Btrfs: Catch missed bios in the async bio submission thread
[linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53
54 struct btrfs_iget_args {
55         u64 ino;
56         struct btrfs_root *root;
57 };
58
59 static struct inode_operations btrfs_dir_inode_operations;
60 static struct inode_operations btrfs_symlink_inode_operations;
61 static struct inode_operations btrfs_dir_ro_inode_operations;
62 static struct inode_operations btrfs_special_inode_operations;
63 static struct inode_operations btrfs_file_inode_operations;
64 static struct address_space_operations btrfs_aops;
65 static struct address_space_operations btrfs_symlink_aops;
66 static struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_bit_radix_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74
75 #define S_SHIFT 12
76 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
78         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
79         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
80         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
81         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
82         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
83         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
84 };
85
86 static void btrfs_truncate(struct inode *inode);
87 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
88 static noinline int cow_file_range(struct inode *inode,
89                                    struct page *locked_page,
90                                    u64 start, u64 end, int *page_started,
91                                    unsigned long *nr_written, int unlock);
92
93 /*
94  * a very lame attempt at stopping writes when the FS is 85% full.  There
95  * are countless ways this is incorrect, but it is better than nothing.
96  */
97 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
98                            int for_del)
99 {
100         u64 total;
101         u64 used;
102         u64 thresh;
103         int ret = 0;
104
105         spin_lock(&root->fs_info->delalloc_lock);
106         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
107         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
108         if (for_del)
109                 thresh = total * 90;
110         else
111                 thresh = total * 85;
112
113         do_div(thresh, 100);
114
115         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
116                 ret = -ENOSPC;
117         spin_unlock(&root->fs_info->delalloc_lock);
118         return ret;
119 }
120
121 /*
122  * this does all the hard work for inserting an inline extent into
123  * the btree.  The caller should have done a btrfs_drop_extents so that
124  * no overlapping inline items exist in the btree
125  */
126 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
127                                 struct btrfs_root *root, struct inode *inode,
128                                 u64 start, size_t size, size_t compressed_size,
129                                 struct page **compressed_pages)
130 {
131         struct btrfs_key key;
132         struct btrfs_path *path;
133         struct extent_buffer *leaf;
134         struct page *page = NULL;
135         char *kaddr;
136         unsigned long ptr;
137         struct btrfs_file_extent_item *ei;
138         int err = 0;
139         int ret;
140         size_t cur_size = size;
141         size_t datasize;
142         unsigned long offset;
143         int use_compress = 0;
144
145         if (compressed_size && compressed_pages) {
146                 use_compress = 1;
147                 cur_size = compressed_size;
148         }
149
150         path = btrfs_alloc_path();
151         if (!path)
152                 return -ENOMEM;
153
154         btrfs_set_trans_block_group(trans, inode);
155
156         key.objectid = inode->i_ino;
157         key.offset = start;
158         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
159         datasize = btrfs_file_extent_calc_inline_size(cur_size);
160
161         inode_add_bytes(inode, size);
162         ret = btrfs_insert_empty_item(trans, root, path, &key,
163                                       datasize);
164         BUG_ON(ret);
165         if (ret) {
166                 err = ret;
167                 goto fail;
168         }
169         leaf = path->nodes[0];
170         ei = btrfs_item_ptr(leaf, path->slots[0],
171                             struct btrfs_file_extent_item);
172         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
173         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
174         btrfs_set_file_extent_encryption(leaf, ei, 0);
175         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
176         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
177         ptr = btrfs_file_extent_inline_start(ei);
178
179         if (use_compress) {
180                 struct page *cpage;
181                 int i = 0;
182                 while (compressed_size > 0) {
183                         cpage = compressed_pages[i];
184                         cur_size = min_t(unsigned long, compressed_size,
185                                        PAGE_CACHE_SIZE);
186
187                         kaddr = kmap(cpage);
188                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
189                         kunmap(cpage);
190
191                         i++;
192                         ptr += cur_size;
193                         compressed_size -= cur_size;
194                 }
195                 btrfs_set_file_extent_compression(leaf, ei,
196                                                   BTRFS_COMPRESS_ZLIB);
197         } else {
198                 page = find_get_page(inode->i_mapping,
199                                      start >> PAGE_CACHE_SHIFT);
200                 btrfs_set_file_extent_compression(leaf, ei, 0);
201                 kaddr = kmap_atomic(page, KM_USER0);
202                 offset = start & (PAGE_CACHE_SIZE - 1);
203                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
204                 kunmap_atomic(kaddr, KM_USER0);
205                 page_cache_release(page);
206         }
207         btrfs_mark_buffer_dirty(leaf);
208         btrfs_free_path(path);
209
210         BTRFS_I(inode)->disk_i_size = inode->i_size;
211         btrfs_update_inode(trans, root, inode);
212         return 0;
213 fail:
214         btrfs_free_path(path);
215         return err;
216 }
217
218
219 /*
220  * conditionally insert an inline extent into the file.  This
221  * does the checks required to make sure the data is small enough
222  * to fit as an inline extent.
