4 * Copyright (C) 1994 Linus Torvalds
6 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
7 * stack - Manfred Spraul <manfred@colorfullife.com>
9 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
10 * them correctly. Now the emulation will be in a
11 * consistent state after stackfaults - Kasper Dupont
12 * <kasperd@daimi.au.dk>
14 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
15 * <kasperd@daimi.au.dk>
17 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
18 * caused by Kasper Dupont's changes - Stas Sergeev
20 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
21 * Kasper Dupont <kasperd@daimi.au.dk>
23 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
24 * Kasper Dupont <kasperd@daimi.au.dk>
26 * 9 apr 2002 - Changed stack access macros to jump to a label
27 * instead of returning to userspace. This simplifies
28 * do_int, and is needed by handle_vm6_fault. Kasper
29 * Dupont <kasperd@daimi.au.dk>
33 #include <linux/capability.h>
34 #include <linux/config.h>
35 #include <linux/errno.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/signal.h>
40 #include <linux/string.h>
42 #include <linux/smp.h>
43 #include <linux/smp_lock.h>
44 #include <linux/highmem.h>
45 #include <linux/ptrace.h>
47 #include <asm/uaccess.h>
49 #include <asm/tlbflush.h>
55 * Interrupt handling is not guaranteed:
56 * - a real x86 will disable all interrupts for one instruction
57 * after a "mov ss,xx" to make stack handling atomic even without
58 * the 'lss' instruction. We can't guarantee this in v86 mode,
59 * as the next instruction might result in a page fault or similar.
60 * - a real x86 will have interrupts disabled for one instruction
61 * past the 'sti' that enables them. We don't bother with all the
64 * Let's hope these problems do not actually matter for anything.
68 #define KVM86 ((struct kernel_vm86_struct *)regs)
69 #define VMPI KVM86->vm86plus
73 * 8- and 16-bit register defines..
75 #define AL(regs) (((unsigned char *)&((regs)->eax))[0])
76 #define AH(regs) (((unsigned char *)&((regs)->eax))[1])
77 #define IP(regs) (*(unsigned short *)&((regs)->eip))
78 #define SP(regs) (*(unsigned short *)&((regs)->esp))
81 * virtual flags (16 and 32-bit versions)
83 #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
84 #define VEFLAGS (current->thread.v86flags)
86 #define set_flags(X,new,mask) \
87 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
89 #define SAFE_MASK (0xDD5)
90 #define RETURN_MASK (0xDFF)
92 #define VM86_REGS_PART2 orig_eax
93 #define VM86_REGS_SIZE1 \
94 ( (unsigned)( & (((struct kernel_vm86_regs *)0)->VM86_REGS_PART2) ) )
95 #define VM86_REGS_SIZE2 (sizeof(struct kernel_vm86_regs) - VM86_REGS_SIZE1)
97 struct pt_regs * FASTCALL(save_v86_state(struct kernel_vm86_regs * regs));
98 struct pt_regs * fastcall save_v86_state(struct kernel_vm86_regs * regs)
100 struct tss_struct *tss;
105 * This gets called from entry.S with interrupts disabled, but
106 * from process context. Enable interrupts here, before trying
107 * to access user space.
