2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "ref-cache.h"
52 #include "compression.h"
54 struct btrfs_iget_args {
56 struct btrfs_root *root;
59 static struct inode_operations btrfs_dir_inode_operations;
60 static struct inode_operations btrfs_symlink_inode_operations;
61 static struct inode_operations btrfs_dir_ro_inode_operations;
62 static struct inode_operations btrfs_special_inode_operations;
63 static struct inode_operations btrfs_file_inode_operations;
64 static struct address_space_operations btrfs_aops;
65 static struct address_space_operations btrfs_symlink_aops;
66 static struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_bit_radix_cachep;
73 struct kmem_cache *btrfs_path_cachep;
76 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
78 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
79 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
80 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
81 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
82 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
83 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
86 static void btrfs_truncate(struct inode *inode);
87 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
88 static noinline int cow_file_range(struct inode *inode,
89 struct page *locked_page,
90 u64 start, u64 end, int *page_started,
91 unsigned long *nr_written, int unlock);
94 * a very lame attempt at stopping writes when the FS is 85% full. There
95 * are countless ways this is incorrect, but it is better than nothing.
97 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
105 spin_lock(&root->fs_info->delalloc_lock);
106 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
107 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
115 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
117 spin_unlock(&root->fs_info->delalloc_lock);
122 * this does all the hard work for inserting an inline extent into
123 * the btree. The caller should have done a btrfs_drop_extents so that
124 * no overlapping inline items exist in the btree
126 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
127 struct btrfs_root *root, struct inode *inode,
128 u64 start, size_t size, size_t compressed_size,
129 struct page **compressed_pages)
131 struct btrfs_key key;
132 struct btrfs_path *path;
133 struct extent_buffer *leaf;
134 struct page *page = NULL;
137 struct btrfs_file_extent_item *ei;
140 size_t cur_size = size;
142 unsigned long offset;
143 int use_compress = 0;
145 if (compressed_size && compressed_pages) {
147 cur_size = compressed_size;
150 path = btrfs_alloc_path();
154 btrfs_set_trans_block_group(trans, inode);
156 key.objectid = inode->i_ino;
158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
159 datasize = btrfs_file_extent_calc_inline_size(cur_size);
161 inode_add_bytes(inode, size);
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 leaf = path->nodes[0];
170 ei = btrfs_item_ptr(leaf, path->slots[0],
171 struct btrfs_file_extent_item);
172 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
173 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
174 btrfs_set_file_extent_encryption(leaf, ei, 0);
175 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
176 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
177 ptr = btrfs_file_extent_inline_start(ei);
182 while (compressed_size > 0) {
183 cpage = compressed_pages[i];
184 cur_size = min_t(unsigned long, compressed_size,
188 write_extent_buffer(leaf, kaddr, ptr, cur_size);
193 compressed_size -= cur_size;
195 btrfs_set_file_extent_compression(leaf, ei,
196 BTRFS_COMPRESS_ZLIB);
198 page = find_get_page(inode->i_mapping,
199 start >> PAGE_CACHE_SHIFT);
200 btrfs_set_file_extent_compression(leaf, ei, 0);
201 kaddr = kmap_atomic(page, KM_USER0);
202 offset = start & (PAGE_CACHE_SIZE - 1);
203 write_extent_buffer(leaf, kaddr + offset, ptr, size);
204 kunmap_atomic(kaddr, KM_USER0);
205 page_cache_release(page);
207 btrfs_mark_buffer_dirty(leaf);
208 btrfs_free_path(path);
210 BTRFS_I(inode)->disk_i_size = inode->i_size;
211 btrfs_update_inode(trans, root, inode);
214 btrfs_free_path(path);
220 * conditionally insert an inline extent into the file. This
221 * does the checks required to make sure the data is small enough
222 * to fit as an inline extent.
224 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
225 struct btrfs_root *root,
226 struct inode *inode, u64 start, u64 end,
227 size_t compressed_size,
228 struct page **compressed_pages)
230 u64 isize = i_size_read(inode);
231 u64 actual_end = min(end + 1, isize);
232 u64 inline_len = actual_end - start;
233 u64 aligned_end = (end + root->sectorsize - 1) &
234 ~((u64)root->sectorsize - 1);
236 u64 data_len = inline_len;
240 data_len = compressed_size;
243 actual_end >= PAGE_CACHE_SIZE ||
244 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
246 (actual_end & (root->sectorsize - 1)) == 0) ||
248 data_len > root->fs_info->max_inline) {
252 ret = btrfs_drop_extents(trans, root, inode, start,
253 aligned_end, start, &hint_byte);
256 if (isize > actual_end)
257 inline_len = min_t(u64, isize, actual_end);
258 ret = insert_inline_extent(trans, root, inode, start,
259 inline_len, compressed_size,
262 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
266 struct async_extent {
271 unsigned long nr_pages;
272 struct list_head list;
277 struct btrfs_root *root;
278 struct page *locked_page;
281 struct list_head extents;
282 struct btrfs_work work;
285 static noinline int add_async_extent(struct async_cow *cow,
286 u64 start, u64 ram_size,
289 unsigned long nr_pages)
291 struct async_extent *async_extent;
293 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
299 list_add_tail(&async_extent->list, &cow->extents);
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
319 static noinline int compress_file_range(struct inode *inode,
320 struct page *locked_page,
322 struct async_cow *async_cow,
325 struct btrfs_root *root = BTRFS_I(inode)->root;
326 struct btrfs_trans_handle *trans;
330 u64 blocksize = root->sectorsize;
332 u64 isize = i_size_read(inode);
334 struct page **pages = NULL;
335 unsigned long nr_pages;
336 unsigned long nr_pages_ret = 0;
337 unsigned long total_compressed = 0;
338 unsigned long total_in = 0;
339 unsigned long max_compressed = 128 * 1024;
340 unsigned long max_uncompressed = 128 * 1024;
346 actual_end = min_t(u64, isize, end + 1);
349 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
350 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
352 total_compressed = actual_end - start;
354 /* we want to make sure that amount of ram required to uncompress
355 * an extent is reasonable, so we limit the total size in ram
356 * of a compressed extent to 128k. This is a crucial number
357 * because it also controls how easily we can spread reads across
358 * cpus for decompression.
360 * We also want to make sure the amount of IO required to do
361 * a random read is reasonably small, so we limit the size of
362 * a compressed extent to 128k.
364 total_compressed = min(total_compressed, max_uncompressed);
365 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
366 num_bytes = max(blocksize, num_bytes);
367 disk_num_bytes = num_bytes;
372 * we do compression for mount -o compress and when the
373 * inode has not been flagged as nocompress. This flag can
374 * change at any time if we discover bad compression ratios.
376 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
377 btrfs_test_opt(root, COMPRESS)) {
379 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
381 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
382 total_compressed, pages,
383 nr_pages, &nr_pages_ret,
389 unsigned long offset = total_compressed &
390 (PAGE_CACHE_SIZE - 1);
391 struct page *page = pages[nr_pages_ret - 1];
394 /* zero the tail end of the last page, we might be
395 * sending it down to disk
398 kaddr = kmap_atomic(page, KM_USER0);
399 memset(kaddr + offset, 0,
400 PAGE_CACHE_SIZE - offset);
401 kunmap_atomic(kaddr, KM_USER0);
407 trans = btrfs_join_transaction(root, 1);
409 btrfs_set_trans_block_group(trans, inode);
411 /* lets try to make an inline extent */
412 if (ret || total_in < (actual_end - start)) {
413 /* we didn't compress the entire range, try
414 * to make an uncompressed inline extent.
416 ret = cow_file_range_inline(trans, root, inode,
417 start, end, 0, NULL);
419 /* try making a compressed inline extent */
420 ret = cow_file_range_inline(trans, root, inode,
422 total_compressed, pages);
424 btrfs_end_transaction(trans, root);
427 * inline extent creation worked, we don't need
428 * to create any more async work items. Unlock
429 * and free up our temp pages.
431 extent_clear_unlock_delalloc(inode,
432 &BTRFS_I(inode)->io_tree,
433 start, end, NULL, 1, 0,
442 * we aren't doing an inline extent round the compressed size
443 * up to a block size boundary so the allocator does sane
446 total_compressed = (total_compressed + blocksize - 1) &
450 * one last check to make sure the compression is really a
451 * win, compare the page count read with the blocks on disk
453 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
454 ~(PAGE_CACHE_SIZE - 1);
455 if (total_compressed >= total_in) {
458 disk_num_bytes = total_compressed;
459 num_bytes = total_in;
462 if (!will_compress && pages) {
464 * the compression code ran but failed to make things smaller,
465 * free any pages it allocated and our page pointer array
467 for (i = 0; i < nr_pages_ret; i++) {
468 WARN_ON(pages[i]->mapping);
469 page_cache_release(pages[i]);
473 total_compressed = 0;
476 /* flag the file so we don't compress in the future */
477 btrfs_set_flag(inode, NOCOMPRESS);
482 /* the async work queues will take care of doing actual
483 * allocation on disk for these compressed pages,
484 * and will submit them to the elevator.
486 add_async_extent(async_cow, start, num_bytes,
487 total_compressed, pages, nr_pages_ret);
489 if (start + num_bytes < end && start + num_bytes < actual_end) {
497 * No compression, but we still need to write the pages in
498 * the file we've been given so far. redirty the locked
499 * page if it corresponds to our extent and set things up
500 * for the async work queue to run cow_file_range to do
501 * the normal delalloc dance
503 if (page_offset(locked_page) >= start &&
504 page_offset(locked_page) <= end) {
505 __set_page_dirty_nobuffers(locked_page);
506 /* unlocked later on in the async handlers */
508 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
516 for (i = 0; i < nr_pages_ret; i++) {
517 WARN_ON(pages[i]->mapping);
518 page_cache_release(pages[i]);
526 * phase two of compressed writeback. This is the ordered portion
527 * of the code, which only gets called in the order the work was
528 * queued. We walk all the async extents created by compress_file_range
529 * and send them down to the disk.
531 static noinline int submit_compressed_extents(struct inode *inode,
532 struct async_cow *async_cow)
534 struct async_extent *async_extent;
536 struct btrfs_trans_handle *trans;
537 struct btrfs_key ins;
538 struct extent_map *em;
539 struct btrfs_root *root = BTRFS_I(inode)->root;
540 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
541 struct extent_io_tree *io_tree;
544 if (list_empty(&async_cow->extents))
547 trans = btrfs_join_transaction(root, 1);
549 while (!list_empty(&async_cow->extents)) {
550 async_extent = list_entry(async_cow->extents.next,
551 struct async_extent, list);
552 list_del(&async_extent->list);
554 io_tree = &BTRFS_I(inode)->io_tree;
556 /* did the compression code fall back to uncompressed IO? */
557 if (!async_extent->pages) {
558 int page_started = 0;
559 unsigned long nr_written = 0;
561 lock_extent(io_tree, async_extent->start,
562 async_extent->start +
563 async_extent->ram_size - 1, GFP_NOFS);
565 /* allocate blocks */
566 cow_file_range(inode, async_cow->locked_page,
568 async_extent->start +
569 async_extent->ram_size - 1,
570 &page_started, &nr_written, 0);
573 * if page_started, cow_file_range inserted an
574 * inline extent and took care of all the unlocking
575 * and IO for us. Otherwise, we need to submit
576 * all those pages down to the drive.
579 extent_write_locked_range(io_tree,
580 inode, async_extent->start,
581 async_extent->start +
582 async_extent->ram_size - 1,
590 lock_extent(io_tree, async_extent->start,
591 async_extent->start + async_extent->ram_size - 1,
594 * here we're doing allocation and writeback of the
597 btrfs_drop_extent_cache(inode, async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1, 0);
601 ret = btrfs_reserve_extent(trans, root,
602 async_extent->compressed_size,
603 async_extent->compressed_size,
607 em = alloc_extent_map(GFP_NOFS);
608 em->start = async_extent->start;
609 em->len = async_extent->ram_size;
610 em->orig_start = em->start;
612 em->block_start = ins.objectid;
613 em->block_len = ins.offset;
614 em->bdev = root->fs_info->fs_devices->latest_bdev;
615 set_bit(EXTENT_FLAG_PINNED, &em->flags);
616 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
619 spin_lock(&em_tree->lock);
620 ret = add_extent_mapping(em_tree, em);
621 spin_unlock(&em_tree->lock);
622 if (ret != -EEXIST) {
626 btrfs_drop_extent_cache(inode, async_extent->start,
627 async_extent->start +
628 async_extent->ram_size - 1, 0);
631 ret = btrfs_add_ordered_extent(inode, async_extent->start,
633 async_extent->ram_size,
635 BTRFS_ORDERED_COMPRESSED);
638 btrfs_end_transaction(trans, root);
641 * clear dirty, set writeback and unlock the pages.
643 extent_clear_unlock_delalloc(inode,
644 &BTRFS_I(inode)->io_tree,
646 async_extent->start +
647 async_extent->ram_size - 1,
648 NULL, 1, 1, 0, 1, 1, 0);
650 ret = btrfs_submit_compressed_write(inode,
652 async_extent->ram_size,
654 ins.offset, async_extent->pages,
655 async_extent->nr_pages);
658 trans = btrfs_join_transaction(root, 1);
659 alloc_hint = ins.objectid + ins.offset;
664 btrfs_end_transaction(trans, root);
669 * when extent_io.c finds a delayed allocation range in the file,
670 * the call backs end up in this code. The basic idea is to
671 * allocate extents on disk for the range, and create ordered data structs
672 * in ram to track those extents.
674 * locked_page is the page that writepage had locked already. We use
675 * it to make sure we don't do extra locks or unlocks.
