2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
120 * Inherited from caller.
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
142 fis[13] = tf->hob_nsect;
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
160 * Inherited from caller.
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
178 tf->hob_nsect = fis[13];
181 static const u8 ata_rw_cmds[] = {
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
208 ATA_CMD_WRITE_FUA_EXT
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
226 int index, fua, lba48, write;
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
240 tf->protocol = ATA_PROT_DMA;
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
265 * Block address read from @tf.
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
277 block |= (tf->device & 0xf) << 24;
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
324 if (!lba_48_ok(block, n_block))
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
333 tf->command = ATA_CMD_FPDMA_READ;
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
352 if (lba_28_ok(block, n_block)) {
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
360 tf->flags |= ATA_TFLAG_LBA48;
362 tf->hob_nsect = (n_block >> 8) & 0xff;
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
368 /* request too large even for LBA48 */
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
374 tf->nsect = n_block & 0xff;
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
380 tf->device |= ATA_LBA;
383 u32 sect, head, cyl, track;
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
401 /* Check whether the converted CHS can fit.
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
465 static const struct ata_xfer_ent {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
486 * Matching XFER_* value, 0 if no match found.
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
503 * Return matching xfer_mask for @xfer_mode.
509 * Matching xfer_mask, 0 if no match found.
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
513 const struct ata_xfer_ent *ent;
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
525 * Return matching xfer_shift for @xfer_mode.
531 * Matching xfer_shift, -1 if no match found.
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
535 const struct ata_xfer_ent *ent;
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
557 static const char *ata_mode_string(unsigned int xfer_mask)
559 static const char * const xfer_mode_str[] = {
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
589 static const char *sata_spd_string(unsigned int spd)
591 static const char * const spd_str[] = {
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
598 return spd_str[spd - 1];
601 void ata_dev_disable(struct ata_device *dev)
603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
631 struct ata_ioports *ioaddr = &ap->ioaddr;
634 ap->ops->dev_select(ap, device);
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
651 return 0; /* nothing found */
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
670 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
718 struct ata_taskfile tf;
722 ap->ops->dev_select(ap, device);
724 memset(&tf, 0, sizeof(tf));
726 ap->ops->tf_read(ap, &tf);
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
737 else if ((device == 0) && (err == 0x81))
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf);
745 if (class == ATA_DEV_UNKNOWN)
747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
767 void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
800 void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
807 ata_id_string(id, s, ofs, len - 1);
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
829 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
849 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
852 struct ata_taskfile tf;
854 ata_tf_init(dev, &tf);
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
865 return ata_tf_to_lba48(&tf);
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
876 static u64 ata_read_native_max_address(struct ata_device *dev)
879 struct ata_taskfile tf;
881 ata_tf_init(dev, &tf);
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
892 return ata_tf_to_lba(&tf);
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 * @new_sectors: new max sectors value to set for the device
900 * Perform an LBA48 size set max upon the device in question. Return the
901 * actual LBA48 size or zero if the command fails.
904 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
907 struct ata_taskfile tf;
911 ata_tf_init(dev, &tf);
913 tf.command = ATA_CMD_SET_MAX_EXT;
914 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
915 tf.protocol |= ATA_PROT_NODATA;
918 tf.lbal = (new_sectors >> 0) & 0xff;
919 tf.lbam = (new_sectors >> 8) & 0xff;
920 tf.lbah = (new_sectors >> 16) & 0xff;
922 tf.hob_lbal = (new_sectors >> 24) & 0xff;
923 tf.hob_lbam = (new_sectors >> 32) & 0xff;
924 tf.hob_lbah = (new_sectors >> 40) & 0xff;
926 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
930 return ata_tf_to_lba48(&tf);
934 * ata_set_native_max_address - LBA28 native max set
935 * @dev: Device to query
936 * @new_sectors: new max sectors value to set for the device
938 * Perform an LBA28 size set max upon the device in question. Return the
939 * actual LBA28 size or zero if the command fails.
942 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
945 struct ata_taskfile tf;
949 ata_tf_init(dev, &tf);
951 tf.command = ATA_CMD_SET_MAX;
952 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
953 tf.protocol |= ATA_PROT_NODATA;
955 tf.lbal = (new_sectors >> 0) & 0xff;
956 tf.lbam = (new_sectors >> 8) & 0xff;
957 tf.lbah = (new_sectors >> 16) & 0xff;
958 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
960 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
964 return ata_tf_to_lba(&tf);
968 * ata_hpa_resize - Resize a device with an HPA set
969 * @dev: Device to resize
971 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
972 * it if required to the full size of the media. The caller must check
973 * the drive has the HPA feature set enabled.
976 static u64 ata_hpa_resize(struct ata_device *dev)
978 u64 sectors = dev->n_sectors;
981 if (ata_id_has_lba48(dev->id))
982 hpa_sectors = ata_read_native_max_address_ext(dev);
984 hpa_sectors = ata_read_native_max_address(dev);
986 /* if no hpa, both should be equal */
987 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
988 "hpa_sectors = %lld\n",
989 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
991 if (hpa_sectors > sectors) {
992 ata_dev_printk(dev, KERN_INFO,
993 "Host Protected Area detected:\n"
994 "\tcurrent size: %lld sectors\n"
995 "\tnative size: %lld sectors\n",
996 (long long)sectors, (long long)hpa_sectors);
998 if (ata_ignore_hpa) {
999 if (ata_id_has_lba48(dev->id))
1000 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1002 hpa_sectors = ata_set_native_max_address(dev,
1006 ata_dev_printk(dev, KERN_INFO, "native size "
1007 "increased to %lld sectors\n",
1008 (long long)hpa_sectors);
1016 static u64 ata_id_n_sectors(const u16 *id)
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1022 return ata_id_u32(id, 60);
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1027 return id[1] * id[3] * id[6];
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
1034 * @unknown: mode to assume if we cannot tell
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1063 /* SWDMA perhaps ? */
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1078 * This function performs no actual function.
1080 * May be used as the dev_select() entry in ata_port_operations.
1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
1097 * ATA channel. Works with both PIO and MMIO.
1099 * May be used as the dev_select() entry in ata_port_operations.
1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1110 tmp = ATA_DEVICE_OBS;
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1114 iowrite8(tmp, ap->ioaddr.device_addr);
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1137 void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1140 if (ata_msg_probe(ap))
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1147 ap->ops->dev_select(ap, device);
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
1158 * @id: IDENTIFY DEVICE page to dump
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1167 static inline void ata_dump_id(const u16 *id)
1169 DPRINTK("49==0x%04x "
1179 DPRINTK("80==0x%04x "
1189 DPRINTK("88==0x%04x "
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1202 * FIXME: pre IDE drive timing (do we care ?).
1210 static unsigned int ata_id_xfermask(const u16 *id)
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1240 if (ata_id_is_cfa(id)) {
1242 * Process compact flash extended modes
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1248 pio_mask |= (1 << 5);
1250 pio_mask |= (1 << 6);
1252 mwdma_mask |= (1 << 3);
1254 mwdma_mask |= (1 << 4);
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
1267 * @fn: workqueue function to be scheduled
1268 * @data: data for @fn to use
1269 * @delay: delay time for workqueue function
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * Inherited from caller.
1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1284 unsigned long delay)
1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1296 /* rc == 0 means that another user is using port task */
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1308 * Kernel thread context (may sleep)
1310 void ata_port_flush_task(struct ata_port *ap)
1312 unsigned long flags;
1316 spin_lock_irqsave(ap->lock, flags);
1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1318 spin_unlock_irqrestore(ap->lock, flags);
1320 DPRINTK("flush #1\n");
1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1328 if (!cancel_delayed_work(&ap->port_task)) {
1329 if (ata_msg_ctl(ap))
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1332 cancel_work_sync(&ap->port_task.work);
1335 spin_lock_irqsave(ap->lock, flags);
1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1337 spin_unlock_irqrestore(ap->lock, flags);
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1345 struct completion *waiting = qc->private_data;
1351 * ata_exec_internal_sg - execute libata internal command
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
1354 * @cdb: CDB for packet command
1355 * @dma_dir: Data tranfer direction of the command
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1366 * None. Should be called with kernel context, might sleep.
1369 * Zero on success, AC_ERR_* mask on failure
1371 unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
1376 struct ata_port *ap = dev->ap;
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
1379 unsigned int tag, preempted_tag;
1380 u32 preempted_sactive, preempted_qc_active;
1381 DECLARE_COMPLETION_ONSTACK(wait);
1382 unsigned long flags;
1383 unsigned int err_mask;
1386 spin_lock_irqsave(ap->lock, flags);
1388 /* no internal command while frozen */
1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
1390 spin_unlock_irqrestore(ap->lock, flags);
1391 return AC_ERR_SYSTEM;
1394 /* initialize internal qc */
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1406 if (test_and_set_bit(tag, &ap->qc_allocated))
1408 qc = __ata_qc_from_tag(ap, tag);
1416 preempted_tag = ap->active_tag;
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
1419 ap->active_tag = ATA_TAG_POISON;
1423 /* prepare & issue qc */
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
1430 unsigned int i, buflen = 0;
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1435 ata_sg_init(qc, sg, n_elem);
1436 qc->nbytes = buflen;
1439 qc->private_data = &wait;
1440 qc->complete_fn = ata_qc_complete_internal;
1444 spin_unlock_irqrestore(ap->lock, flags);
1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1448 ata_port_flush_task(ap);
1451 spin_lock_irqsave(ap->lock, flags);
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1464 ata_qc_complete(qc);
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
1468 "qc timeout (cmd 0x%x)\n", command);
1471 spin_unlock_irqrestore(ap->lock, flags);
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1484 qc->err_mask |= AC_ERR_OTHER;
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
1491 spin_lock_irqsave(ap->lock, flags);
1493 *tf = qc->result_tf;
1494 err_mask = qc->err_mask;
1497 ap->active_tag = preempted_tag;
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1510 * Kill the following code as soon as those drivers are fixed.
1512 if (ap->flags & ATA_FLAG_DISABLED) {
1513 err_mask |= AC_ERR_SYSTEM;
1517 spin_unlock_irqrestore(ap->lock, flags);
1523 * ata_exec_internal - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1535 * None. Should be called with kernel context, might sleep.
1538 * Zero on success, AC_ERR_* mask on failure
1540 unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
1547 if (dma_dir != DMA_NONE) {
1549 sg_init_one(&sg, buf, buflen);
1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1566 * Kernel thread context (may sleep).
1569 * Zero on success, AC_ERR_* mask on failure
1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1573 struct ata_taskfile tf;
1575 ata_tf_init(dev, &tf);
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1585 * ata_pio_need_iordy - check if iordy needed
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1620 /* Is the speed faster than the drive allows non IORDY ? */
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1628 return 3 << ATA_SHIFT_PIO;
1632 * ata_dev_read_id - Read ID data from the specified device
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
1635 * @flags: ATA_READID_* flags
1636 * @id: buffer to read IDENTIFY data into
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1644 * Kernel thread context (may sleep)
1647 * 0 on success, -errno otherwise.
1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1650 unsigned int flags, u16 *id)
1652 struct ata_port *ap = dev->ap;
1653 unsigned int class = *p_class;
1654 struct ata_taskfile tf;
1655 unsigned int err_mask = 0;
1657 int may_fallback = 1, tried_spinup = 0;
1660 if (ata_msg_ctl(ap))
1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1665 ata_tf_init(dev, &tf);
1669 tf.command = ATA_CMD_ID_ATA;
1672 tf.command = ATA_CMD_ID_ATAPI;
1676 reason = "unsupported class";
1680 tf.protocol = ATA_PROT_PIO;
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1690 tf.flags |= ATA_TFLAG_POLLING;
1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1693 id, sizeof(id[0]) * ATA_ID_WORDS);
1695 if (err_mask & AC_ERR_NODEV_HINT) {
1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 ap->print_id, dev->devno);
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1712 class = ATA_DEV_ATA;
1717 reason = "I/O error";
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1726 swap_buf_le16(id, ATA_ID_WORDS);
1730 reason = "device reports illegal type";
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1736 if (ata_id_is_ata(id))
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1755 reason = "SPINUP failed";
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1762 if (id[2] == 0x37c8)
1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1771 * INITIALIZE DEVICE PARAMETERS
1773 * Some drives were very specific about that exact sequence.
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1779 reason = "INIT_DEV_PARAMS failed";
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1786 flags &= ~ATA_READID_POSTRESET;
1796 if (ata_msg_warn(ap))
1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
1802 static inline u8 ata_dev_knobble(struct ata_device *dev)
1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1807 static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1813 if (!ata_id_has_ncq(dev->id)) {
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1821 if (ap->flags & ATA_FLAG_NCQ) {
1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1823 dev->flags |= ATA_DFLAG_NCQ;
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
1834 * @dev: Target device to configure
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
1840 * Kernel thread context (may sleep)
1843 * 0 on success, -errno otherwise
1845 int ata_dev_configure(struct ata_device *dev)
1847 struct ata_port *ap = dev->ap;
1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1849 const u16 *id = dev->id;
1850 unsigned int xfer_mask;
1851 char revbuf[7]; /* XYZ-99\0 */
1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 char modelbuf[ATA_ID_PROD_LEN+1];
1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1862 if (ata_msg_probe(ap))
1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1866 rc = ata_acpi_push_id(dev);
1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap);
1875 /* print device capabilities */
1876 if (ata_msg_probe(ap))
1877 ata_dev_printk(dev, KERN_DEBUG,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1881 id[49], id[82], id[83], id[84],
1882 id[85], id[86], id[87], id[88]);
1884 /* initialize to-be-configured parameters */
1885 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1886 dev->max_sectors = 0;
1894 * common ATA, ATAPI feature tests
1897 /* find max transfer mode; for printk only */
1898 xfer_mask = ata_id_xfermask(id);
1900 if (ata_msg_probe(ap))
1903 /* ATA-specific feature tests */
1904 if (dev->class == ATA_DEV_ATA) {
1905 if (ata_id_is_cfa(id)) {
1906 if (id[162] & 1) /* CPRM may make this media unusable */
1907 ata_dev_printk(dev, KERN_WARNING,
1908 "supports DRM functions and may "
1909 "not be fully accessable.\n");
1910 snprintf(revbuf, 7, "CFA");
1913 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1915 dev->n_sectors = ata_id_n_sectors(id);
1917 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1918 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1921 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1924 if (dev->id[59] & 0x100)
1925 dev->multi_count = dev->id[59] & 0xff;
1927 if (ata_id_has_lba(id)) {
1928 const char *lba_desc;
1932 dev->flags |= ATA_DFLAG_LBA;
1933 if (ata_id_has_lba48(id)) {
1934 dev->flags |= ATA_DFLAG_LBA48;
1937 if (dev->n_sectors >= (1UL << 28) &&
1938 ata_id_has_flush_ext(id))
1939 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1942 if (ata_id_hpa_enabled(dev->id))
1943 dev->n_sectors = ata_hpa_resize(dev);
1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1948 /* print device info to dmesg */
1949 if (ata_msg_drv(ap) && print_info) {
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%s: %s, %s, max %s\n",
1952 revbuf, modelbuf, fwrevbuf,
1953 ata_mode_string(xfer_mask));
1954 ata_dev_printk(dev, KERN_INFO,
1955 "%Lu sectors, multi %u: %s %s\n",
1956 (unsigned long long)dev->n_sectors,
1957 dev->multi_count, lba_desc, ncq_desc);
1962 /* Default translation */
1963 dev->cylinders = id[1];
1965 dev->sectors = id[6];
1967 if (ata_id_current_chs_valid(id)) {
1968 /* Current CHS translation is valid. */
1969 dev->cylinders = id[54];
1970 dev->heads = id[55];
1971 dev->sectors = id[56];
1974 /* print device info to dmesg */
1975 if (ata_msg_drv(ap) && print_info) {
1976 ata_dev_printk(dev, KERN_INFO,
1977 "%s: %s, %s, max %s\n",
1978 revbuf, modelbuf, fwrevbuf,
1979 ata_mode_string(xfer_mask));
1980 ata_dev_printk(dev, KERN_INFO,
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev->n_sectors,
1983 dev->multi_count, dev->cylinders,
1984 dev->heads, dev->sectors);
1991 /* ATAPI-specific feature tests */
1992 else if (dev->class == ATA_DEV_ATAPI) {
1993 char *cdb_intr_string = "";
1995 rc = atapi_cdb_len(id);
1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1997 if (ata_msg_warn(ap))
1998 ata_dev_printk(dev, KERN_WARNING,
1999 "unsupported CDB len\n");
2003 dev->cdb_len = (unsigned int) rc;
2005 if (ata_id_cdb_intr(dev->id)) {
2006 dev->flags |= ATA_DFLAG_CDB_INTR;
2007 cdb_intr_string = ", CDB intr";
2010 /* print device info to dmesg */
2011 if (ata_msg_drv(ap) && print_info)
2012 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
2013 ata_mode_string(xfer_mask),
2017 /* determine max_sectors */
2018 dev->max_sectors = ATA_MAX_SECTORS;
2019 if (dev->flags & ATA_DFLAG_LBA48)
2020 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2022 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2023 /* Let the user know. We don't want to disallow opens for
2024 rescue purposes, or in case the vendor is just a blithering
2027 ata_dev_printk(dev, KERN_WARNING,
2028 "Drive reports diagnostics failure. This may indicate a drive\n");
2029 ata_dev_printk(dev, KERN_WARNING,
2030 "fault or invalid emulation. Contact drive vendor for information.\n");
2034 /* limit bridge transfers to udma5, 200 sectors */
2035 if (ata_dev_knobble(dev)) {
2036 if (ata_msg_drv(ap) && print_info)
2037 ata_dev_printk(dev, KERN_INFO,
2038 "applying bridge limits\n");
2039 dev->udma_mask &= ATA_UDMA5;
2040 dev->max_sectors = ATA_MAX_SECTORS;
2043 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2044 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2047 /* limit ATAPI DMA to R/W commands only */
2048 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2049 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2051 if (ap->ops->dev_config)
2052 ap->ops->dev_config(dev);
2054 if (ata_msg_probe(ap))
2055 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2056 __FUNCTION__, ata_chk_status(ap));
2060 if (ata_msg_probe(ap))
2061 ata_dev_printk(dev, KERN_DEBUG,
2062 "%s: EXIT, err\n", __FUNCTION__);
2067 * ata_cable_40wire - return 40 wire cable type
2070 * Helper method for drivers which want to hardwire 40 wire cable
2074 int ata_cable_40wire(struct ata_port *ap)
2076 return ATA_CBL_PATA40;
2080 * ata_cable_80wire - return 80 wire cable type
2083 * Helper method for drivers which want to hardwire 80 wire cable
2087 int ata_cable_80wire(struct ata_port *ap)
2089 return ATA_CBL_PATA80;
2093 * ata_cable_unknown - return unknown PATA cable.
