2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
5 * May be copied or modified under the terms of the GNU General Public
6 * License. See linux/COPYING for more information.
8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
11 * Theory of operation:
13 * At the lowest level, there is the standard driver for the CD/DVD device,
14 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15 * but it doesn't know anything about the special restrictions that apply to
16 * packet writing. One restriction is that write requests must be aligned to
17 * packet boundaries on the physical media, and the size of a write request
18 * must be equal to the packet size. Another restriction is that a
19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20 * command, if the previous command was a write.
22 * The purpose of the packet writing driver is to hide these restrictions from
23 * higher layers, such as file systems, and present a block device that can be
24 * randomly read and written using 2kB-sized blocks.
26 * The lowest layer in the packet writing driver is the packet I/O scheduler.
27 * Its data is defined by the struct packet_iosched and includes two bio
28 * queues with pending read and write requests. These queues are processed
29 * by the pkt_iosched_process_queue() function. The write requests in this
30 * queue are already properly aligned and sized. This layer is responsible for
31 * issuing the flush cache commands and scheduling the I/O in a good order.
33 * The next layer transforms unaligned write requests to aligned writes. This
34 * transformation requires reading missing pieces of data from the underlying
35 * block device, assembling the pieces to full packets and queuing them to the
36 * packet I/O scheduler.
38 * At the top layer there is a custom make_request_fn function that forwards
39 * read requests directly to the iosched queue and puts write requests in the
40 * unaligned write queue. A kernel thread performs the necessary read
41 * gathering to convert the unaligned writes to aligned writes and then feeds
42 * them to the packet I/O scheduler.
44 *************************************************************************/
46 #define VERSION_CODE "v0.2.0a 2004-07-14 Jens Axboe (axboe@suse.de) and petero2@telia.com"
48 #include <linux/pktcdvd.h>
49 #include <linux/config.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/kthread.h>
54 #include <linux/errno.h>
55 #include <linux/spinlock.h>
56 #include <linux/file.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/miscdevice.h>
60 #include <linux/suspend.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_ioctl.h>
64 #include <asm/uaccess.h>
67 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
69 #define DPRINTK(fmt, args...)
73 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
75 #define VPRINTK(fmt, args...)
78 #define MAX_SPEED 0xffff
80 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
82 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
83 static struct proc_dir_entry *pkt_proc;
85 static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
86 static mempool_t *psd_pool;
89 static void pkt_bio_finished(struct pktcdvd_device *pd)
91 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
92 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
93 VPRINTK("pktcdvd: queue empty\n");
94 atomic_set(&pd->iosched.attention, 1);
99 static void pkt_bio_destructor(struct bio *bio)
101 kfree(bio->bi_io_vec);
105 static struct bio *pkt_bio_alloc(int nr_iovecs)
107 struct bio_vec *bvl = NULL;
110 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
115 bvl = kmalloc(nr_iovecs * sizeof(struct bio_vec), GFP_KERNEL);
118 memset(bvl, 0, nr_iovecs * sizeof(struct bio_vec));
120 bio->bi_max_vecs = nr_iovecs;
121 bio->bi_io_vec = bvl;
122 bio->bi_destructor = pkt_bio_destructor;
133 * Allocate a packet_data struct
135 static struct packet_data *pkt_alloc_packet_data(void)
138 struct packet_data *pkt;
140 pkt = kmalloc(sizeof(struct packet_data), GFP_KERNEL);
143 memset(pkt, 0, sizeof(struct packet_data));
145 pkt->w_bio = pkt_bio_alloc(PACKET_MAX_SIZE);
149 for (i = 0; i < PAGES_PER_PACKET; i++) {
150 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
155 spin_lock_init(&pkt->lock);
157 for (i = 0; i < PACKET_MAX_SIZE; i++) {
158 struct bio *bio = pkt_bio_alloc(1);
161 pkt->r_bios[i] = bio;
167 for (i = 0; i < PACKET_MAX_SIZE; i++) {
168 struct bio *bio = pkt->r_bios[i];
174 for (i = 0; i < PAGES_PER_PACKET; i++)
176 __free_page(pkt->pages[i]);
185 * Free a packet_data struct
187 static void pkt_free_packet_data(struct packet_data *pkt)
191 for (i = 0; i < PACKET_MAX_SIZE; i++) {
192 struct bio *bio = pkt->r_bios[i];
196 for (i = 0; i < PAGES_PER_PACKET; i++)
197 __free_page(pkt->pages[i]);
202 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
204 struct packet_data *pkt, *next;
206 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
208 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
209 pkt_free_packet_data(pkt);
213 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
215 struct packet_data *pkt;
217 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
218 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
219 spin_lock_init(&pd->cdrw.active_list_lock);
220 while (nr_packets > 0) {
221 pkt = pkt_alloc_packet_data();
223 pkt_shrink_pktlist(pd);
226 pkt->id = nr_packets;
228 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
234 static void *pkt_rb_alloc(unsigned int __nocast gfp_mask, void *data)
236 return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
239 static void pkt_rb_free(void *ptr, void *data)
244 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
246 struct rb_node *n = rb_next(&node->rb_node);
249 return rb_entry(n, struct pkt_rb_node, rb_node);
252 static inline void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
254 rb_erase(&node->rb_node, &pd->bio_queue);
255 mempool_free(node, pd->rb_pool);
256 pd->bio_queue_size--;
257 BUG_ON(pd->bio_queue_size < 0);
261 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
263 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
265 struct rb_node *n = pd->bio_queue.rb_node;
266 struct rb_node *next;
267 struct pkt_rb_node *tmp;
270 BUG_ON(pd->bio_queue_size > 0);
275 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
276 if (s <= tmp->bio->bi_sector)
285 if (s > tmp->bio->bi_sector) {
286 tmp = pkt_rbtree_next(tmp);
290 BUG_ON(s > tmp->bio->bi_sector);
295 * Insert a node into the pd->bio_queue rb tree.
297 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
299 struct rb_node **p = &pd->bio_queue.rb_node;
300 struct rb_node *parent = NULL;
301 sector_t s = node->bio->bi_sector;
302 struct pkt_rb_node *tmp;
306 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
307 if (s < tmp->bio->bi_sector)
312 rb_link_node(&node->rb_node, parent, p);
313 rb_insert_color(&node->rb_node, &pd->bio_queue);
314 pd->bio_queue_size++;
318 * Add a bio to a single linked list defined by its head and tail pointers.
320 static inline void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
324 BUG_ON((*list_head) == NULL);
325 (*list_tail)->bi_next = bio;
328 BUG_ON((*list_head) != NULL);
335 * Remove and return the first bio from a single linked list defined by its
336 * head and tail pointers.
338 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
342 if (*list_head == NULL)
346 *list_head = bio->bi_next;
347 if (*list_head == NULL)
355 * Send a packet_command to the underlying block device and
356 * wait for completion.