677 * *page_started is set to one if we unlock locked_page and do everything
678 * required to start IO on it. It may be clean and already done with
681 static noinline int cow_file_range(struct inode *inode,
682 struct page *locked_page,
683 u64 start, u64 end, int *page_started,
684 unsigned long *nr_written,
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct btrfs_trans_handle *trans;
691 unsigned long ram_size;
694 u64 blocksize = root->sectorsize;
696 u64 isize = i_size_read(inode);
697 struct btrfs_key ins;
698 struct extent_map *em;
699 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702 trans = btrfs_join_transaction(root, 1);
704 btrfs_set_trans_block_group(trans, inode);
706 actual_end = min_t(u64, isize, end + 1);
708 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
709 num_bytes = max(blocksize, num_bytes);
710 disk_num_bytes = num_bytes;
714 /* lets try to make an inline extent */
715 ret = cow_file_range_inline(trans, root, inode,
716 start, end, 0, NULL);
718 extent_clear_unlock_delalloc(inode,
719 &BTRFS_I(inode)->io_tree,
720 start, end, NULL, 1, 1,
722 *nr_written = *nr_written +
723 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
730 BUG_ON(disk_num_bytes >
731 btrfs_super_total_bytes(&root->fs_info->super_copy));
733 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
735 while (disk_num_bytes > 0) {
736 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
737 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
738 root->sectorsize, 0, alloc_hint,
742 em = alloc_extent_map(GFP_NOFS);
744 em->orig_start = em->start;
746 ram_size = ins.offset;
747 em->len = ins.offset;
749 em->block_start = ins.objectid;
750 em->block_len = ins.offset;
751 em->bdev = root->fs_info->fs_devices->latest_bdev;
752 set_bit(EXTENT_FLAG_PINNED, &em->flags);
755 spin_lock(&em_tree->lock);
756 ret = add_extent_mapping(em_tree, em);
757 spin_unlock(&em_tree->lock);
758 if (ret != -EEXIST) {
762 btrfs_drop_extent_cache(inode, start,
763 start + ram_size - 1, 0);
766 cur_alloc_size = ins.offset;
767 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
768 ram_size, cur_alloc_size, 0);
771 if (root->root_key.objectid ==
772 BTRFS_DATA_RELOC_TREE_OBJECTID) {
773 ret = btrfs_reloc_clone_csums(inode, start,
778 if (disk_num_bytes < cur_alloc_size)
781 /* we're not doing compressed IO, don't unlock the first
782 * page (which the caller expects to stay locked), don't
783 * clear any dirty bits and don't set any writeback bits
785 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
786 start, start + ram_size - 1,
787 locked_page, unlock, 1,
789 disk_num_bytes -= cur_alloc_size;
790 num_bytes -= cur_alloc_size;
791 alloc_hint = ins.objectid + ins.offset;
792 start += cur_alloc_size;
796 btrfs_end_transaction(trans, root);
802 * work queue call back to started compression on a file and pages
804 static noinline void async_cow_start(struct btrfs_work *work)
806 struct async_cow *async_cow;
808 async_cow = container_of(work, struct async_cow, work);
810 compress_file_range(async_cow->inode, async_cow->locked_page,
811 async_cow->start, async_cow->end, async_cow,
814 async_cow->inode = NULL;
818 * work queue call back to submit previously compressed pages
820 static noinline void async_cow_submit(struct btrfs_work *work)
822 struct async_cow *async_cow;
823 struct btrfs_root *root;
824 unsigned long nr_pages;
826 async_cow = container_of(work, struct async_cow, work);
828 root = async_cow->root;
829 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
832 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
834 if (atomic_read(&root->fs_info->async_delalloc_pages) <
836 waitqueue_active(&root->fs_info->async_submit_wait))
837 wake_up(&root->fs_info->async_submit_wait);
839 if (async_cow->inode)
840 submit_compressed_extents(async_cow->inode, async_cow);
843 static noinline void async_cow_free(struct btrfs_work *work)
845 struct async_cow *async_cow;
846 async_cow = container_of(work, struct async_cow, work);
850 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
851 u64 start, u64 end, int *page_started,
852 unsigned long *nr_written)
854 struct async_cow *async_cow;
855 struct btrfs_root *root = BTRFS_I(inode)->root;
856 unsigned long nr_pages;
858 int limit = 10 * 1024 * 1042;
860 if (!btrfs_test_opt(root, COMPRESS)) {
861 return cow_file_range(inode, locked_page, start, end,
862 page_started, nr_written, 1);
865 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
866 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
867 while (start < end) {
868 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
869 async_cow->inode = inode;
870 async_cow->root = root;
871 async_cow->locked_page = locked_page;
872 async_cow->start = start;
874 if (btrfs_test_flag(inode, NOCOMPRESS))
877 cur_end = min(end, start + 512 * 1024 - 1);
879 async_cow->end = cur_end;
880 INIT_LIST_HEAD(&async_cow->extents);
882 async_cow->work.func = async_cow_start;
883 async_cow->work.ordered_func = async_cow_submit;
884 async_cow->work.ordered_free = async_cow_free;
885 async_cow->work.flags = 0;
887 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
889 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
891 btrfs_queue_worker(&root->fs_info->delalloc_workers,
894 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
895 wait_event(root->fs_info->async_submit_wait,
896 (atomic_read(&root->fs_info->async_delalloc_pages) <
900 while (atomic_read(&root->fs_info->async_submit_draining) &&
901 atomic_read(&root->fs_info->async_delalloc_pages)) {
902 wait_event(root->fs_info->async_submit_wait,
903 (atomic_read(&root->fs_info->async_delalloc_pages) ==
907 *nr_written += nr_pages;
914 static noinline int csum_exist_in_range(struct btrfs_root *root,
915 u64 bytenr, u64 num_bytes)
918 struct btrfs_ordered_sum *sums;
921 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
922 bytenr + num_bytes - 1, &list);
923 if (ret == 0 && list_empty(&list))
926 while (!list_empty(&list)) {
927 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
928 list_del(&sums->list);
935 * when nowcow writeback call back. This checks for snapshots or COW copies
936 * of the extents that exist in the file, and COWs the file as required.
938 * If no cow copies or snapshots exist, we write directly to the existing
941 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
942 u64 start, u64 end, int *page_started, int force,
943 unsigned long *nr_written)
945 struct btrfs_root *root = BTRFS_I(inode)->root;
946 struct btrfs_trans_handle *trans;
947 struct extent_buffer *leaf;
948 struct btrfs_path *path;
949 struct btrfs_file_extent_item *fi;
950 struct btrfs_key found_key;
962 path = btrfs_alloc_path();
964 trans = btrfs_join_transaction(root, 1);
970 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
973 if (ret > 0 && path->slots[0] > 0 && check_prev) {
974 leaf = path->nodes[0];
975 btrfs_item_key_to_cpu(leaf, &found_key,
977 if (found_key.objectid == inode->i_ino &&
978 found_key.type == BTRFS_EXTENT_DATA_KEY)
983 leaf = path->nodes[0];
984 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
985 ret = btrfs_next_leaf(root, path);
990 leaf = path->nodes[0];
996 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
998 if (found_key.objectid > inode->i_ino ||
999 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1000 found_key.offset > end)
1003 if (found_key.offset > cur_offset) {
1004 extent_end = found_key.offset;
1008 fi = btrfs_item_ptr(leaf, path->slots[0],
1009 struct btrfs_file_extent_item);
1010 extent_type = btrfs_file_extent_type(leaf, fi);
1012 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1013 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1014 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1015 extent_end = found_key.offset +
1016 btrfs_file_extent_num_bytes(leaf, fi);
1017 if (extent_end <= start) {
1021 if (disk_bytenr == 0)
1023 if (btrfs_file_extent_compression(leaf, fi) ||
1024 btrfs_file_extent_encryption(leaf, fi) ||
1025 btrfs_file_extent_other_encoding(leaf, fi))
1027 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1029 if (btrfs_extent_readonly(root, disk_bytenr))
1031 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1034 disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1035 disk_bytenr += cur_offset - found_key.offset;
1036 num_bytes = min(end + 1, extent_end) - cur_offset;
1038 * force cow if csum exists in the range.
1039 * this ensure that csum for a given extent are
1040 * either valid or do not exist.
1042 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1045 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1046 extent_end = found_key.offset +
1047 btrfs_file_extent_inline_len(leaf, fi);
1048 extent_end = ALIGN(extent_end, root->sectorsize);
1053 if (extent_end <= start) {
1058 if (cow_start == (u64)-1)
1059 cow_start = cur_offset;
1060 cur_offset = extent_end;
1061 if (cur_offset > end)
1067 btrfs_release_path(root, path);
1068 if (cow_start != (u64)-1) {
1069 ret = cow_file_range(inode, locked_page, cow_start,
1070 found_key.offset - 1, page_started,
1073 cow_start = (u64)-1;
1076 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1077 struct extent_map *em;
1078 struct extent_map_tree *em_tree;
1079 em_tree = &BTRFS_I(inode)->extent_tree;
1080 em = alloc_extent_map(GFP_NOFS);
1081 em->start = cur_offset;
1082 em->orig_start = em->start;
1083 em->len = num_bytes;
1084 em->block_len = num_bytes;
1085 em->block_start = disk_bytenr;
1086 em->bdev = root->fs_info->fs_devices->latest_bdev;
1087 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1089 spin_lock(&em_tree->lock);
1090 ret = add_extent_mapping(em_tree, em);
1091 spin_unlock(&em_tree->lock);
1092 if (ret != -EEXIST) {
1093 free_extent_map(em);
1096 btrfs_drop_extent_cache(inode, em->start,
1097 em->start + em->len - 1, 0);
1099 type = BTRFS_ORDERED_PREALLOC;
1101 type = BTRFS_ORDERED_NOCOW;
1104 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1105 num_bytes, num_bytes, type);
1108 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1109 cur_offset, cur_offset + num_bytes - 1,
1110 locked_page, 1, 1, 1, 0, 0, 0);
1111 cur_offset = extent_end;
1112 if (cur_offset > end)
1115 btrfs_release_path(root, path);
1117 if (cur_offset <= end && cow_start == (u64)-1)
1118 cow_start = cur_offset;
1119 if (cow_start != (u64)-1) {
1120 ret = cow_file_range(inode, locked_page, cow_start, end,
1121 page_started, nr_written, 1);
1125 ret = btrfs_end_transaction(trans, root);
1127 btrfs_free_path(path);
1132 * extent_io.c call back to do delayed allocation processing
1134 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1135 u64 start, u64 end, int *page_started,
1136 unsigned long *nr_written)
1140 if (btrfs_test_flag(inode, NODATACOW))
1141 ret = run_delalloc_nocow(inode, locked_page, start, end,
1142 page_started, 1, nr_written);
1143 else if (btrfs_test_flag(inode, PREALLOC))
1144 ret = run_delalloc_nocow(inode, locked_page, start, end,
1145 page_started, 0, nr_written);
1147 ret = cow_file_range_async(inode, locked_page, start, end,
1148 page_started, nr_written);
1154 * extent_io.c set_bit_hook, used to track delayed allocation
1155 * bytes in this file, and to maintain the list of inodes that
1156 * have pending delalloc work to be done.
1158 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1159 unsigned long old, unsigned long bits)
1162 * set_bit and clear bit hooks normally require _irqsave/restore
1163 * but in this case, we are only testeing for the DELALLOC
1164 * bit, which is only set or cleared with irqs on
1166 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1167 struct btrfs_root *root = BTRFS_I(inode)->root;
1168 spin_lock(&root->fs_info->delalloc_lock);
1169 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1170 root->fs_info->delalloc_bytes += end - start + 1;
1171 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1172 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1173 &root->fs_info->delalloc_inodes);
1175 spin_unlock(&root->fs_info->delalloc_lock);
1181 * extent_io.c clear_bit_hook, see set_bit_hook for why
1183 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1184 unsigned long old, unsigned long bits)
1187 * set_bit and clear bit hooks normally require _irqsave/restore
1188 * but in this case, we are only testeing for the DELALLOC
1189 * bit, which is only set or cleared with irqs on
1191 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1192 struct btrfs_root *root = BTRFS_I(inode)->root;
1194 spin_lock(&root->fs_info->delalloc_lock);
1195 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1196 printk(KERN_INFO "btrfs warning: delalloc account "
1198 (unsigned long long)end - start + 1,
1199 (unsigned long long)
1200 root->fs_info->delalloc_bytes);
1201 root->fs_info->delalloc_bytes = 0;
1202 BTRFS_I(inode)->delalloc_bytes = 0;
1204 root->fs_info->delalloc_bytes -= end - start + 1;
1205 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1207 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1208 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1209 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1211 spin_unlock(&root->fs_info->delalloc_lock);
1217 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1218 * we don't create bios that span stripes or chunks
1220 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1221 size_t size, struct bio *bio,
1222 unsigned long bio_flags)
1224 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1225 struct btrfs_mapping_tree *map_tree;
1226 u64 logical = (u64)bio->bi_sector << 9;
1231 if (bio_flags & EXTENT_BIO_COMPRESSED)
1234 length = bio->bi_size;
1235 map_tree = &root->fs_info->mapping_tree;
1236 map_length = length;
1237 ret = btrfs_map_block(map_tree, READ, logical,
1238 &map_length, NULL, 0);
1240 if (map_length < length + size)
1246 * in order to insert checksums into the metadata in large chunks,
1247 * we wait until bio submission time. All the pages in the bio are
1248 * checksummed and sums are attached onto the ordered extent record.
1250 * At IO completion time the cums attached on the ordered extent record
1251 * are inserted into the btree
1253 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1254 struct bio *bio, int mirror_num,
1255 unsigned long bio_flags)
1257 struct btrfs_root *root = BTRFS_I(inode)->root;
1260 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1266 * in order to insert checksums into the metadata in large chunks,
1267 * we wait until bio submission time. All the pages in the bio are
1268 * checksummed and sums are attached onto the ordered extent record.
