2 * linux/arch/x86-64/kernel/setup.c
4 * Copyright (C) 1995 Linus Torvalds
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
13 * This file handles the architecture-dependent parts of initialization
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/a.out.h>
26 #include <linux/tty.h>
27 #include <linux/ioport.h>
28 #include <linux/delay.h>
29 #include <linux/config.h>
30 #include <linux/init.h>
31 #include <linux/initrd.h>
32 #include <linux/highmem.h>
33 #include <linux/bootmem.h>
34 #include <linux/module.h>
35 #include <asm/processor.h>
36 #include <linux/console.h>
37 #include <linux/seq_file.h>
38 #include <linux/crash_dump.h>
39 #include <linux/root_dev.h>
40 #include <linux/pci.h>
41 #include <linux/acpi.h>
42 #include <linux/kallsyms.h>
43 #include <linux/edd.h>
44 #include <linux/mmzone.h>
45 #include <linux/kexec.h>
46 #include <linux/cpufreq.h>
49 #include <asm/uaccess.h>
50 #include <asm/system.h>
55 #include <video/edid.h>
58 #include <asm/mpspec.h>
59 #include <asm/mmu_context.h>
60 #include <asm/bootsetup.h>
61 #include <asm/proto.h>
62 #include <asm/setup.h>
63 #include <asm/mach_apic.h>
65 #include <asm/sections.h>
71 struct cpuinfo_x86 boot_cpu_data __read_mostly;
73 unsigned long mmu_cr4_features;
76 EXPORT_SYMBOL(acpi_disabled);
78 extern int __initdata acpi_ht;
79 extern acpi_interrupt_flags acpi_sci_flags;
80 int __initdata acpi_force = 0;
83 int acpi_numa __initdata;
85 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
88 unsigned long saved_video_mode;
92 EXPORT_SYMBOL(swiotlb);
98 struct drive_info_struct { char dummy[32]; } drive_info;
99 struct screen_info screen_info;
100 struct sys_desc_table_struct {
101 unsigned short length;
102 unsigned char table[0];
105 struct edid_info edid_info;
108 extern int root_mountflags;
110 char command_line[COMMAND_LINE_SIZE];
112 struct resource standard_io_resources[] = {
113 { .name = "dma1", .start = 0x00, .end = 0x1f,
114 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
115 { .name = "pic1", .start = 0x20, .end = 0x21,
116 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
117 { .name = "timer0", .start = 0x40, .end = 0x43,
118 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
119 { .name = "timer1", .start = 0x50, .end = 0x53,
120 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
121 { .name = "keyboard", .start = 0x60, .end = 0x6f,
122 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
123 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
124 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
125 { .name = "pic2", .start = 0xa0, .end = 0xa1,
126 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
127 { .name = "dma2", .start = 0xc0, .end = 0xdf,
128 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
129 { .name = "fpu", .start = 0xf0, .end = 0xff,
130 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
133 #define STANDARD_IO_RESOURCES \
134 (sizeof standard_io_resources / sizeof standard_io_resources[0])
136 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
138 struct resource data_resource = {
139 .name = "Kernel data",
142 .flags = IORESOURCE_RAM,
144 struct resource code_resource = {
145 .name = "Kernel code",
148 .flags = IORESOURCE_RAM,
151 #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
153 static struct resource system_rom_resource = {
154 .name = "System ROM",
157 .flags = IORESOURCE_ROM,
160 static struct resource extension_rom_resource = {
161 .name = "Extension ROM",
164 .flags = IORESOURCE_ROM,
167 static struct resource adapter_rom_resources[] = {
168 { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