358 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
360 char sense[SCSI_SENSE_BUFFERSIZE];
363 DECLARE_COMPLETION(wait);
366 q = bdev_get_queue(pd->bdev);
368 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
371 rq->rq_disk = pd->bdev->bd_disk;
375 rq->data = cgc->buffer;
376 rq->data_len = cgc->buflen;
378 memset(sense, 0, sizeof(sense));
380 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
382 rq->flags |= REQ_QUIET;
383 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
384 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
385 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
388 rq->flags |= REQ_NOMERGE;
390 rq->end_io = blk_end_sync_rq;
391 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
392 generic_unplug_device(q);
393 wait_for_completion(&wait);
403 * A generic sense dump / resolve mechanism should be implemented across
404 * all ATAPI + SCSI devices.
406 static void pkt_dump_sense(struct packet_command *cgc)
408 static char *info[9] = { "No sense", "Recovered error", "Not ready",
409 "Medium error", "Hardware error", "Illegal request",
410 "Unit attention", "Data protect", "Blank check" };
412 struct request_sense *sense = cgc->sense;
415 for (i = 0; i < CDROM_PACKET_SIZE; i++)
416 printk(" %02x", cgc->cmd[i]);
420 printk("no sense\n");
424 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
426 if (sense->sense_key > 8) {
427 printk(" (INVALID)\n");
431 printk(" (%s)\n", info[sense->sense_key]);
435 * flush the drive cache to media
437 static int pkt_flush_cache(struct pktcdvd_device *pd)
439 struct packet_command cgc;
441 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
442 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
446 * the IMMED bit -- we default to not setting it, although that
447 * would allow a much faster close, this is safer
452 return pkt_generic_packet(pd, &cgc);
456 * speed is given as the normal factor, e.g. 4 for 4x
458 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
460 struct packet_command cgc;
461 struct request_sense sense;
464 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
466 cgc.cmd[0] = GPCMD_SET_SPEED;
467 cgc.cmd[2] = (read_speed >> 8) & 0xff;
468 cgc.cmd[3] = read_speed & 0xff;
469 cgc.cmd[4] = (write_speed >> 8) & 0xff;
470 cgc.cmd[5] = write_speed & 0xff;
472 if ((ret = pkt_generic_packet(pd, &cgc)))
473 pkt_dump_sense(&cgc);
479 * Queue a bio for processing by the low-level CD device. Must be called
480 * from process context.
482 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
484 spin_lock(&pd->iosched.lock);
485 if (bio_data_dir(bio) == READ) {
486 pkt_add_list_last(bio, &pd->iosched.read_queue,
487 &pd->iosched.read_queue_tail);
489 pkt_add_list_last(bio, &pd->iosched.write_queue,
490 &pd->iosched.write_queue_tail);
492 spin_unlock(&pd->iosched.lock);
494 atomic_set(&pd->iosched.attention, 1);
495 wake_up(&pd->wqueue);
499 * Process the queued read/write requests. This function handles special
500 * requirements for CDRW drives:
501 * - A cache flush command must be inserted before a read request if the
502 * previous request was a write.
503 * - Switching between reading and writing is slow, so don't do it more often
505 * - Optimize for throughput at the expense of latency. This means that streaming
506 * writes will never be interrupted by a read, but if the drive has to seek
507 * before the next write, switch to reading instead if there are any pending
509 * - Set the read speed according to current usage pattern. When only reading
510 * from the device, it's best to use the highest possible read speed, but
511 * when switching often between reading and writing, it's better to have the
512 * same read and write speeds.
514 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
518 if (atomic_read(&pd->iosched.attention) == 0)
520 atomic_set(&pd->iosched.attention, 0);
522 q = bdev_get_queue(pd->bdev);
526 int reads_queued, writes_queued;
528 spin_lock(&pd->iosched.lock);
529 reads_queued = (pd->iosched.read_queue != NULL);
530 writes_queued = (pd->iosched.write_queue != NULL);
531 spin_unlock(&pd->iosched.lock);
533 if (!reads_queued && !writes_queued)
536 if (pd->iosched.writing) {
537 int need_write_seek = 1;
538 spin_lock(&pd->iosched.lock);
539 bio = pd->iosched.write_queue;
540 spin_unlock(&pd->iosched.lock);
541 if (bio && (bio->bi_sector == pd->iosched.last_write))
543 if (need_write_seek && reads_queued) {
544 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
545 VPRINTK("pktcdvd: write, waiting\n");
549 pd->iosched.writing = 0;
552 if (!reads_queued && writes_queued) {
553 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
554 VPRINTK("pktcdvd: read, waiting\n");
557 pd->iosched.writing = 1;
561 spin_lock(&pd->iosched.lock);
562 if (pd->iosched.writing) {
563 bio = pkt_get_list_first(&pd->iosched.write_queue,
564 &pd->iosched.write_queue_tail);
566 bio = pkt_get_list_first(&pd->iosched.read_queue,
567 &pd->iosched.read_queue_tail);
569 spin_unlock(&pd->iosched.lock);
574 if (bio_data_dir(bio) == READ)
575 pd->iosched.successive_reads += bio->bi_size >> 10;
577 pd->iosched.successive_reads = 0;
578 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
580 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
581 if (pd->read_speed == pd->write_speed) {
582 pd->read_speed = MAX_SPEED;
583 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
586 if (pd->read_speed != pd->write_speed) {
587 pd->read_speed = pd->write_speed;
588 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
592 atomic_inc(&pd->cdrw.pending_bios);
593 generic_make_request(bio);
598 * Special care is needed if the underlying block device has a small
599 * max_phys_segments value.
601 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
603 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
605 * The cdrom device can handle one segment/frame
607 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
609 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
611 * We can handle this case at the expense of some extra memory
612 * copies during write operations
614 set_bit(PACKET_MERGE_SEGS, &pd->flags);
617 printk("pktcdvd: cdrom max_phys_segments too small\n");
623 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
625 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
627 unsigned int copy_size = CD_FRAMESIZE;
629 while (copy_size > 0) {
630 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
631 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
632 src_bvl->bv_offset + offs;
633 void *vto = page_address(dst_page) + dst_offs;
634 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
637 memcpy(vto, vfrom, len);
638 kunmap_atomic(vfrom, KM_USER0);
648 * Copy all data for this packet to pkt->pages[], so that
649 * a) The number of required segments for the write bio is minimized, which
650 * is necessary for some scsi controllers.
651 * b) The data can be used as cache to avoid read requests if we receive a
652 * new write request for the same zone.