1270 * At IO completion time the cums attached on the ordered extent record
1271 * are inserted into the btree
1273 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1274 int mirror_num, unsigned long bio_flags)
1276 struct btrfs_root *root = BTRFS_I(inode)->root;
1277 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1281 * extent_io.c submission hook. This does the right thing for csum calculation
1282 * on write, or reading the csums from the tree before a read
1284 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1285 int mirror_num, unsigned long bio_flags)
1287 struct btrfs_root *root = BTRFS_I(inode)->root;
1291 skip_sum = btrfs_test_flag(inode, NODATASUM);
1293 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1296 if (!(rw & (1 << BIO_RW))) {
1297 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1298 return btrfs_submit_compressed_read(inode, bio,
1299 mirror_num, bio_flags);
1300 } else if (!skip_sum)
1301 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1303 } else if (!skip_sum) {
1304 /* csum items have already been cloned */
1305 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1307 /* we're doing a write, do the async checksumming */
1308 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1309 inode, rw, bio, mirror_num,
1310 bio_flags, __btrfs_submit_bio_start,
1311 __btrfs_submit_bio_done);
1315 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1319 * given a list of ordered sums record them in the inode. This happens
1320 * at IO completion time based on sums calculated at bio submission time.
1322 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1323 struct inode *inode, u64 file_offset,
1324 struct list_head *list)
1326 struct btrfs_ordered_sum *sum;
1328 btrfs_set_trans_block_group(trans, inode);
1330 list_for_each_entry(sum, list, list) {
1331 btrfs_csum_file_blocks(trans,
1332 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1337 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1339 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1341 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1345 /* see btrfs_writepage_start_hook for details on why this is required */
1346 struct btrfs_writepage_fixup {
1348 struct btrfs_work work;
1351 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1353 struct btrfs_writepage_fixup *fixup;
1354 struct btrfs_ordered_extent *ordered;
1356 struct inode *inode;
1360 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1364 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1365 ClearPageChecked(page);
1369 inode = page->mapping->host;
1370 page_start = page_offset(page);
1371 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1373 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1375 /* already ordered? We're done */
1376 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1377 EXTENT_ORDERED, 0)) {
1381 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1383 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1384 page_end, GFP_NOFS);
1386 btrfs_start_ordered_extent(inode, ordered, 1);
1390 btrfs_set_extent_delalloc(inode, page_start, page_end);
1391 ClearPageChecked(page);
1393 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1396 page_cache_release(page);
1400 * There are a few paths in the higher layers of the kernel that directly
1401 * set the page dirty bit without asking the filesystem if it is a
1402 * good idea. This causes problems because we want to make sure COW
1403 * properly happens and the data=ordered rules are followed.
1405 * In our case any range that doesn't have the ORDERED bit set
1406 * hasn't been properly setup for IO. We kick off an async process
1407 * to fix it up. The async helper will wait for ordered extents, set
1408 * the delalloc bit and make it safe to write the page.
1410 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1412 struct inode *inode = page->mapping->host;
1413 struct btrfs_writepage_fixup *fixup;
1414 struct btrfs_root *root = BTRFS_I(inode)->root;
1417 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1422 if (PageChecked(page))
1425 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1429 SetPageChecked(page);
1430 page_cache_get(page);
1431 fixup->work.func = btrfs_writepage_fixup_worker;
1433 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1437 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1438 struct inode *inode, u64 file_pos,
1439 u64 disk_bytenr, u64 disk_num_bytes,
1440 u64 num_bytes, u64 ram_bytes,
1441 u8 compression, u8 encryption,
1442 u16 other_encoding, int extent_type)
1444 struct btrfs_root *root = BTRFS_I(inode)->root;
1445 struct btrfs_file_extent_item *fi;
1446 struct btrfs_path *path;
1447 struct extent_buffer *leaf;
1448 struct btrfs_key ins;
1452 path = btrfs_alloc_path();
1455 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1456 file_pos + num_bytes, file_pos, &hint);
1459 ins.objectid = inode->i_ino;
1460 ins.offset = file_pos;
1461 ins.type = BTRFS_EXTENT_DATA_KEY;
1462 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1464 leaf = path->nodes[0];
1465 fi = btrfs_item_ptr(leaf, path->slots[0],
1466 struct btrfs_file_extent_item);
1467 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1468 btrfs_set_file_extent_type(leaf, fi, extent_type);
1469 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1470 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1471 btrfs_set_file_extent_offset(leaf, fi, 0);
1472 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1473 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1474 btrfs_set_file_extent_compression(leaf, fi, compression);
1475 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1476 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1477 btrfs_mark_buffer_dirty(leaf);
1479 inode_add_bytes(inode, num_bytes);
1480 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1482 ins.objectid = disk_bytenr;
1483 ins.offset = disk_num_bytes;
1484 ins.type = BTRFS_EXTENT_ITEM_KEY;
1485 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1486 root->root_key.objectid,
1487 trans->transid, inode->i_ino, &ins);
1490 btrfs_free_path(path);
1494 /* as ordered data IO finishes, this gets called so we can finish
1495 * an ordered extent if the range of bytes in the file it covers are
1498 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1500 struct btrfs_root *root = BTRFS_I(inode)->root;
1501 struct btrfs_trans_handle *trans;
1502 struct btrfs_ordered_extent *ordered_extent;
1503 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1507 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1511 trans = btrfs_join_transaction(root, 1);
1513 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1514 BUG_ON(!ordered_extent);
1515 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1518 lock_extent(io_tree, ordered_extent->file_offset,
1519 ordered_extent->file_offset + ordered_extent->len - 1,
1522 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1524 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1526 ret = btrfs_mark_extent_written(trans, root, inode,
1527 ordered_extent->file_offset,
1528 ordered_extent->file_offset +
1529 ordered_extent->len);
1532 ret = insert_reserved_file_extent(trans, inode,
1533 ordered_extent->file_offset,
1534 ordered_extent->start,
1535 ordered_extent->disk_len,
1536 ordered_extent->len,
1537 ordered_extent->len,
1539 BTRFS_FILE_EXTENT_REG);
1542 unlock_extent(io_tree, ordered_extent->file_offset,
1543 ordered_extent->file_offset + ordered_extent->len - 1,
1546 add_pending_csums(trans, inode, ordered_extent->file_offset,
1547 &ordered_extent->list);
1549 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1550 btrfs_ordered_update_i_size(inode, ordered_extent);
1551 btrfs_update_inode(trans, root, inode);
1552 btrfs_remove_ordered_extent(inode, ordered_extent);
1553 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1556 btrfs_put_ordered_extent(ordered_extent);
1557 /* once for the tree */
1558 btrfs_put_ordered_extent(ordered_extent);
1560 btrfs_end_transaction(trans, root);
1564 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1565 struct extent_state *state, int uptodate)
1567 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1571 * When IO fails, either with EIO or csum verification fails, we
1572 * try other mirrors that might have a good copy of the data. This
1573 * io_failure_record is used to record state as we go through all the
1574 * mirrors. If another mirror has good data, the page is set up to date
1575 * and things continue. If a good mirror can't be found, the original
1576 * bio end_io callback is called to indicate things have failed.
1578 struct io_failure_record {
1583 unsigned long bio_flags;
1587 static int btrfs_io_failed_hook(struct bio *failed_bio,
1588 struct page *page, u64 start, u64 end,
1589 struct extent_state *state)
1591 struct io_failure_record *failrec = NULL;
1593 struct extent_map *em;
1594 struct inode *inode = page->mapping->host;
1595 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1596 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1603 ret = get_state_private(failure_tree, start, &private);
1605 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1608 failrec->start = start;
1609 failrec->len = end - start + 1;
1610 failrec->last_mirror = 0;
1611 failrec->bio_flags = 0;
1613 spin_lock(&em_tree->lock);
1614 em = lookup_extent_mapping(em_tree, start, failrec->len);
1615 if (em->start > start || em->start + em->len < start) {
1616 free_extent_map(em);
1619 spin_unlock(&em_tree->lock);
1621 if (!em || IS_ERR(em)) {
1625 logical = start - em->start;
1626 logical = em->block_start + logical;
1627 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1628 logical = em->block_start;
1629 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1631 failrec->logical = logical;
1632 free_extent_map(em);
1633 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1634 EXTENT_DIRTY, GFP_NOFS);
1635 set_state_private(failure_tree, start,
1636 (u64)(unsigned long)failrec);
1638 failrec = (struct io_failure_record *)(unsigned long)private;
1640 num_copies = btrfs_num_copies(
1641 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1642 failrec->logical, failrec->len);
1643 failrec->last_mirror++;
1645 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1646 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1649 if (state && state->start != failrec->start)
1651 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1653 if (!state || failrec->last_mirror > num_copies) {
1654 set_state_private(failure_tree, failrec->start, 0);
1655 clear_extent_bits(failure_tree, failrec->start,
1656 failrec->start + failrec->len - 1,
1657 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1661 bio = bio_alloc(GFP_NOFS, 1);
1662 bio->bi_private = state;
1663 bio->bi_end_io = failed_bio->bi_end_io;
1664 bio->bi_sector = failrec->logical >> 9;
1665 bio->bi_bdev = failed_bio->bi_bdev;
1668 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1669 if (failed_bio->bi_rw & (1 << BIO_RW))
1674 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1675 failrec->last_mirror,
1676 failrec->bio_flags);
1681 * each time an IO finishes, we do a fast check in the IO failure tree
1682 * to see if we need to process or clean up an io_failure_record
1684 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1687 u64 private_failure;
1688 struct io_failure_record *failure;
1692 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1693 (u64)-1, 1, EXTENT_DIRTY)) {
1694 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1695 start, &private_failure);
1697 failure = (struct io_failure_record *)(unsigned long)
1699 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1701 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1703 failure->start + failure->len - 1,
1704 EXTENT_DIRTY | EXTENT_LOCKED,
1713 * when reads are done, we need to check csums to verify the data is correct
1714 * if there's a match, we allow the bio to finish. If not, we go through
1715 * the io_failure_record routines to find good copies
1717 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1718 struct extent_state *state)
1720 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1721 struct inode *inode = page->mapping->host;
1722 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1724 u64 private = ~(u32)0;
1726 struct btrfs_root *root = BTRFS_I(inode)->root;
1729 if (PageChecked(page)) {
1730 ClearPageChecked(page);
1733 if (btrfs_test_flag(inode, NODATASUM))
1736 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1737 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1738 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1743 if (state && state->start == start) {
1744 private = state->private;
1747 ret = get_state_private(io_tree, start, &private);
1749 kaddr = kmap_atomic(page, KM_USER0);
1753 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1754 btrfs_csum_final(csum, (char *)&csum);
1755 if (csum != private)
1758 kunmap_atomic(kaddr, KM_USER0);
1760 /* if the io failure tree for this inode is non-empty,
1761 * check to see if we've recovered from a failed IO
1763 btrfs_clean_io_failures(inode, start);
1767 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1768 "private %llu\n", page->mapping->host->i_ino,
1769 (unsigned long long)start, csum,
1770 (unsigned long long)private);
1771 memset(kaddr + offset, 1, end - start + 1);
1772 flush_dcache_page(page);
1773 kunmap_atomic(kaddr, KM_USER0);
1780 * This creates an orphan entry for the given inode in case something goes
1781 * wrong in the middle of an unlink/truncate.
1783 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1785 struct btrfs_root *root = BTRFS_I(inode)->root;
1788 spin_lock(&root->list_lock);
1790 /* already on the orphan list, we're good */
1791 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1792 spin_unlock(&root->list_lock);
1796 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1798 spin_unlock(&root->list_lock);
1801 * insert an orphan item to track this unlinked/truncated file
1803 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1809 * We have done the truncate/delete so we can go ahead and remove the orphan
1810 * item for this particular inode.
1812 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1814 struct btrfs_root *root = BTRFS_I(inode)->root;
1817 spin_lock(&root->list_lock);
1819 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1820 spin_unlock(&root->list_lock);
1824 list_del_init(&BTRFS_I(inode)->i_orphan);
1826 spin_unlock(&root->list_lock);
1830 spin_unlock(&root->list_lock);
1832 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1838 * this cleans up any orphans that may be left on the list from the last use
1841 void btrfs_orphan_cleanup(struct btrfs_root *root)
1843 struct btrfs_path *path;
1844 struct extent_buffer *leaf;
1845 struct btrfs_item *item;
1846 struct btrfs_key key, found_key;
1847 struct btrfs_trans_handle *trans;
1848 struct inode *inode;
1849 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1851 path = btrfs_alloc_path();
1856 key.objectid = BTRFS_ORPHAN_OBJECTID;
1857 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1858 key.offset = (u64)-1;
1862 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1864 printk(KERN_ERR "Error searching slot for orphan: %d"
1870 * if ret == 0 means we found what we were searching for, which
1871 * is weird, but possible, so only screw with path if we didnt
1872 * find the key and see if we have stuff that matches
1875 if (path->slots[0] == 0)
1880 /* pull out the item */
1881 leaf = path->nodes[0];
1882 item = btrfs_item_nr(leaf, path->slots[0]);
1883 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1885 /* make sure the item matches what we want */
1886 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1888 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1891 /* release the path since we're done with it */
1892 btrfs_release_path(root, path);
1895 * this is where we are basically btrfs_lookup, without the
1896 * crossing root thing. we store the inode number in the
1897 * offset of the orphan item.