169 .flags = IORESOURCE_ROM },
170 { .name = "Adapter ROM", .start = 0, .end = 0,
171 .flags = IORESOURCE_ROM },
172 { .name = "Adapter ROM", .start = 0, .end = 0,
173 .flags = IORESOURCE_ROM },
174 { .name = "Adapter ROM", .start = 0, .end = 0,
175 .flags = IORESOURCE_ROM },
176 { .name = "Adapter ROM", .start = 0, .end = 0,
177 .flags = IORESOURCE_ROM },
178 { .name = "Adapter ROM", .start = 0, .end = 0,
179 .flags = IORESOURCE_ROM }
182 #define ADAPTER_ROM_RESOURCES \
183 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
185 static struct resource video_rom_resource = {
189 .flags = IORESOURCE_ROM,
192 static struct resource video_ram_resource = {
193 .name = "Video RAM area",
196 .flags = IORESOURCE_RAM,
199 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
201 static int __init romchecksum(unsigned char *rom, unsigned long length)
203 unsigned char *p, sum = 0;
205 for (p = rom; p < rom + length; p++)
210 static void __init probe_roms(void)
212 unsigned long start, length, upper;
217 upper = adapter_rom_resources[0].start;
218 for (start = video_rom_resource.start; start < upper; start += 2048) {
219 rom = isa_bus_to_virt(start);
220 if (!romsignature(rom))
223 video_rom_resource.start = start;
225 /* 0 < length <= 0x7f * 512, historically */
226 length = rom[2] * 512;
228 /* if checksum okay, trust length byte */
229 if (length && romchecksum(rom, length))
230 video_rom_resource.end = start + length - 1;
232 request_resource(&iomem_resource, &video_rom_resource);
236 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
241 request_resource(&iomem_resource, &system_rom_resource);
242 upper = system_rom_resource.start;
244 /* check for extension rom (ignore length byte!) */
245 rom = isa_bus_to_virt(extension_rom_resource.start);
246 if (romsignature(rom)) {
247 length = extension_rom_resource.end - extension_rom_resource.start + 1;
248 if (romchecksum(rom, length)) {
249 request_resource(&iomem_resource, &extension_rom_resource);
250 upper = extension_rom_resource.start;
254 /* check for adapter roms on 2k boundaries */
255 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
256 rom = isa_bus_to_virt(start);
257 if (!romsignature(rom))
260 /* 0 < length <= 0x7f * 512, historically */
261 length = rom[2] * 512;
263 /* but accept any length that fits if checksum okay */
264 if (!length || start + length > upper || !romchecksum(rom, length))
267 adapter_rom_resources[i].start = start;
268 adapter_rom_resources[i].end = start + length - 1;
269 request_resource(&iomem_resource, &adapter_rom_resources[i]);
271 start = adapter_rom_resources[i++].end & ~2047UL;
275 static __init void parse_cmdline_early (char ** cmdline_p)
277 char c = ' ', *to = command_line, *from = COMMAND_LINE;
281 /* Save unparsed command line copy for /proc/cmdline */
282 memcpy(saved_command_line, COMMAND_LINE, COMMAND_LINE_SIZE);
283 saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
291 * If the BIOS enumerates physical processors before logical,
292 * maxcpus=N at enumeration-time can be used to disable HT.
294 else if (!memcmp(from, "maxcpus=", 8)) {
295 extern unsigned int maxcpus;
297 maxcpus = simple_strtoul(from + 8, NULL, 0);
301 /* "acpi=off" disables both ACPI table parsing and interpreter init */
302 if (!memcmp(from, "acpi=off", 8))
305 if (!memcmp(from, "acpi=force", 10)) {
306 /* add later when we do DMI horrors: */
311 /* acpi=ht just means: do ACPI MADT parsing
312 at bootup, but don't enable the full ACPI interpreter */
313 if (!memcmp(from, "acpi=ht", 7)) {
318 else if (!memcmp(from, "pci=noacpi", 10))