2096 * Helper method for drivers which have no PATA cable detection.
2099 int ata_cable_unknown(struct ata_port *ap)
2101 return ATA_CBL_PATA_UNK;
2105 * ata_cable_sata - return SATA cable type
2108 * Helper method for drivers which have SATA cables
2111 int ata_cable_sata(struct ata_port *ap)
2113 return ATA_CBL_SATA;
2117 * ata_bus_probe - Reset and probe ATA bus
2120 * Master ATA bus probing function. Initiates a hardware-dependent
2121 * bus reset, then attempts to identify any devices found on
2125 * PCI/etc. bus probe sem.
2128 * Zero on success, negative errno otherwise.
2131 int ata_bus_probe(struct ata_port *ap)
2133 unsigned int classes[ATA_MAX_DEVICES];
2134 int tries[ATA_MAX_DEVICES];
2136 struct ata_device *dev;
2140 for (i = 0; i < ATA_MAX_DEVICES; i++)
2141 tries[i] = ATA_PROBE_MAX_TRIES;
2144 /* reset and determine device classes */
2145 ap->ops->phy_reset(ap);
2147 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2148 dev = &ap->device[i];
2150 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2151 dev->class != ATA_DEV_UNKNOWN)
2152 classes[dev->devno] = dev->class;
2154 classes[dev->devno] = ATA_DEV_NONE;
2156 dev->class = ATA_DEV_UNKNOWN;
2161 /* after the reset the device state is PIO 0 and the controller
2162 state is undefined. Record the mode */
2164 for (i = 0; i < ATA_MAX_DEVICES; i++)
2165 ap->device[i].pio_mode = XFER_PIO_0;
2167 /* read IDENTIFY page and configure devices. We have to do the identify
2168 specific sequence bass-ackwards so that PDIAG- is released by
2171 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2172 dev = &ap->device[i];
2175 dev->class = classes[i];
2177 if (!ata_dev_enabled(dev))
2180 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2186 /* Now ask for the cable type as PDIAG- should have been released */
2187 if (ap->ops->cable_detect)
2188 ap->cbl = ap->ops->cable_detect(ap);
2190 /* After the identify sequence we can now set up the devices. We do
2191 this in the normal order so that the user doesn't get confused */
2193 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2194 dev = &ap->device[i];
2195 if (!ata_dev_enabled(dev))
2198 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2199 rc = ata_dev_configure(dev);
2200 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2205 /* configure transfer mode */
2206 rc = ata_set_mode(ap, &dev);
2210 for (i = 0; i < ATA_MAX_DEVICES; i++)
2211 if (ata_dev_enabled(&ap->device[i]))
2214 /* no device present, disable port */
2215 ata_port_disable(ap);
2216 ap->ops->port_disable(ap);
2220 tries[dev->devno]--;
2224 /* eeek, something went very wrong, give up */
2225 tries[dev->devno] = 0;
2229 /* give it just one more chance */
2230 tries[dev->devno] = min(tries[dev->devno], 1);
2232 if (tries[dev->devno] == 1) {
2233 /* This is the last chance, better to slow
2234 * down than lose it.
2236 sata_down_spd_limit(ap);
2237 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2241 if (!tries[dev->devno])
2242 ata_dev_disable(dev);
2248 * ata_port_probe - Mark port as enabled
2249 * @ap: Port for which we indicate enablement
2251 * Modify @ap data structure such that the system
2252 * thinks that the entire port is enabled.
2254 * LOCKING: host lock, or some other form of
2258 void ata_port_probe(struct ata_port *ap)
2260 ap->flags &= ~ATA_FLAG_DISABLED;
2264 * sata_print_link_status - Print SATA link status
2265 * @ap: SATA port to printk link status about
2267 * This function prints link speed and status of a SATA link.
2272 void sata_print_link_status(struct ata_port *ap)
2274 u32 sstatus, scontrol, tmp;
2276 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2278 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2280 if (ata_port_online(ap)) {
2281 tmp = (sstatus >> 4) & 0xf;
2282 ata_port_printk(ap, KERN_INFO,
2283 "SATA link up %s (SStatus %X SControl %X)\n",
2284 sata_spd_string(tmp), sstatus, scontrol);
2286 ata_port_printk(ap, KERN_INFO,
2287 "SATA link down (SStatus %X SControl %X)\n",
2293 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2294 * @ap: SATA port associated with target SATA PHY.
2296 * This function issues commands to standard SATA Sxxx
2297 * PHY registers, to wake up the phy (and device), and
2298 * clear any reset condition.
2301 * PCI/etc. bus probe sem.
2304 void __sata_phy_reset(struct ata_port *ap)
2307 unsigned long timeout = jiffies + (HZ * 5);
2309 if (ap->flags & ATA_FLAG_SATA_RESET) {
2310 /* issue phy wake/reset */
2311 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2312 /* Couldn't find anything in SATA I/II specs, but
2313 * AHCI-1.1 10.4.2 says at least 1 ms. */
2316 /* phy wake/clear reset */
2317 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2319 /* wait for phy to become ready, if necessary */
2322 sata_scr_read(ap, SCR_STATUS, &sstatus);
2323 if ((sstatus & 0xf) != 1)
2325 } while (time_before(jiffies, timeout));
2327 /* print link status */
2328 sata_print_link_status(ap);
2330 /* TODO: phy layer with polling, timeouts, etc. */
2331 if (!ata_port_offline(ap))
2334 ata_port_disable(ap);
2336 if (ap->flags & ATA_FLAG_DISABLED)
2339 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2340 ata_port_disable(ap);
2344 ap->cbl = ATA_CBL_SATA;
2348 * sata_phy_reset - Reset SATA bus.
2349 * @ap: SATA port associated with target SATA PHY.
2351 * This function resets the SATA bus, and then probes
2352 * the bus for devices.
2355 * PCI/etc. bus probe sem.
2358 void sata_phy_reset(struct ata_port *ap)
2360 __sata_phy_reset(ap);
2361 if (ap->flags & ATA_FLAG_DISABLED)
2367 * ata_dev_pair - return other device on cable
2370 * Obtain the other device on the same cable, or if none is
2371 * present NULL is returned
2374 struct ata_device *ata_dev_pair(struct ata_device *adev)
2376 struct ata_port *ap = adev->ap;
2377 struct ata_device *pair = &ap->device[1 - adev->devno];
2378 if (!ata_dev_enabled(pair))
2384 * ata_port_disable - Disable port.
2385 * @ap: Port to be disabled.
2387 * Modify @ap data structure such that the system
2388 * thinks that the entire port is disabled, and should
2389 * never attempt to probe or communicate with devices
2392 * LOCKING: host lock, or some other form of
2396 void ata_port_disable(struct ata_port *ap)
2398 ap->device[0].class = ATA_DEV_NONE;
2399 ap->device[1].class = ATA_DEV_NONE;
2400 ap->flags |= ATA_FLAG_DISABLED;
2404 * sata_down_spd_limit - adjust SATA spd limit downward
2405 * @ap: Port to adjust SATA spd limit for
2407 * Adjust SATA spd limit of @ap downward. Note that this
2408 * function only adjusts the limit. The change must be applied
2409 * using sata_set_spd().
2412 * Inherited from caller.
2415 * 0 on success, negative errno on failure
2417 int sata_down_spd_limit(struct ata_port *ap)
2419 u32 sstatus, spd, mask;
2422 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2426 mask = ap->sata_spd_limit;
2429 highbit = fls(mask) - 1;
2430 mask &= ~(1 << highbit);
2432 spd = (sstatus >> 4) & 0xf;
2436 mask &= (1 << spd) - 1;
2440 ap->sata_spd_limit = mask;
2442 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2443 sata_spd_string(fls(mask)));
2448 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2452 if (ap->sata_spd_limit == UINT_MAX)
2455 limit = fls(ap->sata_spd_limit);
2457 spd = (*scontrol >> 4) & 0xf;
2458 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2460 return spd != limit;
2464 * sata_set_spd_needed - is SATA spd configuration needed
2465 * @ap: Port in question
2467 * Test whether the spd limit in SControl matches
2468 * @ap->sata_spd_limit. This function is used to determine
2469 * whether hardreset is necessary to apply SATA spd
2473 * Inherited from caller.
2476 * 1 if SATA spd configuration is needed, 0 otherwise.
2478 int sata_set_spd_needed(struct ata_port *ap)
2482 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2485 return __sata_set_spd_needed(ap, &scontrol);
2489 * sata_set_spd - set SATA spd according to spd limit
2490 * @ap: Port to set SATA spd for
2492 * Set SATA spd of @ap according to sata_spd_limit.
2495 * Inherited from caller.
2498 * 0 if spd doesn't need to be changed, 1 if spd has been
2499 * changed. Negative errno if SCR registers are inaccessible.
2501 int sata_set_spd(struct ata_port *ap)
2506 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2509 if (!__sata_set_spd_needed(ap, &scontrol))
2512 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2519 * This mode timing computation functionality is ported over from
2520 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2523 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2524 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2525 * for UDMA6, which is currently supported only by Maxtor drives.
2527 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2530 static const struct ata_timing ata_timing[] = {
2532 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2533 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2534 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2535 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2537 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2538 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2539 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2540 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2541 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2543 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2545 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2546 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2547 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2549 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2550 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2551 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2553 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2554 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2555 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2556 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2558 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2559 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2560 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2562 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2567 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2568 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2570 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2572 q->setup = EZ(t->setup * 1000, T);
2573 q->act8b = EZ(t->act8b * 1000, T);
2574 q->rec8b = EZ(t->rec8b * 1000, T);
2575 q->cyc8b = EZ(t->cyc8b * 1000, T);
2576 q->active = EZ(t->active * 1000, T);
2577 q->recover = EZ(t->recover * 1000, T);
2578 q->cycle = EZ(t->cycle * 1000, T);
2579 q->udma = EZ(t->udma * 1000, UT);
2582 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2583 struct ata_timing *m, unsigned int what)
2585 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2586 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2587 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2588 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2589 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2590 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2591 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2592 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2595 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2597 const struct ata_timing *t;
2599 for (t = ata_timing; t->mode != speed; t++)
2600 if (t->mode == 0xFF)
2605 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2606 struct ata_timing *t, int T, int UT)
2608 const struct ata_timing *s;
2609 struct ata_timing p;
2615 if (!(s = ata_timing_find_mode(speed)))
2618 memcpy(t, s, sizeof(*s));
2621 * If the drive is an EIDE drive, it can tell us it needs extended
2622 * PIO/MW_DMA cycle timing.
2625 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2626 memset(&p, 0, sizeof(p));
2627 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2628 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2629 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2630 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2631 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2633 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2637 * Convert the timing to bus clock counts.
2640 ata_timing_quantize(t, t, T, UT);
2643 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2644 * S.M.A.R.T * and some other commands. We have to ensure that the
2645 * DMA cycle timing is slower/equal than the fastest PIO timing.
2648 if (speed > XFER_PIO_6) {
2649 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2650 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2654 * Lengthen active & recovery time so that cycle time is correct.
2657 if (t->act8b + t->rec8b < t->cyc8b) {
2658 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2659 t->rec8b = t->cyc8b - t->act8b;
2662 if (t->active + t->recover < t->cycle) {
2663 t->active += (t->cycle - (t->active + t->recover)) / 2;
2664 t->recover = t->cycle - t->active;
2667 /* In a few cases quantisation may produce enough errors to
2668 leave t->cycle too low for the sum of active and recovery
2669 if so we must correct this */
2670 if (t->active + t->recover > t->cycle)
2671 t->cycle = t->active + t->recover;
2677 * ata_down_xfermask_limit - adjust dev xfer masks downward
2678 * @dev: Device to adjust xfer masks
2679 * @sel: ATA_DNXFER_* selector
2681 * Adjust xfer masks of @dev downward. Note that this function
2682 * does not apply the change. Invoking ata_set_mode() afterwards
2683 * will apply the limit.
2686 * Inherited from caller.