1899 inode = btrfs_iget_locked(root->fs_info->sb,
1900 found_key.offset, root);
1904 if (inode->i_state & I_NEW) {
1905 BTRFS_I(inode)->root = root;
1907 /* have to set the location manually */
1908 BTRFS_I(inode)->location.objectid = inode->i_ino;
1909 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1910 BTRFS_I(inode)->location.offset = 0;
1912 btrfs_read_locked_inode(inode);
1913 unlock_new_inode(inode);
1917 * add this inode to the orphan list so btrfs_orphan_del does
1918 * the proper thing when we hit it
1920 spin_lock(&root->list_lock);
1921 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1922 spin_unlock(&root->list_lock);
1925 * if this is a bad inode, means we actually succeeded in
1926 * removing the inode, but not the orphan record, which means
1927 * we need to manually delete the orphan since iput will just
1928 * do a destroy_inode
1930 if (is_bad_inode(inode)) {
1931 trans = btrfs_start_transaction(root, 1);
1932 btrfs_orphan_del(trans, inode);
1933 btrfs_end_transaction(trans, root);
1938 /* if we have links, this was a truncate, lets do that */
1939 if (inode->i_nlink) {
1941 btrfs_truncate(inode);
1946 /* this will do delete_inode and everything for us */
1951 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1953 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1955 btrfs_free_path(path);
1959 * read an inode from the btree into the in-memory inode
1961 void btrfs_read_locked_inode(struct inode *inode)
1963 struct btrfs_path *path;
1964 struct extent_buffer *leaf;
1965 struct btrfs_inode_item *inode_item;
1966 struct btrfs_timespec *tspec;
1967 struct btrfs_root *root = BTRFS_I(inode)->root;
1968 struct btrfs_key location;
1969 u64 alloc_group_block;
1973 path = btrfs_alloc_path();
1975 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1977 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1981 leaf = path->nodes[0];
1982 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1983 struct btrfs_inode_item);
1985 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1986 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1987 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1988 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1989 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1991 tspec = btrfs_inode_atime(inode_item);
1992 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1993 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1995 tspec = btrfs_inode_mtime(inode_item);
1996 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1997 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1999 tspec = btrfs_inode_ctime(inode_item);
2000 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2001 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2003 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2004 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2005 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2006 inode->i_generation = BTRFS_I(inode)->generation;
2008 rdev = btrfs_inode_rdev(leaf, inode_item);
2010 BTRFS_I(inode)->index_cnt = (u64)-1;
2011 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2013 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2014 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2015 alloc_group_block, 0);
2016 btrfs_free_path(path);
2019 switch (inode->i_mode & S_IFMT) {
2021 inode->i_mapping->a_ops = &btrfs_aops;
2022 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2023 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2024 inode->i_fop = &btrfs_file_operations;
2025 inode->i_op = &btrfs_file_inode_operations;
2028 inode->i_fop = &btrfs_dir_file_operations;
2029 if (root == root->fs_info->tree_root)
2030 inode->i_op = &btrfs_dir_ro_inode_operations;
2032 inode->i_op = &btrfs_dir_inode_operations;
2035 inode->i_op = &btrfs_symlink_inode_operations;
2036 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2037 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2040 init_special_inode(inode, inode->i_mode, rdev);
2046 btrfs_free_path(path);
2047 make_bad_inode(inode);
2051 * given a leaf and an inode, copy the inode fields into the leaf
2053 static void fill_inode_item(struct btrfs_trans_handle *trans,
2054 struct extent_buffer *leaf,
2055 struct btrfs_inode_item *item,
2056 struct inode *inode)
2058 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2059 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2060 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2061 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2062 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2064 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2065 inode->i_atime.tv_sec);
2066 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2067 inode->i_atime.tv_nsec);
2069 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2070 inode->i_mtime.tv_sec);
2071 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2072 inode->i_mtime.tv_nsec);
2074 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2075 inode->i_ctime.tv_sec);
2076 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2077 inode->i_ctime.tv_nsec);
2079 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2080 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2081 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2082 btrfs_set_inode_transid(leaf, item, trans->transid);
2083 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2084 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2085 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2089 * copy everything in the in-memory inode into the btree.
2091 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2092 struct btrfs_root *root, struct inode *inode)
2094 struct btrfs_inode_item *inode_item;
2095 struct btrfs_path *path;
2096 struct extent_buffer *leaf;
2099 path = btrfs_alloc_path();
2101 ret = btrfs_lookup_inode(trans, root, path,
2102 &BTRFS_I(inode)->location, 1);
2109 leaf = path->nodes[0];
2110 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2111 struct btrfs_inode_item);
2113 fill_inode_item(trans, leaf, inode_item, inode);
2114 btrfs_mark_buffer_dirty(leaf);
2115 btrfs_set_inode_last_trans(trans, inode);
2118 btrfs_free_path(path);
2124 * unlink helper that gets used here in inode.c and in the tree logging
2125 * recovery code. It remove a link in a directory with a given name, and
2126 * also drops the back refs in the inode to the directory
2128 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2129 struct btrfs_root *root,
2130 struct inode *dir, struct inode *inode,
2131 const char *name, int name_len)
2133 struct btrfs_path *path;
2135 struct extent_buffer *leaf;
2136 struct btrfs_dir_item *di;
2137 struct btrfs_key key;
2140 path = btrfs_alloc_path();
2146 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2147 name, name_len, -1);
2156 leaf = path->nodes[0];
2157 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2158 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2161 btrfs_release_path(root, path);
2163 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2165 dir->i_ino, &index);
2167 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2168 "inode %lu parent %lu\n", name_len, name,
2169 inode->i_ino, dir->i_ino);
2173 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2174 index, name, name_len, -1);
2183 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2184 btrfs_release_path(root, path);
2186 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2188 BUG_ON(ret != 0 && ret != -ENOENT);
2190 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2192 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2196 btrfs_free_path(path);
2200 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2201 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2202 btrfs_update_inode(trans, root, dir);
2203 btrfs_drop_nlink(inode);
2204 ret = btrfs_update_inode(trans, root, inode);
2205 dir->i_sb->s_dirt = 1;
2210 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2212 struct btrfs_root *root;
2213 struct btrfs_trans_handle *trans;
2214 struct inode *inode = dentry->d_inode;
2216 unsigned long nr = 0;
2218 root = BTRFS_I(dir)->root;
2220 ret = btrfs_check_free_space(root, 1, 1);
2224 trans = btrfs_start_transaction(root, 1);
2226 btrfs_set_trans_block_group(trans, dir);
2227 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2228 dentry->d_name.name, dentry->d_name.len);
2230 if (inode->i_nlink == 0)
2231 ret = btrfs_orphan_add(trans, inode);
2233 nr = trans->blocks_used;
2235 btrfs_end_transaction_throttle(trans, root);
2237 btrfs_btree_balance_dirty(root, nr);
2241 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2243 struct inode *inode = dentry->d_inode;
2246 struct btrfs_root *root = BTRFS_I(dir)->root;
2247 struct btrfs_trans_handle *trans;
2248 unsigned long nr = 0;
2251 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2252 * the root of a subvolume or snapshot
2254 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2255 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2259 ret = btrfs_check_free_space(root, 1, 1);
2263 trans = btrfs_start_transaction(root, 1);
2264 btrfs_set_trans_block_group(trans, dir);
2266 err = btrfs_orphan_add(trans, inode);
2270 /* now the directory is empty */
2271 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2272 dentry->d_name.name, dentry->d_name.len);
2274 btrfs_i_size_write(inode, 0);
2277 nr = trans->blocks_used;
2278 ret = btrfs_end_transaction_throttle(trans, root);
2280 btrfs_btree_balance_dirty(root, nr);
2289 * when truncating bytes in a file, it is possible to avoid reading
2290 * the leaves that contain only checksum items. This can be the
2291 * majority of the IO required to delete a large file, but it must
2292 * be done carefully.
2294 * The keys in the level just above the leaves are checked to make sure
2295 * the lowest key in a given leaf is a csum key, and starts at an offset
2296 * after the new size.
2298 * Then the key for the next leaf is checked to make sure it also has
2299 * a checksum item for the same file. If it does, we know our target leaf
2300 * contains only checksum items, and it can be safely freed without reading
2303 * This is just an optimization targeted at large files. It may do
2304 * nothing. It will return 0 unless things went badly.
2306 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2307 struct btrfs_root *root,
2308 struct btrfs_path *path,
2309 struct inode *inode, u64 new_size)
2311 struct btrfs_key key;
2314 struct btrfs_key found_key;
2315 struct btrfs_key other_key;
2316 struct btrfs_leaf_ref *ref;
2320 path->lowest_level = 1;
2321 key.objectid = inode->i_ino;
2322 key.type = BTRFS_CSUM_ITEM_KEY;
2323 key.offset = new_size;
2325 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2329 if (path->nodes[1] == NULL) {
2334 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2335 nritems = btrfs_header_nritems(path->nodes[1]);
2340 if (path->slots[1] >= nritems)
2343 /* did we find a key greater than anything we want to delete? */
2344 if (found_key.objectid > inode->i_ino ||
2345 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2348 /* we check the next key in the node to make sure the leave contains
2349 * only checksum items. This comparison doesn't work if our
2350 * leaf is the last one in the node
2352 if (path->slots[1] + 1 >= nritems) {
2354 /* search forward from the last key in the node, this
2355 * will bring us into the next node in the tree
2357 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2359 /* unlikely, but we inc below, so check to be safe */
2360 if (found_key.offset == (u64)-1)
2363 /* search_forward needs a path with locks held, do the
2364 * search again for the original key. It is possible
2365 * this will race with a balance and return a path that
2366 * we could modify, but this drop is just an optimization
2367 * and is allowed to miss some leaves.
2369 btrfs_release_path(root, path);
2372 /* setup a max key for search_forward */
2373 other_key.offset = (u64)-1;
2374 other_key.type = key.type;
2375 other_key.objectid = key.objectid;
2377 path->keep_locks = 1;
2378 ret = btrfs_search_forward(root, &found_key, &other_key,
2380 path->keep_locks = 0;
2381 if (ret || found_key.objectid != key.objectid ||
2382 found_key.type != key.type) {
2387 key.offset = found_key.offset;
2388 btrfs_release_path(root, path);
2393 /* we know there's one more slot after us in the tree,
2394 * read that key so we can verify it is also a checksum item
2396 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2398 if (found_key.objectid < inode->i_ino)
2401 if (found_key.type != key.type || found_key.offset < new_size)
2405 * if the key for the next leaf isn't a csum key from this objectid,
2406 * we can't be sure there aren't good items inside this leaf.
2409 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2412 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2413 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2415 * it is safe to delete this leaf, it contains only
2416 * csum items from this inode at an offset >= new_size
2418 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2421 if (root->ref_cows && leaf_gen < trans->transid) {
2422 ref = btrfs_alloc_leaf_ref(root, 0);
2424 ref->root_gen = root->root_key.offset;
2425 ref->bytenr = leaf_start;
2427 ref->generation = leaf_gen;
2430 ret = btrfs_add_leaf_ref(root, ref, 0);
2432 btrfs_free_leaf_ref(root, ref);
2438 btrfs_release_path(root, path);
2440 if (other_key.objectid == inode->i_ino &&
2441 other_key.type == key.type && other_key.offset > key.offset) {
2442 key.offset = other_key.offset;
2448 /* fixup any changes we've made to the path */
2449 path->lowest_level = 0;
2450 path->keep_locks = 0;
2451 btrfs_release_path(root, path);
2458 * this can truncate away extent items, csum items and directory items.
2459 * It starts at a high offset and removes keys until it can't find
2460 * any higher than new_size
2462 * csum items that cross the new i_size are truncated to the new size
2465 * min_type is the minimum key type to truncate down to. If set to 0, this
2466 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2468 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2469 struct btrfs_root *root,
2470 struct inode *inode,
2471 u64 new_size, u32 min_type)
2474 struct btrfs_path *path;
2475 struct btrfs_key key;
2476 struct btrfs_key found_key;
2478 struct extent_buffer *leaf;
2479 struct btrfs_file_extent_item *fi;
2480 u64 extent_start = 0;
2481 u64 extent_num_bytes = 0;
2487 int pending_del_nr = 0;
2488 int pending_del_slot = 0;
2489 int extent_type = -1;
2491 u64 mask = root->sectorsize - 1;
2494 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2495 path = btrfs_alloc_path();
2499 /* FIXME, add redo link to tree so we don't leak on crash */
2500 key.objectid = inode->i_ino;
2501 key.offset = (u64)-1;
2504 btrfs_init_path(path);
2507 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2512 /* there are no items in the tree for us to truncate, we're
2515 if (path->slots[0] == 0) {
2524 leaf = path->nodes[0];
2525 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2526 found_type = btrfs_key_type(&found_key);
2529 if (found_key.objectid != inode->i_ino)
2532 if (found_type < min_type)
2535 item_end = found_key.offset;
2536 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2537 fi = btrfs_item_ptr(leaf, path->slots[0],
2538 struct btrfs_file_extent_item);
2539 extent_type = btrfs_file_extent_type(leaf, fi);
2540 encoding = btrfs_file_extent_compression(leaf, fi);
2541 encoding |= btrfs_file_extent_encryption(leaf, fi);
2542 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2544 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2546 btrfs_file_extent_num_bytes(leaf, fi);
2547 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2548 item_end += btrfs_file_extent_inline_len(leaf,
2553 if (item_end < new_size) {
2554 if (found_type == BTRFS_DIR_ITEM_KEY)
2555 found_type = BTRFS_INODE_ITEM_KEY;
2556 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2557 found_type = BTRFS_EXTENT_DATA_KEY;
2558 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2559 found_type = BTRFS_XATTR_ITEM_KEY;
2560 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2561 found_type = BTRFS_INODE_REF_KEY;
2562 else if (found_type)
2566 btrfs_set_key_type(&key, found_type);
2569 if (found_key.offset >= new_size)
2575 /* FIXME, shrink the extent if the ref count is only 1 */
2576 if (found_type != BTRFS_EXTENT_DATA_KEY)
2579 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2581 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2582 if (!del_item && !encoding) {
2583 u64 orig_num_bytes =
2584 btrfs_file_extent_num_bytes(leaf, fi);
2585 extent_num_bytes = new_size -
2586 found_key.offset + root->sectorsize - 1;
2587 extent_num_bytes = extent_num_bytes &
2588 ~((u64)root->sectorsize - 1);
2589 btrfs_set_file_extent_num_bytes(leaf, fi,
2591 num_dec = (orig_num_bytes -
2593 if (root->ref_cows && extent_start != 0)
2594 inode_sub_bytes(inode, num_dec);
2595 btrfs_mark_buffer_dirty(leaf);
2598 btrfs_file_extent_disk_num_bytes(leaf,
2600 /* FIXME blocksize != 4096 */
2601 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2602 if (extent_start != 0) {
2605 inode_sub_bytes(inode, num_dec);
2607 root_gen = btrfs_header_generation(leaf);
2608 root_owner = btrfs_header_owner(leaf);
2610 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2612 * we can't truncate inline items that have had
2616 btrfs_file_extent_compression(leaf, fi) == 0 &&
2617 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2618 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2619 u32 size = new_size - found_key.offset;
2621 if (root->ref_cows) {
2622 inode_sub_bytes(inode, item_end + 1 -
2626 btrfs_file_extent_calc_inline_size(size);
2627 ret = btrfs_truncate_item(trans, root, path,
2630 } else if (root->ref_cows) {
2631 inode_sub_bytes(inode, item_end + 1 -
2637 if (!pending_del_nr) {
2638 /* no pending yet, add ourselves */
2639 pending_del_slot = path->slots[0];
2641 } else if (pending_del_nr &&
2642 path->slots[0] + 1 == pending_del_slot) {
2643 /* hop on the pending chunk */
2645 pending_del_slot = path->slots[0];
2653 ret = btrfs_free_extent(trans, root, extent_start,
2655 leaf->start, root_owner,
2656 root_gen, inode->i_ino, 0);
2660 if (path->slots[0] == 0) {
2663 btrfs_release_path(root, path);
2668 if (pending_del_nr &&
2669 path->slots[0] + 1 != pending_del_slot) {
2670 struct btrfs_key debug;
2672 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2674 ret = btrfs_del_items(trans, root, path,
2679 btrfs_release_path(root, path);
2685 if (pending_del_nr) {
2686 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2689 btrfs_free_path(path);
2690 inode->i_sb->s_dirt = 1;
2695 * taken from block_truncate_page, but does cow as it zeros out
2696 * any bytes left in the last page in the file.