654 static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets)
658 /* Copy all data to pkt->pages[] */
661 for (f = 0; f < pkt->frames; f++) {
662 if (pages[f] != pkt->pages[p]) {
663 void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f];
664 void *vto = page_address(pkt->pages[p]) + offs;
665 memcpy(vto, vfrom, CD_FRAMESIZE);
666 kunmap_atomic(vfrom, KM_USER0);
667 pages[f] = pkt->pages[p];
670 BUG_ON(offsets[f] != offs);
672 offs += CD_FRAMESIZE;
673 if (offs >= PAGE_SIZE) {
674 BUG_ON(offs > PAGE_SIZE);
681 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
683 struct packet_data *pkt = bio->bi_private;
684 struct pktcdvd_device *pd = pkt->pd;
690 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
691 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
694 atomic_inc(&pkt->io_errors);
695 if (atomic_dec_and_test(&pkt->io_wait)) {
696 atomic_inc(&pkt->run_sm);
697 wake_up(&pd->wqueue);
699 pkt_bio_finished(pd);
704 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
706 struct packet_data *pkt = bio->bi_private;
707 struct pktcdvd_device *pd = pkt->pd;
713 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
715 pd->stats.pkt_ended++;
717 pkt_bio_finished(pd);
718 atomic_dec(&pkt->io_wait);
719 atomic_inc(&pkt->run_sm);
720 wake_up(&pd->wqueue);
725 * Schedule reads for the holes in a packet
727 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
732 char written[PACKET_MAX_SIZE];
734 BUG_ON(!pkt->orig_bios);
736 atomic_set(&pkt->io_wait, 0);
737 atomic_set(&pkt->io_errors, 0);
739 if (pkt->cache_valid) {
740 VPRINTK("pkt_gather_data: zone %llx cached\n",
741 (unsigned long long)pkt->sector);
746 * Figure out which frames we need to read before we can write.
748 memset(written, 0, sizeof(written));
749 spin_lock(&pkt->lock);
750 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
751 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
752 int num_frames = bio->bi_size / CD_FRAMESIZE;
753 BUG_ON(first_frame < 0);
754 BUG_ON(first_frame + num_frames > pkt->frames);
755 for (f = first_frame; f < first_frame + num_frames; f++)
758 spin_unlock(&pkt->lock);
761 * Schedule reads for missing parts of the packet.
763 for (f = 0; f < pkt->frames; f++) {
767 bio = pkt->r_bios[f];
769 bio->bi_max_vecs = 1;
770 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
771 bio->bi_bdev = pd->bdev;
772 bio->bi_end_io = pkt_end_io_read;
773 bio->bi_private = pkt;
775 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
776 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
777 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
778 f, pkt->pages[p], offset);
779 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
782 atomic_inc(&pkt->io_wait);
784 pkt_queue_bio(pd, bio);
789 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
790 frames_read, (unsigned long long)pkt->sector);
791 pd->stats.pkt_started++;
792 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
793 pd->stats.secs_w += pd->settings.size;
797 * Find a packet matching zone, or the least recently used packet if
800 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
802 struct packet_data *pkt;
804 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
805 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
806 list_del_init(&pkt->list);
807 if (pkt->sector != zone)
808 pkt->cache_valid = 0;
815 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
817 if (pkt->cache_valid) {
818 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
820 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
825 * recover a failed write, query for relocation if possible
827 * returns 1 if recovery is possible, or 0 if not
830 static int pkt_start_recovery(struct packet_data *pkt)
833 * FIXME. We need help from the file system to implement
838 struct request *rq = pkt->rq;
839 struct pktcdvd_device *pd = rq->rq_disk->private_data;
840 struct block_device *pkt_bdev;
841 struct super_block *sb = NULL;
842 unsigned long old_block, new_block;
845 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
847 sb = get_super(pkt_bdev);
854 if (!sb->s_op || !sb->s_op->relocate_blocks)
857 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
858 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
861 new_sector = new_block * (CD_FRAMESIZE >> 9);
862 pkt->sector = new_sector;
864 pkt->bio->bi_sector = new_sector;
865 pkt->bio->bi_next = NULL;
866 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
867 pkt->bio->bi_idx = 0;
869 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
870 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
871 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
872 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
873 BUG_ON(pkt->bio->bi_private != pkt);
884 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
887 static const char *state_name[] = {
888 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
890 enum packet_data_state old_state = pkt->state;
891 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
892 state_name[old_state], state_name[state]);
898 * Scan the work queue to see if we can start a new packet.
899 * returns non-zero if any work was done.
901 static int pkt_handle_queue(struct pktcdvd_device *pd)
903 struct packet_data *pkt, *p;
904 struct bio *bio = NULL;
905 sector_t zone = 0; /* Suppress gcc warning */
906 struct pkt_rb_node *node, *first_node;
909 VPRINTK("handle_queue\n");
911 atomic_set(&pd->scan_queue, 0);
913 if (list_empty(&pd->cdrw.pkt_free_list)) {
914 VPRINTK("handle_queue: no pkt\n");
919 * Try to find a zone we are not already working on.
921 spin_lock(&pd->lock);
922 first_node = pkt_rbtree_find(pd, pd->current_sector);
924 n = rb_first(&pd->bio_queue);
926 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
931 zone = ZONE(bio->bi_sector, pd);
932 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
933 if (p->sector == zone) {
940 node = pkt_rbtree_next(node);
942 n = rb_first(&pd->bio_queue);
944 node = rb_entry(n, struct pkt_rb_node, rb_node);
946 if (node == first_node)
949 spin_unlock(&pd->lock);
951 VPRINTK("handle_queue: no bio\n");
955 pkt = pkt_get_packet_data(pd, zone);
958 pd->current_sector = zone + pd->settings.size;
960 pkt->frames = pd->settings.size >> 2;
964 * Scan work queue for bios in the same zone and link them
967 spin_lock(&pd->lock);
968 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
969 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
971 VPRINTK("pkt_handle_queue: found zone=%llx\n",
972 (unsigned long long)ZONE(bio->bi_sector, pd));
973 if (ZONE(bio->bi_sector, pd) != zone)
975 pkt_rbtree_erase(pd, node);
976 spin_lock(&pkt->lock);
977 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
978 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
979 spin_unlock(&pkt->lock);
981 spin_unlock(&pd->lock);
983 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
984 pkt_set_state(pkt, PACKET_WAITING_STATE);
985 atomic_set(&pkt->run_sm, 1);
987 spin_lock(&pd->cdrw.active_list_lock);
988 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
989 spin_unlock(&pd->cdrw.active_list_lock);
995 * Assemble a bio to write one packet and queue the bio for processing
996 * by the underlying block device.
998 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1001 struct page *pages[PACKET_MAX_SIZE];
1002 int offsets[PACKET_MAX_SIZE];
1006 for (f = 0; f < pkt->frames; f++) {
1007 pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1008 offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE;
1012 * Fill-in pages[] and offsets[] with data from orig_bios.