223  */
224 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
225                                  struct btrfs_root *root,
226                                  struct inode *inode, u64 start, u64 end,
227                                  size_t compressed_size,
228                                  struct page **compressed_pages)
229 {
230         u64 isize = i_size_read(inode);
231         u64 actual_end = min(end + 1, isize);
232         u64 inline_len = actual_end - start;
233         u64 aligned_end = (end + root->sectorsize - 1) &
234                         ~((u64)root->sectorsize - 1);
235         u64 hint_byte;
236         u64 data_len = inline_len;
237         int ret;
238
239         if (compressed_size)
240                 data_len = compressed_size;
241
242         if (start > 0 ||
243             actual_end >= PAGE_CACHE_SIZE ||
244             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
245             (!compressed_size &&
246             (actual_end & (root->sectorsize - 1)) == 0) ||
247             end + 1 < isize ||
248             data_len > root->fs_info->max_inline) {
249                 return 1;
250         }
251
252         ret = btrfs_drop_extents(trans, root, inode, start,
253                                  aligned_end, start, &hint_byte);
254         BUG_ON(ret);
255
256         if (isize > actual_end)
257                 inline_len = min_t(u64, isize, actual_end);
258         ret = insert_inline_extent(trans, root, inode, start,
259                                    inline_len, compressed_size,
260                                    compressed_pages);
261         BUG_ON(ret);
262         btrfs_drop_extent_cache(inode, start, aligned_end, 0);
263         return 0;
264 }
265
266 struct async_extent {
267         u64 start;
268         u64 ram_size;
269         u64 compressed_size;
270         struct page **pages;
271         unsigned long nr_pages;
272         struct list_head list;
273 };
274
275 struct async_cow {
276         struct inode *inode;
277         struct btrfs_root *root;
278         struct page *locked_page;
279         u64 start;
280         u64 end;
281         struct list_head extents;
282         struct btrfs_work work;
283 };
284
285 static noinline int add_async_extent(struct async_cow *cow,
286                                      u64 start, u64 ram_size,
287                                      u64 compressed_size,
288                                      struct page **pages,
289                                      unsigned long nr_pages)
290 {
291         struct async_extent *async_extent;
292
293         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
294         async_extent->start = start;
295         async_extent->ram_size = ram_size;
296         async_extent->compressed_size = compressed_size;
297         async_extent->pages = pages;
298         async_extent->nr_pages = nr_pages;
299         list_add_tail(&async_extent->list, &cow->extents);
300         return 0;
301 }
302
303 /*
304  * we create compressed extents in two phases.  The first
305  * phase compresses a range of pages that have already been
306  * locked (both pages and state bits are locked).
307  *
308  * This is done inside an ordered work queue, and the compression
309  * is spread across many cpus.  The actual IO submission is step
310  * two, and the ordered work queue takes care of making sure that
311  * happens in the same order things were put onto the queue by
312  * writepages and friends.