111 if (!current->thread.vm86_info) {
112 printk("no vm86_info: BAD\n");
115 set_flags(regs->eflags, VEFLAGS, VIF_MASK | current->thread.v86mask);
116 tmp = copy_to_user(¤t->thread.vm86_info->regs,regs, VM86_REGS_SIZE1);
117 tmp += copy_to_user(¤t->thread.vm86_info->regs.VM86_REGS_PART2,
118 ®s->VM86_REGS_PART2, VM86_REGS_SIZE2);
119 tmp += put_user(current->thread.screen_bitmap,¤t->thread.vm86_info->screen_bitmap);
121 printk("vm86: could not access userspace vm86_info\n");
125 tss = &per_cpu(init_tss, get_cpu());
126 current->thread.esp0 = current->thread.saved_esp0;
127 current->thread.sysenter_cs = __KERNEL_CS;
128 load_esp0(tss, ¤t->thread);
129 current->thread.saved_esp0 = 0;
132 loadsegment(fs, current->thread.saved_fs);
133 loadsegment(gs, current->thread.saved_gs);
138 static void mark_screen_rdonly(struct mm_struct *mm)
147 pgd = pgd_offset(mm, 0xA0000);
148 if (pgd_none_or_clear_bad(pgd))
150 pud = pud_offset(pgd, 0xA0000);
151 if (pud_none_or_clear_bad(pud))
153 pmd = pmd_offset(pud, 0xA0000);
154 if (pmd_none_or_clear_bad(pmd))
156 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
157 for (i = 0; i < 32; i++) {
158 if (pte_present(*pte))
159 set_pte(pte, pte_wrprotect(*pte));
162 pte_unmap_unlock(pte, ptl);
169 static int do_vm86_irq_handling(int subfunction, int irqnumber);
170 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
172 asmlinkage int sys_vm86old(struct pt_regs regs)
174 struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.ebx;
175 struct kernel_vm86_struct info; /* declare this _on top_,
176 * this avoids wasting of stack space.
177 * This remains on the stack until we
178 * return to 32 bit user space.
180 struct task_struct *tsk;
181 int tmp, ret = -EPERM;
184 if (tsk->thread.saved_esp0)
186 tmp = copy_from_user(&info, v86, VM86_REGS_SIZE1);
187 tmp += copy_from_user(&info.regs.VM86_REGS_PART2, &v86->regs.VM86_REGS_PART2,
188 (long)&info.vm86plus - (long)&info.regs.VM86_REGS_PART2);
192 memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
194 tsk->thread.vm86_info = v86;
195 do_sys_vm86(&info, tsk);
196 ret = 0; /* we never return here */
202 asmlinkage int sys_vm86(struct pt_regs regs)
204 struct kernel_vm86_struct info; /* declare this _on top_,
205 * this avoids wasting of stack space.
206 * This remains on the stack until we
207 * return to 32 bit user space.
209 struct task_struct *tsk;
211 struct vm86plus_struct __user *v86;
215 case VM86_REQUEST_IRQ:
217 case VM86_GET_IRQ_BITS:
218 case VM86_GET_AND_RESET_IRQ:
219 ret = do_vm86_irq_handling(regs.ebx, (int)regs.ecx);
221 case VM86_PLUS_INSTALL_CHECK:
222 /* NOTE: on old vm86 stuff this will return the error
223 from access_ok(), because the subfunction is
224 interpreted as (invalid) address to vm86_struct.
225 So the installation check works.
231 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
233 if (tsk->thread.saved_esp0)
235 v86 = (struct vm86plus_struct __user *)regs.ecx;
236 tmp = copy_from_user(&info, v86, VM86_REGS_SIZE1);
237 tmp += copy_from_user(&info.regs.VM86_REGS_PART2, &v86->regs.VM86_REGS_PART2,
238 (long)&info.regs32 - (long)&info.regs.VM86_REGS_PART2);
243 info.vm86plus.is_vm86pus = 1;
244 tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
245 do_sys_vm86(&info, tsk);
246 ret = 0; /* we never return here */
252 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
254 struct tss_struct *tss;
256 * make sure the vm86() system call doesn't try to do anything silly
258 info->regs.__null_ds = 0;
259 info->regs.__null_es = 0;
261 /* we are clearing fs,gs later just before "jmp resume_userspace",
262 * because starting with Linux 2.1.x they aren't no longer saved/restored
266 * The eflags register is also special: we cannot trust that the user
267 * has set it up safely, so this makes sure interrupt etc flags are
268 * inherited from protected mode.