1015 spin_lock(&pkt->lock);
1016 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1017 int segment = bio->bi_idx;
1019 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1020 int num_frames = bio->bi_size / CD_FRAMESIZE;
1021 BUG_ON(first_frame < 0);
1022 BUG_ON(first_frame + num_frames > pkt->frames);
1023 for (f = first_frame; f < first_frame + num_frames; f++) {
1024 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1026 while (src_offs >= src_bvl->bv_len) {
1027 src_offs -= src_bvl->bv_len;
1029 BUG_ON(segment >= bio->bi_vcnt);
1030 src_bvl = bio_iovec_idx(bio, segment);
1033 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1034 pages[f] = src_bvl->bv_page;
1035 offsets[f] = src_bvl->bv_offset + src_offs;
1037 pkt_copy_bio_data(bio, segment, src_offs,
1038 pages[f], offsets[f]);
1040 src_offs += CD_FRAMESIZE;
1044 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1045 spin_unlock(&pkt->lock);
1047 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1048 frames_write, (unsigned long long)pkt->sector);
1049 BUG_ON(frames_write != pkt->write_size);
1051 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1052 pkt_make_local_copy(pkt, pages, offsets);
1053 pkt->cache_valid = 1;
1055 pkt->cache_valid = 0;
1058 /* Start the write request */
1059 bio_init(pkt->w_bio);
1060 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1061 pkt->w_bio->bi_sector = pkt->sector;
1062 pkt->w_bio->bi_bdev = pd->bdev;
1063 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1064 pkt->w_bio->bi_private = pkt;
1065 for (f = 0; f < pkt->frames; f++) {
1066 if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) &&
1067 (offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) {
1068 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f]))
1072 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f]))
1076 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1078 atomic_set(&pkt->io_wait, 1);
1079 pkt->w_bio->bi_rw = WRITE;
1080 pkt_queue_bio(pd, pkt->w_bio);
1083 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1085 struct bio *bio, *next;
1088 pkt->cache_valid = 0;
1090 /* Finish all bios corresponding to this packet */
1091 bio = pkt->orig_bios;
1093 next = bio->bi_next;
1094 bio->bi_next = NULL;
1095 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1098 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1101 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1105 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1108 switch (pkt->state) {
1109 case PACKET_WAITING_STATE:
1110 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1113 pkt->sleep_time = 0;
1114 pkt_gather_data(pd, pkt);
1115 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1118 case PACKET_READ_WAIT_STATE:
1119 if (atomic_read(&pkt->io_wait) > 0)
1122 if (atomic_read(&pkt->io_errors) > 0) {
1123 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1125 pkt_start_write(pd, pkt);
1129 case PACKET_WRITE_WAIT_STATE:
1130 if (atomic_read(&pkt->io_wait) > 0)
1133 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1134 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1136 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1140 case PACKET_RECOVERY_STATE:
1141 if (pkt_start_recovery(pkt)) {
1142 pkt_start_write(pd, pkt);
1144 VPRINTK("No recovery possible\n");
1145 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1149 case PACKET_FINISHED_STATE:
1150 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1151 pkt_finish_packet(pkt, uptodate);
1161 static void pkt_handle_packets(struct pktcdvd_device *pd)
1163 struct packet_data *pkt, *next;
1165 VPRINTK("pkt_handle_packets\n");
1168 * Run state machine for active packets
1170 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1171 if (atomic_read(&pkt->run_sm) > 0) {
1172 atomic_set(&pkt->run_sm, 0);
1173 pkt_run_state_machine(pd, pkt);
1178 * Move no longer active packets to the free list
1180 spin_lock(&pd->cdrw.active_list_lock);
1181 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1182 if (pkt->state == PACKET_FINISHED_STATE) {
1183 list_del(&pkt->list);
1184 pkt_put_packet_data(pd, pkt);
1185 pkt_set_state(pkt, PACKET_IDLE_STATE);
1186 atomic_set(&pd->scan_queue, 1);
1189 spin_unlock(&pd->cdrw.active_list_lock);
1192 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1194 struct packet_data *pkt;
1197 for (i = 0; i <= PACKET_NUM_STATES; i++)
1200 spin_lock(&pd->cdrw.active_list_lock);
1201 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1202 states[pkt->state]++;
1204 spin_unlock(&pd->cdrw.active_list_lock);
1208 * kcdrwd is woken up when writes have been queued for one of our
1209 * registered devices
1211 static int kcdrwd(void *foobar)
1213 struct pktcdvd_device *pd = foobar;
1214 struct packet_data *pkt;
1215 long min_sleep_time, residue;
1217 set_user_nice(current, -20);
1220 DECLARE_WAITQUEUE(wait, current);
1223 * Wait until there is something to do
1225 add_wait_queue(&pd->wqueue, &wait);
1227 set_current_state(TASK_INTERRUPTIBLE);
1229 /* Check if we need to run pkt_handle_queue */
1230 if (atomic_read(&pd->scan_queue) > 0)
1233 /* Check if we need to run the state machine for some packet */
1234 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1235 if (atomic_read(&pkt->run_sm) > 0)
1239 /* Check if we need to process the iosched queues */
1240 if (atomic_read(&pd->iosched.attention) != 0)
1243 /* Otherwise, go to sleep */
1244 if (PACKET_DEBUG > 1) {
1245 int states[PACKET_NUM_STATES];
1246 pkt_count_states(pd, states);
1247 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1248 states[0], states[1], states[2], states[3],
1249 states[4], states[5]);
1252 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1253 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1254 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1255 min_sleep_time = pkt->sleep_time;
1258 generic_unplug_device(bdev_get_queue(pd->bdev));
1260 VPRINTK("kcdrwd: sleeping\n");
1261 residue = schedule_timeout(min_sleep_time);
1262 VPRINTK("kcdrwd: wake up\n");
1264 /* make swsusp happy with our thread */
1267 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1268 if (!pkt->sleep_time)
1270 pkt->sleep_time -= min_sleep_time - residue;
1271 if (pkt->sleep_time <= 0) {
1272 pkt->sleep_time = 0;
1273 atomic_inc(&pkt->run_sm);
1277 if (signal_pending(current)) {
1278 flush_signals(current);
1280 if (kthread_should_stop())
1284 set_current_state(TASK_RUNNING);
1285 remove_wait_queue(&pd->wqueue, &wait);
1287 if (kthread_should_stop())
1291 * if pkt_handle_queue returns true, we can queue
1294 while (pkt_handle_queue(pd))
1298 * Handle packet state machine
1300 pkt_handle_packets(pd);
1303 * Handle iosched queues
1305 pkt_iosched_process_queue(pd);
1311 static void pkt_print_settings(struct pktcdvd_device *pd)
1313 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1314 printk("%u blocks, ", pd->settings.size >> 2);
1315 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1318 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1320 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1322 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1323 cgc->cmd[2] = page_code | (page_control << 6);
1324 cgc->cmd[7] = cgc->buflen >> 8;
1325 cgc->cmd[8] = cgc->buflen & 0xff;
1326 cgc->data_direction = CGC_DATA_READ;
1327 return pkt_generic_packet(pd, cgc);