2689 * 0 on success, negative errno on failure
2691 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2694 unsigned int orig_mask, xfer_mask;
2695 unsigned int pio_mask, mwdma_mask, udma_mask;
2698 quiet = !!(sel & ATA_DNXFER_QUIET);
2699 sel &= ~ATA_DNXFER_QUIET;
2701 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2704 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2707 case ATA_DNXFER_PIO:
2708 highbit = fls(pio_mask) - 1;
2709 pio_mask &= ~(1 << highbit);
2712 case ATA_DNXFER_DMA:
2714 highbit = fls(udma_mask) - 1;
2715 udma_mask &= ~(1 << highbit);
2718 } else if (mwdma_mask) {
2719 highbit = fls(mwdma_mask) - 1;
2720 mwdma_mask &= ~(1 << highbit);
2726 case ATA_DNXFER_40C:
2727 udma_mask &= ATA_UDMA_MASK_40C;
2730 case ATA_DNXFER_FORCE_PIO0:
2732 case ATA_DNXFER_FORCE_PIO:
2741 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2743 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2747 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2748 snprintf(buf, sizeof(buf), "%s:%s",
2749 ata_mode_string(xfer_mask),
2750 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2752 snprintf(buf, sizeof(buf), "%s",
2753 ata_mode_string(xfer_mask));
2755 ata_dev_printk(dev, KERN_WARNING,
2756 "limiting speed to %s\n", buf);
2759 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2765 static int ata_dev_set_mode(struct ata_device *dev)
2767 struct ata_eh_context *ehc = &dev->ap->eh_context;
2768 unsigned int err_mask;
2771 dev->flags &= ~ATA_DFLAG_PIO;
2772 if (dev->xfer_shift == ATA_SHIFT_PIO)
2773 dev->flags |= ATA_DFLAG_PIO;
2775 err_mask = ata_dev_set_xfermode(dev);
2776 /* Old CFA may refuse this command, which is just fine */
2777 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2778 err_mask &= ~AC_ERR_DEV;
2781 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2782 "(err_mask=0x%x)\n", err_mask);
2786 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2787 rc = ata_dev_revalidate(dev, 0);
2788 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2792 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2793 dev->xfer_shift, (int)dev->xfer_mode);
2795 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2796 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2801 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2802 * @ap: port on which timings will be programmed
2803 * @r_failed_dev: out paramter for failed device
2805 * Standard implementation of the function used to tune and set
2806 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2807 * ata_dev_set_mode() fails, pointer to the failing device is
2808 * returned in @r_failed_dev.
2811 * PCI/etc. bus probe sem.
2814 * 0 on success, negative errno otherwise
2817 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2819 struct ata_device *dev;
2820 int i, rc = 0, used_dma = 0, found = 0;
2823 /* step 1: calculate xfer_mask */
2824 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2825 unsigned int pio_mask, dma_mask;
2827 dev = &ap->device[i];
2829 if (!ata_dev_enabled(dev))
2832 ata_dev_xfermask(dev);
2834 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2835 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2836 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2837 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2846 /* step 2: always set host PIO timings */
2847 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2848 dev = &ap->device[i];
2849 if (!ata_dev_enabled(dev))
2852 if (!dev->pio_mode) {
2853 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2858 dev->xfer_mode = dev->pio_mode;
2859 dev->xfer_shift = ATA_SHIFT_PIO;
2860 if (ap->ops->set_piomode)
2861 ap->ops->set_piomode(ap, dev);
2864 /* step 3: set host DMA timings */
2865 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2866 dev = &ap->device[i];
2868 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2871 dev->xfer_mode = dev->dma_mode;
2872 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2873 if (ap->ops->set_dmamode)
2874 ap->ops->set_dmamode(ap, dev);
2877 /* step 4: update devices' xfer mode */
2878 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2879 dev = &ap->device[i];
2881 /* don't update suspended devices' xfer mode */
2882 if (!ata_dev_enabled(dev))
2885 rc = ata_dev_set_mode(dev);
2890 /* Record simplex status. If we selected DMA then the other
2891 * host channels are not permitted to do so.
2893 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2894 ap->host->simplex_claimed = ap;
2898 *r_failed_dev = dev;
2903 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2904 * @ap: port on which timings will be programmed
2905 * @r_failed_dev: out paramter for failed device
2907 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2908 * ata_set_mode() fails, pointer to the failing device is
2909 * returned in @r_failed_dev.
2912 * PCI/etc. bus probe sem.
2915 * 0 on success, negative errno otherwise
2917 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2919 /* has private set_mode? */
2920 if (ap->ops->set_mode)
2921 return ap->ops->set_mode(ap, r_failed_dev);
2922 return ata_do_set_mode(ap, r_failed_dev);
2926 * ata_tf_to_host - issue ATA taskfile to host controller
2927 * @ap: port to which command is being issued
2928 * @tf: ATA taskfile register set
2930 * Issues ATA taskfile register set to ATA host controller,
2931 * with proper synchronization with interrupt handler and
2935 * spin_lock_irqsave(host lock)
2938 static inline void ata_tf_to_host(struct ata_port *ap,
2939 const struct ata_taskfile *tf)
2941 ap->ops->tf_load(ap, tf);
2942 ap->ops->exec_command(ap, tf);
2946 * ata_busy_sleep - sleep until BSY clears, or timeout
2947 * @ap: port containing status register to be polled
2948 * @tmout_pat: impatience timeout
2949 * @tmout: overall timeout
2951 * Sleep until ATA Status register bit BSY clears,
2952 * or a timeout occurs.
2955 * Kernel thread context (may sleep).
2958 * 0 on success, -errno otherwise.
2960 int ata_busy_sleep(struct ata_port *ap,
2961 unsigned long tmout_pat, unsigned long tmout)
2963 unsigned long timer_start, timeout;
2966 status = ata_busy_wait(ap, ATA_BUSY, 300);
2967 timer_start = jiffies;
2968 timeout = timer_start + tmout_pat;
2969 while (status != 0xff && (status & ATA_BUSY) &&
2970 time_before(jiffies, timeout)) {
2972 status = ata_busy_wait(ap, ATA_BUSY, 3);
2975 if (status != 0xff && (status & ATA_BUSY))
2976 ata_port_printk(ap, KERN_WARNING,
2977 "port is slow to respond, please be patient "
2978 "(Status 0x%x)\n", status);
2980 timeout = timer_start + tmout;
2981 while (status != 0xff && (status & ATA_BUSY) &&
2982 time_before(jiffies, timeout)) {
2984 status = ata_chk_status(ap);
2990 if (status & ATA_BUSY) {
2991 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2992 "(%lu secs, Status 0x%x)\n",
2993 tmout / HZ, status);
3001 * ata_wait_ready - sleep until BSY clears, or timeout
3002 * @ap: port containing status register to be polled
3003 * @deadline: deadline jiffies for the operation
3005 * Sleep until ATA Status register bit BSY clears, or timeout
3009 * Kernel thread context (may sleep).
3012 * 0 on success, -errno otherwise.
3014 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3016 unsigned long start = jiffies;
3020 u8 status = ata_chk_status(ap);
3021 unsigned long now = jiffies;
3023 if (!(status & ATA_BUSY))
3027 if (time_after(now, deadline))
3030 if (!warned && time_after(now, start + 5 * HZ) &&
3031 (deadline - now > 3 * HZ)) {
3032 ata_port_printk(ap, KERN_WARNING,
3033 "port is slow to respond, please be patient "
3034 "(Status 0x%x)\n", status);
3042 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3043 unsigned long deadline)
3045 struct ata_ioports *ioaddr = &ap->ioaddr;
3046 unsigned int dev0 = devmask & (1 << 0);
3047 unsigned int dev1 = devmask & (1 << 1);
3050 /* if device 0 was found in ata_devchk, wait for its
3054 rc = ata_wait_ready(ap, deadline);
3062 /* if device 1 was found in ata_devchk, wait for
3063 * register access, then wait for BSY to clear
3068 ap->ops->dev_select(ap, 1);
3069 nsect = ioread8(ioaddr->nsect_addr);
3070 lbal = ioread8(ioaddr->lbal_addr);
3071 if ((nsect == 1) && (lbal == 1))
3073 if (time_after(jiffies, deadline))
3075 msleep(50); /* give drive a breather */
3078 rc = ata_wait_ready(ap, deadline);
3086 /* is all this really necessary? */
3087 ap->ops->dev_select(ap, 0);
3089 ap->ops->dev_select(ap, 1);
3091 ap->ops->dev_select(ap, 0);
3096 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3097 unsigned long deadline)
3099 struct ata_ioports *ioaddr = &ap->ioaddr;
3101 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3103 /* software reset. causes dev0 to be selected */
3104 iowrite8(ap->ctl, ioaddr->ctl_addr);
3105 udelay(20); /* FIXME: flush */
3106 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3107 udelay(20); /* FIXME: flush */
3108 iowrite8(ap->ctl, ioaddr->ctl_addr);
3110 /* spec mandates ">= 2ms" before checking status.
3111 * We wait 150ms, because that was the magic delay used for
3112 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3113 * between when the ATA command register is written, and then
3114 * status is checked. Because waiting for "a while" before
3115 * checking status is fine, post SRST, we perform this magic
3116 * delay here as well.
3118 * Old drivers/ide uses the 2mS rule and then waits for ready
3122 /* Before we perform post reset processing we want to see if
3123 * the bus shows 0xFF because the odd clown forgets the D7
3124 * pulldown resistor.
3126 if (ata_check_status(ap) == 0xFF)
3129 return ata_bus_post_reset(ap, devmask, deadline);
3133 * ata_bus_reset - reset host port and associated ATA channel
3134 * @ap: port to reset
3136 * This is typically the first time we actually start issuing
3137 * commands to the ATA channel. We wait for BSY to clear, then
3138 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3139 * result. Determine what devices, if any, are on the channel
3140 * by looking at the device 0/1 error register. Look at the signature
3141 * stored in each device's taskfile registers, to determine if
3142 * the device is ATA or ATAPI.
3145 * PCI/etc. bus probe sem.
3146 * Obtains host lock.
3149 * Sets ATA_FLAG_DISABLED if bus reset fails.
3152 void ata_bus_reset(struct ata_port *ap)
3154 struct ata_ioports *ioaddr = &ap->ioaddr;
3155 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3157 unsigned int dev0, dev1 = 0, devmask = 0;
3160 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3162 /* determine if device 0/1 are present */
3163 if (ap->flags & ATA_FLAG_SATA_RESET)
3166 dev0 = ata_devchk(ap, 0);
3168 dev1 = ata_devchk(ap, 1);
3172 devmask |= (1 << 0);
3174 devmask |= (1 << 1);
3176 /* select device 0 again */
3177 ap->ops->dev_select(ap, 0);
3179 /* issue bus reset */
3180 if (ap->flags & ATA_FLAG_SRST) {
3181 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3182 if (rc && rc != -ENODEV)
3187 * determine by signature whether we have ATA or ATAPI devices
3189 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3190 if ((slave_possible) && (err != 0x81))
3191 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3193 /* re-enable interrupts */
3194 ap->ops->irq_on(ap);
3196 /* is double-select really necessary? */
3197 if (ap->device[1].class != ATA_DEV_NONE)
3198 ap->ops->dev_select(ap, 1);
3199 if (ap->device[0].class != ATA_DEV_NONE)
3200 ap->ops->dev_select(ap, 0);
3202 /* if no devices were detected, disable this port */
3203 if ((ap->device[0].class == ATA_DEV_NONE) &&
3204 (ap->device[1].class == ATA_DEV_NONE))
3207 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3208 /* set up device control for ATA_FLAG_SATA_RESET */
3209 iowrite8(ap->ctl, ioaddr->ctl_addr);
3216 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3217 ap->ops->port_disable(ap);
3223 * sata_phy_debounce - debounce SATA phy status
3224 * @ap: ATA port to debounce SATA phy status for
3225 * @params: timing parameters { interval, duratinon, timeout } in msec
3226 * @deadline: deadline jiffies for the operation
3228 * Make sure SStatus of @ap reaches stable state, determined by
3229 * holding the same value where DET is not 1 for @duration polled
3230 * every @interval, before @timeout. Timeout constraints the
3231 * beginning of the stable state. Because DET gets stuck at 1 on
3232 * some controllers after hot unplugging, this functions waits
3233 * until timeout then returns 0 if DET is stable at 1.
3235 * @timeout is further limited by @deadline. The sooner of the
3239 * Kernel thread context (may sleep)
3242 * 0 on success, -errno on failure.
3244 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3245 unsigned long deadline)
3247 unsigned long interval_msec = params[0];
3248 unsigned long duration = msecs_to_jiffies(params[1]);
3249 unsigned long last_jiffies, t;
3253 t = jiffies + msecs_to_jiffies(params[2]);
3254 if (time_before(t, deadline))
3257 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3262 last_jiffies = jiffies;
3265 msleep(interval_msec);
3266 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3272 if (cur == 1 && time_before(jiffies, deadline))
3274 if (time_after(jiffies, last_jiffies + duration))
3279 /* unstable, start over */
3281 last_jiffies = jiffies;
3283 /* check deadline */
3284 if (time_after(jiffies, deadline))
3290 * sata_phy_resume - resume SATA phy
3291 * @ap: ATA port to resume SATA phy for
3292 * @params: timing parameters { interval, duratinon, timeout } in msec
3293 * @deadline: deadline jiffies for the operation
3295 * Resume SATA phy of @ap and debounce it.
3298 * Kernel thread context (may sleep)
3301 * 0 on success, -errno on failure.
3303 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3304 unsigned long deadline)
3309 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3312 scontrol = (scontrol & 0x0f0) | 0x300;
3314 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3317 /* Some PHYs react badly if SStatus is pounded immediately
3318 * after resuming. Delay 200ms before debouncing.
3322 return sata_phy_debounce(ap, params, deadline);
3326 * ata_std_prereset - prepare for reset
3327 * @ap: ATA port to be reset
3328 * @deadline: deadline jiffies for the operation
3330 * @ap is about to be reset. Initialize it. Failure from
3331 * prereset makes libata abort whole reset sequence and give up
3332 * that port, so prereset should be best-effort. It does its
3333 * best to prepare for reset sequence but if things go wrong, it
3334 * should just whine, not fail.
3337 * Kernel thread context (may sleep)
3340 * 0 on success, -errno otherwise.
3342 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3344 struct ata_eh_context *ehc = &ap->eh_context;
3345 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3348 /* handle link resume */
3349 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3350 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3351 ehc->i.action |= ATA_EH_HARDRESET;
3353 /* if we're about to do hardreset, nothing more to do */
3354 if (ehc->i.action & ATA_EH_HARDRESET)
3357 /* if SATA, resume phy */
3358 if (ap->cbl == ATA_CBL_SATA) {
3359 rc = sata_phy_resume(ap, timing, deadline);
3360 /* whine about phy resume failure but proceed */
3361 if (rc && rc != -EOPNOTSUPP)
3362 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3363 "link for reset (errno=%d)\n", rc);
3366 /* Wait for !BSY if the controller can wait for the first D2H
3367 * Reg FIS and we don't know that no device is attached.
3369 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3370 rc = ata_wait_ready(ap, deadline);
3372 ata_port_printk(ap, KERN_WARNING, "device not ready "
3373 "(errno=%d), forcing hardreset\n", rc);
3374 ehc->i.action |= ATA_EH_HARDRESET;
3382 * ata_std_softreset - reset host port via ATA SRST
3383 * @ap: port to reset
3384 * @classes: resulting classes of attached devices
3385 * @deadline: deadline jiffies for the operation
3387 * Reset host port using ATA SRST.
3390 * Kernel thread context (may sleep)
3393 * 0 on success, -errno otherwise.