2698 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2700 struct inode *inode = mapping->host;
2701 struct btrfs_root *root = BTRFS_I(inode)->root;
2702 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2703 struct btrfs_ordered_extent *ordered;
2705 u32 blocksize = root->sectorsize;
2706 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2707 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2713 if ((offset & (blocksize - 1)) == 0)
2718 page = grab_cache_page(mapping, index);
2722 page_start = page_offset(page);
2723 page_end = page_start + PAGE_CACHE_SIZE - 1;
2725 if (!PageUptodate(page)) {
2726 ret = btrfs_readpage(NULL, page);
2728 if (page->mapping != mapping) {
2730 page_cache_release(page);
2733 if (!PageUptodate(page)) {
2738 wait_on_page_writeback(page);
2740 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2741 set_page_extent_mapped(page);
2743 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2745 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2747 page_cache_release(page);
2748 btrfs_start_ordered_extent(inode, ordered, 1);
2749 btrfs_put_ordered_extent(ordered);
2753 btrfs_set_extent_delalloc(inode, page_start, page_end);
2755 if (offset != PAGE_CACHE_SIZE) {
2757 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2758 flush_dcache_page(page);
2761 ClearPageChecked(page);
2762 set_page_dirty(page);
2763 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2767 page_cache_release(page);
2772 int btrfs_cont_expand(struct inode *inode, loff_t size)
2774 struct btrfs_trans_handle *trans;
2775 struct btrfs_root *root = BTRFS_I(inode)->root;
2776 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2777 struct extent_map *em;
2778 u64 mask = root->sectorsize - 1;
2779 u64 hole_start = (inode->i_size + mask) & ~mask;
2780 u64 block_end = (size + mask) & ~mask;
2786 if (size <= hole_start)
2789 err = btrfs_check_free_space(root, 1, 0);
2793 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2796 struct btrfs_ordered_extent *ordered;
2797 btrfs_wait_ordered_range(inode, hole_start,
2798 block_end - hole_start);
2799 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2800 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2803 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2804 btrfs_put_ordered_extent(ordered);
2807 trans = btrfs_start_transaction(root, 1);
2808 btrfs_set_trans_block_group(trans, inode);
2810 cur_offset = hole_start;
2812 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2813 block_end - cur_offset, 0);
2814 BUG_ON(IS_ERR(em) || !em);
2815 last_byte = min(extent_map_end(em), block_end);
2816 last_byte = (last_byte + mask) & ~mask;
2817 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2819 hole_size = last_byte - cur_offset;
2820 err = btrfs_drop_extents(trans, root, inode,
2822 cur_offset + hole_size,
2823 cur_offset, &hint_byte);
2826 err = btrfs_insert_file_extent(trans, root,
2827 inode->i_ino, cur_offset, 0,
2828 0, hole_size, 0, hole_size,
2830 btrfs_drop_extent_cache(inode, hole_start,
2833 free_extent_map(em);
2834 cur_offset = last_byte;
2835 if (err || cur_offset >= block_end)
2839 btrfs_end_transaction(trans, root);
2840 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2844 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2846 struct inode *inode = dentry->d_inode;
2849 err = inode_change_ok(inode, attr);
2853 if (S_ISREG(inode->i_mode) &&
2854 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2855 err = btrfs_cont_expand(inode, attr->ia_size);
2860 err = inode_setattr(inode, attr);
2862 if (!err && ((attr->ia_valid & ATTR_MODE)))
2863 err = btrfs_acl_chmod(inode);
2867 void btrfs_delete_inode(struct inode *inode)
2869 struct btrfs_trans_handle *trans;
2870 struct btrfs_root *root = BTRFS_I(inode)->root;
2874 truncate_inode_pages(&inode->i_data, 0);
2875 if (is_bad_inode(inode)) {
2876 btrfs_orphan_del(NULL, inode);
2879 btrfs_wait_ordered_range(inode, 0, (u64)-1);
2881 btrfs_i_size_write(inode, 0);
2882 trans = btrfs_join_transaction(root, 1);
2884 btrfs_set_trans_block_group(trans, inode);
2885 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2887 btrfs_orphan_del(NULL, inode);
2888 goto no_delete_lock;
2891 btrfs_orphan_del(trans, inode);
2893 nr = trans->blocks_used;
2896 btrfs_end_transaction(trans, root);
2897 btrfs_btree_balance_dirty(root, nr);
2901 nr = trans->blocks_used;
2902 btrfs_end_transaction(trans, root);
2903 btrfs_btree_balance_dirty(root, nr);
2909 * this returns the key found in the dir entry in the location pointer.
2910 * If no dir entries were found, location->objectid is 0.
2912 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2913 struct btrfs_key *location)
2915 const char *name = dentry->d_name.name;
2916 int namelen = dentry->d_name.len;
2917 struct btrfs_dir_item *di;
2918 struct btrfs_path *path;
2919 struct btrfs_root *root = BTRFS_I(dir)->root;
2922 path = btrfs_alloc_path();
2925 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2930 if (!di || IS_ERR(di))
2933 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2935 btrfs_free_path(path);
2938 location->objectid = 0;
2943 * when we hit a tree root in a directory, the btrfs part of the inode
2944 * needs to be changed to reflect the root directory of the tree root. This
2945 * is kind of like crossing a mount point.
2947 static int fixup_tree_root_location(struct btrfs_root *root,
2948 struct btrfs_key *location,
2949 struct btrfs_root **sub_root,
2950 struct dentry *dentry)
2952 struct btrfs_root_item *ri;
2954 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2956 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2959 *sub_root = btrfs_read_fs_root(root->fs_info, location,
2960 dentry->d_name.name,
2961 dentry->d_name.len);
2962 if (IS_ERR(*sub_root))
2963 return PTR_ERR(*sub_root);
2965 ri = &(*sub_root)->root_item;
2966 location->objectid = btrfs_root_dirid(ri);
2967 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2968 location->offset = 0;
2973 static noinline void init_btrfs_i(struct inode *inode)
2975 struct btrfs_inode *bi = BTRFS_I(inode);
2978 bi->i_default_acl = NULL;
2983 bi->logged_trans = 0;
2984 bi->delalloc_bytes = 0;
2985 bi->disk_i_size = 0;
2987 bi->index_cnt = (u64)-1;
2988 bi->log_dirty_trans = 0;
2989 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2990 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2991 inode->i_mapping, GFP_NOFS);
2992 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2993 inode->i_mapping, GFP_NOFS);
2994 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2995 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2996 mutex_init(&BTRFS_I(inode)->extent_mutex);
2997 mutex_init(&BTRFS_I(inode)->log_mutex);
3000 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3002 struct btrfs_iget_args *args = p;
3003 inode->i_ino = args->ino;
3004 init_btrfs_i(inode);
3005 BTRFS_I(inode)->root = args->root;
3009 static int btrfs_find_actor(struct inode *inode, void *opaque)
3011 struct btrfs_iget_args *args = opaque;
3012 return args->ino == inode->i_ino &&
3013 args->root == BTRFS_I(inode)->root;
3016 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3017 struct btrfs_root *root, int wait)
3019 struct inode *inode;
3020 struct btrfs_iget_args args;
3021 args.ino = objectid;
3025 inode = ilookup5(s, objectid, btrfs_find_actor,
3028 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3034 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3035 struct btrfs_root *root)
3037 struct inode *inode;
3038 struct btrfs_iget_args args;
3039 args.ino = objectid;
3042 inode = iget5_locked(s, objectid, btrfs_find_actor,
3043 btrfs_init_locked_inode,
3048 /* Get an inode object given its location and corresponding root.
3049 * Returns in *is_new if the inode was read from disk
3051 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3052 struct btrfs_root *root, int *is_new)
3054 struct inode *inode;
3056 inode = btrfs_iget_locked(s, location->objectid, root);
3058 return ERR_PTR(-EACCES);
3060 if (inode->i_state & I_NEW) {
3061 BTRFS_I(inode)->root = root;
3062 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3063 btrfs_read_locked_inode(inode);
3064 unlock_new_inode(inode);
3075 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3077 struct inode *inode;
3078 struct btrfs_inode *bi = BTRFS_I(dir);
3079 struct btrfs_root *root = bi->root;
3080 struct btrfs_root *sub_root = root;
3081 struct btrfs_key location;
3084 if (dentry->d_name.len > BTRFS_NAME_LEN)
3085 return ERR_PTR(-ENAMETOOLONG);
3087 ret = btrfs_inode_by_name(dir, dentry, &location);
3090 return ERR_PTR(ret);
3093 if (location.objectid) {
3094 ret = fixup_tree_root_location(root, &location, &sub_root,
3097 return ERR_PTR(ret);
3099 return ERR_PTR(-ENOENT);
3100 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3102 return ERR_CAST(inode);
3107 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3108 struct nameidata *nd)
3110 struct inode *inode;
3112 if (dentry->d_name.len > BTRFS_NAME_LEN)
3113 return ERR_PTR(-ENAMETOOLONG);
3115 inode = btrfs_lookup_dentry(dir, dentry);
3117 return ERR_CAST(inode);
3119 return d_splice_alias(inode, dentry);
3122 static unsigned char btrfs_filetype_table[] = {
3123 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3126 static int btrfs_real_readdir(struct file *filp, void *dirent,
3129 struct inode *inode = filp->f_dentry->d_inode;
3130 struct btrfs_root *root = BTRFS_I(inode)->root;
3131 struct btrfs_item *item;
3132 struct btrfs_dir_item *di;
3133 struct btrfs_key key;
3134 struct btrfs_key found_key;
3135 struct btrfs_path *path;
3138 struct extent_buffer *leaf;
3141 unsigned char d_type;
3146 int key_type = BTRFS_DIR_INDEX_KEY;
3151 /* FIXME, use a real flag for deciding about the key type */
3152 if (root->fs_info->tree_root == root)
3153 key_type = BTRFS_DIR_ITEM_KEY;
3155 /* special case for "." */
3156 if (filp->f_pos == 0) {
3157 over = filldir(dirent, ".", 1,
3164 /* special case for .., just use the back ref */
3165 if (filp->f_pos == 1) {
3166 u64 pino = parent_ino(filp->f_path.dentry);
3167 over = filldir(dirent, "..", 2,
3173 path = btrfs_alloc_path();
3176 btrfs_set_key_type(&key, key_type);
3177 key.offset = filp->f_pos;
3178 key.objectid = inode->i_ino;
3180 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3186 leaf = path->nodes[0];
3187 nritems = btrfs_header_nritems(leaf);
3188 slot = path->slots[0];
3189 if (advance || slot >= nritems) {
3190 if (slot >= nritems - 1) {
3191 ret = btrfs_next_leaf(root, path);
3194 leaf = path->nodes[0];
3195 nritems = btrfs_header_nritems(leaf);
3196 slot = path->slots[0];
3204 item = btrfs_item_nr(leaf, slot);
3205 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3207 if (found_key.objectid != key.objectid)
3209 if (btrfs_key_type(&found_key) != key_type)
3211 if (found_key.offset < filp->f_pos)
3214 filp->f_pos = found_key.offset;
3216 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3218 di_total = btrfs_item_size(leaf, item);
3220 while (di_cur < di_total) {
3221 struct btrfs_key location;
3223 name_len = btrfs_dir_name_len(leaf, di);
3224 if (name_len <= sizeof(tmp_name)) {
3225 name_ptr = tmp_name;
3227 name_ptr = kmalloc(name_len, GFP_NOFS);
3233 read_extent_buffer(leaf, name_ptr,
3234 (unsigned long)(di + 1), name_len);
3236 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3237 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3239 /* is this a reference to our own snapshot? If so
3242 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3243 location.objectid == root->root_key.objectid) {
3247 over = filldir(dirent, name_ptr, name_len,
3248 found_key.offset, location.objectid,
3252 if (name_ptr != tmp_name)
3257 di_len = btrfs_dir_name_len(leaf, di) +
3258 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3260 di = (struct btrfs_dir_item *)((char *)di + di_len);
3264 /* Reached end of directory/root. Bump pos past the last item. */
3265 if (key_type == BTRFS_DIR_INDEX_KEY)
3266 filp->f_pos = INT_LIMIT(off_t);
3272 btrfs_free_path(path);
3276 int btrfs_write_inode(struct inode *inode, int wait)
3278 struct btrfs_root *root = BTRFS_I(inode)->root;
3279 struct btrfs_trans_handle *trans;
3282 if (root->fs_info->btree_inode == inode)
3286 trans = btrfs_join_transaction(root, 1);
3287 btrfs_set_trans_block_group(trans, inode);
3288 ret = btrfs_commit_transaction(trans, root);
3294 * This is somewhat expensive, updating the tree every time the
3295 * inode changes. But, it is most likely to find the inode in cache.
3296 * FIXME, needs more benchmarking...there are no reasons other than performance
3297 * to keep or drop this code.
