nand_chip->dev_ready = tmio_nand_dev_ready;
416 nand_chip->read_byte = tmio_nand_read_byte;
417 nand_chip->write_buf = tmio_nand_write_buf;
418 nand_chip->read_buf = tmio_nand_read_buf;
419 nand_chip->verify_buf = tmio_nand_verify_buf;
421 /* set eccmode using hardware ECC */
422 nand_chip->ecc.mode = NAND_ECC_HW;
423 nand_chip->ecc.size = 512;
424 nand_chip->ecc.bytes = 6;
425 nand_chip->ecc.hwctl = tmio_nand_enable_hwecc;
426 nand_chip->ecc.calculate = tmio_nand_calculate_ecc;
427 nand_chip->ecc.correct = nand_correct_data;
430 nand_chip->badblock_pattern = data->badblock_pattern;
432 /* 15 us command delay time */
433 nand_chip->chip_delay = 15;
435 retval = request_irq(irq, &tmio_irq,
436 IRQF_DISABLED, dev_name(&dev->dev), tmio);
438 dev_err(&dev->dev, "request_irq error %d\n", retval);
443 nand_chip->waitfunc = tmio_nand_wait;
445 /* Scan to find existence of the device */
446 if (nand_scan(mtd, 1)) {
450 /* Register the partitions */
451 #ifdef CONFIG_MTD_PARTITIONS
452 #ifdef CONFIG_MTD_CMDLINE_PARTS
453 nbparts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
455 if (nbparts <= 0 && data) {
456 parts = data->partition;
457 nbparts = data->num_partitions;
461 retval = add_mtd_partitions(mtd, parts, nbparts);
464 retval = add_mtd_device(mtd);
473 free_irq(tmio->irq, tmio);
475 tmio_hw_stop(dev, tmio);
486 static int tmio_remove(struct platform_device *dev)
488 struct tmio_nand *tmio = platform_get_drvdata(dev);
490 nand_release(&tmio->mtd);
492 free_irq(tmio->irq, tmio);
493 tmio_hw_stop(dev, tmio);
501 static int tmio_suspend(struct platform_device *dev, pm_message_t state)
503 struct mfd_cell *cell = (struct mfd_cell *)dev->dev.platform_data;
508 tmio_hw_stop(dev, platform_get_drvdata(dev));
512 static int tmio_resume(struct platform_device *dev)
514 struct mfd_cell *cell = (struct mfd_cell *)dev->dev.platform_data;
516 /* FIXME - is this required or merely another attack of the broken
517 * SHARP platform? Looks suspicious.
519 tmio_hw_init(dev, platform_get_drvdata(dev));
527 #define tmio_suspend NULL
528 #define tmio_resume NULL
531 static struct platform_driver tmio_driver = {
532 .driver.name = "tmio-nand",
533 .driver.owner = THIS_MODULE,
535 .remove = tmio_remove,
536 .suspend = tmio_suspend,
537 .resume = tmio_resume,
540 static int __init tmio_init(void)
542 return platform_driver_register(&tmio_driver);
545 static void __exit tmio_exit(void)
547 platform_driver_unregister(&tmio_driver);
550 module_init(tmio_init);
551 module_exit(tmio_exit);
553 MODULE_LICENSE("GPL v2");
554 MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
555 MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
556 MODULE_ALIAS("platform:tmio-nand");