3395 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3396 unsigned long deadline)
3398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3399 unsigned int devmask = 0;
3405 if (ata_port_offline(ap)) {
3406 classes[0] = ATA_DEV_NONE;
3410 /* determine if device 0/1 are present */
3411 if (ata_devchk(ap, 0))
3412 devmask |= (1 << 0);
3413 if (slave_possible && ata_devchk(ap, 1))
3414 devmask |= (1 << 1);
3416 /* select device 0 again */
3417 ap->ops->dev_select(ap, 0);
3419 /* issue bus reset */
3420 DPRINTK("about to softreset, devmask=%x\n", devmask);
3421 rc = ata_bus_softreset(ap, devmask, deadline);
3422 /* if link is occupied, -ENODEV too is an error */
3423 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3424 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3428 /* determine by signature whether we have ATA or ATAPI devices */
3429 classes[0] = ata_dev_try_classify(ap, 0, &err);
3430 if (slave_possible && err != 0x81)
3431 classes[1] = ata_dev_try_classify(ap, 1, &err);
3434 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3439 * sata_port_hardreset - reset port via SATA phy reset
3440 * @ap: port to reset
3441 * @timing: timing parameters { interval, duratinon, timeout } in msec
3442 * @deadline: deadline jiffies for the operation
3444 * SATA phy-reset host port using DET bits of SControl register.
3447 * Kernel thread context (may sleep)
3450 * 0 on success, -errno otherwise.
3452 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3453 unsigned long deadline)
3460 if (sata_set_spd_needed(ap)) {
3461 /* SATA spec says nothing about how to reconfigure
3462 * spd. To be on the safe side, turn off phy during
3463 * reconfiguration. This works for at least ICH7 AHCI
3466 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3469 scontrol = (scontrol & 0x0f0) | 0x304;
3471 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3477 /* issue phy wake/reset */
3478 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3481 scontrol = (scontrol & 0x0f0) | 0x301;
3483 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3486 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3487 * 10.4.2 says at least 1 ms.
3491 /* bring phy back */
3492 rc = sata_phy_resume(ap, timing, deadline);
3494 DPRINTK("EXIT, rc=%d\n", rc);
3499 * sata_std_hardreset - reset host port via SATA phy reset
3500 * @ap: port to reset
3501 * @class: resulting class of attached device
3502 * @deadline: deadline jiffies for the operation
3504 * SATA phy-reset host port using DET bits of SControl register,
3505 * wait for !BSY and classify the attached device.
3508 * Kernel thread context (may sleep)
3511 * 0 on success, -errno otherwise.
3513 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3514 unsigned long deadline)
3516 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3522 rc = sata_port_hardreset(ap, timing, deadline);
3524 ata_port_printk(ap, KERN_ERR,
3525 "COMRESET failed (errno=%d)\n", rc);
3529 /* TODO: phy layer with polling, timeouts, etc. */
3530 if (ata_port_offline(ap)) {
3531 *class = ATA_DEV_NONE;
3532 DPRINTK("EXIT, link offline\n");
3536 /* wait a while before checking status, see SRST for more info */
3539 rc = ata_wait_ready(ap, deadline);
3540 /* link occupied, -ENODEV too is an error */
3542 ata_port_printk(ap, KERN_ERR,
3543 "COMRESET failed (errno=%d)\n", rc);
3547 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3549 *class = ata_dev_try_classify(ap, 0, NULL);
3551 DPRINTK("EXIT, class=%u\n", *class);
3556 * ata_std_postreset - standard postreset callback
3557 * @ap: the target ata_port
3558 * @classes: classes of attached devices
3560 * This function is invoked after a successful reset. Note that
3561 * the device might have been reset more than once using
3562 * different reset methods before postreset is invoked.
3565 * Kernel thread context (may sleep)
3567 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3573 /* print link status */
3574 sata_print_link_status(ap);
3577 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3578 sata_scr_write(ap, SCR_ERROR, serror);
3580 /* re-enable interrupts */
3581 if (!ap->ops->error_handler)
3582 ap->ops->irq_on(ap);
3584 /* is double-select really necessary? */
3585 if (classes[0] != ATA_DEV_NONE)
3586 ap->ops->dev_select(ap, 1);
3587 if (classes[1] != ATA_DEV_NONE)
3588 ap->ops->dev_select(ap, 0);
3590 /* bail out if no device is present */
3591 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3592 DPRINTK("EXIT, no device\n");
3596 /* set up device control */
3597 if (ap->ioaddr.ctl_addr)
3598 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3604 * ata_dev_same_device - Determine whether new ID matches configured device
3605 * @dev: device to compare against
3606 * @new_class: class of the new device
3607 * @new_id: IDENTIFY page of the new device
3609 * Compare @new_class and @new_id against @dev and determine
3610 * whether @dev is the device indicated by @new_class and
3617 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3619 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3622 const u16 *old_id = dev->id;
3623 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3624 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3626 if (dev->class != new_class) {
3627 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3628 dev->class, new_class);
3632 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3633 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3634 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3635 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3637 if (strcmp(model[0], model[1])) {
3638 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3639 "'%s' != '%s'\n", model[0], model[1]);
3643 if (strcmp(serial[0], serial[1])) {
3644 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3645 "'%s' != '%s'\n", serial[0], serial[1]);
3653 * ata_dev_reread_id - Re-read IDENTIFY data
3654 * @adev: target ATA device
3655 * @readid_flags: read ID flags
3657 * Re-read IDENTIFY page and make sure @dev is still attached to
3661 * Kernel thread context (may sleep)
3664 * 0 on success, negative errno otherwise
3666 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3668 unsigned int class = dev->class;
3669 u16 *id = (void *)dev->ap->sector_buf;
3673 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3677 /* is the device still there? */
3678 if (!ata_dev_same_device(dev, class, id))
3681 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3686 * ata_dev_revalidate - Revalidate ATA device
3687 * @dev: device to revalidate
3688 * @readid_flags: read ID flags
3690 * Re-read IDENTIFY page, make sure @dev is still attached to the
3691 * port and reconfigure it according to the new IDENTIFY page.
3694 * Kernel thread context (may sleep)
3697 * 0 on success, negative errno otherwise
3699 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3701 u64 n_sectors = dev->n_sectors;
3704 if (!ata_dev_enabled(dev))
3708 rc = ata_dev_reread_id(dev, readid_flags);
3712 /* configure device according to the new ID */
3713 rc = ata_dev_configure(dev);
3717 /* verify n_sectors hasn't changed */
3718 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3719 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3721 (unsigned long long)n_sectors,
3722 (unsigned long long)dev->n_sectors);
3730 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3734 struct ata_blacklist_entry {
3735 const char *model_num;
3736 const char *model_rev;
3737 unsigned long horkage;
3740 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3741 /* Devices with DMA related problems under Linux */
3742 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3743 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3744 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3745 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3746 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3748 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3749 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3750 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3751 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3752 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3753 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3754 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3755 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3756 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3757 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3758 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3759 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3760 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3761 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3762 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3763 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3764 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3765 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3766 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3767 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3768 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3769 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3770 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3771 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3773 /* Weird ATAPI devices */
3774 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3775 ATA_HORKAGE_DMA_RW_ONLY },
3777 /* Devices we expect to fail diagnostics */
3779 /* Devices where NCQ should be avoided */
3781 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3782 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3783 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3785 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3786 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3787 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3788 /* Blacklist entries taken from Silicon Image 3124/3132
3789 Windows driver .inf file - also several Linux problem reports */
3790 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3791 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3792 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3794 /* Devices with NCQ limits */
3800 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3802 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3803 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3804 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3806 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3807 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3809 while (ad->model_num) {
3810 if (!strcmp(ad->model_num, model_num)) {
3811 if (ad->model_rev == NULL)
3813 if (!strcmp(ad->model_rev, model_rev))
3821 static int ata_dma_blacklisted(const struct ata_device *dev)
3823 /* We don't support polling DMA.
3824 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3825 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3827 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3828 (dev->flags & ATA_DFLAG_CDB_INTR))
3830 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3834 * ata_dev_xfermask - Compute supported xfermask of the given device
3835 * @dev: Device to compute xfermask for
3837 * Compute supported xfermask of @dev and store it in
3838 * dev->*_mask. This function is responsible for applying all
3839 * known limits including host controller limits, device
3845 static void ata_dev_xfermask(struct ata_device *dev)
3847 struct ata_port *ap = dev->ap;
3848 struct ata_host *host = ap->host;
3849 unsigned long xfer_mask;
3851 /* controller modes available */
3852 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3853 ap->mwdma_mask, ap->udma_mask);
3855 /* drive modes available */
3856 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3857 dev->mwdma_mask, dev->udma_mask);
3858 xfer_mask &= ata_id_xfermask(dev->id);
3861 * CFA Advanced TrueIDE timings are not allowed on a shared
3864 if (ata_dev_pair(dev)) {
3865 /* No PIO5 or PIO6 */
3866 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3867 /* No MWDMA3 or MWDMA 4 */
3868 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3871 if (ata_dma_blacklisted(dev)) {
3872 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3873 ata_dev_printk(dev, KERN_WARNING,
3874 "device is on DMA blacklist, disabling DMA\n");
3877 if ((host->flags & ATA_HOST_SIMPLEX) &&
3878 host->simplex_claimed && host->simplex_claimed != ap) {
3879 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3880 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3881 "other device, disabling DMA\n");
3884 if (ap->flags & ATA_FLAG_NO_IORDY)
3885 xfer_mask &= ata_pio_mask_no_iordy(dev);
3887 if (ap->ops->mode_filter)
3888 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3890 /* Apply cable rule here. Don't apply it early because when
3891 * we handle hot plug the cable type can itself change.
3892 * Check this last so that we know if the transfer rate was
3893 * solely limited by the cable.
3894 * Unknown or 80 wire cables reported host side are checked
3895 * drive side as well. Cases where we know a 40wire cable
3896 * is used safely for 80 are not checked here.
3898 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3899 /* UDMA/44 or higher would be available */
3900 if((ap->cbl == ATA_CBL_PATA40) ||
3901 (ata_drive_40wire(dev->id) &&
3902 (ap->cbl == ATA_CBL_PATA_UNK ||
3903 ap->cbl == ATA_CBL_PATA80))) {
3904 ata_dev_printk(dev, KERN_WARNING,
3905 "limited to UDMA/33 due to 40-wire cable\n");
3906 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3909 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3910 &dev->mwdma_mask, &dev->udma_mask);
3914 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3915 * @dev: Device to which command will be sent
3917 * Issue SET FEATURES - XFER MODE command to device @dev
3921 * PCI/etc. bus probe sem.
3924 * 0 on success, AC_ERR_* mask otherwise.
3927 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3929 struct ata_taskfile tf;
3930 unsigned int err_mask;
3932 /* set up set-features taskfile */
3933 DPRINTK("set features - xfer mode\n");
3935 ata_tf_init(dev, &tf);
3936 tf.command = ATA_CMD_SET_FEATURES;
3937 tf.feature = SETFEATURES_XFER;
3938 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3939 tf.protocol = ATA_PROT_NODATA;
3940 tf.nsect = dev->xfer_mode;
3942 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3944 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3949 * ata_dev_init_params - Issue INIT DEV PARAMS command
3950 * @dev: Device to which command will be sent
3951 * @heads: Number of heads (taskfile parameter)
3952 * @sectors: Number of sectors (taskfile parameter)
3955 * Kernel thread context (may sleep)
3958 * 0 on success, AC_ERR_* mask otherwise.
3960 static unsigned int ata_dev_init_params(struct ata_device *dev,
3961 u16 heads, u16 sectors)
3963 struct ata_taskfile tf;
3964 unsigned int err_mask;
3966 /* Number of sectors per track 1-255. Number of heads 1-16 */
3967 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3968 return AC_ERR_INVALID;
3970 /* set up init dev params taskfile */
3971 DPRINTK("init dev params \n");
3973 ata_tf_init(dev, &tf);
3974 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3975 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3976 tf.protocol = ATA_PROT_NODATA;
3978 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3980 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3982 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3987 * ata_sg_clean - Unmap DMA memory associated with command
3988 * @qc: Command containing DMA memory to be released
3990 * Unmap all mapped DMA memory associated with this command.
3993 * spin_lock_irqsave(host lock)
3995 void ata_sg_clean(struct ata_queued_cmd *qc)
3997 struct ata_port *ap = qc->ap;
3998 struct scatterlist *sg = qc->__sg;
3999 int dir = qc->dma_dir;
4000 void *pad_buf = NULL;
4002 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4003 WARN_ON(sg == NULL);
4005 if (qc->flags & ATA_QCFLAG_SINGLE)
4006 WARN_ON(qc->n_elem > 1);
4008 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4010 /* if we padded the buffer out to 32-bit bound, and data
4011 * xfer direction is from-device, we must copy from the
4012 * pad buffer back into the supplied buffer
4014 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4015 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4017 if (qc->flags & ATA_QCFLAG_SG) {
4019 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4020 /* restore last sg */
4021 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4023 struct scatterlist *psg = &qc->pad_sgent;
4024 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4025 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4026 kunmap_atomic(addr, KM_IRQ0);
4030 dma_unmap_single(ap->dev,
4031 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4034 sg->length += qc->pad_len;
4036 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4037 pad_buf, qc->pad_len);
4040 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4045 * ata_fill_sg - Fill PCI IDE PRD table
4046 * @qc: Metadata associated with taskfile to be transferred
4048 * Fill PCI IDE PRD (scatter-gather) table with segments
4049 * associated with the current disk command.
4052 * spin_lock_irqsave(host lock)
4055 static void ata_fill_sg(struct ata_queued_cmd *qc)
4057 struct ata_port *ap = qc->ap;
4058 struct scatterlist *sg;
4061 WARN_ON(qc->__sg == NULL);
4062 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4065 ata_for_each_sg(sg, qc) {
4069 /* determine if physical DMA addr spans 64K boundary.
4070 * Note h/w doesn't support 64-bit, so we unconditionally
4071 * truncate dma_addr_t to u32.
4073 addr = (u32) sg_dma_address(sg);
4074 sg_len = sg_dma_len(sg);
4077 offset = addr & 0xffff;
4079 if ((offset + sg_len) > 0x10000)
4080 len = 0x10000 - offset;
4082 ap->prd[idx].addr = cpu_to_le32(addr);
4083 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4084 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4093 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4096 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4097 * @qc: Metadata associated with taskfile to check
4099 * Allow low-level driver to filter ATA PACKET commands, returning
4100 * a status indicating whether or not it is OK to use DMA for the
4101 * supplied PACKET command.
4104 * spin_lock_irqsave(host lock)
4106 * RETURNS: 0 when ATAPI DMA can be used
4109 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4111 struct ata_port *ap = qc->ap;
4112 int rc = 0; /* Assume ATAPI DMA is OK by default */
4114 /* some drives can only do ATAPI DMA on read/write */
4115 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4116 struct scsi_cmnd *cmd = qc->scsicmd;
4117 u8 *scsicmd = cmd->cmnd;
4119 switch (scsicmd[0]) {
4126 /* atapi dma maybe ok */
4129 /* turn off atapi dma */
4134 if (ap->ops->check_atapi_dma)
4135 rc = ap->ops->check_atapi_dma(qc);
4140 * ata_qc_prep - Prepare taskfile for submission
4141 * @qc: Metadata associated with taskfile to be prepared
4143 * Prepare ATA taskfile for submission.
4146 * spin_lock_irqsave(host lock)
4148 void ata_qc_prep(struct ata_queued_cmd *qc)
4150 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4156 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4159 * ata_sg_init_one - Associate command with memory buffer
4160 * @qc: Command to be associated
4161 * @buf: Memory buffer
4162 * @buflen: Length of memory buffer, in bytes.
4164 * Initialize the data-related elements of queued_cmd @qc
4165 * to point to a single memory buffer, @buf of byte length @buflen.