320 else if (!memcmp(from, "acpi=noirq", 10))
323 else if (!memcmp(from, "acpi_sci=edge", 13))
324 acpi_sci_flags.trigger = 1;
325 else if (!memcmp(from, "acpi_sci=level", 14))
326 acpi_sci_flags.trigger = 3;
327 else if (!memcmp(from, "acpi_sci=high", 13))
328 acpi_sci_flags.polarity = 1;
329 else if (!memcmp(from, "acpi_sci=low", 12))
330 acpi_sci_flags.polarity = 3;
332 /* acpi=strict disables out-of-spec workarounds */
333 else if (!memcmp(from, "acpi=strict", 11)) {
336 #ifdef CONFIG_X86_IO_APIC
337 else if (!memcmp(from, "acpi_skip_timer_override", 24))
338 acpi_skip_timer_override = 1;
342 if (!memcmp(from, "disable_timer_pin_1", 19))
343 disable_timer_pin_1 = 1;
344 if (!memcmp(from, "enable_timer_pin_1", 18))
345 disable_timer_pin_1 = -1;
347 if (!memcmp(from, "nolapic", 7) ||
348 !memcmp(from, "disableapic", 11))
351 if (!memcmp(from, "noapic", 6))
352 skip_ioapic_setup = 1;
354 if (!memcmp(from, "apic", 4)) {
355 skip_ioapic_setup = 0;
359 if (!memcmp(from, "mem=", 4))
360 parse_memopt(from+4, &from);
362 if (!memcmp(from, "memmap=", 7)) {
363 /* exactmap option is for used defined memory */
364 if (!memcmp(from+7, "exactmap", 8)) {
365 #ifdef CONFIG_CRASH_DUMP
366 /* If we are doing a crash dump, we
367 * still need to know the real mem
368 * size before original memory map is
371 saved_max_pfn = e820_end_of_ram();
379 parse_memmapopt(from+7, &from);
385 if (!memcmp(from, "numa=", 5))
389 #ifdef CONFIG_GART_IOMMU
390 if (!memcmp(from,"iommu=",6)) {
395 if (!memcmp(from,"oops=panic", 10))
398 if (!memcmp(from, "noexec=", 7))
399 nonx_setup(from + 7);
402 /* crashkernel=size@addr specifies the location to reserve for
403 * a crash kernel. By reserving this memory we guarantee
404 * that linux never set's it up as a DMA target.
405 * Useful for holding code to do something appropriate
406 * after a kernel panic.
408 else if (!memcmp(from, "crashkernel=", 12)) {
409 unsigned long size, base;
410 size = memparse(from+12, &from);
412 base = memparse(from+1, &from);
413 /* FIXME: Do I want a sanity check
414 * to validate the memory range?
416 crashk_res.start = base;
417 crashk_res.end = base + size - 1;
422 #ifdef CONFIG_PROC_VMCORE
423 /* elfcorehdr= specifies the location of elf core header
424 * stored by the crashed kernel. This option will be passed
425 * by kexec loader to the capture kernel.
427 else if(!memcmp(from, "elfcorehdr=", 11))
428 elfcorehdr_addr = memparse(from+11, &from);
434 if (COMMAND_LINE_SIZE <= ++len)
439 printk(KERN_INFO "user-defined physical RAM map:\n");
440 e820_print_map("user");
443 *cmdline_p = command_line;
448 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
450 unsigned long bootmap_size, bootmap;
452 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
453 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
455 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
456 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
457 e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
458 reserve_bootmem(bootmap, bootmap_size);
462 /* Use inline assembly to define this because the nops are defined
463 as inline assembly strings in the include files and we cannot
464 get them easily into strings. */
465 asm("\t.data\nk8nops: "
466 K8_NOP1 K8_NOP2 K8_NOP3 K8_NOP4 K8_NOP5 K8_NOP6
469 extern unsigned char k8nops[];
470 static unsigned char *k8_nops[ASM_NOP_MAX+1] = {
476 k8nops + 1 + 2 + 3 + 4,
477 k8nops + 1 + 2 + 3 + 4 + 5,
478 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
479 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
482 /* Replace instructions with better alternatives for this CPU type.