1330 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1332 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1333 memset(cgc->buffer, 0, 2);
1334 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1335 cgc->cmd[1] = 0x10; /* PF */
1336 cgc->cmd[7] = cgc->buflen >> 8;
1337 cgc->cmd[8] = cgc->buflen & 0xff;
1338 cgc->data_direction = CGC_DATA_WRITE;
1339 return pkt_generic_packet(pd, cgc);
1342 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1344 struct packet_command cgc;
1347 /* set up command and get the disc info */
1348 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1349 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1350 cgc.cmd[8] = cgc.buflen = 2;
1353 if ((ret = pkt_generic_packet(pd, &cgc)))
1356 /* not all drives have the same disc_info length, so requeue
1357 * packet with the length the drive tells us it can supply
1359 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1360 sizeof(di->disc_information_length);
1362 if (cgc.buflen > sizeof(disc_information))
1363 cgc.buflen = sizeof(disc_information);
1365 cgc.cmd[8] = cgc.buflen;
1366 return pkt_generic_packet(pd, &cgc);
1369 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1371 struct packet_command cgc;
1374 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1375 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1376 cgc.cmd[1] = type & 3;
1377 cgc.cmd[4] = (track & 0xff00) >> 8;
1378 cgc.cmd[5] = track & 0xff;
1382 if ((ret = pkt_generic_packet(pd, &cgc)))
1385 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1386 sizeof(ti->track_information_length);
1388 if (cgc.buflen > sizeof(track_information))
1389 cgc.buflen = sizeof(track_information);
1391 cgc.cmd[8] = cgc.buflen;
1392 return pkt_generic_packet(pd, &cgc);
1395 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1397 disc_information di;
1398 track_information ti;
1402 if ((ret = pkt_get_disc_info(pd, &di)))
1405 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1406 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1409 /* if this track is blank, try the previous. */
1412 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1416 /* if last recorded field is valid, return it. */
1418 *last_written = be32_to_cpu(ti.last_rec_address);
1420 /* make it up instead */
1421 *last_written = be32_to_cpu(ti.track_start) +
1422 be32_to_cpu(ti.track_size);
1424 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1430 * write mode select package based on pd->settings
1432 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1434 struct packet_command cgc;
1435 struct request_sense sense;
1436 write_param_page *wp;
1440 /* doesn't apply to DVD+RW or DVD-RAM */
1441 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1444 memset(buffer, 0, sizeof(buffer));
1445 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1447 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1448 pkt_dump_sense(&cgc);
1452 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1453 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1454 if (size > sizeof(buffer))
1455 size = sizeof(buffer);
1460 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1462 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1463 pkt_dump_sense(&cgc);
1468 * write page is offset header + block descriptor length
1470 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1472 wp->fp = pd->settings.fp;
1473 wp->track_mode = pd->settings.track_mode;
1474 wp->write_type = pd->settings.write_type;
1475 wp->data_block_type = pd->settings.block_mode;
1477 wp->multi_session = 0;
1479 #ifdef PACKET_USE_LS
1484 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1485 wp->session_format = 0;
1487 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1488 wp->session_format = 0x20;
1492 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1498 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1501 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1503 cgc.buflen = cgc.cmd[8] = size;
1504 if ((ret = pkt_mode_select(pd, &cgc))) {
1505 pkt_dump_sense(&cgc);
1509 pkt_print_settings(pd);
1514 * 0 -- we can write to this track, 1 -- we can't
1516 static int pkt_good_track(track_information *ti)
1519 * only good for CD-RW at the moment, not DVD-RW
1523 * FIXME: only for FP
1529 * "good" settings as per Mt Fuji.
1531 if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
1534 if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
1537 if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
1540 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1545 * 0 -- we can write to this disc, 1 -- we can't
1547 static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di)
1549 switch (pd->mmc3_profile) {
1550 case 0x0a: /* CD-RW */
1551 case 0xffff: /* MMC3 not supported */
1553 case 0x1a: /* DVD+RW */
1554 case 0x13: /* DVD-RW */
1555 case 0x12: /* DVD-RAM */
1558 printk("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1563 * for disc type 0xff we should probably reserve a new track.
1564 * but i'm not sure, should we leave this to user apps? probably.
1566 if (di->disc_type == 0xff) {
1567 printk("pktcdvd: Unknown disc. No track?\n");
1571 if (di->disc_type != 0x20 && di->disc_type != 0) {
1572 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1576 if (di->erasable == 0) {
1577 printk("pktcdvd: Disc not erasable\n");
1581 if (di->border_status == PACKET_SESSION_RESERVED) {
1582 printk("pktcdvd: Can't write to last track (reserved)\n");
1589 static int pkt_probe_settings(struct pktcdvd_device *pd)
1591 struct packet_command cgc;
1592 unsigned char buf[12];
1593 disc_information di;
1594 track_information ti;
1597 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1598 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1600 ret = pkt_generic_packet(pd, &cgc);
1601 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1603 memset(&di, 0, sizeof(disc_information));
1604 memset(&ti, 0, sizeof(track_information));
1606 if ((ret = pkt_get_disc_info(pd, &di))) {
1607 printk("failed get_disc\n");
1611 if (pkt_good_disc(pd, &di))
1614 switch (pd->mmc3_profile) {
1615 case 0x1a: /* DVD+RW */
1616 printk("pktcdvd: inserted media is DVD+RW\n");
1618 case 0x13: /* DVD-RW */
1619 printk("pktcdvd: inserted media is DVD-RW\n");
1621 case 0x12: /* DVD-RAM */
1622 printk("pktcdvd: inserted media is DVD-RAM\n");
1625 printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
1628 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1630 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1631 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1632 printk("pktcdvd: failed get_track\n");
1636 if (pkt_good_track(&ti)) {
1637 printk("pktcdvd: can't write to this track\n");
1642 * we keep packet size in 512 byte units, makes it easier to
1643 * deal with request calculations.
1645 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1646 if (pd->settings.size == 0) {
1647 printk("pktcdvd: detected zero packet size!\n");
1648 pd->settings.size = 128;
1650 if (pd->settings.size > PACKET_MAX_SECTORS) {
1651 printk("pktcdvd: packet size is too big\n");
1654 pd->settings.fp = ti.fp;
1655 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1658 pd->nwa = be32_to_cpu(ti.next_writable);
1659 set_bit(PACKET_NWA_VALID, &pd->flags);
1663 * in theory we could use lra on -RW media as well and just zero
1664 * blocks that haven't been written yet, but in practice that
1665 * is just a no-go. we'll use that for -R, naturally.