313  *
314  * If this code finds it can't get good compression, it puts an
315  * entry onto the work queue to write the uncompressed bytes.  This
316  * makes sure that both compressed inodes and uncompressed inodes
317  * are written in the same order that pdflush sent them down.
318  */
319 static noinline int compress_file_range(struct inode *inode,
320                                         struct page *locked_page,
321                                         u64 start, u64 end,
322                                         struct async_cow *async_cow,
323                                         int *num_added)
324 {
325         struct btrfs_root *root = BTRFS_I(inode)->root;
326         struct btrfs_trans_handle *trans;
327         u64 num_bytes;
328         u64 orig_start;
329         u64 disk_num_bytes;
330         u64 blocksize = root->sectorsize;
331         u64 actual_end;
332         u64 isize = i_size_read(inode);
333         int ret = 0;
334         struct page **pages = NULL;
335         unsigned long nr_pages;
336         unsigned long nr_pages_ret = 0;
337         unsigned long total_compressed = 0;
338         unsigned long total_in = 0;
339         unsigned long max_compressed = 128 * 1024;
340         unsigned long max_uncompressed = 128 * 1024;
341         int i;
342         int will_compress;
343
344         orig_start = start;
345
346         actual_end = min_t(u64, isize, end + 1);
347 again:
348         will_compress = 0;
349         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
350         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
351
352         total_compressed = actual_end - start;
353
354         /* we want to make sure that amount of ram required to uncompress
355          * an extent is reasonable, so we limit the total size in ram
356          * of a compressed extent to 128k.  This is a crucial number
357          * because it also controls how easily we can spread reads across
358          * cpus for decompression.
359          *
360          * We also want to make sure the amount of IO required to do
361          * a random read is reasonably small, so we limit the size of
362          * a compressed extent to 128k.
363          */
364         total_compressed = min(total_compressed, max_uncompressed);
365         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
366         num_bytes = max(blocksize,  num_bytes);
367         disk_num_bytes = num_bytes;
368         total_in = 0;
369         ret = 0;
370
371         /*
372          * we do compression for mount -o compress and when the
373          * inode has not been flagged as nocompress.  This flag can
374          * change at any time if we discover bad compression ratios.
375          */
376         if (!btrfs_test_flag(inode, NOCOMPRESS) &&
377             btrfs_test_opt(root, COMPRESS)) {
378                 WARN_ON(pages);
379                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
380
381                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
382                                                 total_compressed, pages,
383                                                 nr_pages, &nr_pages_ret,
384                                                 &total_in,
385                                                 &total_compressed,
386                                                 max_compressed);
387
388                 if (!ret) {
389                         unsigned long offset = total_compressed &
390                                 (PAGE_CACHE_SIZE - 1);
391                         struct page *page = pages[nr_pages_ret - 1];
392                         char *kaddr;
393
394                         /* zero the tail end of the last page, we might be
395                          * sending it down to disk
396                          */
397                         if (offset) {
398                                 kaddr = kmap_atomic(page, KM_USER0);
399                                 memset(kaddr + offset, 0,
400                                        PAGE_CACHE_SIZE - offset);
401                                 kunmap_atomic(kaddr, KM_USER0);
402                         }
403                         will_compress = 1;
404                 }
405         }
406         if (start == 0) {
407                 trans = btrfs_join_transaction(root, 1);
408                 BUG_ON(!trans);
409                 btrfs_set_trans_block_group(trans, inode);
410
411                 /* lets try to make an inline extent */
412                 if (ret || total_in < (actual_end - start)) {
413                         /* we didn't compress the entire range, try
414                          * to make an uncompressed inline extent.
415                          */
416                         ret = cow_file_range_inline(trans, root, inode,
417                                                     start, end, 0, NULL);
418                 } else {
419                         /* try making a compressed inline extent */
420                         ret = cow_file_range_inline(trans, root, inode,
421                                                     start, end,
422                                                     total_compressed, pages);
423                 }
424                 btrfs_end_transaction(trans, root);
425                 if (ret == 0) {
426                         /*
427                          * inline extent creation worked, we don't need
428                          * to create any more async work items.  Unlock
429                          * and free up our temp pages.