270 VEFLAGS = info->regs.eflags;
271 info->regs.eflags &= SAFE_MASK;
272 info->regs.eflags |= info->regs32->eflags & ~SAFE_MASK;
273 info->regs.eflags |= VM_MASK;
275 switch (info->cpu_type) {
277 tsk->thread.v86mask = 0;
280 tsk->thread.v86mask = NT_MASK | IOPL_MASK;
283 tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
286 tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
291 * Save old state, set default return value (%eax) to 0
293 info->regs32->eax = 0;
294 tsk->thread.saved_esp0 = tsk->thread.esp0;
295 savesegment(fs, tsk->thread.saved_fs);
296 savesegment(gs, tsk->thread.saved_gs);
298 tss = &per_cpu(init_tss, get_cpu());
299 tsk->thread.esp0 = (unsigned long) &info->VM86_TSS_ESP0;
301 tsk->thread.sysenter_cs = 0;
302 load_esp0(tss, &tsk->thread);
305 tsk->thread.screen_bitmap = info->screen_bitmap;
306 if (info->flags & VM86_SCREEN_BITMAP)
307 mark_screen_rdonly(tsk->mm);
308 __asm__ __volatile__(
309 "xorl %%eax,%%eax; movl %%eax,%%fs; movl %%eax,%%gs\n\t"
312 "jmp resume_userspace"
314 :"r" (&info->regs), "r" (task_thread_info(tsk)) : "ax");
315 /* we never return here */
318 static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval)
320 struct pt_regs * regs32;
322 regs32 = save_v86_state(regs16);
323 regs32->eax = retval;
324 __asm__ __volatile__("movl %0,%%esp\n\t"
326 "jmp resume_userspace"
327 : : "r" (regs32), "r" (current_thread_info()));
330 static inline void set_IF(struct kernel_vm86_regs * regs)
333 if (VEFLAGS & VIP_MASK)
334 return_to_32bit(regs, VM86_STI);
337 static inline void clear_IF(struct kernel_vm86_regs * regs)
339 VEFLAGS &= ~VIF_MASK;
342 static inline void clear_TF(struct kernel_vm86_regs * regs)
344 regs->eflags &= ~TF_MASK;
347 static inline void clear_AC(struct kernel_vm86_regs * regs)
349 regs->eflags &= ~AC_MASK;
352 /* It is correct to call set_IF(regs) from the set_vflags_*
353 * functions. However someone forgot to call clear_IF(regs)
354 * in the opposite case.
355 * After the command sequence CLI PUSHF STI POPF you should
356 * end up with interrups disabled, but you ended up with
357 * interrupts enabled.
358 * ( I was testing my own changes, but the only bug I
359 * could find was in a function I had not changed. )
363 static inline void set_vflags_long(unsigned long eflags, struct kernel_vm86_regs * regs)
365 set_flags(VEFLAGS, eflags, current->thread.v86mask);
366 set_flags(regs->eflags, eflags, SAFE_MASK);
367 if (eflags & IF_MASK)
373 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs)
375 set_flags(VFLAGS, flags, current->thread.v86mask);
376 set_flags(regs->eflags, flags, SAFE_MASK);
383 static inline unsigned long get_vflags(struct kernel_vm86_regs * regs)
385 unsigned long flags = regs->eflags & RETURN_MASK;
387 if (VEFLAGS & VIF_MASK)
390 return flags | (VEFLAGS & current->thread.v86mask);
393 static inline int is_revectored(int nr, struct revectored_struct * bitmap)
395 __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
397 :"m" (*bitmap),"r" (nr));
401 #define val_byte(val, n) (((__u8 *)&val)[n])
403 #define pushb(base, ptr, val, err_label) \
407 if (put_user(__val, base + ptr) < 0) \
411 #define pushw(base, ptr, val, err_label) \
415 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
418 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
422 #define pushl(base, ptr, val, err_label) \
426 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
429 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
432 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
435 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
439 #define popb(base, ptr, err_label) \
442 if (get_user(__res, base + ptr) < 0) \
448 #define popw(base, ptr, err_label) \
451 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
454 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
460 #define popl(base, ptr, err_label) \
463 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