3299 void btrfs_dirty_inode(struct inode *inode)
3301 struct btrfs_root *root = BTRFS_I(inode)->root;
3302 struct btrfs_trans_handle *trans;
3304 trans = btrfs_join_transaction(root, 1);
3305 btrfs_set_trans_block_group(trans, inode);
3306 btrfs_update_inode(trans, root, inode);
3307 btrfs_end_transaction(trans, root);
3311 * find the highest existing sequence number in a directory
3312 * and then set the in-memory index_cnt variable to reflect
3313 * free sequence numbers
3315 static int btrfs_set_inode_index_count(struct inode *inode)
3317 struct btrfs_root *root = BTRFS_I(inode)->root;
3318 struct btrfs_key key, found_key;
3319 struct btrfs_path *path;
3320 struct extent_buffer *leaf;
3323 key.objectid = inode->i_ino;
3324 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3325 key.offset = (u64)-1;
3327 path = btrfs_alloc_path();
3331 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3334 /* FIXME: we should be able to handle this */
3340 * MAGIC NUMBER EXPLANATION:
3341 * since we search a directory based on f_pos we have to start at 2
3342 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3343 * else has to start at 2
3345 if (path->slots[0] == 0) {
3346 BTRFS_I(inode)->index_cnt = 2;
3352 leaf = path->nodes[0];
3353 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3355 if (found_key.objectid != inode->i_ino ||
3356 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3357 BTRFS_I(inode)->index_cnt = 2;
3361 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3363 btrfs_free_path(path);
3368 * helper to find a free sequence number in a given directory. This current
3369 * code is very simple, later versions will do smarter things in the btree
3371 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3375 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3376 ret = btrfs_set_inode_index_count(dir);
3381 *index = BTRFS_I(dir)->index_cnt;
3382 BTRFS_I(dir)->index_cnt++;
3387 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3388 struct btrfs_root *root,
3390 const char *name, int name_len,
3391 u64 ref_objectid, u64 objectid,
3392 u64 alloc_hint, int mode, u64 *index)
3394 struct inode *inode;
3395 struct btrfs_inode_item *inode_item;
3396 struct btrfs_key *location;
3397 struct btrfs_path *path;
3398 struct btrfs_inode_ref *ref;
3399 struct btrfs_key key[2];
3405 path = btrfs_alloc_path();
3408 inode = new_inode(root->fs_info->sb);
3410 return ERR_PTR(-ENOMEM);
3413 ret = btrfs_set_inode_index(dir, index);
3415 return ERR_PTR(ret);
3418 * index_cnt is ignored for everything but a dir,
3419 * btrfs_get_inode_index_count has an explanation for the magic
3422 init_btrfs_i(inode);
3423 BTRFS_I(inode)->index_cnt = 2;
3424 BTRFS_I(inode)->root = root;
3425 BTRFS_I(inode)->generation = trans->transid;
3431 BTRFS_I(inode)->block_group =
3432 btrfs_find_block_group(root, 0, alloc_hint, owner);
3433 if ((mode & S_IFREG)) {
3434 if (btrfs_test_opt(root, NODATASUM))
3435 btrfs_set_flag(inode, NODATASUM);
3436 if (btrfs_test_opt(root, NODATACOW))
3437 btrfs_set_flag(inode, NODATACOW);
3440 key[0].objectid = objectid;
3441 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3444 key[1].objectid = objectid;
3445 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3446 key[1].offset = ref_objectid;
3448 sizes[0] = sizeof(struct btrfs_inode_item);
3449 sizes[1] = name_len + sizeof(*ref);
3451 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3455 if (objectid > root->highest_inode)
3456 root->highest_inode = objectid;
3458 inode->i_uid = current_fsuid();
3459 inode->i_gid = current_fsgid();
3460 inode->i_mode = mode;
3461 inode->i_ino = objectid;
3462 inode_set_bytes(inode, 0);
3463 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3464 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3465 struct btrfs_inode_item);
3466 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3468 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3469 struct btrfs_inode_ref);
3470 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3471 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3472 ptr = (unsigned long)(ref + 1);
3473 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3475 btrfs_mark_buffer_dirty(path->nodes[0]);
3476 btrfs_free_path(path);
3478 location = &BTRFS_I(inode)->location;
3479 location->objectid = objectid;
3480 location->offset = 0;
3481 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3483 insert_inode_hash(inode);
3487 BTRFS_I(dir)->index_cnt--;
3488 btrfs_free_path(path);
3489 return ERR_PTR(ret);
3492 static inline u8 btrfs_inode_type(struct inode *inode)
3494 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3498 * utility function to add 'inode' into 'parent_inode' with
3499 * a give name and a given sequence number.
3500 * if 'add_backref' is true, also insert a backref from the
3501 * inode to the parent directory.
3503 int btrfs_add_link(struct btrfs_trans_handle *trans,
3504 struct inode *parent_inode, struct inode *inode,
3505 const char *name, int name_len, int add_backref, u64 index)
3508 struct btrfs_key key;
3509 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3511 key.objectid = inode->i_ino;
3512 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3515 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3516 parent_inode->i_ino,
3517 &key, btrfs_inode_type(inode),
3521 ret = btrfs_insert_inode_ref(trans, root,
3524 parent_inode->i_ino,
3527 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3529 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3530 ret = btrfs_update_inode(trans, root, parent_inode);
3535 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3536 struct dentry *dentry, struct inode *inode,
3537 int backref, u64 index)
3539 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3540 inode, dentry->d_name.name,
3541 dentry->d_name.len, backref, index);
3543 d_instantiate(dentry, inode);
3551 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3552 int mode, dev_t rdev)
3554 struct btrfs_trans_handle *trans;
3555 struct btrfs_root *root = BTRFS_I(dir)->root;
3556 struct inode *inode = NULL;
3560 unsigned long nr = 0;
3563 if (!new_valid_dev(rdev))
3566 err = btrfs_check_free_space(root, 1, 0);
3570 trans = btrfs_start_transaction(root, 1);
3571 btrfs_set_trans_block_group(trans, dir);
3573 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3579 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3581 dentry->d_parent->d_inode->i_ino, objectid,
3582 BTRFS_I(dir)->block_group, mode, &index);
3583 err = PTR_ERR(inode);
3587 err = btrfs_init_acl(inode, dir);
3593 btrfs_set_trans_block_group(trans, inode);
3594 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3598 inode->i_op = &btrfs_special_inode_operations;
3599 init_special_inode(inode, inode->i_mode, rdev);
3600 btrfs_update_inode(trans, root, inode);
3602 dir->i_sb->s_dirt = 1;
3603 btrfs_update_inode_block_group(trans, inode);
3604 btrfs_update_inode_block_group(trans, dir);
3606 nr = trans->blocks_used;
3607 btrfs_end_transaction_throttle(trans, root);
3610 inode_dec_link_count(inode);
3613 btrfs_btree_balance_dirty(root, nr);
3617 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3618 int mode, struct nameidata *nd)
3620 struct btrfs_trans_handle *trans;
3621 struct btrfs_root *root = BTRFS_I(dir)->root;
3622 struct inode *inode = NULL;
3625 unsigned long nr = 0;
3629 err = btrfs_check_free_space(root, 1, 0);
3632 trans = btrfs_start_transaction(root, 1);
3633 btrfs_set_trans_block_group(trans, dir);
3635 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3641 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3643 dentry->d_parent->d_inode->i_ino,
3644 objectid, BTRFS_I(dir)->block_group, mode,
3646 err = PTR_ERR(inode);
3650 err = btrfs_init_acl(inode, dir);
3656 btrfs_set_trans_block_group(trans, inode);
3657 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3661 inode->i_mapping->a_ops = &btrfs_aops;
3662 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3663 inode->i_fop = &btrfs_file_operations;
3664 inode->i_op = &btrfs_file_inode_operations;
3665 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3667 dir->i_sb->s_dirt = 1;
3668 btrfs_update_inode_block_group(trans, inode);
3669 btrfs_update_inode_block_group(trans, dir);
3671 nr = trans->blocks_used;
3672 btrfs_end_transaction_throttle(trans, root);
3675 inode_dec_link_count(inode);
3678 btrfs_btree_balance_dirty(root, nr);
3682 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3683 struct dentry *dentry)
3685 struct btrfs_trans_handle *trans;
3686 struct btrfs_root *root = BTRFS_I(dir)->root;
3687 struct inode *inode = old_dentry->d_inode;
3689 unsigned long nr = 0;
3693 if (inode->i_nlink == 0)
3696 btrfs_inc_nlink(inode);
3697 err = btrfs_check_free_space(root, 1, 0);
3700 err = btrfs_set_inode_index(dir, &index);
3704 trans = btrfs_start_transaction(root, 1);
3706 btrfs_set_trans_block_group(trans, dir);
3707 atomic_inc(&inode->i_count);
3709 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3714 dir->i_sb->s_dirt = 1;
3715 btrfs_update_inode_block_group(trans, dir);
3716 err = btrfs_update_inode(trans, root, inode);
3721 nr = trans->blocks_used;
3722 btrfs_end_transaction_throttle(trans, root);
3725 inode_dec_link_count(inode);
3728 btrfs_btree_balance_dirty(root, nr);
3732 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3734 struct inode *inode = NULL;
3735 struct btrfs_trans_handle *trans;
3736 struct btrfs_root *root = BTRFS_I(dir)->root;
3738 int drop_on_err = 0;
3741 unsigned long nr = 1;
3743 err = btrfs_check_free_space(root, 1, 0);
3747 trans = btrfs_start_transaction(root, 1);
3748 btrfs_set_trans_block_group(trans, dir);
3750 if (IS_ERR(trans)) {
3751 err = PTR_ERR(trans);
3755 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3761 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3763 dentry->d_parent->d_inode->i_ino, objectid,
3764 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3766 if (IS_ERR(inode)) {
3767 err = PTR_ERR(inode);
3773 err = btrfs_init_acl(inode, dir);
3777 inode->i_op = &btrfs_dir_inode_operations;
3778 inode->i_fop = &btrfs_dir_file_operations;
3779 btrfs_set_trans_block_group(trans, inode);
3781 btrfs_i_size_write(inode, 0);
3782 err = btrfs_update_inode(trans, root, inode);
3786 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3787 inode, dentry->d_name.name,
3788 dentry->d_name.len, 0, index);
3792 d_instantiate(dentry, inode);
3794 dir->i_sb->s_dirt = 1;
3795 btrfs_update_inode_block_group(trans, inode);
3796 btrfs_update_inode_block_group(trans, dir);
3799 nr = trans->blocks_used;
3800 btrfs_end_transaction_throttle(trans, root);
3805 btrfs_btree_balance_dirty(root, nr);
3809 /* helper for btfs_get_extent. Given an existing extent in the tree,
3810 * and an extent that you want to insert, deal with overlap and insert
3811 * the new extent into the tree.
3813 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3814 struct extent_map *existing,
3815 struct extent_map *em,
3816 u64 map_start, u64 map_len)
3820 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3821 start_diff = map_start - em->start;
3822 em->start = map_start;
3824 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3825 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3826 em->block_start += start_diff;
3827 em->block_len -= start_diff;
3829 return add_extent_mapping(em_tree, em);
3832 static noinline int uncompress_inline(struct btrfs_path *path,
3833 struct inode *inode, struct page *page,
3834 size_t pg_offset, u64 extent_offset,
3835 struct btrfs_file_extent_item *item)
3838 struct extent_buffer *leaf = path->nodes[0];
3841 unsigned long inline_size;
3844 WARN_ON(pg_offset != 0);
3845 max_size = btrfs_file_extent_ram_bytes(leaf, item);
3846 inline_size = btrfs_file_extent_inline_item_len(leaf,
3847 btrfs_item_nr(leaf, path->slots[0]));
3848 tmp = kmalloc(inline_size, GFP_NOFS);
3849 ptr = btrfs_file_extent_inline_start(item);
3851 read_extent_buffer(leaf, tmp, ptr, inline_size);
3853 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3854 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3855 inline_size, max_size);
3857 char *kaddr = kmap_atomic(page, KM_USER0);
3858 unsigned long copy_size = min_t(u64,
3859 PAGE_CACHE_SIZE - pg_offset,
3860 max_size - extent_offset);
3861 memset(kaddr + pg_offset, 0, copy_size);
3862 kunmap_atomic(kaddr, KM_USER0);
3869 * a bit scary, this does extent mapping from logical file offset to the disk.
3870 * the ugly parts come from merging extents from the disk with the in-ram
3871 * representation. This gets more complex because of the data=ordered code,
3872 * where the in-ram extents might be locked pending data=ordered completion.
3874 * This also copies inline extents directly into the page.