430                          */
431                         extent_clear_unlock_delalloc(inode,
432                                                      &BTRFS_I(inode)->io_tree,
433                                                      start, end, NULL, 1, 0,
434                                                      0, 1, 1, 1);
435                         ret = 0;
436                         goto free_pages_out;
437                 }
438         }
439
440         if (will_compress) {
441                 /*
442                  * we aren't doing an inline extent round the compressed size
443                  * up to a block size boundary so the allocator does sane
444                  * things
445                  */
446                 total_compressed = (total_compressed + blocksize - 1) &
447                         ~(blocksize - 1);
448
449                 /*
450                  * one last check to make sure the compression is really a
451                  * win, compare the page count read with the blocks on disk
452                  */
453                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
454                         ~(PAGE_CACHE_SIZE - 1);
455                 if (total_compressed >= total_in) {
456                         will_compress = 0;
457                 } else {
458                         disk_num_bytes = total_compressed;
459                         num_bytes = total_in;
460                 }
461         }
462         if (!will_compress && pages) {
463                 /*
464                  * the compression code ran but failed to make things smaller,
465                  * free any pages it allocated and our page pointer array
466                  */
467                 for (i = 0; i < nr_pages_ret; i++) {
468                         WARN_ON(pages[i]->mapping);
469                         page_cache_release(pages[i]);
470                 }
471                 kfree(pages);
472                 pages = NULL;
473                 total_compressed = 0;
474                 nr_pages_ret = 0;
475
476                 /* flag the file so we don't compress in the future */
477                 btrfs_set_flag(inode, NOCOMPRESS);
478         }
479         if (will_compress) {
480                 *num_added += 1;
481
482                 /* the async work queues will take care of doing actual
483                  * allocation on disk for these compressed pages,
484                  * and will submit them to the elevator.
485                  */
486                 add_async_extent(async_cow, start, num_bytes,
487                                  total_compressed, pages, nr_pages_ret);
488
489                 if (start + num_bytes < end && start + num_bytes < actual_end) {
490                         start += num_bytes;
491                         pages = NULL;
492                         cond_resched();
493                         goto again;
494                 }
495         } else {
496                 /*
497                  * No compression, but we still need to write the pages in
498                  * the file we've been given so far.  redirty the locked
499                  * page if it corresponds to our extent and set things up
500                  * for the async work queue to run cow_file_range to do
501                  * the normal delalloc dance
502                  */
503                 if (page_offset(locked_page) >= start &&
504                     page_offset(locked_page) <= end) {
505                         __set_page_dirty_nobuffers(locked_page);
506                         /* unlocked later on in the async handlers */
507                 }
508                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
509                 *num_added += 1;
510         }
511
512 out:
513         return 0;
514
515 free_pages_out:
516         for (i = 0; i < nr_pages_ret; i++) {
517                 WARN_ON(pages[i]->mapping);
518                 page_cache_release(pages[i]);
519         }
520         kfree(pages);
521
522         goto out;
523 }
524
525 /*
526  * phase two of compressed writeback.  This is the ordered portion
527  * of the code, which only gets called in the order the work was
528  * queued.  We walk all the async extents created by compress_file_range
529  * and send them down to the disk.