1668 pd->lra = be32_to_cpu(ti.last_rec_address);
1669 set_bit(PACKET_LRA_VALID, &pd->flags);
1671 pd->lra = 0xffffffff;
1672 set_bit(PACKET_LRA_VALID, &pd->flags);
1678 pd->settings.link_loss = 7;
1679 pd->settings.write_type = 0; /* packet */
1680 pd->settings.track_mode = ti.track_mode;
1683 * mode1 or mode2 disc
1685 switch (ti.data_mode) {
1687 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1690 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1693 printk("pktcdvd: unknown data mode\n");
1700 * enable/disable write caching on drive
1702 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1704 struct packet_command cgc;
1705 struct request_sense sense;
1706 unsigned char buf[64];
1709 memset(buf, 0, sizeof(buf));
1710 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1712 cgc.buflen = pd->mode_offset + 12;
1715 * caching mode page might not be there, so quiet this command
1719 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1722 buf[pd->mode_offset + 10] |= (!!set << 2);
1724 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1725 ret = pkt_mode_select(pd, &cgc);
1727 printk("pktcdvd: write caching control failed\n");
1728 pkt_dump_sense(&cgc);
1729 } else if (!ret && set)
1730 printk("pktcdvd: enabled write caching on %s\n", pd->name);
1734 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1736 struct packet_command cgc;
1738 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1739 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1740 cgc.cmd[4] = lockflag ? 1 : 0;
1741 return pkt_generic_packet(pd, &cgc);
1745 * Returns drive maximum write speed
1747 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1749 struct packet_command cgc;
1750 struct request_sense sense;
1751 unsigned char buf[256+18];
1752 unsigned char *cap_buf;
1755 memset(buf, 0, sizeof(buf));
1756 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1757 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1760 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1762 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1763 sizeof(struct mode_page_header);
1764 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1766 pkt_dump_sense(&cgc);
1771 offset = 20; /* Obsoleted field, used by older drives */
1772 if (cap_buf[1] >= 28)
1773 offset = 28; /* Current write speed selected */
1774 if (cap_buf[1] >= 30) {
1775 /* If the drive reports at least one "Logical Unit Write
1776 * Speed Performance Descriptor Block", use the information
1777 * in the first block. (contains the highest speed)
1779 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1784 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1788 /* These tables from cdrecord - I don't have orange book */
1789 /* standard speed CD-RW (1-4x) */
1790 static char clv_to_speed[16] = {
1791 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1792 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1794 /* high speed CD-RW (-10x) */
1795 static char hs_clv_to_speed[16] = {
1796 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1797 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1799 /* ultra high speed CD-RW */
1800 static char us_clv_to_speed[16] = {
1801 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1802 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1806 * reads the maximum media speed from ATIP
1808 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1810 struct packet_command cgc;
1811 struct request_sense sense;
1812 unsigned char buf[64];
1813 unsigned int size, st, sp;
1816 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1818 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1820 cgc.cmd[2] = 4; /* READ ATIP */
1822 ret = pkt_generic_packet(pd, &cgc);
1824 pkt_dump_sense(&cgc);
1827 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1828 if (size > sizeof(buf))
1831 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1833 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1837 ret = pkt_generic_packet(pd, &cgc);
1839 pkt_dump_sense(&cgc);
1843 if (!buf[6] & 0x40) {
1844 printk("pktcdvd: Disc type is not CD-RW\n");
1847 if (!buf[6] & 0x4) {
1848 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1852 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1854 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1856 /* Info from cdrecord */
1858 case 0: /* standard speed */
1859 *speed = clv_to_speed[sp];
1861 case 1: /* high speed */
1862 *speed = hs_clv_to_speed[sp];
1864 case 2: /* ultra high speed */
1865 *speed = us_clv_to_speed[sp];
1868 printk("pktcdvd: Unknown disc sub-type %d\n",st);
1872 printk("pktcdvd: Max. media speed: %d\n",*speed);
1875 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1880 static int pkt_perform_opc(struct pktcdvd_device *pd)
1882 struct packet_command cgc;
1883 struct request_sense sense;
1886 VPRINTK("pktcdvd: Performing OPC\n");
1888 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1890 cgc.timeout = 60*HZ;
1891 cgc.cmd[0] = GPCMD_SEND_OPC;
1893 if ((ret = pkt_generic_packet(pd, &cgc)))
1894 pkt_dump_sense(&cgc);
1898 static int pkt_open_write(struct pktcdvd_device *pd)
1901 unsigned int write_speed, media_write_speed, read_speed;
1903 if ((ret = pkt_probe_settings(pd))) {
1904 DPRINTK("pktcdvd: %s failed probe\n", pd->name);
1908 if ((ret = pkt_set_write_settings(pd))) {
1909 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1913 pkt_write_caching(pd, USE_WCACHING);
1915 if ((ret = pkt_get_max_speed(pd, &write_speed)))
1916 write_speed = 16 * 177;
1917 switch (pd->mmc3_profile) {
1918 case 0x13: /* DVD-RW */
1919 case 0x1a: /* DVD+RW */
1920 case 0x12: /* DVD-RAM */
1921 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1924 if ((ret = pkt_media_speed(pd, &media_write_speed)))
1925 media_write_speed = 16;
1926 write_speed = min(write_speed, media_write_speed * 177);
1927 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1930 read_speed = write_speed;
1932 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1933 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1936 pd->write_speed = write_speed;
1937 pd->read_speed = read_speed;
1939 if ((ret = pkt_perform_opc(pd))) {
1940 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1947 * called at open time.
1949 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1956 * We need to re-open the cdrom device without O_NONBLOCK to be able
1957 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1958 * so bdget() can't fail.
1960 bdget(pd->bdev->bd_dev);
1961 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1964 if ((ret = pkt_get_last_written(pd, &lba))) {
1965 printk("pktcdvd: pkt_get_last_written failed\n");
1969 set_capacity(pd->disk, lba << 2);
1970 set_capacity(pd->bdev->bd_disk, lba << 2);
1971 bd_set_size(pd->bdev, (loff_t)lba << 11);
1973 q = bdev_get_queue(pd->bdev);
1975 if ((ret = pkt_open_write(pd)))
1978 * Some CDRW drives can not handle writes larger than one packet,
1979 * even if the size is a multiple of the packet size.
1981 spin_lock_irq(q->queue_lock);
1982 blk_queue_max_sectors(q, pd->settings.size);
1983 spin_unlock_irq(q->queue_lock);
1984 set_bit(PACKET_WRITABLE, &pd->flags);
1986 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1987 clear_bit(PACKET_WRITABLE, &pd->flags);
1990 if ((ret = pkt_set_segment_merging(pd, q)))
1994 printk("pktcdvd: %lukB available on disc\n", lba << 1);
1999 blkdev_put(pd->bdev);
2005 * called when the device is closed. makes sure that the device flushes
2006 * the internal cache before we close.