484 This runs before SMP is initialized to avoid SMP problems with
485 self modifying code. This implies that assymetric systems where
486 APs have less capabilities than the boot processor are not handled.
487 In this case boot with "noreplacement". */
488 void apply_alternatives(void *start, void *end)
492 for (a = start; (void *)a < end; a++) {
493 if (!boot_cpu_has(a->cpuid))
496 BUG_ON(a->replacementlen > a->instrlen);
497 __inline_memcpy(a->instr, a->replacement, a->replacementlen);
498 diff = a->instrlen - a->replacementlen;
500 /* Pad the rest with nops */
501 for (i = a->replacementlen; diff > 0; diff -= k, i += k) {
505 __inline_memcpy(a->instr + i, k8_nops[k], k);
510 static int no_replacement __initdata = 0;
512 void __init alternative_instructions(void)
514 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
517 apply_alternatives(__alt_instructions, __alt_instructions_end);
520 static int __init noreplacement_setup(char *s)
526 __setup("noreplacement", noreplacement_setup);
528 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
530 #ifdef CONFIG_EDD_MODULE
534 * copy_edd() - Copy the BIOS EDD information
535 * from boot_params into a safe place.
538 static inline void copy_edd(void)
540 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
541 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
542 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
543 edd.edd_info_nr = EDD_NR;
546 static inline void copy_edd(void)
551 #define EBDA_ADDR_POINTER 0x40E
552 static void __init reserve_ebda_region(void)
556 * there is a real-mode segmented pointer pointing to the
557 * 4K EBDA area at 0x40E
559 addr = *(unsigned short *)phys_to_virt(EBDA_ADDR_POINTER);
562 reserve_bootmem_generic(addr, PAGE_SIZE);
565 void __init setup_arch(char **cmdline_p)
567 unsigned long kernel_end;
569 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
570 drive_info = DRIVE_INFO;
571 screen_info = SCREEN_INFO;
572 edid_info = EDID_INFO;
573 saved_video_mode = SAVED_VIDEO_MODE;
574 bootloader_type = LOADER_TYPE;
576 #ifdef CONFIG_BLK_DEV_RAM
577 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
578 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
579 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
581 setup_memory_region();
584 if (!MOUNT_ROOT_RDONLY)
585 root_mountflags &= ~MS_RDONLY;
586 init_mm.start_code = (unsigned long) &_text;
587 init_mm.end_code = (unsigned long) &_etext;
588 init_mm.end_data = (unsigned long) &_edata;
589 init_mm.brk = (unsigned long) &_end;
591 code_resource.start = virt_to_phys(&_text);
592 code_resource.end = virt_to_phys(&_etext)-1;
593 data_resource.start = virt_to_phys(&_etext);
594 data_resource.end = virt_to_phys(&_edata)-1;
596 parse_cmdline_early(cmdline_p);
598 early_identify_cpu(&boot_cpu_data);
601 * partially used pages are not usable - thus
602 * we are rounding upwards:
604 end_pfn = e820_end_of_ram();
608 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
614 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
615 * Call this early for SRAT node setup.
617 acpi_boot_table_init();
620 #ifdef CONFIG_ACPI_NUMA
622 * Parse SRAT to discover nodes.
628 numa_initmem_init(0, end_pfn);
630 contig_initmem_init(0, end_pfn);
633 /* Reserve direct mapping */
634 reserve_bootmem_generic(table_start << PAGE_SHIFT,
635 (table_end - table_start) << PAGE_SHIFT);
638 kernel_end = round_up(__pa_symbol(&_end),PAGE_SIZE);
639 reserve_bootmem_generic(HIGH_MEMORY, kernel_end - HIGH_MEMORY);
642 * reserve physical page 0 - it's a special BIOS page on many boxes,
643 * enabling clean reboots, SMP operation, laptop functions.
645 reserve_bootmem_generic(0, PAGE_SIZE);
647 /* reserve ebda region */
648 reserve_ebda_region();
652 * But first pinch a few for the stack/trampoline stuff
653 * FIXME: Don't need the extra page at 4K, but need to fix
654 * trampoline before removing it. (see the GDT stuff)
656 reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
658 /* Reserve SMP trampoline */
659 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
662 #ifdef CONFIG_ACPI_SLEEP
664 * Reserve low memory region for sleep support.