530  */
531 static noinline int submit_compressed_extents(struct inode *inode,
532                                               struct async_cow *async_cow)
533 {
534         struct async_extent *async_extent;
535         u64 alloc_hint = 0;
536         struct btrfs_trans_handle *trans;
537         struct btrfs_key ins;
538         struct extent_map *em;
539         struct btrfs_root *root = BTRFS_I(inode)->root;
540         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
541         struct extent_io_tree *io_tree;
542         int ret;
543
544         if (list_empty(&async_cow->extents))
545                 return 0;
546
547         trans = btrfs_join_transaction(root, 1);
548
549         while (!list_empty(&async_cow->extents)) {
550                 async_extent = list_entry(async_cow->extents.next,
551                                           struct async_extent, list);
552                 list_del(&async_extent->list);
553
554                 io_tree = &BTRFS_I(inode)->io_tree;
555
556                 /* did the compression code fall back to uncompressed IO? */
557                 if (!async_extent->pages) {
558                         int page_started = 0;
559                         unsigned long nr_written = 0;
560
561                         lock_extent(io_tree, async_extent->start,
562                                     async_extent->start +
563                                     async_extent->ram_size - 1, GFP_NOFS);
564
565                         /* allocate blocks */
566                         cow_file_range(inode, async_cow->locked_page,
567                                        async_extent->start,
568                                        async_extent->start +
569                                        async_extent->ram_size - 1,
570                                        &page_started, &nr_written, 0);
571
572                         /*
573                          * if page_started, cow_file_range inserted an
574                          * inline extent and took care of all the unlocking
575                          * and IO for us.  Otherwise, we need to submit
576                          * all those pages down to the drive.
577                          */
578                         if (!page_started)
579                                 extent_write_locked_range(io_tree,
580                                                   inode, async_extent->start,
581                                                   async_extent->start +
582                                                   async_extent->ram_size - 1,
583                                                   btrfs_get_extent,
584                                                   WB_SYNC_ALL);
585                         kfree(async_extent);
586                         cond_resched();
587                         continue;
588                 }
589
590                 lock_extent(io_tree, async_extent->start,
591                             async_extent->start + async_extent->ram_size - 1,
592                             GFP_NOFS);
593                 /*
594                  * here we're doing allocation and writeback of the
595                  * compressed pages
596                  */
597                 btrfs_drop_extent_cache(inode, async_extent->start,
598                                         async_extent->start +
599                                         async_extent->ram_size - 1, 0);
600
601                 ret = btrfs_reserve_extent(trans, root,
602                                            async_extent->compressed_size,
603                                            async_extent->compressed_size,
604                                            0, alloc_hint,
605                                            (u64)-1, &ins, 1);
606                 BUG_ON(ret);
607                 em = alloc_extent_map(GFP_NOFS);
608                 em->start = async_extent->start;
609                 em->len = async_extent->ram_size;
610                 em->orig_start = em->start;
611
612                 em->block_start = ins.objectid;
613                 em->block_len = ins.offset;
614                 em->bdev = root->fs_info->fs_devices->latest_bdev;
615                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
616                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
617
618                 while (1) {
619                         spin_lock(&em_tree->lock);
620                         ret = add_extent_mapping(em_tree, em);
621                         spin_unlock(&em_tree->lock);
622                         if (ret != -EEXIST) {
623                                 free_extent_map(em);
624                                 break;
625                         }
626                         btrfs_drop_extent_cache(inode, async_extent->start,
627                                                 async_extent->start +
628                                                 async_extent->ram_size - 1, 0);
629                 }
630
631                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
632                                                ins.objectid,
633                                                async_extent->ram_size,
634                                                ins.offset,
635                                                BTRFS_ORDERED_COMPRESSED);
636                 BUG_ON(ret);
637
638                 btrfs_end_transaction(trans, root);
639
640                 /*
641                  * clear dirty, set writeback and unlock the pages.
642                  */
643                 extent_clear_unlock_delalloc(inode,
644                                              &BTRFS_I(inode)->io_tree,
645                                              async_extent->start,
646                                              async_extent->start +
647                                              async_extent->ram_size - 1,
648                                              NULL, 1, 1, 0, 1, 1, 0);
649
650                 ret = btrfs_submit_compressed_write(inode,
651                                     async_extent->start,
652                                     async_extent->ram_size,
653                                     ins.objectid,
654                                     ins.offset, async_extent->pages,
655                                     async_extent->nr_pages);
656
657                 BUG_ON(ret);
658                 trans = btrfs_join_transaction(root, 1);
659                 alloc_hint = ins.objectid + ins.offset;
660                 kfree(async_extent);
661                 cond_resched();
662         }
663
664         btrfs_end_transaction(trans, root);
665         return 0;
666 }
667
668 /*
669  * when extent_io.c finds a delayed allocation range in the file,
670  * the call backs end up in this code.  The basic idea is to
671  * allocate extents on disk for the range, and create ordered data structs
672  * in ram to track those extents.