3877 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3878 size_t pg_offset, u64 start, u64 len,
3884 u64 extent_start = 0;
3886 u64 objectid = inode->i_ino;
3888 struct btrfs_path *path = NULL;
3889 struct btrfs_root *root = BTRFS_I(inode)->root;
3890 struct btrfs_file_extent_item *item;
3891 struct extent_buffer *leaf;
3892 struct btrfs_key found_key;
3893 struct extent_map *em = NULL;
3894 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3895 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3896 struct btrfs_trans_handle *trans = NULL;
3900 spin_lock(&em_tree->lock);
3901 em = lookup_extent_mapping(em_tree, start, len);
3903 em->bdev = root->fs_info->fs_devices->latest_bdev;
3904 spin_unlock(&em_tree->lock);
3907 if (em->start > start || em->start + em->len <= start)
3908 free_extent_map(em);
3909 else if (em->block_start == EXTENT_MAP_INLINE && page)
3910 free_extent_map(em);
3914 em = alloc_extent_map(GFP_NOFS);
3919 em->bdev = root->fs_info->fs_devices->latest_bdev;
3920 em->start = EXTENT_MAP_HOLE;
3921 em->orig_start = EXTENT_MAP_HOLE;
3923 em->block_len = (u64)-1;
3926 path = btrfs_alloc_path();
3930 ret = btrfs_lookup_file_extent(trans, root, path,
3931 objectid, start, trans != NULL);
3938 if (path->slots[0] == 0)
3943 leaf = path->nodes[0];
3944 item = btrfs_item_ptr(leaf, path->slots[0],
3945 struct btrfs_file_extent_item);
3946 /* are we inside the extent that was found? */
3947 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3948 found_type = btrfs_key_type(&found_key);
3949 if (found_key.objectid != objectid ||
3950 found_type != BTRFS_EXTENT_DATA_KEY) {
3954 found_type = btrfs_file_extent_type(leaf, item);
3955 extent_start = found_key.offset;
3956 compressed = btrfs_file_extent_compression(leaf, item);
3957 if (found_type == BTRFS_FILE_EXTENT_REG ||
3958 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3959 extent_end = extent_start +
3960 btrfs_file_extent_num_bytes(leaf, item);
3961 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3963 size = btrfs_file_extent_inline_len(leaf, item);
3964 extent_end = (extent_start + size + root->sectorsize - 1) &
3965 ~((u64)root->sectorsize - 1);
3968 if (start >= extent_end) {
3970 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3971 ret = btrfs_next_leaf(root, path);
3978 leaf = path->nodes[0];
3980 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3981 if (found_key.objectid != objectid ||
3982 found_key.type != BTRFS_EXTENT_DATA_KEY)
3984 if (start + len <= found_key.offset)
3987 em->len = found_key.offset - start;
3991 if (found_type == BTRFS_FILE_EXTENT_REG ||
3992 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3993 em->start = extent_start;
3994 em->len = extent_end - extent_start;
3995 em->orig_start = extent_start -
3996 btrfs_file_extent_offset(leaf, item);
3997 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3999 em->block_start = EXTENT_MAP_HOLE;
4003 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4004 em->block_start = bytenr;
4005 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4008 bytenr += btrfs_file_extent_offset(leaf, item);
4009 em->block_start = bytenr;
4010 em->block_len = em->len;
4011 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4012 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4015 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4019 size_t extent_offset;
4022 em->block_start = EXTENT_MAP_INLINE;
4023 if (!page || create) {
4024 em->start = extent_start;
4025 em->len = extent_end - extent_start;
4029 size = btrfs_file_extent_inline_len(leaf, item);
4030 extent_offset = page_offset(page) + pg_offset - extent_start;
4031 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4032 size - extent_offset);
4033 em->start = extent_start + extent_offset;
4034 em->len = (copy_size + root->sectorsize - 1) &
4035 ~((u64)root->sectorsize - 1);
4036 em->orig_start = EXTENT_MAP_INLINE;
4038 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4039 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4040 if (create == 0 && !PageUptodate(page)) {
4041 if (btrfs_file_extent_compression(leaf, item) ==
4042 BTRFS_COMPRESS_ZLIB) {
4043 ret = uncompress_inline(path, inode, page,
4045 extent_offset, item);
4049 read_extent_buffer(leaf, map + pg_offset, ptr,
4053 flush_dcache_page(page);
4054 } else if (create && PageUptodate(page)) {
4057 free_extent_map(em);
4059 btrfs_release_path(root, path);
4060 trans = btrfs_join_transaction(root, 1);
4064 write_extent_buffer(leaf, map + pg_offset, ptr,
4067 btrfs_mark_buffer_dirty(leaf);
4069 set_extent_uptodate(io_tree, em->start,
4070 extent_map_end(em) - 1, GFP_NOFS);
4073 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4080 em->block_start = EXTENT_MAP_HOLE;
4081 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4083 btrfs_release_path(root, path);
4084 if (em->start > start || extent_map_end(em) <= start) {
4085 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4086 "[%llu %llu]\n", (unsigned long long)em->start,
4087 (unsigned long long)em->len,
4088 (unsigned long long)start,
4089 (unsigned long long)len);
4095 spin_lock(&em_tree->lock);
4096 ret = add_extent_mapping(em_tree, em);
4097 /* it is possible that someone inserted the extent into the tree
4098 * while we had the lock dropped. It is also possible that
4099 * an overlapping map exists in the tree
4101 if (ret == -EEXIST) {
4102 struct extent_map *existing;
4106 existing = lookup_extent_mapping(em_tree, start, len);
4107 if (existing && (existing->start > start ||
4108 existing->start + existing->len <= start)) {
4109 free_extent_map(existing);
4113 existing = lookup_extent_mapping(em_tree, em->start,
4116 err = merge_extent_mapping(em_tree, existing,
4119 free_extent_map(existing);
4121 free_extent_map(em);
4126 free_extent_map(em);
4130 free_extent_map(em);
4135 spin_unlock(&em_tree->lock);
4138 btrfs_free_path(path);
4140 ret = btrfs_end_transaction(trans, root);
4145 free_extent_map(em);
4147 return ERR_PTR(err);
4152 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4153 const struct iovec *iov, loff_t offset,
4154 unsigned long nr_segs)
4159 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4160 __u64 start, __u64 len)
4162 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4165 int btrfs_readpage(struct file *file, struct page *page)
4167 struct extent_io_tree *tree;
4168 tree = &BTRFS_I(page->mapping->host)->io_tree;
4169 return extent_read_full_page(tree, page, btrfs_get_extent);
4172 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4174 struct extent_io_tree *tree;
4177 if (current->flags & PF_MEMALLOC) {
4178 redirty_page_for_writepage(wbc, page);
4182 tree = &BTRFS_I(page->mapping->host)->io_tree;
4183 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4186 int btrfs_writepages(struct address_space *mapping,
4187 struct writeback_control *wbc)
4189 struct extent_io_tree *tree;
4191 tree = &BTRFS_I(mapping->host)->io_tree;
4192 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4196 btrfs_readpages(struct file *file, struct address_space *mapping,
4197 struct list_head *pages, unsigned nr_pages)
4199 struct extent_io_tree *tree;
4200 tree = &BTRFS_I(mapping->host)->io_tree;
4201 return extent_readpages(tree, mapping, pages, nr_pages,
4204 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4206 struct extent_io_tree *tree;
4207 struct extent_map_tree *map;
4210 tree = &BTRFS_I(page->mapping->host)->io_tree;
4211 map = &BTRFS_I(page->mapping->host)->extent_tree;
4212 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4214 ClearPagePrivate(page);
4215 set_page_private(page, 0);
4216 page_cache_release(page);
4221 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4223 if (PageWriteback(page) || PageDirty(page))
4225 return __btrfs_releasepage(page, gfp_flags);
4228 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4230 struct extent_io_tree *tree;
4231 struct btrfs_ordered_extent *ordered;
4232 u64 page_start = page_offset(page);
4233 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4235 wait_on_page_writeback(page);
4236 tree = &BTRFS_I(page->mapping->host)->io_tree;
4238 btrfs_releasepage(page, GFP_NOFS);
4242 lock_extent(tree, page_start, page_end, GFP_NOFS);
4243 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4247 * IO on this page will never be started, so we need
4248 * to account for any ordered extents now
4250 clear_extent_bit(tree, page_start, page_end,
4251 EXTENT_DIRTY | EXTENT_DELALLOC |
4252 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4253 btrfs_finish_ordered_io(page->mapping->host,
4254 page_start, page_end);
4255 btrfs_put_ordered_extent(ordered);
4256 lock_extent(tree, page_start, page_end, GFP_NOFS);
4258 clear_extent_bit(tree, page_start, page_end,
4259 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4262 __btrfs_releasepage(page, GFP_NOFS);
4264 ClearPageChecked(page);
4265 if (PagePrivate(page)) {
4266 ClearPagePrivate(page);
4267 set_page_private(page, 0);
4268 page_cache_release(page);
4273 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4274 * called from a page fault handler when a page is first dirtied. Hence we must
4275 * be careful to check for EOF conditions here. We set the page up correctly
4276 * for a written page which means we get ENOSPC checking when writing into
4277 * holes and correct delalloc and unwritten extent mapping on filesystems that
4278 * support these features.
4280 * We are not allowed to take the i_mutex here so we have to play games to
4281 * protect against truncate races as the page could now be beyond EOF. Because
4282 * vmtruncate() writes the inode size before removing pages, once we have the
4283 * page lock we can determine safely if the page is beyond EOF. If it is not
4284 * beyond EOF, then the page is guaranteed safe against truncation until we
4287 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4289 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4290 struct btrfs_root *root = BTRFS_I(inode)->root;
4291 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4292 struct btrfs_ordered_extent *ordered;
4294 unsigned long zero_start;
4300 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4307 size = i_size_read(inode);
4308 page_start = page_offset(page);
4309 page_end = page_start + PAGE_CACHE_SIZE - 1;
4311 if ((page->mapping != inode->i_mapping) ||
4312 (page_start >= size)) {
4313 /* page got truncated out from underneath us */
4316 wait_on_page_writeback(page);
4318 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4319 set_page_extent_mapped(page);
4322 * we can't set the delalloc bits if there are pending ordered
4323 * extents. Drop our locks and wait for them to finish
4325 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4327 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4329 btrfs_start_ordered_extent(inode, ordered, 1);
4330 btrfs_put_ordered_extent(ordered);
4334 btrfs_set_extent_delalloc(inode, page_start, page_end);
4337 /* page is wholly or partially inside EOF */
4338 if (page_start + PAGE_CACHE_SIZE > size)
4339 zero_start = size & ~PAGE_CACHE_MASK;
4341 zero_start = PAGE_CACHE_SIZE;
4343 if (zero_start != PAGE_CACHE_SIZE) {
4345 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4346 flush_dcache_page(page);
4349 ClearPageChecked(page);
4350 set_page_dirty(page);
4351 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4359 static void btrfs_truncate(struct inode *inode)
4361 struct btrfs_root *root = BTRFS_I(inode)->root;
4363 struct btrfs_trans_handle *trans;
4365 u64 mask = root->sectorsize - 1;
4367 if (!S_ISREG(inode->i_mode))
4369 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4372 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4373 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4375 trans = btrfs_start_transaction(root, 1);
4376 btrfs_set_trans_block_group(trans, inode);
4377 btrfs_i_size_write(inode, inode->i_size);
4379 ret = btrfs_orphan_add(trans, inode);
4382 /* FIXME, add redo link to tree so we don't leak on crash */
4383 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4384 BTRFS_EXTENT_DATA_KEY);
4385 btrfs_update_inode(trans, root, inode);
4387 ret = btrfs_orphan_del(trans, inode);
4391 nr = trans->blocks_used;
4392 ret = btrfs_end_transaction_throttle(trans, root);
4394 btrfs_btree_balance_dirty(root, nr);
4398 * create a new subvolume directory/inode (helper for the ioctl).
4400 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4401 struct btrfs_root *new_root, struct dentry *dentry,
4402 u64 new_dirid, u64 alloc_hint)
4404 struct inode *inode;
4408 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4409 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4411 return PTR_ERR(inode);
4412 inode->i_op = &btrfs_dir_inode_operations;
4413 inode->i_fop = &btrfs_dir_file_operations;
4416 btrfs_i_size_write(inode, 0);
4418 error = btrfs_update_inode(trans, new_root, inode);
4422 d_instantiate(dentry, inode);
4426 /* helper function for file defrag and space balancing. This
4427 * forces readahead on a given range of bytes in an inode
4429 unsigned long btrfs_force_ra(struct address_space *mapping,
4430 struct file_ra_state *ra, struct file *file,
4431 pgoff_t offset, pgoff_t last_index)
4433 pgoff_t req_size = last_index - offset + 1;
4435 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4436 return offset + req_size;
4439 struct inode *btrfs_alloc_inode(struct super_block *sb)
4441 struct btrfs_inode *ei;
4443 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4447 ei->logged_trans = 0;
4448 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4449 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4450 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4451 INIT_LIST_HEAD(&ei->i_orphan);
4452 return &ei->vfs_inode;
4455 void btrfs_destroy_inode(struct inode *inode)
4457 struct btrfs_ordered_extent *ordered;
4458 WARN_ON(!list_empty(&inode->i_dentry));
4459 WARN_ON(inode->i_data.nrpages);
4461 if (BTRFS_I(inode)->i_acl &&
4462 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4463 posix_acl_release(BTRFS_I(inode)->i_acl);
4464 if (BTRFS_I(inode)->i_default_acl &&
4465 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4466 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4468 spin_lock(&BTRFS_I(inode)->root->list_lock);
4469 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4470 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4471 " list\n", inode->i_ino);
4474 spin_unlock(&BTRFS_I(inode)->root->list_lock);
4477 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4481 printk(KERN_ERR "btrfs found ordered "
4482 "extent %llu %llu on inode cleanup\n",
4483 (unsigned long long)ordered->file_offset,
4484 (unsigned long long)ordered->len);
4485 btrfs_remove_ordered_extent(inode, ordered);
4486 btrfs_put_ordered_extent(ordered);
4487 btrfs_put_ordered_extent(ordered);
4490 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4491 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4494 static void init_once(void *foo)
4496 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4498 inode_init_once(&ei->vfs_inode);
4501 void btrfs_destroy_cachep(void)
4503 if (btrfs_inode_cachep)
4504 kmem_cache_destroy(btrfs_inode_cachep);
4505 if (btrfs_trans_handle_cachep)
4506 kmem_cache_destroy(btrfs_trans_handle_cachep);
4507 if (btrfs_transaction_cachep)
4508 kmem_cache_destroy(btrfs_transaction_cachep);
4509 if (btrfs_bit_radix_cachep)
4510 kmem_cache_destroy(btrfs_bit_radix_cachep);
4511 if (btrfs_path_cachep)
4512 kmem_cache_destroy(btrfs_path_cachep);
4515 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4516 unsigned long extra_flags,
4517 void (*ctor)(void *))
4519 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4520 SLAB_MEM_SPREAD | extra_flags), ctor);
4523 int btrfs_init_cachep(void)
4525 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4526 sizeof(struct btrfs_inode),
4528 if (!btrfs_inode_cachep)
4530 btrfs_trans_handle_cachep =
4531 btrfs_cache_create("btrfs_trans_handle_cache",
4532 sizeof(struct btrfs_trans_handle),
4534 if (!btrfs_trans_handle_cachep)
4536 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4537 sizeof(struct btrfs_transaction),
4539 if (!btrfs_transaction_cachep)
4541 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4542 sizeof(struct btrfs_path),
4544 if (!btrfs_path_cachep)
4546 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4547 SLAB_DESTROY_BY_RCU, NULL);
4548 if (!btrfs_bit_radix_cachep)
4552 btrfs_destroy_cachep();
4556 static int btrfs_getattr(struct vfsmount *mnt,
4557 struct dentry *dentry, struct kstat *stat)
4559 struct inode *inode = dentry->d_inode;
4560 generic_fillattr(inode, stat);
4561 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4562 stat->blksize = PAGE_CACHE_SIZE;
4563 stat->blocks = (inode_get_bytes(inode) +
4564 BTRFS_I(inode)->delalloc_bytes) >> 9;
4568 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4569 struct inode *new_dir, struct dentry *new_dentry)
4571 struct btrfs_trans_handle *trans;
4572 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4573 struct inode *new_inode = new_dentry->d_inode;
4574 struct inode *old_inode = old_dentry->d_inode;
4575 struct timespec ctime = CURRENT_TIME;
4579 /* we're not allowed to rename between subvolumes */
4580 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4581 BTRFS_I(new_dir)->root->root_key.objectid)
4584 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4585 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4589 /* to rename a snapshot or subvolume, we need to juggle the
4590 * backrefs. This isn't coded yet
4592 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4595 ret = btrfs_check_free_space(root, 1, 0);
4599 trans = btrfs_start_transaction(root, 1);
4601 btrfs_set_trans_block_group(trans, new_dir);
4603 btrfs_inc_nlink(old_dentry->d_inode);
4604 old_dir->i_ctime = old_dir->i_mtime = ctime;
4605 new_dir->i_ctime = new_dir->i_mtime = ctime;
4606 old_inode->i_ctime = ctime;
4608 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4609 old_dentry->d_name.name,
4610 old_dentry->d_name.len);
4615 new_inode->i_ctime = CURRENT_TIME;
4616 ret = btrfs_unlink_inode(trans, root, new_dir,
4617 new_dentry->d_inode,
4618 new_dentry->d_name.name,
4619 new_dentry->d_name.len);
4622 if (new_inode->i_nlink == 0) {
4623 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4629 ret = btrfs_set_inode_index(new_dir, &index);
4633 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4634 old_inode, new_dentry->d_name.name,
4635 new_dentry->d_name.len, 1, index);
4640 btrfs_end_transaction_throttle(trans, root);
4646 * some fairly slow code that needs optimization. This walks the list
4647 * of all the inodes with pending delalloc and forces them to disk.