666 acpi_reserve_bootmem();
668 #ifdef CONFIG_X86_LOCAL_APIC
670 * Find and reserve possible boot-time SMP configuration:
674 #ifdef CONFIG_BLK_DEV_INITRD
675 if (LOADER_TYPE && INITRD_START) {
676 if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
677 reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
679 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
680 initrd_end = initrd_start+INITRD_SIZE;
683 printk(KERN_ERR "initrd extends beyond end of memory "
684 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
685 (unsigned long)(INITRD_START + INITRD_SIZE),
686 (unsigned long)(end_pfn << PAGE_SHIFT));
692 if (crashk_res.start != crashk_res.end) {
693 reserve_bootmem(crashk_res.start,
694 crashk_res.end - crashk_res.start + 1);
704 * Read APIC and some other early information from ACPI tables.
709 #ifdef CONFIG_X86_LOCAL_APIC
711 * get boot-time SMP configuration:
713 if (smp_found_config)
715 init_apic_mappings();
719 * Request address space for all standard RAM and ROM resources
720 * and also for regions reported as reserved by the e820.
723 e820_reserve_resources();
725 request_resource(&iomem_resource, &video_ram_resource);
729 /* request I/O space for devices used on all i[345]86 PCs */
730 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
731 request_resource(&ioport_resource, &standard_io_resources[i]);
736 #ifdef CONFIG_GART_IOMMU
741 #if defined(CONFIG_VGA_CONSOLE)
742 conswitchp = &vga_con;
743 #elif defined(CONFIG_DUMMY_CONSOLE)
744 conswitchp = &dummy_con;
749 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
753 if (c->extended_cpuid_level < 0x80000004)
756 v = (unsigned int *) c->x86_model_id;
757 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
758 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
759 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
760 c->x86_model_id[48] = 0;
765 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
767 unsigned int n, dummy, eax, ebx, ecx, edx;
769 n = c->extended_cpuid_level;
771 if (n >= 0x80000005) {
772 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
773 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
774 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
775 c->x86_cache_size=(ecx>>24)+(edx>>24);
776 /* On K8 L1 TLB is inclusive, so don't count it */
780 if (n >= 0x80000006) {
781 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
782 ecx = cpuid_ecx(0x80000006);
783 c->x86_cache_size = ecx >> 16;
784 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
786 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
787 c->x86_cache_size, ecx & 0xFF);
791 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
792 if (n >= 0x80000008) {
793 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
794 c->x86_virt_bits = (eax >> 8) & 0xff;
795 c->x86_phys_bits = eax & 0xff;
800 static int nearby_node(int apicid)
803 for (i = apicid - 1; i >= 0; i--) {
804 int node = apicid_to_node[i];
805 if (node != NUMA_NO_NODE && node_online(node))
808 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
809 int node = apicid_to_node[i];
810 if (node != NUMA_NO_NODE && node_online(node))
813 return first_node(node_online_map); /* Shouldn't happen */
818 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
819 * Assumes number of cores is a power of two.
821 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
824 int cpu = smp_processor_id();
828 unsigned apicid = phys_proc_id[cpu];
832 while ((1 << bits) < c->x86_max_cores)
835 /* Low order bits define the core id (index of core in socket) */
836 cpu_core_id[cpu] = phys_proc_id[cpu] & ((1 << bits)-1);
837 /* Convert the APIC ID into the socket ID */
838 phys_proc_id[cpu] >>= bits;
841 node = phys_proc_id[cpu];
842 if (apicid_to_node[apicid] != NUMA_NO_NODE)
843 node = apicid_to_node[apicid];
844 if (!node_online(node)) {
845 /* Two possibilities here:
846 - The CPU is missing memory and no node was created.
847 In that case try picking one from a nearby CPU
848 - The APIC IDs differ from the HyperTransport node IDs
849 which the K8 northbridge parsing fills in.
850 Assume they are all increased by a constant offset,
851 but in the same order as the HT nodeids.