673  *
674  * locked_page is the page that writepage had locked already.  We use
675  * it to make sure we don't do extra locks or unlocks.
676  *
677  * *page_started is set to one if we unlock locked_page and do everything
678  * required to start IO on it.  It may be clean and already done with
679  * IO when we return.
680  */
681 static noinline int cow_file_range(struct inode *inode,
682                                    struct page *locked_page,
683                                    u64 start, u64 end, int *page_started,
684                                    unsigned long *nr_written,
685                                    int unlock)
686 {
687         struct btrfs_root *root = BTRFS_I(inode)->root;
688         struct btrfs_trans_handle *trans;
689         u64 alloc_hint = 0;
690         u64 num_bytes;
691         unsigned long ram_size;
692         u64 disk_num_bytes;
693         u64 cur_alloc_size;
694         u64 blocksize = root->sectorsize;
695         u64 actual_end;
696         u64 isize = i_size_read(inode);
697         struct btrfs_key ins;
698         struct extent_map *em;
699         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
700         int ret = 0;
701
702         trans = btrfs_join_transaction(root, 1);
703         BUG_ON(!trans);
704         btrfs_set_trans_block_group(trans, inode);
705
706         actual_end = min_t(u64, isize, end + 1);
707
708         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
709         num_bytes = max(blocksize,  num_bytes);
710         disk_num_bytes = num_bytes;
711         ret = 0;
712
713         if (start == 0) {
714                 /* lets try to make an inline extent */
715                 ret = cow_file_range_inline(trans, root, inode,
716                                             start, end, 0, NULL);
717                 if (ret == 0) {
718                         extent_clear_unlock_delalloc(inode,
719                                                      &BTRFS_I(inode)->io_tree,
720                                                      start, end, NULL, 1, 1,
721                                                      1, 1, 1, 1);
722                         *nr_written = *nr_written +
723                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
724                         *page_started = 1;
725                         ret = 0;
726                         goto out;
727                 }
728         }
729
730         BUG_ON(disk_num_bytes >
731                btrfs_super_total_bytes(&root->fs_info->super_copy));
732
733         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
734
735         while (disk_num_bytes > 0) {
736                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
737                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
738                                            root->sectorsize, 0, alloc_hint,
739                                            (u64)-1, &ins, 1);
740                 BUG_ON(ret);
741
742                 em = alloc_extent_map(GFP_NOFS);
743                 em->start = start;
744                 em->orig_start = em->start;
745
746                 ram_size = ins.offset;
747                 em->len = ins.offset;
748
749                 em->block_start = ins.objectid;
750                 em->block_len = ins.offset;
751                 em->bdev = root->fs_info->fs_devices->latest_bdev;
752                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
753
754                 while (1) {
755                         spin_lock(&em_tree->lock);
756                         ret = add_extent_mapping(em_tree, em);
757                         spin_unlock(&em_tree->lock);
758                         if (ret != -EEXIST) {
759                                 free_extent_map(em);
760                                 break;
761                         }
762                         btrfs_drop_extent_cache(inode, start,
763                                                 start + ram_size - 1, 0);
764                 }
765
766                 cur_alloc_size = ins.offset;
767                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
768                                                ram_size, cur_alloc_size, 0);
769                 BUG_ON(ret);
770
771                 if (root->root_key.objectid ==
772                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
773                         ret = btrfs_reloc_clone_csums(inode, start,
774                                                       cur_alloc_size);
775                         BUG_ON(ret);
776                 }
777
778                 if (disk_num_bytes < cur_alloc_size)
779                         break;
780
781                 /* we're not doing compressed IO, don't unlock the first