2008 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2010 if (flush && pkt_flush_cache(pd))
2011 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
2013 pkt_lock_door(pd, 0);
2015 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2016 blkdev_put(pd->bdev);
2019 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2021 if (dev_minor >= MAX_WRITERS)
2023 return pkt_devs[dev_minor];
2026 static int pkt_open(struct inode *inode, struct file *file)
2028 struct pktcdvd_device *pd = NULL;
2031 VPRINTK("pktcdvd: entering open\n");
2034 pd = pkt_find_dev_from_minor(iminor(inode));
2039 BUG_ON(pd->refcnt < 0);
2042 if (pd->refcnt > 1) {
2043 if ((file->f_mode & FMODE_WRITE) &&
2044 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2049 if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) {
2054 * needed here as well, since ext2 (among others) may change
2055 * the blocksize at mount time
2057 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2066 VPRINTK("pktcdvd: failed open (%d)\n", ret);
2071 static int pkt_close(struct inode *inode, struct file *file)
2073 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2078 BUG_ON(pd->refcnt < 0);
2079 if (pd->refcnt == 0) {
2080 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2081 pkt_release_dev(pd, flush);
2088 static void *psd_pool_alloc(unsigned int __nocast gfp_mask, void *data)
2090 return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
2093 static void psd_pool_free(void *ptr, void *data)
2098 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2100 struct packet_stacked_data *psd = bio->bi_private;
2101 struct pktcdvd_device *pd = psd->pd;
2107 bio_endio(psd->bio, psd->bio->bi_size, err);
2108 mempool_free(psd, psd_pool);
2109 pkt_bio_finished(pd);
2113 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2115 struct pktcdvd_device *pd;
2116 char b[BDEVNAME_SIZE];
2118 struct packet_data *pkt;
2119 int was_empty, blocked_bio;
2120 struct pkt_rb_node *node;
2124 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2129 * Clone READ bios so we can have our own bi_end_io callback.
2131 if (bio_data_dir(bio) == READ) {
2132 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2133 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2137 cloned_bio->bi_bdev = pd->bdev;
2138 cloned_bio->bi_private = psd;
2139 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2140 pd->stats.secs_r += bio->bi_size >> 9;
2141 pkt_queue_bio(pd, cloned_bio);
2145 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2146 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2147 pd->name, (unsigned long long)bio->bi_sector);
2151 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2152 printk("pktcdvd: wrong bio size\n");
2156 blk_queue_bounce(q, &bio);
2158 zone = ZONE(bio->bi_sector, pd);
2159 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2160 (unsigned long long)bio->bi_sector,
2161 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2163 /* Check if we have to split the bio */
2165 struct bio_pair *bp;
2169 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2170 if (last_zone != zone) {
2171 BUG_ON(last_zone != zone + pd->settings.size);
2172 first_sectors = last_zone - bio->bi_sector;
2173 bp = bio_split(bio, bio_split_pool, first_sectors);
2175 pkt_make_request(q, &bp->bio1);
2176 pkt_make_request(q, &bp->bio2);
2177 bio_pair_release(bp);
2183 * If we find a matching packet in state WAITING or READ_WAIT, we can
2184 * just append this bio to that packet.
2186 spin_lock(&pd->cdrw.active_list_lock);
2188 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2189 if (pkt->sector == zone) {
2190 spin_lock(&pkt->lock);
2191 if ((pkt->state == PACKET_WAITING_STATE) ||
2192 (pkt->state == PACKET_READ_WAIT_STATE)) {
2193 pkt_add_list_last(bio, &pkt->orig_bios,
2194 &pkt->orig_bios_tail);
2195 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2196 if ((pkt->write_size >= pkt->frames) &&
2197 (pkt->state == PACKET_WAITING_STATE)) {
2198 atomic_inc(&pkt->run_sm);
2199 wake_up(&pd->wqueue);
2201 spin_unlock(&pkt->lock);
2202 spin_unlock(&pd->cdrw.active_list_lock);
2207 spin_unlock(&pkt->lock);
2210 spin_unlock(&pd->cdrw.active_list_lock);
2213 * No matching packet found. Store the bio in the work queue.
2215 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2218 spin_lock(&pd->lock);
2219 BUG_ON(pd->bio_queue_size < 0);
2220 was_empty = (pd->bio_queue_size == 0);
2221 pkt_rbtree_insert(pd, node);
2222 spin_unlock(&pd->lock);
2225 * Wake up the worker thread.
2227 atomic_set(&pd->scan_queue, 1);
2229 /* This wake_up is required for correct operation */
2230 wake_up(&pd->wqueue);
2231 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2233 * This wake up is not required for correct operation,
2234 * but improves performance in some cases.
2236 wake_up(&pd->wqueue);
2240 bio_io_error(bio, bio->bi_size);
2246 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2248 struct pktcdvd_device *pd = q->queuedata;
2249 sector_t zone = ZONE(bio->bi_sector, pd);
2250 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2251 int remaining = (pd->settings.size << 9) - used;
2255 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2256 * boundary, pkt_make_request() will split the bio.
2258 remaining2 = PAGE_SIZE - bio->bi_size;
2259 remaining = max(remaining, remaining2);
2261 BUG_ON(remaining < 0);
2265 static void pkt_init_queue(struct pktcdvd_device *pd)
2267 request_queue_t *q = pd->disk->queue;
2269 blk_queue_make_request(q, pkt_make_request);
2270 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2271 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2272 blk_queue_merge_bvec(q, pkt_merge_bvec);
2276 static int pkt_seq_show(struct seq_file *m, void *p)
2278 struct pktcdvd_device *pd = m->private;
2280 char bdev_buf[BDEVNAME_SIZE];
2281 int states[PACKET_NUM_STATES];
2283 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2284 bdevname(pd->bdev, bdev_buf));
2286 seq_printf(m, "\nSettings:\n");
2287 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2289 if (pd->settings.write_type == 0)
2293 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2295 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2296 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2298 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2300 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2302 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2306 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2308 seq_printf(m, "\nStatistics:\n");
2309 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2310 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2311 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2312 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2313 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2315 seq_printf(m, "\nMisc:\n");
2316 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2317 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2318 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2319 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2320 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2321 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2323 seq_printf(m, "\nQueue state:\n");
2324 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2325 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2326 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2328 pkt_count_states(pd, states);
2329 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2330 states[0], states[1], states[2], states[3], states[4], states[5]);
2335 static int pkt_seq_open(struct inode *inode, struct file *file)
2337 return single_open(file, pkt_seq_show, PDE(inode)->data);
2340 static struct file_operations pkt_proc_fops = {
2341 .open = pkt_seq_open,
2343 .llseek = seq_lseek,
2344 .release = single_release
2347 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2351 char b[BDEVNAME_SIZE];
2352 struct proc_dir_entry *proc;
2353 struct block_device *bdev;
2355 if (pd->pkt_dev == dev) {
2356 printk("pktcdvd: Recursive setup not allowed\n");
2359 for (i = 0; i < MAX_WRITERS; i++) {
2360 struct pktcdvd_device *pd2 = pkt_devs[i];
2363 if (pd2->bdev->bd_dev == dev) {
2364 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2367 if (pd2->pkt_dev == dev) {
2368 printk("pktcdvd: Can't chain pktcdvd devices\n");
2376 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2380 /* This is safe, since we have a reference from open(). */
2381 __module_get(THIS_MODULE);
2383 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2384 printk("pktcdvd: not enough memory for buffers\n");
2390 set_blocksize(bdev, CD_FRAMESIZE);
2394 atomic_set(&pd->cdrw.pending_bios, 0);
2395 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2396 if (IS_ERR(pd->cdrw.thread)) {
2397 printk("pktcdvd: can't start kernel thread\n");
2402 proc = create_proc_entry(pd->name, 0, pkt_proc);
2405 proc->proc_fops = &pkt_proc_fops;
2407 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2411 pkt_shrink_pktlist(pd);
2414 /* This is safe: open() is still holding a reference. */
2415 module_put(THIS_MODULE);
2419 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2421 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2423 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2428 * forward selected CDROM ioctls to CD-ROM, for UDF
2430 case CDROMMULTISESSION:
2431 case CDROMREADTOCENTRY:
2432 case CDROM_LAST_WRITTEN:
2433 case CDROM_SEND_PACKET:
2434 case SCSI_IOCTL_SEND_COMMAND:
2435 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2439 * The door gets locked when the device is opened, so we
2440 * have to unlock it or else the eject command fails.