466 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
469 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
472 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
478 /* There are so many possible reasons for this function to return
479 * VM86_INTx, so adding another doesn't bother me. We can expect
480 * userspace programs to be able to handle it. (Getting a problem
481 * in userspace is always better than an Oops anyway.) [KD]
483 static void do_int(struct kernel_vm86_regs *regs, int i,
484 unsigned char __user * ssp, unsigned short sp)
486 unsigned long __user *intr_ptr;
487 unsigned long segoffs;
489 if (regs->cs == BIOSSEG)
491 if (is_revectored(i, &KVM86->int_revectored))
493 if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
495 intr_ptr = (unsigned long __user *) (i << 2);
496 if (get_user(segoffs, intr_ptr))
498 if ((segoffs >> 16) == BIOSSEG)
500 pushw(ssp, sp, get_vflags(regs), cannot_handle);
501 pushw(ssp, sp, regs->cs, cannot_handle);
502 pushw(ssp, sp, IP(regs), cannot_handle);
503 regs->cs = segoffs >> 16;
505 IP(regs) = segoffs & 0xffff;
512 return_to_32bit(regs, VM86_INTx + (i << 8));
515 int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno)
517 if (VMPI.is_vm86pus) {
518 if ( (trapno==3) || (trapno==1) )
519 return_to_32bit(regs, VM86_TRAP + (trapno << 8));
520 do_int(regs, trapno, (unsigned char __user *) (regs->ss << 4), SP(regs));
524 return 1; /* we let this handle by the calling routine */
525 if (current->ptrace & PT_PTRACED) {
527 spin_lock_irqsave(¤t->sighand->siglock, flags);
528 sigdelset(¤t->blocked, SIGTRAP);
530 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
532 send_sig(SIGTRAP, current, 1);
533 current->thread.trap_no = trapno;
534 current->thread.error_code = error_code;
538 void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code)
540 unsigned char opcode;
541 unsigned char __user *csp;
542 unsigned char __user *ssp;
543 unsigned short ip, sp, orig_flags;
544 int data32, pref_done;
546 #define CHECK_IF_IN_TRAP \
547 if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
549 #define VM86_FAULT_RETURN do { \
550 if (VMPI.force_return_for_pic && (VEFLAGS & (IF_MASK | VIF_MASK))) \
551 return_to_32bit(regs, VM86_PICRETURN); \
552 if (orig_flags & TF_MASK) \
553 handle_vm86_trap(regs, 0, 1); \
556 orig_flags = *(unsigned short *)®s->eflags;
558 csp = (unsigned char __user *) (regs->cs << 4);
559 ssp = (unsigned char __user *) (regs->ss << 4);
566 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
567 case 0x66: /* 32-bit data */ data32=1; break;
568 case 0x67: /* 32-bit address */ break;
569 case 0x2e: /* CS */ break;
570 case 0x3e: /* DS */ break;
571 case 0x26: /* ES */ break;
572 case 0x36: /* SS */ break;
573 case 0x65: /* GS */ break;
574 case 0x64: /* FS */ break;
575 case 0xf2: /* repnz */ break;
576 case 0xf3: /* rep */ break;
577 default: pref_done = 1;
579 } while (!pref_done);
586 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
589 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
598 unsigned long newflags;
600 newflags=popl(ssp, sp, simulate_sigsegv);
603 newflags = popw(ssp, sp, simulate_sigsegv);
609 set_vflags_long(newflags, regs);
611 set_vflags_short(newflags, regs);
618 int intno=popb(csp, ip, simulate_sigsegv);
620 if (VMPI.vm86dbg_active) {
621 if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
622 return_to_32bit(regs, VM86_INTx + (intno << 8));
624 do_int(regs, intno, ssp, sp);
633 unsigned long newflags;
635 newip=popl(ssp, sp, simulate_sigsegv);
636 newcs=popl(ssp, sp, simulate_sigsegv);
637 newflags=popl(ssp, sp, simulate_sigsegv);
640 newip = popw(ssp, sp, simulate_sigsegv);
641 newcs = popw(ssp, sp, simulate_sigsegv);
642 newflags = popw(ssp, sp, simulate_sigsegv);
649 set_vflags_long(newflags, regs);
651 set_vflags_short(newflags, regs);
664 * Damn. This is incorrect: the 'sti' instruction should actually
665 * enable interrupts after the /next/ instruction. Not good.