852 If that doesn't result in a usable node fall back to the
853 path for the previous case. */
854 int ht_nodeid = apicid - (phys_proc_id[0] << bits);
855 if (ht_nodeid >= 0 &&
856 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
857 node = apicid_to_node[ht_nodeid];
858 /* Pick a nearby node */
859 if (!node_online(node))
860 node = nearby_node(apicid);
862 numa_set_node(cpu, node);
864 printk(KERN_INFO "CPU %d(%d) -> Node %d -> Core %d\n",
865 cpu, c->x86_max_cores, node, cpu_core_id[cpu]);
870 static int __init init_amd(struct cpuinfo_x86 *c)
879 * Disable TLB flush filter by setting HWCR.FFDIS on K8
880 * bit 6 of msr C001_0015
882 * Errata 63 for SH-B3 steppings
883 * Errata 122 for all steppings (F+ have it disabled by default)
886 rdmsrl(MSR_K8_HWCR, value);
888 wrmsrl(MSR_K8_HWCR, value);
892 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
893 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
894 clear_bit(0*32+31, &c->x86_capability);
897 level = cpuid_eax(1);
898 if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
899 set_bit(X86_FEATURE_K8_C, &c->x86_capability);
901 r = get_model_name(c);
905 /* Should distinguish Models here, but this is only
906 a fallback anyways. */
907 strcpy(c->x86_model_id, "Hammer");
911 display_cacheinfo(c);
913 if (c->extended_cpuid_level >= 0x80000008) {
914 c->x86_max_cores = (cpuid_ecx(0x80000008) & 0xff) + 1;
915 if (c->x86_max_cores & (c->x86_max_cores - 1))
916 c->x86_max_cores = 1;
924 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
927 u32 eax, ebx, ecx, edx;
928 int index_msb, core_bits;
929 int cpu = smp_processor_id();
931 cpuid(1, &eax, &ebx, &ecx, &edx);
933 c->apicid = phys_pkg_id(0);
935 if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
938 smp_num_siblings = (ebx & 0xff0000) >> 16;
940 if (smp_num_siblings == 1) {
941 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
942 } else if (smp_num_siblings > 1 ) {
944 if (smp_num_siblings > NR_CPUS) {
945 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
946 smp_num_siblings = 1;
950 index_msb = get_count_order(smp_num_siblings);
951 phys_proc_id[cpu] = phys_pkg_id(index_msb);
953 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
956 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
958 index_msb = get_count_order(smp_num_siblings) ;
960 core_bits = get_count_order(c->x86_max_cores);
962 cpu_core_id[cpu] = phys_pkg_id(index_msb) &
963 ((1 << core_bits) - 1);
965 if (c->x86_max_cores > 1)
966 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
973 * find out the number of processor cores on the die
975 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
979 if (c->cpuid_level < 4)
988 return ((eax >> 26) + 1);
993 static void srat_detect_node(void)
997 int cpu = smp_processor_id();
999 /* Don't do the funky fallback heuristics the AMD version employs
1001 node = apicid_to_node[hard_smp_processor_id()];
1002 if (node == NUMA_NO_NODE)
1004 numa_set_node(cpu, node);
1007 printk(KERN_INFO "CPU %d -> Node %d\n", cpu, node);
1011 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
1016 init_intel_cacheinfo(c);
1017 n = c->extended_cpuid_level;
1018 if (n >= 0x80000008) {
1019 unsigned eax = cpuid_eax(0x80000008);
1020 c->x86_virt_bits = (eax >> 8) & 0xff;
1021 c->x86_phys_bits = eax & 0xff;
1022 /* CPUID workaround for Intel 0F34 CPU */
1023 if (c->x86_vendor == X86_VENDOR_INTEL &&
1024 c->x86 == 0xF && c->x86_model == 0x3 &&
1026 c->x86_phys_bits = 36;
1030 c->x86_cache_alignment = c->x86_clflush_size * 2;
1032 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
1033 c->x86_max_cores = intel_num_cpu_cores(c);
1038 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
1040 char *v = c->x86_vendor_id;
1042 if (!strcmp(v, "AuthenticAMD"))
1043 c->x86_vendor = X86_VENDOR_AMD;
1044 else if (!strcmp(v, "GenuineIntel"))