4168 * spin_lock_irqsave(host lock)
4171 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4173 qc->flags |= ATA_QCFLAG_SINGLE;
4175 qc->__sg = &qc->sgent;
4177 qc->orig_n_elem = 1;
4179 qc->nbytes = buflen;
4181 sg_init_one(&qc->sgent, buf, buflen);
4185 * ata_sg_init - Associate command with scatter-gather table.
4186 * @qc: Command to be associated
4187 * @sg: Scatter-gather table.
4188 * @n_elem: Number of elements in s/g table.
4190 * Initialize the data-related elements of queued_cmd @qc
4191 * to point to a scatter-gather table @sg, containing @n_elem
4195 * spin_lock_irqsave(host lock)
4198 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4199 unsigned int n_elem)
4201 qc->flags |= ATA_QCFLAG_SG;
4203 qc->n_elem = n_elem;
4204 qc->orig_n_elem = n_elem;
4208 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4209 * @qc: Command with memory buffer to be mapped.
4211 * DMA-map the memory buffer associated with queued_cmd @qc.
4214 * spin_lock_irqsave(host lock)
4217 * Zero on success, negative on error.
4220 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4222 struct ata_port *ap = qc->ap;
4223 int dir = qc->dma_dir;
4224 struct scatterlist *sg = qc->__sg;
4225 dma_addr_t dma_address;
4228 /* we must lengthen transfers to end on a 32-bit boundary */
4229 qc->pad_len = sg->length & 3;
4231 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4232 struct scatterlist *psg = &qc->pad_sgent;
4234 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4236 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4238 if (qc->tf.flags & ATA_TFLAG_WRITE)
4239 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4242 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4243 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4245 sg->length -= qc->pad_len;
4246 if (sg->length == 0)
4249 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4250 sg->length, qc->pad_len);
4258 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4260 if (dma_mapping_error(dma_address)) {
4262 sg->length += qc->pad_len;
4266 sg_dma_address(sg) = dma_address;
4267 sg_dma_len(sg) = sg->length;
4270 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4271 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4277 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4278 * @qc: Command with scatter-gather table to be mapped.
4280 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4283 * spin_lock_irqsave(host lock)
4286 * Zero on success, negative on error.
4290 static int ata_sg_setup(struct ata_queued_cmd *qc)
4292 struct ata_port *ap = qc->ap;
4293 struct scatterlist *sg = qc->__sg;
4294 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4295 int n_elem, pre_n_elem, dir, trim_sg = 0;
4297 VPRINTK("ENTER, ata%u\n", ap->print_id);
4298 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4300 /* we must lengthen transfers to end on a 32-bit boundary */
4301 qc->pad_len = lsg->length & 3;
4303 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4304 struct scatterlist *psg = &qc->pad_sgent;
4305 unsigned int offset;
4307 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4309 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4312 * psg->page/offset are used to copy to-be-written
4313 * data in this function or read data in ata_sg_clean.
4315 offset = lsg->offset + lsg->length - qc->pad_len;
4316 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4317 psg->offset = offset_in_page(offset);
4319 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4320 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4321 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4322 kunmap_atomic(addr, KM_IRQ0);
4325 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4326 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4328 lsg->length -= qc->pad_len;
4329 if (lsg->length == 0)
4332 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4333 qc->n_elem - 1, lsg->length, qc->pad_len);
4336 pre_n_elem = qc->n_elem;
4337 if (trim_sg && pre_n_elem)
4346 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4348 /* restore last sg */
4349 lsg->length += qc->pad_len;
4353 DPRINTK("%d sg elements mapped\n", n_elem);
4356 qc->n_elem = n_elem;
4362 * swap_buf_le16 - swap halves of 16-bit words in place
4363 * @buf: Buffer to swap
4364 * @buf_words: Number of 16-bit words in buffer.
4366 * Swap halves of 16-bit words if needed to convert from
4367 * little-endian byte order to native cpu byte order, or
4371 * Inherited from caller.
4373 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4378 for (i = 0; i < buf_words; i++)
4379 buf[i] = le16_to_cpu(buf[i]);
4380 #endif /* __BIG_ENDIAN */
4384 * ata_data_xfer - Transfer data by PIO
4385 * @adev: device to target
4387 * @buflen: buffer length
4388 * @write_data: read/write
4390 * Transfer data from/to the device data register by PIO.
4393 * Inherited from caller.
4395 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4396 unsigned int buflen, int write_data)
4398 struct ata_port *ap = adev->ap;
4399 unsigned int words = buflen >> 1;
4401 /* Transfer multiple of 2 bytes */
4403 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4405 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4407 /* Transfer trailing 1 byte, if any. */
4408 if (unlikely(buflen & 0x01)) {
4409 u16 align_buf[1] = { 0 };
4410 unsigned char *trailing_buf = buf + buflen - 1;
4413 memcpy(align_buf, trailing_buf, 1);
4414 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4416 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4417 memcpy(trailing_buf, align_buf, 1);
4423 * ata_data_xfer_noirq - Transfer data by PIO
4424 * @adev: device to target
4426 * @buflen: buffer length
4427 * @write_data: read/write
4429 * Transfer data from/to the device data register by PIO. Do the
4430 * transfer with interrupts disabled.
4433 * Inherited from caller.
4435 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4436 unsigned int buflen, int write_data)
4438 unsigned long flags;
4439 local_irq_save(flags);
4440 ata_data_xfer(adev, buf, buflen, write_data);
4441 local_irq_restore(flags);
4446 * ata_pio_sector - Transfer a sector of data.
4447 * @qc: Command on going
4449 * Transfer qc->sect_size bytes of data from/to the ATA device.
4452 * Inherited from caller.
4455 static void ata_pio_sector(struct ata_queued_cmd *qc)
4457 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4458 struct scatterlist *sg = qc->__sg;
4459 struct ata_port *ap = qc->ap;
4461 unsigned int offset;
4464 if (qc->curbytes == qc->nbytes - qc->sect_size)
4465 ap->hsm_task_state = HSM_ST_LAST;
4467 page = sg[qc->cursg].page;
4468 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4470 /* get the current page and offset */
4471 page = nth_page(page, (offset >> PAGE_SHIFT));
4472 offset %= PAGE_SIZE;
4474 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4476 if (PageHighMem(page)) {
4477 unsigned long flags;
4479 /* FIXME: use a bounce buffer */
4480 local_irq_save(flags);
4481 buf = kmap_atomic(page, KM_IRQ0);
4483 /* do the actual data transfer */
4484 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4486 kunmap_atomic(buf, KM_IRQ0);
4487 local_irq_restore(flags);
4489 buf = page_address(page);
4490 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4493 qc->curbytes += qc->sect_size;
4494 qc->cursg_ofs += qc->sect_size;
4496 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4503 * ata_pio_sectors - Transfer one or many sectors.
4504 * @qc: Command on going
4506 * Transfer one or many sectors of data from/to the
4507 * ATA device for the DRQ request.
4510 * Inherited from caller.
4513 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4515 if (is_multi_taskfile(&qc->tf)) {
4516 /* READ/WRITE MULTIPLE */
4519 WARN_ON(qc->dev->multi_count == 0);
4521 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4522 qc->dev->multi_count);
4530 * atapi_send_cdb - Write CDB bytes to hardware
4531 * @ap: Port to which ATAPI device is attached.
4532 * @qc: Taskfile currently active
4534 * When device has indicated its readiness to accept
4535 * a CDB, this function is called. Send the CDB.
4541 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4544 DPRINTK("send cdb\n");
4545 WARN_ON(qc->dev->cdb_len < 12);
4547 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4548 ata_altstatus(ap); /* flush */
4550 switch (qc->tf.protocol) {
4551 case ATA_PROT_ATAPI:
4552 ap->hsm_task_state = HSM_ST;
4554 case ATA_PROT_ATAPI_NODATA:
4555 ap->hsm_task_state = HSM_ST_LAST;
4557 case ATA_PROT_ATAPI_DMA:
4558 ap->hsm_task_state = HSM_ST_LAST;
4559 /* initiate bmdma */
4560 ap->ops->bmdma_start(qc);
4566 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4567 * @qc: Command on going
4568 * @bytes: number of bytes
4570 * Transfer Transfer data from/to the ATAPI device.
4573 * Inherited from caller.
4577 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4579 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4580 struct scatterlist *sg = qc->__sg;
4581 struct ata_port *ap = qc->ap;
4584 unsigned int offset, count;
4586 if (qc->curbytes + bytes >= qc->nbytes)
4587 ap->hsm_task_state = HSM_ST_LAST;
4590 if (unlikely(qc->cursg >= qc->n_elem)) {
4592 * The end of qc->sg is reached and the device expects
4593 * more data to transfer. In order not to overrun qc->sg
4594 * and fulfill length specified in the byte count register,
4595 * - for read case, discard trailing data from the device
4596 * - for write case, padding zero data to the device
4598 u16 pad_buf[1] = { 0 };
4599 unsigned int words = bytes >> 1;
4602 if (words) /* warning if bytes > 1 */
4603 ata_dev_printk(qc->dev, KERN_WARNING,
4604 "%u bytes trailing data\n", bytes);
4606 for (i = 0; i < words; i++)
4607 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4609 ap->hsm_task_state = HSM_ST_LAST;
4613 sg = &qc->__sg[qc->cursg];
4616 offset = sg->offset + qc->cursg_ofs;
4618 /* get the current page and offset */
4619 page = nth_page(page, (offset >> PAGE_SHIFT));
4620 offset %= PAGE_SIZE;
4622 /* don't overrun current sg */
4623 count = min(sg->length - qc->cursg_ofs, bytes);
4625 /* don't cross page boundaries */
4626 count = min(count, (unsigned int)PAGE_SIZE - offset);
4628 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4630 if (PageHighMem(page)) {
4631 unsigned long flags;
4633 /* FIXME: use bounce buffer */
4634 local_irq_save(flags);
4635 buf = kmap_atomic(page, KM_IRQ0);
4637 /* do the actual data transfer */
4638 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4640 kunmap_atomic(buf, KM_IRQ0);
4641 local_irq_restore(flags);
4643 buf = page_address(page);
4644 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4648 qc->curbytes += count;
4649 qc->cursg_ofs += count;
4651 if (qc->cursg_ofs == sg->length) {
4661 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4662 * @qc: Command on going
4664 * Transfer Transfer data from/to the ATAPI device.
4667 * Inherited from caller.
4670 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4672 struct ata_port *ap = qc->ap;
4673 struct ata_device *dev = qc->dev;
4674 unsigned int ireason, bc_lo, bc_hi, bytes;
4675 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4677 /* Abuse qc->result_tf for temp storage of intermediate TF
4678 * here to save some kernel stack usage.
4679 * For normal completion, qc->result_tf is not relevant. For
4680 * error, qc->result_tf is later overwritten by ata_qc_complete().
4681 * So, the correctness of qc->result_tf is not affected.
4683 ap->ops->tf_read(ap, &qc->result_tf);
4684 ireason = qc->result_tf.nsect;
4685 bc_lo = qc->result_tf.lbam;
4686 bc_hi = qc->result_tf.lbah;
4687 bytes = (bc_hi << 8) | bc_lo;
4689 /* shall be cleared to zero, indicating xfer of data */
4690 if (ireason & (1 << 0))
4693 /* make sure transfer direction matches expected */
4694 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4695 if (do_write != i_write)
4698 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4700 __atapi_pio_bytes(qc, bytes);
4705 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4706 qc->err_mask |= AC_ERR_HSM;
4707 ap->hsm_task_state = HSM_ST_ERR;
4711 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4712 * @ap: the target ata_port
4716 * 1 if ok in workqueue, 0 otherwise.
4719 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4721 if (qc->tf.flags & ATA_TFLAG_POLLING)
4724 if (ap->hsm_task_state == HSM_ST_FIRST) {
4725 if (qc->tf.protocol == ATA_PROT_PIO &&
4726 (qc->tf.flags & ATA_TFLAG_WRITE))
4729 if (is_atapi_taskfile(&qc->tf) &&
4730 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4738 * ata_hsm_qc_complete - finish a qc running on standard HSM
4739 * @qc: Command to complete
4740 * @in_wq: 1 if called from workqueue, 0 otherwise
4742 * Finish @qc which is running on standard HSM.
4745 * If @in_wq is zero, spin_lock_irqsave(host lock).
4746 * Otherwise, none on entry and grabs host lock.
4748 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4750 struct ata_port *ap = qc->ap;
4751 unsigned long flags;
4753 if (ap->ops->error_handler) {
4755 spin_lock_irqsave(ap->lock, flags);
4757 /* EH might have kicked in while host lock is
4760 qc = ata_qc_from_tag(ap, qc->tag);
4762 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4763 ap->ops->irq_on(ap);
4764 ata_qc_complete(qc);
4766 ata_port_freeze(ap);
4769 spin_unlock_irqrestore(ap->lock, flags);
4771 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4772 ata_qc_complete(qc);
4774 ata_port_freeze(ap);
4778 spin_lock_irqsave(ap->lock, flags);
4779 ap->ops->irq_on(ap);
4780 ata_qc_complete(qc);
4781 spin_unlock_irqrestore(ap->lock, flags);
4783 ata_qc_complete(qc);
4786 ata_altstatus(ap); /* flush */
4790 * ata_hsm_move - move the HSM to the next state.
4791 * @ap: the target ata_port
4793 * @status: current device status
4794 * @in_wq: 1 if called from workqueue, 0 otherwise
4797 * 1 when poll next status needed, 0 otherwise.
4799 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4800 u8 status, int in_wq)
4802 unsigned long flags = 0;
4805 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4807 /* Make sure ata_qc_issue_prot() does not throw things
4808 * like DMA polling into the workqueue. Notice that
4809 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4811 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4814 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4815 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4817 switch (ap->hsm_task_state) {
4819 /* Send first data block or PACKET CDB */
4821 /* If polling, we will stay in the work queue after
4822 * sending the data. Otherwise, interrupt handler
4823 * takes over after sending the data.
4825 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4827 /* check device status */
4828 if (unlikely((status & ATA_DRQ) == 0)) {
4829 /* handle BSY=0, DRQ=0 as error */
4830 if (likely(status & (ATA_ERR | ATA_DF)))
4831 /* device stops HSM for abort/error */
4832 qc->err_mask |= AC_ERR_DEV;
4834 /* HSM violation. Let EH handle this */
4835 qc->err_mask |= AC_ERR_HSM;
4837 ap->hsm_task_state = HSM_ST_ERR;
4841 /* Device should not ask for data transfer (DRQ=1)
4842 * when it finds something wrong.
4843 * We ignore DRQ here and stop the HSM by
4844 * changing hsm_task_state to HSM_ST_ERR and
4845 * let the EH abort the command or reset the device.
4847 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4848 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4849 "error, dev_stat 0x%X\n", status);
4850 qc->err_mask |= AC_ERR_HSM;
4851 ap->hsm_task_state = HSM_ST_ERR;
4855 /* Send the CDB (atapi) or the first data block (ata pio out).
4856 * During the state transition, interrupt handler shouldn't
4857 * be invoked before the data transfer is complete and
4858 * hsm_task_state is changed. Hence, the following locking.
4861 spin_lock_irqsave(ap->lock, flags);
4863 if (qc->tf.protocol == ATA_PROT_PIO) {
4864 /* PIO data out protocol.
4865 * send first data block.
4868 /* ata_pio_sectors() might change the state
4869 * to HSM_ST_LAST. so, the state is changed here
4870 * before ata_pio_sectors().