4649 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4651 struct list_head *head = &root->fs_info->delalloc_inodes;
4652 struct btrfs_inode *binode;
4653 struct inode *inode;
4655 if (root->fs_info->sb->s_flags & MS_RDONLY)
4658 spin_lock(&root->fs_info->delalloc_lock);
4659 while (!list_empty(head)) {
4660 binode = list_entry(head->next, struct btrfs_inode,
4662 inode = igrab(&binode->vfs_inode);
4664 list_del_init(&binode->delalloc_inodes);
4665 spin_unlock(&root->fs_info->delalloc_lock);
4667 filemap_flush(inode->i_mapping);
4671 spin_lock(&root->fs_info->delalloc_lock);
4673 spin_unlock(&root->fs_info->delalloc_lock);
4675 /* the filemap_flush will queue IO into the worker threads, but
4676 * we have to make sure the IO is actually started and that
4677 * ordered extents get created before we return
4679 atomic_inc(&root->fs_info->async_submit_draining);
4680 while (atomic_read(&root->fs_info->nr_async_submits) ||
4681 atomic_read(&root->fs_info->async_delalloc_pages)) {
4682 wait_event(root->fs_info->async_submit_wait,
4683 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4684 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4686 atomic_dec(&root->fs_info->async_submit_draining);
4690 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4691 const char *symname)
4693 struct btrfs_trans_handle *trans;
4694 struct btrfs_root *root = BTRFS_I(dir)->root;
4695 struct btrfs_path *path;
4696 struct btrfs_key key;
4697 struct inode *inode = NULL;
4705 struct btrfs_file_extent_item *ei;
4706 struct extent_buffer *leaf;
4707 unsigned long nr = 0;
4709 name_len = strlen(symname) + 1;
4710 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4711 return -ENAMETOOLONG;
4713 err = btrfs_check_free_space(root, 1, 0);
4717 trans = btrfs_start_transaction(root, 1);
4718 btrfs_set_trans_block_group(trans, dir);
4720 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4726 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4728 dentry->d_parent->d_inode->i_ino, objectid,
4729 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4731 err = PTR_ERR(inode);
4735 err = btrfs_init_acl(inode, dir);
4741 btrfs_set_trans_block_group(trans, inode);
4742 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4746 inode->i_mapping->a_ops = &btrfs_aops;
4747 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4748 inode->i_fop = &btrfs_file_operations;
4749 inode->i_op = &btrfs_file_inode_operations;
4750 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4752 dir->i_sb->s_dirt = 1;
4753 btrfs_update_inode_block_group(trans, inode);
4754 btrfs_update_inode_block_group(trans, dir);
4758 path = btrfs_alloc_path();
4760 key.objectid = inode->i_ino;
4762 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4763 datasize = btrfs_file_extent_calc_inline_size(name_len);
4764 err = btrfs_insert_empty_item(trans, root, path, &key,
4770 leaf = path->nodes[0];
4771 ei = btrfs_item_ptr(leaf, path->slots[0],
4772 struct btrfs_file_extent_item);
4773 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4774 btrfs_set_file_extent_type(leaf, ei,
4775 BTRFS_FILE_EXTENT_INLINE);
4776 btrfs_set_file_extent_encryption(leaf, ei, 0);
4777 btrfs_set_file_extent_compression(leaf, ei, 0);
4778 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4779 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4781 ptr = btrfs_file_extent_inline_start(ei);
4782 write_extent_buffer(leaf, symname, ptr, name_len);
4783 btrfs_mark_buffer_dirty(leaf);
4784 btrfs_free_path(path);
4786 inode->i_op = &btrfs_symlink_inode_operations;
4787 inode->i_mapping->a_ops = &btrfs_symlink_aops;
4788 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4789 inode_set_bytes(inode, name_len);
4790 btrfs_i_size_write(inode, name_len - 1);
4791 err = btrfs_update_inode(trans, root, inode);
4796 nr = trans->blocks_used;
4797 btrfs_end_transaction_throttle(trans, root);
4800 inode_dec_link_count(inode);
4803 btrfs_btree_balance_dirty(root, nr);
4807 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4808 u64 alloc_hint, int mode)
4810 struct btrfs_trans_handle *trans;
4811 struct btrfs_root *root = BTRFS_I(inode)->root;
4812 struct btrfs_key ins;
4814 u64 cur_offset = start;
4815 u64 num_bytes = end - start;
4818 trans = btrfs_join_transaction(root, 1);
4820 btrfs_set_trans_block_group(trans, inode);
4822 while (num_bytes > 0) {
4823 alloc_size = min(num_bytes, root->fs_info->max_extent);
4824 ret = btrfs_reserve_extent(trans, root, alloc_size,
4825 root->sectorsize, 0, alloc_hint,
4831 ret = insert_reserved_file_extent(trans, inode,
4832 cur_offset, ins.objectid,
4833 ins.offset, ins.offset,
4834 ins.offset, 0, 0, 0,
4835 BTRFS_FILE_EXTENT_PREALLOC);
4837 num_bytes -= ins.offset;
4838 cur_offset += ins.offset;
4839 alloc_hint = ins.objectid + ins.offset;
4842 if (cur_offset > start) {
4843 inode->i_ctime = CURRENT_TIME;
4844 btrfs_set_flag(inode, PREALLOC);
4845 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4846 cur_offset > i_size_read(inode))
4847 btrfs_i_size_write(inode, cur_offset);
4848 ret = btrfs_update_inode(trans, root, inode);
4852 btrfs_end_transaction(trans, root);
4856 static long btrfs_fallocate(struct inode *inode, int mode,
4857 loff_t offset, loff_t len)
4864 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4865 struct extent_map *em;
4868 alloc_start = offset & ~mask;
4869 alloc_end = (offset + len + mask) & ~mask;
4871 mutex_lock(&inode->i_mutex);
4872 if (alloc_start > inode->i_size) {
4873 ret = btrfs_cont_expand(inode, alloc_start);
4879 struct btrfs_ordered_extent *ordered;
4880 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4881 alloc_end - 1, GFP_NOFS);
4882 ordered = btrfs_lookup_first_ordered_extent(inode,
4885 ordered->file_offset + ordered->len > alloc_start &&
4886 ordered->file_offset < alloc_end) {
4887 btrfs_put_ordered_extent(ordered);
4888 unlock_extent(&BTRFS_I(inode)->io_tree,
4889 alloc_start, alloc_end - 1, GFP_NOFS);
4890 btrfs_wait_ordered_range(inode, alloc_start,
4891 alloc_end - alloc_start);
4894 btrfs_put_ordered_extent(ordered);
4899 cur_offset = alloc_start;
4901 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4902 alloc_end - cur_offset, 0);
4903 BUG_ON(IS_ERR(em) || !em);
4904 last_byte = min(extent_map_end(em), alloc_end);
4905 last_byte = (last_byte + mask) & ~mask;
4906 if (em->block_start == EXTENT_MAP_HOLE) {
4907 ret = prealloc_file_range(inode, cur_offset,
4908 last_byte, alloc_hint, mode);
4910 free_extent_map(em);
4914 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4915 alloc_hint = em->block_start;
4916 free_extent_map(em);
4918 cur_offset = last_byte;
4919 if (cur_offset >= alloc_end) {
4924 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4927 mutex_unlock(&inode->i_mutex);
4931 static int btrfs_set_page_dirty(struct page *page)
4933 return __set_page_dirty_nobuffers(page);
4936 static int btrfs_permission(struct inode *inode, int mask)
4938 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4940 return generic_permission(inode, mask, btrfs_check_acl);
4943 static struct inode_operations btrfs_dir_inode_operations = {
4944 .getattr = btrfs_getattr,
4945 .lookup = btrfs_lookup,
4946 .create = btrfs_create,
4947 .unlink = btrfs_unlink,
4949 .mkdir = btrfs_mkdir,
4950 .rmdir = btrfs_rmdir,
4951 .rename = btrfs_rename,
4952 .symlink = btrfs_symlink,
4953 .setattr = btrfs_setattr,
4954 .mknod = btrfs_mknod,
4955 .setxattr = btrfs_setxattr,
4956 .getxattr = btrfs_getxattr,
4957 .listxattr = btrfs_listxattr,
4958 .removexattr = btrfs_removexattr,
4959 .permission = btrfs_permission,
4961 static struct inode_operations btrfs_dir_ro_inode_operations = {
4962 .lookup = btrfs_lookup,
4963 .permission = btrfs_permission,
4965 static struct file_operations btrfs_dir_file_operations = {
4966 .llseek = generic_file_llseek,
4967 .read = generic_read_dir,
4968 .readdir = btrfs_real_readdir,
4969 .unlocked_ioctl = btrfs_ioctl,
4970 #ifdef CONFIG_COMPAT
4971 .compat_ioctl = btrfs_ioctl,
4973 .release = btrfs_release_file,
4974 .fsync = btrfs_sync_file,
4977 static struct extent_io_ops btrfs_extent_io_ops = {
4978 .fill_delalloc = run_delalloc_range,
4979 .submit_bio_hook = btrfs_submit_bio_hook,
4980 .merge_bio_hook = btrfs_merge_bio_hook,
4981 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4982 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4983 .writepage_start_hook = btrfs_writepage_start_hook,
4984 .readpage_io_failed_hook = btrfs_io_failed_hook,
4985 .set_bit_hook = btrfs_set_bit_hook,
4986 .clear_bit_hook = btrfs_clear_bit_hook,
4990 * btrfs doesn't support the bmap operation because swapfiles
4991 * use bmap to make a mapping of extents in the file. They assume
4992 * these extents won't change over the life of the file and they
4993 * use the bmap result to do IO directly to the drive.
4995 * the btrfs bmap call would return logical addresses that aren't
4996 * suitable for IO and they also will change frequently as COW
4997 * operations happen. So, swapfile + btrfs == corruption.
4999 * For now we're avoiding this by dropping bmap.
5001 static struct address_space_operations btrfs_aops = {
5002 .readpage = btrfs_readpage,
5003 .writepage = btrfs_writepage,
5004 .writepages = btrfs_writepages,
5005 .readpages = btrfs_readpages,
5006 .sync_page = block_sync_page,
5007 .direct_IO = btrfs_direct_IO,
5008 .invalidatepage = btrfs_invalidatepage,
5009 .releasepage = btrfs_releasepage,
5010 .set_page_dirty = btrfs_set_page_dirty,
5013 static struct address_space_operations btrfs_symlink_aops = {
5014 .readpage = btrfs_readpage,
5015 .writepage = btrfs_writepage,
5016 .invalidatepage = btrfs_invalidatepage,
5017 .releasepage = btrfs_releasepage,
5020 static struct inode_operations btrfs_file_inode_operations = {
5021 .truncate = btrfs_truncate,
5022 .getattr = btrfs_getattr,
5023 .setattr = btrfs_setattr,
5024 .setxattr = btrfs_setxattr,
5025 .getxattr = btrfs_getxattr,
5026 .listxattr = btrfs_listxattr,
5027 .removexattr = btrfs_removexattr,
5028 .permission = btrfs_permission,
5029 .fallocate = btrfs_fallocate,
5030 .fiemap = btrfs_fiemap,
5032 static struct inode_operations btrfs_special_inode_operations = {
5033 .getattr = btrfs_getattr,
5034 .setattr = btrfs_setattr,
5035 .permission = btrfs_permission,
5036 .setxattr = btrfs_setxattr,
5037 .getxattr = btrfs_getxattr,
5038 .listxattr = btrfs_listxattr,
5039 .removexattr = btrfs_removexattr,
5041 static struct inode_operations btrfs_symlink_inode_operations = {
5042 .readlink = generic_readlink,
5043 .follow_link = page_follow_link_light,
5044 .put_link = page_put_link,
5045 .permission = btrfs_permission,