1045 c->x86_vendor = X86_VENDOR_INTEL;
1047 c->x86_vendor = X86_VENDOR_UNKNOWN;
1050 struct cpu_model_info {
1053 char *model_names[16];
1056 /* Do some early cpuid on the boot CPU to get some parameter that are
1057 needed before check_bugs. Everything advanced is in identify_cpu
1059 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
1063 c->loops_per_jiffy = loops_per_jiffy;
1064 c->x86_cache_size = -1;
1065 c->x86_vendor = X86_VENDOR_UNKNOWN;
1066 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1067 c->x86_vendor_id[0] = '\0'; /* Unset */
1068 c->x86_model_id[0] = '\0'; /* Unset */
1069 c->x86_clflush_size = 64;
1070 c->x86_cache_alignment = c->x86_clflush_size;
1071 c->x86_max_cores = 1;
1072 c->extended_cpuid_level = 0;
1073 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1075 /* Get vendor name */
1076 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
1077 (unsigned int *)&c->x86_vendor_id[0],
1078 (unsigned int *)&c->x86_vendor_id[8],
1079 (unsigned int *)&c->x86_vendor_id[4]);
1083 /* Initialize the standard set of capabilities */
1084 /* Note that the vendor-specific code below might override */
1086 /* Intel-defined flags: level 0x00000001 */
1087 if (c->cpuid_level >= 0x00000001) {
1089 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
1090 &c->x86_capability[0]);
1091 c->x86 = (tfms >> 8) & 0xf;
1092 c->x86_model = (tfms >> 4) & 0xf;
1093 c->x86_mask = tfms & 0xf;
1095 c->x86 += (tfms >> 20) & 0xff;
1097 c->x86_model += ((tfms >> 16) & 0xF) << 4;
1098 if (c->x86_capability[0] & (1<<19))
1099 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
1101 /* Have CPUID level 0 only - unheard of */
1106 phys_proc_id[smp_processor_id()] = (cpuid_ebx(1) >> 24) & 0xff;
1111 * This does the hard work of actually picking apart the CPU stuff...
1113 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
1118 early_identify_cpu(c);
1120 /* AMD-defined flags: level 0x80000001 */
1121 xlvl = cpuid_eax(0x80000000);
1122 c->extended_cpuid_level = xlvl;
1123 if ((xlvl & 0xffff0000) == 0x80000000) {
1124 if (xlvl >= 0x80000001) {
1125 c->x86_capability[1] = cpuid_edx(0x80000001);
1126 c->x86_capability[6] = cpuid_ecx(0x80000001);
1128 if (xlvl >= 0x80000004)
1129 get_model_name(c); /* Default name */
1132 /* Transmeta-defined flags: level 0x80860001 */
1133 xlvl = cpuid_eax(0x80860000);
1134 if ((xlvl & 0xffff0000) == 0x80860000) {
1135 /* Don't set x86_cpuid_level here for now to not confuse. */
1136 if (xlvl >= 0x80860001)
1137 c->x86_capability[2] = cpuid_edx(0x80860001);
1141 * Vendor-specific initialization. In this section we
1142 * canonicalize the feature flags, meaning if there are
1143 * features a certain CPU supports which CPUID doesn't
1144 * tell us, CPUID claiming incorrect flags, or other bugs,
1145 * we handle them here.
1147 * At the end of this section, c->x86_capability better
1148 * indicate the features this CPU genuinely supports!
1150 switch (c->x86_vendor) {
1151 case X86_VENDOR_AMD:
1155 case X86_VENDOR_INTEL:
1159 case X86_VENDOR_UNKNOWN:
1161 display_cacheinfo(c);
1165 select_idle_routine(c);
1169 * On SMP, boot_cpu_data holds the common feature set between
1170 * all CPUs; so make sure that we indicate which features are
1171 * common between the CPUs. The first time this routine gets
1172 * executed, c == &boot_cpu_data.
1174 if (c != &boot_cpu_data) {
1175 /* AND the already accumulated flags with these */
1176 for (i = 0 ; i < NCAPINTS ; i++)
1177 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1180 #ifdef CONFIG_X86_MCE
1183 if (c == &boot_cpu_data)
1188 numa_add_cpu(smp_processor_id());
1193 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1195 if (c->x86_model_id[0])
1196 printk("%s", c->x86_model_id);
1198 if (c->x86_mask || c->cpuid_level >= 0)
1199 printk(" stepping %02x\n", c->x86_mask);
1205 * Get CPU information for use by the procfs.