4872 ap->hsm_task_state = HSM_ST;
4873 ata_pio_sectors(qc);
4874 ata_altstatus(ap); /* flush */
4877 atapi_send_cdb(ap, qc);
4880 spin_unlock_irqrestore(ap->lock, flags);
4882 /* if polling, ata_pio_task() handles the rest.
4883 * otherwise, interrupt handler takes over from here.
4888 /* complete command or read/write the data register */
4889 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4890 /* ATAPI PIO protocol */
4891 if ((status & ATA_DRQ) == 0) {
4892 /* No more data to transfer or device error.
4893 * Device error will be tagged in HSM_ST_LAST.
4895 ap->hsm_task_state = HSM_ST_LAST;
4899 /* Device should not ask for data transfer (DRQ=1)
4900 * when it finds something wrong.
4901 * We ignore DRQ here and stop the HSM by
4902 * changing hsm_task_state to HSM_ST_ERR and
4903 * let the EH abort the command or reset the device.
4905 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4906 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4907 "device error, dev_stat 0x%X\n",
4909 qc->err_mask |= AC_ERR_HSM;
4910 ap->hsm_task_state = HSM_ST_ERR;
4914 atapi_pio_bytes(qc);
4916 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4917 /* bad ireason reported by device */
4921 /* ATA PIO protocol */
4922 if (unlikely((status & ATA_DRQ) == 0)) {
4923 /* handle BSY=0, DRQ=0 as error */
4924 if (likely(status & (ATA_ERR | ATA_DF)))
4925 /* device stops HSM for abort/error */
4926 qc->err_mask |= AC_ERR_DEV;
4928 /* HSM violation. Let EH handle this.
4929 * Phantom devices also trigger this
4930 * condition. Mark hint.
4932 qc->err_mask |= AC_ERR_HSM |
4935 ap->hsm_task_state = HSM_ST_ERR;
4939 /* For PIO reads, some devices may ask for
4940 * data transfer (DRQ=1) alone with ERR=1.
4941 * We respect DRQ here and transfer one
4942 * block of junk data before changing the
4943 * hsm_task_state to HSM_ST_ERR.
4945 * For PIO writes, ERR=1 DRQ=1 doesn't make
4946 * sense since the data block has been
4947 * transferred to the device.
4949 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4950 /* data might be corrputed */
4951 qc->err_mask |= AC_ERR_DEV;
4953 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4954 ata_pio_sectors(qc);
4956 status = ata_wait_idle(ap);
4959 if (status & (ATA_BUSY | ATA_DRQ))
4960 qc->err_mask |= AC_ERR_HSM;
4962 /* ata_pio_sectors() might change the
4963 * state to HSM_ST_LAST. so, the state
4964 * is changed after ata_pio_sectors().
4966 ap->hsm_task_state = HSM_ST_ERR;
4970 ata_pio_sectors(qc);
4972 if (ap->hsm_task_state == HSM_ST_LAST &&
4973 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4976 status = ata_wait_idle(ap);
4981 ata_altstatus(ap); /* flush */
4986 if (unlikely(!ata_ok(status))) {
4987 qc->err_mask |= __ac_err_mask(status);
4988 ap->hsm_task_state = HSM_ST_ERR;
4992 /* no more data to transfer */
4993 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4994 ap->print_id, qc->dev->devno, status);
4996 WARN_ON(qc->err_mask);
4998 ap->hsm_task_state = HSM_ST_IDLE;
5000 /* complete taskfile transaction */
5001 ata_hsm_qc_complete(qc, in_wq);
5007 /* make sure qc->err_mask is available to
5008 * know what's wrong and recover
5010 WARN_ON(qc->err_mask == 0);
5012 ap->hsm_task_state = HSM_ST_IDLE;
5014 /* complete taskfile transaction */
5015 ata_hsm_qc_complete(qc, in_wq);
5027 static void ata_pio_task(struct work_struct *work)
5029 struct ata_port *ap =
5030 container_of(work, struct ata_port, port_task.work);
5031 struct ata_queued_cmd *qc = ap->port_task_data;
5036 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5039 * This is purely heuristic. This is a fast path.
5040 * Sometimes when we enter, BSY will be cleared in
5041 * a chk-status or two. If not, the drive is probably seeking
5042 * or something. Snooze for a couple msecs, then
5043 * chk-status again. If still busy, queue delayed work.
5045 status = ata_busy_wait(ap, ATA_BUSY, 5);
5046 if (status & ATA_BUSY) {
5048 status = ata_busy_wait(ap, ATA_BUSY, 10);
5049 if (status & ATA_BUSY) {
5050 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5056 poll_next = ata_hsm_move(ap, qc, status, 1);
5058 /* another command or interrupt handler
5059 * may be running at this point.
5066 * ata_qc_new - Request an available ATA command, for queueing
5067 * @ap: Port associated with device @dev
5068 * @dev: Device from whom we request an available command structure
5074 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5076 struct ata_queued_cmd *qc = NULL;
5079 /* no command while frozen */
5080 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5083 /* the last tag is reserved for internal command. */
5084 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5085 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5086 qc = __ata_qc_from_tag(ap, i);
5097 * ata_qc_new_init - Request an available ATA command, and initialize it
5098 * @dev: Device from whom we request an available command structure
5104 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5106 struct ata_port *ap = dev->ap;
5107 struct ata_queued_cmd *qc;
5109 qc = ata_qc_new(ap);
5122 * ata_qc_free - free unused ata_queued_cmd
5123 * @qc: Command to complete
5125 * Designed to free unused ata_queued_cmd object
5126 * in case something prevents using it.
5129 * spin_lock_irqsave(host lock)
5131 void ata_qc_free(struct ata_queued_cmd *qc)
5133 struct ata_port *ap = qc->ap;
5136 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5140 if (likely(ata_tag_valid(tag))) {
5141 qc->tag = ATA_TAG_POISON;
5142 clear_bit(tag, &ap->qc_allocated);
5146 void __ata_qc_complete(struct ata_queued_cmd *qc)
5148 struct ata_port *ap = qc->ap;
5150 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5151 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5153 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5156 /* command should be marked inactive atomically with qc completion */
5157 if (qc->tf.protocol == ATA_PROT_NCQ)
5158 ap->sactive &= ~(1 << qc->tag);
5160 ap->active_tag = ATA_TAG_POISON;
5162 /* atapi: mark qc as inactive to prevent the interrupt handler
5163 * from completing the command twice later, before the error handler
5164 * is called. (when rc != 0 and atapi request sense is needed)
5166 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5167 ap->qc_active &= ~(1 << qc->tag);
5169 /* call completion callback */
5170 qc->complete_fn(qc);
5173 static void fill_result_tf(struct ata_queued_cmd *qc)
5175 struct ata_port *ap = qc->ap;
5177 qc->result_tf.flags = qc->tf.flags;
5178 ap->ops->tf_read(ap, &qc->result_tf);
5182 * ata_qc_complete - Complete an active ATA command
5183 * @qc: Command to complete
5184 * @err_mask: ATA Status register contents
5186 * Indicate to the mid and upper layers that an ATA
5187 * command has completed, with either an ok or not-ok status.
5190 * spin_lock_irqsave(host lock)
5192 void ata_qc_complete(struct ata_queued_cmd *qc)
5194 struct ata_port *ap = qc->ap;
5196 /* XXX: New EH and old EH use different mechanisms to
5197 * synchronize EH with regular execution path.
5199 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5200 * Normal execution path is responsible for not accessing a
5201 * failed qc. libata core enforces the rule by returning NULL
5202 * from ata_qc_from_tag() for failed qcs.
5204 * Old EH depends on ata_qc_complete() nullifying completion
5205 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5206 * not synchronize with interrupt handler. Only PIO task is
5209 if (ap->ops->error_handler) {
5210 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5212 if (unlikely(qc->err_mask))
5213 qc->flags |= ATA_QCFLAG_FAILED;
5215 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5216 if (!ata_tag_internal(qc->tag)) {
5217 /* always fill result TF for failed qc */
5219 ata_qc_schedule_eh(qc);
5224 /* read result TF if requested */
5225 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5228 __ata_qc_complete(qc);
5230 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5233 /* read result TF if failed or requested */
5234 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5237 __ata_qc_complete(qc);
5242 * ata_qc_complete_multiple - Complete multiple qcs successfully
5243 * @ap: port in question
5244 * @qc_active: new qc_active mask
5245 * @finish_qc: LLDD callback invoked before completing a qc
5247 * Complete in-flight commands. This functions is meant to be
5248 * called from low-level driver's interrupt routine to complete
5249 * requests normally. ap->qc_active and @qc_active is compared
5250 * and commands are completed accordingly.
5253 * spin_lock_irqsave(host lock)
5256 * Number of completed commands on success, -errno otherwise.
5258 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5259 void (*finish_qc)(struct ata_queued_cmd *))
5265 done_mask = ap->qc_active ^ qc_active;
5267 if (unlikely(done_mask & qc_active)) {
5268 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5269 "(%08x->%08x)\n", ap->qc_active, qc_active);
5273 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5274 struct ata_queued_cmd *qc;
5276 if (!(done_mask & (1 << i)))
5279 if ((qc = ata_qc_from_tag(ap, i))) {
5282 ata_qc_complete(qc);
5290 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5292 struct ata_port *ap = qc->ap;
5294 switch (qc->tf.protocol) {
5297 case ATA_PROT_ATAPI_DMA:
5300 case ATA_PROT_ATAPI:
5302 if (ap->flags & ATA_FLAG_PIO_DMA)
5315 * ata_qc_issue - issue taskfile to device
5316 * @qc: command to issue to device
5318 * Prepare an ATA command to submission to device.
5319 * This includes mapping the data into a DMA-able
5320 * area, filling in the S/G table, and finally
5321 * writing the taskfile to hardware, starting the command.
5324 * spin_lock_irqsave(host lock)
5326 void ata_qc_issue(struct ata_queued_cmd *qc)
5328 struct ata_port *ap = qc->ap;
5330 /* Make sure only one non-NCQ command is outstanding. The
5331 * check is skipped for old EH because it reuses active qc to
5332 * request ATAPI sense.
5334 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5336 if (qc->tf.protocol == ATA_PROT_NCQ) {
5337 WARN_ON(ap->sactive & (1 << qc->tag));
5338 ap->sactive |= 1 << qc->tag;
5340 WARN_ON(ap->sactive);
5341 ap->active_tag = qc->tag;
5344 qc->flags |= ATA_QCFLAG_ACTIVE;
5345 ap->qc_active |= 1 << qc->tag;
5347 if (ata_should_dma_map(qc)) {
5348 if (qc->flags & ATA_QCFLAG_SG) {
5349 if (ata_sg_setup(qc))
5351 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5352 if (ata_sg_setup_one(qc))
5356 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5359 ap->ops->qc_prep(qc);
5361 qc->err_mask |= ap->ops->qc_issue(qc);
5362 if (unlikely(qc->err_mask))
5367 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5368 qc->err_mask |= AC_ERR_SYSTEM;
5370 ata_qc_complete(qc);
5374 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5375 * @qc: command to issue to device
5377 * Using various libata functions and hooks, this function
5378 * starts an ATA command. ATA commands are grouped into
5379 * classes called "protocols", and issuing each type of protocol
5380 * is slightly different.
5382 * May be used as the qc_issue() entry in ata_port_operations.
5385 * spin_lock_irqsave(host lock)
5388 * Zero on success, AC_ERR_* mask on failure
5391 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5393 struct ata_port *ap = qc->ap;
5395 /* Use polling pio if the LLD doesn't handle
5396 * interrupt driven pio and atapi CDB interrupt.
5398 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5399 switch (qc->tf.protocol) {
5401 case ATA_PROT_NODATA:
5402 case ATA_PROT_ATAPI:
5403 case ATA_PROT_ATAPI_NODATA:
5404 qc->tf.flags |= ATA_TFLAG_POLLING;
5406 case ATA_PROT_ATAPI_DMA:
5407 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5408 /* see ata_dma_blacklisted() */
5416 /* Some controllers show flaky interrupt behavior after
5417 * setting xfer mode. Use polling instead.
5419 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5420 qc->tf.feature == SETFEATURES_XFER) &&
5421 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5422 qc->tf.flags |= ATA_TFLAG_POLLING;
5424 /* select the device */
5425 ata_dev_select(ap, qc->dev->devno, 1, 0);
5427 /* start the command */
5428 switch (qc->tf.protocol) {
5429 case ATA_PROT_NODATA:
5430 if (qc->tf.flags & ATA_TFLAG_POLLING)
5431 ata_qc_set_polling(qc);
5433 ata_tf_to_host(ap, &qc->tf);
5434 ap->hsm_task_state = HSM_ST_LAST;
5436 if (qc->tf.flags & ATA_TFLAG_POLLING)
5437 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5442 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5444 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5445 ap->ops->bmdma_setup(qc); /* set up bmdma */
5446 ap->ops->bmdma_start(qc); /* initiate bmdma */
5447 ap->hsm_task_state = HSM_ST_LAST;
5451 if (qc->tf.flags & ATA_TFLAG_POLLING)
5452 ata_qc_set_polling(qc);
5454 ata_tf_to_host(ap, &qc->tf);
5456 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5457 /* PIO data out protocol */
5458 ap->hsm_task_state = HSM_ST_FIRST;
5459 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5461 /* always send first data block using
5462 * the ata_pio_task() codepath.
5465 /* PIO data in protocol */
5466 ap->hsm_task_state = HSM_ST;
5468 if (qc->tf.flags & ATA_TFLAG_POLLING)
5469 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5471 /* if polling, ata_pio_task() handles the rest.
5472 * otherwise, interrupt handler takes over from here.
5478 case ATA_PROT_ATAPI:
5479 case ATA_PROT_ATAPI_NODATA:
5480 if (qc->tf.flags & ATA_TFLAG_POLLING)
5481 ata_qc_set_polling(qc);
5483 ata_tf_to_host(ap, &qc->tf);
5485 ap->hsm_task_state = HSM_ST_FIRST;
5487 /* send cdb by polling if no cdb interrupt */
5488 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5489 (qc->tf.flags & ATA_TFLAG_POLLING))
5490 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5493 case ATA_PROT_ATAPI_DMA:
5494 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5496 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5497 ap->ops->bmdma_setup(qc); /* set up bmdma */
5498 ap->hsm_task_state = HSM_ST_FIRST;
5500 /* send cdb by polling if no cdb interrupt */
5501 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5502 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5507 return AC_ERR_SYSTEM;
5514 * ata_host_intr - Handle host interrupt for given (port, task)
5515 * @ap: Port on which interrupt arrived (possibly...)
5516 * @qc: Taskfile currently active in engine
5518 * Handle host interrupt for given queued command. Currently,
5519 * only DMA interrupts are handled. All other commands are
5520 * handled via polling with interrupts disabled (nIEN bit).
5523 * spin_lock_irqsave(host lock)
5526 * One if interrupt was handled, zero if not (shared irq).
5529 inline unsigned int ata_host_intr (struct ata_port *ap,
5530 struct ata_queued_cmd *qc)
5532 struct ata_eh_info *ehi = &ap->eh_info;
5533 u8 status, host_stat = 0;
5535 VPRINTK("ata%u: protocol %d task_state %d\n",
5536 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5538 /* Check whether we are expecting interrupt in this state */
5539 switch (ap->hsm_task_state) {
5541 /* Some pre-ATAPI-4 devices assert INTRQ
5542 * at this state when ready to receive CDB.
5545 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5546 * The flag was turned on only for atapi devices.
5547 * No need to check is_atapi_taskfile(&qc->tf) again.