667 * Probably needs some horsing around with the TF flag. Aiee..
675 return_to_32bit(regs, VM86_UNKNOWN);
681 /* FIXME: After a long discussion with Stas we finally
682 * agreed, that this is wrong. Here we should
683 * really send a SIGSEGV to the user program.
684 * But how do we create the correct context? We
685 * are inside a general protection fault handler
686 * and has just returned from a page fault handler.
687 * The correct context for the signal handler
688 * should be a mixture of the two, but how do we
689 * get the information? [KD]
691 return_to_32bit(regs, VM86_UNKNOWN);
694 /* ---------------- vm86 special IRQ passing stuff ----------------- */
696 #define VM86_IRQNAME "vm86irq"
698 static struct vm86_irqs {
699 struct task_struct *tsk;
703 static DEFINE_SPINLOCK(irqbits_lock);
706 #define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
707 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
710 static irqreturn_t irq_handler(int intno, void *dev_id, struct pt_regs * regs)
715 spin_lock_irqsave(&irqbits_lock, flags);
716 irq_bit = 1 << intno;
717 if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk)
720 if (vm86_irqs[intno].sig)
721 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
723 * IRQ will be re-enabled when user asks for the irq (whether
724 * polling or as a result of the signal)
726 disable_irq_nosync(intno);
727 spin_unlock_irqrestore(&irqbits_lock, flags);
731 spin_unlock_irqrestore(&irqbits_lock, flags);
735 static inline void free_vm86_irq(int irqnumber)
739 free_irq(irqnumber, NULL);
740 vm86_irqs[irqnumber].tsk = NULL;
742 spin_lock_irqsave(&irqbits_lock, flags);
743 irqbits &= ~(1 << irqnumber);
744 spin_unlock_irqrestore(&irqbits_lock, flags);
747 void release_vm86_irqs(struct task_struct *task)
750 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
751 if (vm86_irqs[i].tsk == task)
755 static inline int get_and_reset_irq(int irqnumber)
761 if (invalid_vm86_irq(irqnumber)) return 0;
762 if (vm86_irqs[irqnumber].tsk != current) return 0;
763 spin_lock_irqsave(&irqbits_lock, flags);
764 bit = irqbits & (1 << irqnumber);
767 enable_irq(irqnumber);
771 spin_unlock_irqrestore(&irqbits_lock, flags);
776 static int do_vm86_irq_handling(int subfunction, int irqnumber)
779 switch (subfunction) {
780 case VM86_GET_AND_RESET_IRQ: {
781 return get_and_reset_irq(irqnumber);
783 case VM86_GET_IRQ_BITS: {
786 case VM86_REQUEST_IRQ: {
787 int sig = irqnumber >> 8;
788 int irq = irqnumber & 255;
789 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
790 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
791 if (invalid_vm86_irq(irq)) return -EPERM;
792 if (vm86_irqs[irq].tsk) return -EPERM;
793 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
795 vm86_irqs[irq].sig = sig;
796 vm86_irqs[irq].tsk = current;
799 case VM86_FREE_IRQ: {
800 if (invalid_vm86_irq(irqnumber)) return -EPERM;
801 if (!vm86_irqs[irqnumber].tsk) return 0;
802 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
803 free_vm86_irq(irqnumber);