1208 static int show_cpuinfo(struct seq_file *m, void *v)
1210 struct cpuinfo_x86 *c = v;
1213 * These flag bits must match the definitions in <asm/cpufeature.h>.
1214 * NULL means this bit is undefined or reserved; either way it doesn't
1215 * have meaning as far as Linux is concerned. Note that it's important
1216 * to realize there is a difference between this table and CPUID -- if
1217 * applications want to get the raw CPUID data, they should access
1218 * /dev/cpu/<cpu_nr>/cpuid instead.
1220 static char *x86_cap_flags[] = {
1222 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1223 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1224 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1225 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
1228 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1229 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1230 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1231 NULL, "fxsr_opt", NULL, NULL, NULL, "lm", "3dnowext", "3dnow",
1233 /* Transmeta-defined */
1234 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1235 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1236 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1237 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1239 /* Other (Linux-defined) */
1240 "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
1241 "constant_tsc", NULL, NULL,
1242 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1243 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1244 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1246 /* Intel-defined (#2) */
1247 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", NULL, "est",
1248 "tm2", NULL, "cid", NULL, NULL, "cx16", "xtpr", NULL,
1249 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1250 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1252 /* VIA/Cyrix/Centaur-defined */
1253 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1254 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1255 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1256 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1258 /* AMD-defined (#2) */
1259 "lahf_lm", "cmp_legacy", NULL, NULL, NULL, NULL, NULL, NULL,
1260 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1261 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1262 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1264 static char *x86_power_flags[] = {
1265 "ts", /* temperature sensor */
1266 "fid", /* frequency id control */
1267 "vid", /* voltage id control */
1268 "ttp", /* thermal trip */
1275 if (!cpu_online(c-cpu_data))
1279 seq_printf(m,"processor\t: %u\n"
1281 "cpu family\t: %d\n"
1283 "model name\t: %s\n",
1284 (unsigned)(c-cpu_data),
1285 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1288 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1290 if (c->x86_mask || c->cpuid_level >= 0)
1291 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1293 seq_printf(m, "stepping\t: unknown\n");
1295 if (cpu_has(c,X86_FEATURE_TSC)) {
1296 unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
1299 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1300 freq / 1000, (freq % 1000));
1304 if (c->x86_cache_size >= 0)
1305 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1308 if (smp_num_siblings * c->x86_max_cores > 1) {
1309 int cpu = c - cpu_data;
1310 seq_printf(m, "physical id\t: %d\n", phys_proc_id[cpu]);
1311 seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
1312 seq_printf(m, "core id\t\t: %d\n", cpu_core_id[cpu]);
1313 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1319 "fpu_exception\t: yes\n"
1320 "cpuid level\t: %d\n"
1327 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1328 if ( test_bit(i, &c->x86_capability) &&
1329 x86_cap_flags[i] != NULL )
1330 seq_printf(m, " %s", x86_cap_flags[i]);
1333 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1334 c->loops_per_jiffy/(500000/HZ),
1335 (c->loops_per_jiffy/(5000/HZ)) % 100);
1337 if (c->x86_tlbsize > 0)
1338 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1339 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1340 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1342 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1343 c->x86_phys_bits, c->x86_virt_bits);
1345 seq_printf(m, "power management:");
1348 for (i = 0; i < 32; i++)
1349 if (c->x86_power & (1 << i)) {
1350 if (i < ARRAY_SIZE(x86_power_flags))
1351 seq_printf(m, " %s", x86_power_flags[i]);
1353 seq_printf(m, " [%d]", i);
1357 seq_printf(m, "\n\n");
1362 static void *c_start(struct seq_file *m, loff_t *pos)
1364 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
1367 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1370 return c_start(m, pos);
1373 static void c_stop(struct seq_file *m, void *v)
1377 struct seq_operations cpuinfo_op = {
1381 .show = show_cpuinfo,