5549 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5553 if (qc->tf.protocol == ATA_PROT_DMA ||
5554 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5555 /* check status of DMA engine */
5556 host_stat = ap->ops->bmdma_status(ap);
5557 VPRINTK("ata%u: host_stat 0x%X\n",
5558 ap->print_id, host_stat);
5560 /* if it's not our irq... */
5561 if (!(host_stat & ATA_DMA_INTR))
5564 /* before we do anything else, clear DMA-Start bit */
5565 ap->ops->bmdma_stop(qc);
5567 if (unlikely(host_stat & ATA_DMA_ERR)) {
5568 /* error when transfering data to/from memory */
5569 qc->err_mask |= AC_ERR_HOST_BUS;
5570 ap->hsm_task_state = HSM_ST_ERR;
5580 /* check altstatus */
5581 status = ata_altstatus(ap);
5582 if (status & ATA_BUSY)
5585 /* check main status, clearing INTRQ */
5586 status = ata_chk_status(ap);
5587 if (unlikely(status & ATA_BUSY))
5590 /* ack bmdma irq events */
5591 ap->ops->irq_clear(ap);
5593 ata_hsm_move(ap, qc, status, 0);
5595 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5596 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5597 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5599 return 1; /* irq handled */
5602 ap->stats.idle_irq++;
5605 if ((ap->stats.idle_irq % 1000) == 0) {
5606 ap->ops->irq_ack(ap, 0); /* debug trap */
5607 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5611 return 0; /* irq not handled */
5615 * ata_interrupt - Default ATA host interrupt handler
5616 * @irq: irq line (unused)
5617 * @dev_instance: pointer to our ata_host information structure
5619 * Default interrupt handler for PCI IDE devices. Calls
5620 * ata_host_intr() for each port that is not disabled.
5623 * Obtains host lock during operation.
5626 * IRQ_NONE or IRQ_HANDLED.
5629 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5631 struct ata_host *host = dev_instance;
5633 unsigned int handled = 0;
5634 unsigned long flags;
5636 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5637 spin_lock_irqsave(&host->lock, flags);
5639 for (i = 0; i < host->n_ports; i++) {
5640 struct ata_port *ap;
5642 ap = host->ports[i];
5644 !(ap->flags & ATA_FLAG_DISABLED)) {
5645 struct ata_queued_cmd *qc;
5647 qc = ata_qc_from_tag(ap, ap->active_tag);
5648 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5649 (qc->flags & ATA_QCFLAG_ACTIVE))
5650 handled |= ata_host_intr(ap, qc);
5654 spin_unlock_irqrestore(&host->lock, flags);
5656 return IRQ_RETVAL(handled);
5660 * sata_scr_valid - test whether SCRs are accessible
5661 * @ap: ATA port to test SCR accessibility for
5663 * Test whether SCRs are accessible for @ap.
5669 * 1 if SCRs are accessible, 0 otherwise.
5671 int sata_scr_valid(struct ata_port *ap)
5673 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5677 * sata_scr_read - read SCR register of the specified port
5678 * @ap: ATA port to read SCR for
5680 * @val: Place to store read value
5682 * Read SCR register @reg of @ap into *@val. This function is
5683 * guaranteed to succeed if the cable type of the port is SATA
5684 * and the port implements ->scr_read.
5690 * 0 on success, negative errno on failure.
5692 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5694 if (sata_scr_valid(ap)) {
5695 *val = ap->ops->scr_read(ap, reg);
5702 * sata_scr_write - write SCR register of the specified port
5703 * @ap: ATA port to write SCR for
5704 * @reg: SCR to write
5705 * @val: value to write
5707 * Write @val to SCR register @reg of @ap. This function is
5708 * guaranteed to succeed if the cable type of the port is SATA
5709 * and the port implements ->scr_read.
5715 * 0 on success, negative errno on failure.
5717 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5719 if (sata_scr_valid(ap)) {
5720 ap->ops->scr_write(ap, reg, val);
5727 * sata_scr_write_flush - write SCR register of the specified port and flush
5728 * @ap: ATA port to write SCR for
5729 * @reg: SCR to write
5730 * @val: value to write
5732 * This function is identical to sata_scr_write() except that this
5733 * function performs flush after writing to the register.
5739 * 0 on success, negative errno on failure.
5741 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5743 if (sata_scr_valid(ap)) {
5744 ap->ops->scr_write(ap, reg, val);
5745 ap->ops->scr_read(ap, reg);
5752 * ata_port_online - test whether the given port is online
5753 * @ap: ATA port to test
5755 * Test whether @ap is online. Note that this function returns 0
5756 * if online status of @ap cannot be obtained, so
5757 * ata_port_online(ap) != !ata_port_offline(ap).
5763 * 1 if the port online status is available and online.
5765 int ata_port_online(struct ata_port *ap)
5769 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5775 * ata_port_offline - test whether the given port is offline
5776 * @ap: ATA port to test
5778 * Test whether @ap is offline. Note that this function returns
5779 * 0 if offline status of @ap cannot be obtained, so
5780 * ata_port_online(ap) != !ata_port_offline(ap).
5786 * 1 if the port offline status is available and offline.
5788 int ata_port_offline(struct ata_port *ap)
5792 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5797 int ata_flush_cache(struct ata_device *dev)
5799 unsigned int err_mask;
5802 if (!ata_try_flush_cache(dev))
5805 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5806 cmd = ATA_CMD_FLUSH_EXT;
5808 cmd = ATA_CMD_FLUSH;
5810 err_mask = ata_do_simple_cmd(dev, cmd);
5812 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5820 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5821 unsigned int action, unsigned int ehi_flags,
5824 unsigned long flags;
5827 for (i = 0; i < host->n_ports; i++) {
5828 struct ata_port *ap = host->ports[i];
5830 /* Previous resume operation might still be in
5831 * progress. Wait for PM_PENDING to clear.
5833 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5834 ata_port_wait_eh(ap);
5835 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5838 /* request PM ops to EH */
5839 spin_lock_irqsave(ap->lock, flags);
5844 ap->pm_result = &rc;
5847 ap->pflags |= ATA_PFLAG_PM_PENDING;
5848 ap->eh_info.action |= action;
5849 ap->eh_info.flags |= ehi_flags;
5851 ata_port_schedule_eh(ap);
5853 spin_unlock_irqrestore(ap->lock, flags);
5855 /* wait and check result */
5857 ata_port_wait_eh(ap);
5858 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5868 * ata_host_suspend - suspend host
5869 * @host: host to suspend
5872 * Suspend @host. Actual operation is performed by EH. This
5873 * function requests EH to perform PM operations and waits for EH
5877 * Kernel thread context (may sleep).
5880 * 0 on success, -errno on failure.
5882 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5886 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5888 host->dev->power.power_state = mesg;
5893 * ata_host_resume - resume host
5894 * @host: host to resume
5896 * Resume @host. Actual operation is performed by EH. This
5897 * function requests EH to perform PM operations and returns.
5898 * Note that all resume operations are performed parallely.
5901 * Kernel thread context (may sleep).
5903 void ata_host_resume(struct ata_host *host)
5905 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5906 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5907 host->dev->power.power_state = PMSG_ON;
5912 * ata_port_start - Set port up for dma.
5913 * @ap: Port to initialize
5915 * Called just after data structures for each port are
5916 * initialized. Allocates space for PRD table.
5918 * May be used as the port_start() entry in ata_port_operations.
5921 * Inherited from caller.
5923 int ata_port_start(struct ata_port *ap)
5925 struct device *dev = ap->dev;
5928 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5933 rc = ata_pad_alloc(ap, dev);
5937 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5938 (unsigned long long)ap->prd_dma);
5943 * ata_dev_init - Initialize an ata_device structure
5944 * @dev: Device structure to initialize
5946 * Initialize @dev in preparation for probing.
5949 * Inherited from caller.
5951 void ata_dev_init(struct ata_device *dev)
5953 struct ata_port *ap = dev->ap;
5954 unsigned long flags;
5956 /* SATA spd limit is bound to the first device */
5957 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5959 /* High bits of dev->flags are used to record warm plug
5960 * requests which occur asynchronously. Synchronize using
5963 spin_lock_irqsave(ap->lock, flags);
5964 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5965 spin_unlock_irqrestore(ap->lock, flags);
5967 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5968 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5969 dev->pio_mask = UINT_MAX;
5970 dev->mwdma_mask = UINT_MAX;
5971 dev->udma_mask = UINT_MAX;
5975 * ata_port_alloc - allocate and initialize basic ATA port resources
5976 * @host: ATA host this allocated port belongs to
5978 * Allocate and initialize basic ATA port resources.
5981 * Allocate ATA port on success, NULL on failure.
5984 * Inherited from calling layer (may sleep).
5986 struct ata_port *ata_port_alloc(struct ata_host *host)
5988 struct ata_port *ap;
5993 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5997 ap->pflags |= ATA_PFLAG_INITIALIZING;
5998 ap->lock = &host->lock;
5999 ap->flags = ATA_FLAG_DISABLED;
6001 ap->ctl = ATA_DEVCTL_OBS;
6003 ap->dev = host->dev;
6005 ap->hw_sata_spd_limit = UINT_MAX;
6006 ap->active_tag = ATA_TAG_POISON;
6007 ap->last_ctl = 0xFF;
6009 #if defined(ATA_VERBOSE_DEBUG)
6010 /* turn on all debugging levels */
6011 ap->msg_enable = 0x00FF;
6012 #elif defined(ATA_DEBUG)
6013 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6015 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6018 INIT_DELAYED_WORK(&ap->port_task, NULL);
6019 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6020 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6021 INIT_LIST_HEAD(&ap->eh_done_q);
6022 init_waitqueue_head(&ap->eh_wait_q);
6024 ap->cbl = ATA_CBL_NONE;
6026 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6027 struct ata_device *dev = &ap->device[i];
6034 ap->stats.unhandled_irq = 1;
6035 ap->stats.idle_irq = 1;
6040 static void ata_host_release(struct device *gendev, void *res)
6042 struct ata_host *host = dev_get_drvdata(gendev);
6045 for (i = 0; i < host->n_ports; i++) {
6046 struct ata_port *ap = host->ports[i];
6051 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6052 ap->ops->port_stop(ap);
6055 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6056 host->ops->host_stop(host);
6058 for (i = 0; i < host->n_ports; i++) {
6059 struct ata_port *ap = host->ports[i];
6065 scsi_host_put(ap->scsi_host);
6068 host->ports[i] = NULL;
6071 dev_set_drvdata(gendev, NULL);
6075 * ata_host_alloc - allocate and init basic ATA host resources
6076 * @dev: generic device this host is associated with
6077 * @max_ports: maximum number of ATA ports associated with this host
6079 * Allocate and initialize basic ATA host resources. LLD calls
6080 * this function to allocate a host, initializes it fully and
6081 * attaches it using ata_host_register().
6083 * @max_ports ports are allocated and host->n_ports is
6084 * initialized to @max_ports. The caller is allowed to decrease
6085 * host->n_ports before calling ata_host_register(). The unused
6086 * ports will be automatically freed on registration.
6089 * Allocate ATA host on success, NULL on failure.
6092 * Inherited from calling layer (may sleep).
6094 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6096 struct ata_host *host;
6102 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6105 /* alloc a container for our list of ATA ports (buses) */
6106 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6107 /* alloc a container for our list of ATA ports (buses) */
6108 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6112 devres_add(dev, host);
6113 dev_set_drvdata(dev, host);
6115 spin_lock_init(&host->lock);
6117 host->n_ports = max_ports;
6119 /* allocate ports bound to this host */
6120 for (i = 0; i < max_ports; i++) {
6121 struct ata_port *ap;
6123 ap = ata_port_alloc(host);
6128 host->ports[i] = ap;
6131 devres_remove_group(dev, NULL);
6135 devres_release_group(dev, NULL);
6140 * ata_host_alloc_pinfo - alloc host and init with port_info array
6141 * @dev: generic device this host is associated with
6142 * @ppi: array of ATA port_info to initialize host with
6143 * @n_ports: number of ATA ports attached to this host
6145 * Allocate ATA host and initialize with info from @ppi. If NULL
6146 * terminated, @ppi may contain fewer entries than @n_ports. The
6147 * last entry will be used for the remaining ports.
6150 * Allocate ATA host on success, NULL on failure.
6153 * Inherited from calling layer (may sleep).
6155 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6156 const struct ata_port_info * const * ppi,
6159 const struct ata_port_info *pi;
6160 struct ata_host *host;
6163 host = ata_host_alloc(dev, n_ports);
6167 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6168 struct ata_port *ap = host->ports[i];
6173 ap->pio_mask = pi->pio_mask;
6174 ap->mwdma_mask = pi->mwdma_mask;
6175 ap->udma_mask = pi->udma_mask;
6176 ap->flags |= pi->flags;
6177 ap->ops = pi->port_ops;
6179 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6180 host->ops = pi->port_ops;
6181 if (!host->private_data && pi->private_data)
6182 host->private_data = pi->private_data;
6189 * ata_host_start - start and freeze ports of an ATA host
6190 * @host: ATA host to start ports for
6192 * Start and then freeze ports of @host. Started status is
6193 * recorded in host->flags, so this function can be called
6194 * multiple times. Ports are guaranteed to get started only
6195 * once. If host->ops isn't initialized yet, its set to the
6196 * first non-dummy port ops.
6199 * Inherited from calling layer (may sleep).
6202 * 0 if all ports are started successfully, -errno otherwise.
6204 int ata_host_start(struct ata_host *host)
6208 if (host->flags & ATA_HOST_STARTED)
6211 for (i = 0; i < host->n_ports; i++) {
6212 struct ata_port *ap = host->ports[i];
6214 if (!host->ops && !ata_port_is_dummy(ap))
6215 host->ops = ap->ops;
6217 if (ap->ops->port_start) {
6218 rc = ap->ops->port_start(ap);
6220 ata_port_printk(ap, KERN_ERR, "failed to "
6221 "start port (errno=%d)\n", rc);
6226 ata_eh_freeze_port(ap);
6229 host->flags |= ATA_HOST_STARTED;
6234 struct ata_port *ap = host->ports[i];
6236 if (ap->ops->port_stop)
6237 ap->ops->port_stop(ap);
6243 * ata_sas_host_init - Initialize a host struct
6244 * @host: host to initialize
6245 * @dev: device host is attached to
6246 * @flags: host flags
6250 * PCI/etc. bus probe sem.
6253 /* KILLME - the only user left is ipr */
6254 void ata_host_init(struct ata_host *host, struct device *dev,
6255 unsigned long flags, const struct ata_port_operations *ops)
6257 spin_lock_init(&host->lock);
6259 host->flags = flags;
6264 * ata_host_register - register initialized ATA host
6265 * @host: ATA host to register
6266 * @sht: template for SCSI host
6268 * Register initialized ATA host. @host is allocated using
6269 * ata_host_alloc() and fully initialized by LLD. This function
6270 * starts ports, registers @host with ATA and SCSI layers and
6271 * probe registered devices.
6274 * Inherited from calling layer (may sleep).
6277 * 0 on success, -errno otherwise.