2442 pkt_lock_door(pd, 0);
2443 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2446 printk("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
2453 static int pkt_media_changed(struct gendisk *disk)
2455 struct pktcdvd_device *pd = disk->private_data;
2456 struct gendisk *attached_disk;
2462 attached_disk = pd->bdev->bd_disk;
2465 return attached_disk->fops->media_changed(attached_disk);
2468 static struct block_device_operations pktcdvd_ops = {
2469 .owner = THIS_MODULE,
2471 .release = pkt_close,
2473 .media_changed = pkt_media_changed,
2477 * Set up mapping from pktcdvd device to CD-ROM device.
2479 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2483 struct pktcdvd_device *pd;
2484 struct gendisk *disk;
2485 dev_t dev = new_decode_dev(ctrl_cmd->dev);
2487 for (idx = 0; idx < MAX_WRITERS; idx++)
2490 if (idx == MAX_WRITERS) {
2491 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2495 pd = kmalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2498 memset(pd, 0, sizeof(struct pktcdvd_device));
2500 pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
2504 disk = alloc_disk(1);
2509 spin_lock_init(&pd->lock);
2510 spin_lock_init(&pd->iosched.lock);
2511 sprintf(pd->name, "pktcdvd%d", idx);
2512 init_waitqueue_head(&pd->wqueue);
2513 pd->bio_queue = RB_ROOT;
2515 disk->major = pkt_major;
2516 disk->first_minor = idx;
2517 disk->fops = &pktcdvd_ops;
2518 disk->flags = GENHD_FL_REMOVABLE;
2519 sprintf(disk->disk_name, "pktcdvd%d", idx);
2520 disk->private_data = pd;
2521 disk->queue = blk_alloc_queue(GFP_KERNEL);
2525 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2526 ret = pkt_new_dev(pd, dev);
2532 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2536 blk_put_queue(disk->queue);
2541 mempool_destroy(pd->rb_pool);
2547 * Tear down mapping from pktcdvd device to CD-ROM device.
2549 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2551 struct pktcdvd_device *pd;
2553 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2555 for (idx = 0; idx < MAX_WRITERS; idx++) {
2557 if (pd && (pd->pkt_dev == pkt_dev))
2560 if (idx == MAX_WRITERS) {
2561 DPRINTK("pktcdvd: dev not setup\n");
2568 if (!IS_ERR(pd->cdrw.thread))
2569 kthread_stop(pd->cdrw.thread);
2571 blkdev_put(pd->bdev);
2573 pkt_shrink_pktlist(pd);
2575 remove_proc_entry(pd->name, pkt_proc);
2576 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2578 del_gendisk(pd->disk);
2579 blk_put_queue(pd->disk->queue);
2582 pkt_devs[idx] = NULL;
2583 mempool_destroy(pd->rb_pool);
2586 /* This is safe: open() is still holding a reference. */
2587 module_put(THIS_MODULE);
2591 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2593 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2595 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2596 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2599 ctrl_cmd->pkt_dev = 0;
2601 ctrl_cmd->num_devices = MAX_WRITERS;
2604 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2606 void __user *argp = (void __user *)arg;
2607 struct pkt_ctrl_command ctrl_cmd;
2610 if (cmd != PACKET_CTRL_CMD)
2613 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2616 switch (ctrl_cmd.command) {
2617 case PKT_CTRL_CMD_SETUP:
2618 if (!capable(CAP_SYS_ADMIN))
2621 ret = pkt_setup_dev(&ctrl_cmd);
2624 case PKT_CTRL_CMD_TEARDOWN:
2625 if (!capable(CAP_SYS_ADMIN))
2628 ret = pkt_remove_dev(&ctrl_cmd);
2631 case PKT_CTRL_CMD_STATUS:
2633 pkt_get_status(&ctrl_cmd);
2640 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2646 static struct file_operations pkt_ctl_fops = {
2647 .ioctl = pkt_ctl_ioctl,
2648 .owner = THIS_MODULE,
2651 static struct miscdevice pkt_misc = {
2652 .minor = MISC_DYNAMIC_MINOR,
2654 .devfs_name = "pktcdvd/control",
2655 .fops = &pkt_ctl_fops
2658 static int __init pkt_init(void)
2662 psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
2666 ret = register_blkdev(pkt_major, "pktcdvd");
2668 printk("pktcdvd: Unable to register block device\n");
2674 ret = misc_register(&pkt_misc);
2676 printk("pktcdvd: Unable to register misc device\n");
2680 init_MUTEX(&ctl_mutex);
2682 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2684 DPRINTK("pktcdvd: %s\n", VERSION_CODE);
2688 unregister_blkdev(pkt_major, "pktcdvd");
2690 mempool_destroy(psd_pool);
2694 static void __exit pkt_exit(void)
2696 remove_proc_entry("pktcdvd", proc_root_driver);
2697 misc_deregister(&pkt_misc);
2698 unregister_blkdev(pkt_major, "pktcdvd");
2699 mempool_destroy(psd_pool);
2702 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2703 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2704 MODULE_LICENSE("GPL");
2706 module_init(pkt_init);
2707 module_exit(pkt_exit);