6279 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6283 /* host must have been started */
6284 if (!(host->flags & ATA_HOST_STARTED)) {
6285 dev_printk(KERN_ERR, host->dev,
6286 "BUG: trying to register unstarted host\n");
6291 /* Blow away unused ports. This happens when LLD can't
6292 * determine the exact number of ports to allocate at
6295 for (i = host->n_ports; host->ports[i]; i++)
6296 kfree(host->ports[i]);
6298 /* give ports names and add SCSI hosts */
6299 for (i = 0; i < host->n_ports; i++)
6300 host->ports[i]->print_id = ata_print_id++;
6302 rc = ata_scsi_add_hosts(host, sht);
6306 /* set cable, sata_spd_limit and report */
6307 for (i = 0; i < host->n_ports; i++) {
6308 struct ata_port *ap = host->ports[i];
6311 unsigned long xfer_mask;
6313 /* set SATA cable type if still unset */
6314 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6315 ap->cbl = ATA_CBL_SATA;
6317 /* init sata_spd_limit to the current value */
6318 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6319 int spd = (scontrol >> 4) & 0xf;
6320 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6322 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6324 /* report the secondary IRQ for second channel legacy */
6325 irq_line = host->irq;
6326 if (i == 1 && host->irq2)
6327 irq_line = host->irq2;
6329 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6332 /* print per-port info to dmesg */
6333 if (!ata_port_is_dummy(ap))
6334 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6335 "ctl 0x%p bmdma 0x%p irq %d\n",
6336 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6337 ata_mode_string(xfer_mask),
6338 ap->ioaddr.cmd_addr,
6339 ap->ioaddr.ctl_addr,
6340 ap->ioaddr.bmdma_addr,
6343 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6346 /* perform each probe synchronously */
6347 DPRINTK("probe begin\n");
6348 for (i = 0; i < host->n_ports; i++) {
6349 struct ata_port *ap = host->ports[i];
6353 if (ap->ops->error_handler) {
6354 struct ata_eh_info *ehi = &ap->eh_info;
6355 unsigned long flags;
6359 /* kick EH for boot probing */
6360 spin_lock_irqsave(ap->lock, flags);
6362 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6363 ehi->action |= ATA_EH_SOFTRESET;
6364 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6366 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6367 ap->pflags |= ATA_PFLAG_LOADING;
6368 ata_port_schedule_eh(ap);
6370 spin_unlock_irqrestore(ap->lock, flags);
6372 /* wait for EH to finish */
6373 ata_port_wait_eh(ap);
6375 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6376 rc = ata_bus_probe(ap);
6377 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6380 /* FIXME: do something useful here?
6381 * Current libata behavior will
6382 * tear down everything when
6383 * the module is removed
6384 * or the h/w is unplugged.
6390 /* probes are done, now scan each port's disk(s) */
6391 DPRINTK("host probe begin\n");
6392 for (i = 0; i < host->n_ports; i++) {
6393 struct ata_port *ap = host->ports[i];
6395 ata_scsi_scan_host(ap);
6402 * ata_host_activate - start host, request IRQ and register it
6403 * @host: target ATA host
6404 * @irq: IRQ to request
6405 * @irq_handler: irq_handler used when requesting IRQ
6406 * @irq_flags: irq_flags used when requesting IRQ
6407 * @sht: scsi_host_template to use when registering the host
6409 * After allocating an ATA host and initializing it, most libata
6410 * LLDs perform three steps to activate the host - start host,
6411 * request IRQ and register it. This helper takes necessasry
6412 * arguments and performs the three steps in one go.
6415 * Inherited from calling layer (may sleep).
6418 * 0 on success, -errno otherwise.
6420 int ata_host_activate(struct ata_host *host, int irq,
6421 irq_handler_t irq_handler, unsigned long irq_flags,
6422 struct scsi_host_template *sht)
6426 rc = ata_host_start(host);
6430 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6431 dev_driver_string(host->dev), host);
6435 rc = ata_host_register(host, sht);
6436 /* if failed, just free the IRQ and leave ports alone */
6438 devm_free_irq(host->dev, irq, host);
6444 * ata_port_detach - Detach ATA port in prepration of device removal
6445 * @ap: ATA port to be detached
6447 * Detach all ATA devices and the associated SCSI devices of @ap;
6448 * then, remove the associated SCSI host. @ap is guaranteed to
6449 * be quiescent on return from this function.
6452 * Kernel thread context (may sleep).
6454 void ata_port_detach(struct ata_port *ap)
6456 unsigned long flags;
6459 if (!ap->ops->error_handler)
6462 /* tell EH we're leaving & flush EH */
6463 spin_lock_irqsave(ap->lock, flags);
6464 ap->pflags |= ATA_PFLAG_UNLOADING;
6465 spin_unlock_irqrestore(ap->lock, flags);
6467 ata_port_wait_eh(ap);
6469 /* EH is now guaranteed to see UNLOADING, so no new device
6470 * will be attached. Disable all existing devices.
6472 spin_lock_irqsave(ap->lock, flags);
6474 for (i = 0; i < ATA_MAX_DEVICES; i++)
6475 ata_dev_disable(&ap->device[i]);
6477 spin_unlock_irqrestore(ap->lock, flags);
6479 /* Final freeze & EH. All in-flight commands are aborted. EH
6480 * will be skipped and retrials will be terminated with bad
6483 spin_lock_irqsave(ap->lock, flags);
6484 ata_port_freeze(ap); /* won't be thawed */
6485 spin_unlock_irqrestore(ap->lock, flags);
6487 ata_port_wait_eh(ap);
6489 /* Flush hotplug task. The sequence is similar to
6490 * ata_port_flush_task().
6492 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6493 cancel_delayed_work(&ap->hotplug_task);
6494 cancel_work_sync(&ap->hotplug_task.work);
6497 /* remove the associated SCSI host */
6498 scsi_remove_host(ap->scsi_host);
6502 * ata_host_detach - Detach all ports of an ATA host
6503 * @host: Host to detach
6505 * Detach all ports of @host.
6508 * Kernel thread context (may sleep).
6510 void ata_host_detach(struct ata_host *host)
6514 for (i = 0; i < host->n_ports; i++)
6515 ata_port_detach(host->ports[i]);
6519 * ata_std_ports - initialize ioaddr with standard port offsets.
6520 * @ioaddr: IO address structure to be initialized
6522 * Utility function which initializes data_addr, error_addr,
6523 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6524 * device_addr, status_addr, and command_addr to standard offsets
6525 * relative to cmd_addr.
6527 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6530 void ata_std_ports(struct ata_ioports *ioaddr)
6532 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6533 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6534 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6535 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6536 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6537 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6538 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6539 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6540 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6541 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6548 * ata_pci_remove_one - PCI layer callback for device removal
6549 * @pdev: PCI device that was removed
6551 * PCI layer indicates to libata via this hook that hot-unplug or
6552 * module unload event has occurred. Detach all ports. Resource
6553 * release is handled via devres.
6556 * Inherited from PCI layer (may sleep).
6558 void ata_pci_remove_one(struct pci_dev *pdev)
6560 struct device *dev = pci_dev_to_dev(pdev);
6561 struct ata_host *host = dev_get_drvdata(dev);
6563 ata_host_detach(host);
6566 /* move to PCI subsystem */
6567 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6569 unsigned long tmp = 0;
6571 switch (bits->width) {
6574 pci_read_config_byte(pdev, bits->reg, &tmp8);
6580 pci_read_config_word(pdev, bits->reg, &tmp16);
6586 pci_read_config_dword(pdev, bits->reg, &tmp32);
6597 return (tmp == bits->val) ? 1 : 0;
6601 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6603 pci_save_state(pdev);
6604 pci_disable_device(pdev);
6606 if (mesg.event == PM_EVENT_SUSPEND)
6607 pci_set_power_state(pdev, PCI_D3hot);
6610 int ata_pci_device_do_resume(struct pci_dev *pdev)
6614 pci_set_power_state(pdev, PCI_D0);
6615 pci_restore_state(pdev);
6617 rc = pcim_enable_device(pdev);
6619 dev_printk(KERN_ERR, &pdev->dev,
6620 "failed to enable device after resume (%d)\n", rc);
6624 pci_set_master(pdev);
6628 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6630 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6633 rc = ata_host_suspend(host, mesg);
6637 ata_pci_device_do_suspend(pdev, mesg);
6642 int ata_pci_device_resume(struct pci_dev *pdev)
6644 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6647 rc = ata_pci_device_do_resume(pdev);
6649 ata_host_resume(host);
6652 #endif /* CONFIG_PM */
6654 #endif /* CONFIG_PCI */
6657 static int __init ata_init(void)
6659 ata_probe_timeout *= HZ;
6660 ata_wq = create_workqueue("ata");
6664 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6666 destroy_workqueue(ata_wq);
6670 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6674 static void __exit ata_exit(void)
6676 destroy_workqueue(ata_wq);
6677 destroy_workqueue(ata_aux_wq);
6680 subsys_initcall(ata_init);
6681 module_exit(ata_exit);
6683 static unsigned long ratelimit_time;
6684 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6686 int ata_ratelimit(void)
6689 unsigned long flags;
6691 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6693 if (time_after(jiffies, ratelimit_time)) {
6695 ratelimit_time = jiffies + (HZ/5);
6699 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6705 * ata_wait_register - wait until register value changes
6706 * @reg: IO-mapped register
6707 * @mask: Mask to apply to read register value
6708 * @val: Wait condition
6709 * @interval_msec: polling interval in milliseconds
6710 * @timeout_msec: timeout in milliseconds
6712 * Waiting for some bits of register to change is a common
6713 * operation for ATA controllers. This function reads 32bit LE
6714 * IO-mapped register @reg and tests for the following condition.
6716 * (*@reg & mask) != val
6718 * If the condition is met, it returns; otherwise, the process is
6719 * repeated after @interval_msec until timeout.
6722 * Kernel thread context (may sleep)
6725 * The final register value.
6727 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6728 unsigned long interval_msec,
6729 unsigned long timeout_msec)
6731 unsigned long timeout;
6734 tmp = ioread32(reg);
6736 /* Calculate timeout _after_ the first read to make sure
6737 * preceding writes reach the controller before starting to
6738 * eat away the timeout.
6740 timeout = jiffies + (timeout_msec * HZ) / 1000;
6742 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6743 msleep(interval_msec);
6744 tmp = ioread32(reg);
6753 static void ata_dummy_noret(struct ata_port *ap) { }
6754 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6755 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6757 static u8 ata_dummy_check_status(struct ata_port *ap)
6762 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6764 return AC_ERR_SYSTEM;
6767 const struct ata_port_operations ata_dummy_port_ops = {
6768 .port_disable = ata_port_disable,
6769 .check_status = ata_dummy_check_status,
6770 .check_altstatus = ata_dummy_check_status,
6771 .dev_select = ata_noop_dev_select,
6772 .qc_prep = ata_noop_qc_prep,
6773 .qc_issue = ata_dummy_qc_issue,
6774 .freeze = ata_dummy_noret,
6775 .thaw = ata_dummy_noret,
6776 .error_handler = ata_dummy_noret,
6777 .post_internal_cmd = ata_dummy_qc_noret,
6778 .irq_clear = ata_dummy_noret,
6779 .port_start = ata_dummy_ret0,
6780 .port_stop = ata_dummy_noret,
6783 const struct ata_port_info ata_dummy_port_info = {
6784 .port_ops = &ata_dummy_port_ops,
6788 * libata is essentially a library of internal helper functions for
6789 * low-level ATA host controller drivers. As such, the API/ABI is
6790 * likely to change as new drivers are added and updated.
6791 * Do not depend on ABI/API stability.
6794 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6795 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6796 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6797 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6798 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6799 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6800 EXPORT_SYMBOL_GPL(ata_std_ports);
6801 EXPORT_SYMBOL_GPL(ata_host_init);
6802 EXPORT_SYMBOL_GPL(ata_host_alloc);
6803 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6804 EXPORT_SYMBOL_GPL(ata_host_start);
6805 EXPORT_SYMBOL_GPL(ata_host_register);
6806 EXPORT_SYMBOL_GPL(ata_host_activate);
6807 EXPORT_SYMBOL_GPL(ata_host_detach);
6808 EXPORT_SYMBOL_GPL(ata_sg_init);
6809 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6810 EXPORT_SYMBOL_GPL(ata_hsm_move);
6811 EXPORT_SYMBOL_GPL(ata_qc_complete);
6812 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6813 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6814 EXPORT_SYMBOL_GPL(ata_tf_load);
6815 EXPORT_SYMBOL_GPL(ata_tf_read);
6816 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6817 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6818 EXPORT_SYMBOL_GPL(sata_print_link_status);
6819 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6820 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6821 EXPORT_SYMBOL_GPL(ata_check_status);
6822 EXPORT_SYMBOL_GPL(ata_altstatus);
6823 EXPORT_SYMBOL_GPL(ata_exec_command);
6824 EXPORT_SYMBOL_GPL(ata_port_start);
6825 EXPORT_SYMBOL_GPL(ata_interrupt);
6826 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6827 EXPORT_SYMBOL_GPL(ata_data_xfer);
6828 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6829 EXPORT_SYMBOL_GPL(ata_qc_prep);
6830 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6831 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6832 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6833 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6834 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6835 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6836 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6837 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6838 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6839 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6840 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6841 EXPORT_SYMBOL_GPL(ata_port_probe);
6842 EXPORT_SYMBOL_GPL(ata_dev_disable);
6843 EXPORT_SYMBOL_GPL(sata_set_spd);
6844 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6845 EXPORT_SYMBOL_GPL(sata_phy_resume);
6846 EXPORT_SYMBOL_GPL(sata_phy_reset);
6847 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6848 EXPORT_SYMBOL_GPL(ata_bus_reset);
6849 EXPORT_SYMBOL_GPL(ata_std_prereset);
6850 EXPORT_SYMBOL_GPL(ata_std_softreset);
6851 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6852 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6853 EXPORT_SYMBOL_GPL(ata_std_postreset);
6854 EXPORT_SYMBOL_GPL(ata_dev_classify);
6855 EXPORT_SYMBOL_GPL(ata_dev_pair);
6856 EXPORT_SYMBOL_GPL(ata_port_disable);
6857 EXPORT_SYMBOL_GPL(ata_ratelimit);
6858 EXPORT_SYMBOL_GPL(ata_wait_register);
6859 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6860 EXPORT_SYMBOL_GPL(ata_wait_ready);
6861 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6862 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6863 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6864 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6865 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6866 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6867 EXPORT_SYMBOL_GPL(ata_host_intr);
6868 EXPORT_SYMBOL_GPL(sata_scr_valid);
6869 EXPORT_SYMBOL_GPL(sata_scr_read);
6870 EXPORT_SYMBOL_GPL(sata_scr_write);
6871 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6872 EXPORT_SYMBOL_GPL(ata_port_online);
6873 EXPORT_SYMBOL_GPL(ata_port_offline);
6875 EXPORT_SYMBOL_GPL(ata_host_suspend);
6876 EXPORT_SYMBOL_GPL(ata_host_resume);
6877 #endif /* CONFIG_PM */
6878 EXPORT_SYMBOL_GPL(ata_id_string);
6879 EXPORT_SYMBOL_GPL(ata_id_c_string);
6880 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6881 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6882 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6884 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6885 EXPORT_SYMBOL_GPL(ata_timing_compute);
6886 EXPORT_SYMBOL_GPL(ata_timing_merge);
6889 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6890 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6891 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6892 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6893 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6894 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6896 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6897 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6898 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6899 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6900 #endif /* CONFIG_PM */
6901 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6902 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6903 #endif /* CONFIG_PCI */
6905 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6906 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6907 EXPORT_SYMBOL_GPL(ata_port_abort);
6908 EXPORT_SYMBOL_GPL(ata_port_freeze);
6909 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6910 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6911 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6912 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6913 EXPORT_SYMBOL_GPL(ata_do_eh);
6914 EXPORT_SYMBOL_GPL(ata_irq_on);
6915 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6916 EXPORT_SYMBOL_GPL(ata_irq_ack);
6917 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6918 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6920 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6921 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6922 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6923 EXPORT_SYMBOL_GPL(ata_cable_sata);