782                  * page (which the caller expects to stay locked), don't
783                  * clear any dirty bits and don't set any writeback bits
784                  */
785                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
786                                              start, start + ram_size - 1,
787                                              locked_page, unlock, 1,
788                                              1, 0, 0, 0);
789                 disk_num_bytes -= cur_alloc_size;
790                 num_bytes -= cur_alloc_size;
791                 alloc_hint = ins.objectid + ins.offset;
792                 start += cur_alloc_size;
793         }
794 out:
795         ret = 0;
796         btrfs_end_transaction(trans, root);
797
798         return ret;
799 }
800
801 /*
802  * work queue call back to started compression on a file and pages
803  */
804 static noinline void async_cow_start(struct btrfs_work *work)
805 {
806         struct async_cow *async_cow;
807         int num_added = 0;
808         async_cow = container_of(work, struct async_cow, work);
809
810         compress_file_range(async_cow->inode, async_cow->locked_page,
811                             async_cow->start, async_cow->end, async_cow,
812                             &num_added);
813         if (num_added == 0)
814                 async_cow->inode = NULL;
815 }
816
817 /*
818  * work queue call back to submit previously compressed pages
819  */
820 static noinline void async_cow_submit(struct btrfs_work *work)
821 {
822         struct async_cow *async_cow;
823         struct btrfs_root *root;
824         unsigned long nr_pages;
825
826         async_cow = container_of(work, struct async_cow, work);
827
828         root = async_cow->root;
829         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
830                 PAGE_CACHE_SHIFT;
831
832         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
833
834         if (atomic_read(&root->fs_info->async_delalloc_pages) <
835             5 * 1042 * 1024 &&
836             waitqueue_active(&root->fs_info->async_submit_wait))
837                 wake_up(&root->fs_info->async_submit_wait);
838
839         if (async_cow->inode)
840                 submit_compressed_extents(async_cow->inode, async_cow);
841 }
842
843 static noinline void async_cow_free(struct btrfs_work *work)
844 {
845         struct async_cow *async_cow;
846         async_cow = container_of(work, struct async_cow, work);
847         kfree(async_cow);
848 }
849
850 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
851                                 u64 start, u64 end, int *page_started,
852                                 unsigned long *nr_written)
853 {
854         struct async_cow *async_cow;
855         struct btrfs_root *root = BTRFS_I(inode)->root;
856         unsigned long nr_pages;
857         u64 cur_end;
858         int limit = 10 * 1024 * 1042;
859
860         if (!btrfs_test_opt(root, COMPRESS)) {
861                 return cow_file_range(inode, locked_page, start, end,
862                                       page_started, nr_written, 1);
863         }
864
865         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
866                          EXTENT_DELALLOC, 1, 0, GFP_NOFS);
867         while (start < end) {
868                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
869                 async_cow->inode = inode;
870                 async_cow->root = root;
871                 async_cow->locked_page = locked_page;
872                 async_cow->start = start;
873
874                 if (btrfs_test_flag(inode, NOCOMPRESS))
875                         cur_end = end;
876                 else
877                         cur_end = min(end, start + 512 * 1024 - 1);
878
879                 async_cow->end = cur_end;
880                 INIT_LIST_HEAD(&async_cow->extents);
881
882                 async_cow->work.func = async_cow_start;
883                 async_cow->work.ordered_func = async_cow_submit;
884                 async_cow->work.ordered_free = async_cow_free;
885                 async_cow->work.flags = 0;
886
887                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
888                         PAGE_CACHE_SHIFT;
889                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
890
891                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
892                                    &async_cow->work);
893
894                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
895                         wait_event(root->fs_info->async_submit_wait,
896                            (atomic_read(&root->fs_info->async_delalloc_pages) <
897                             limit));
898                 }
899
900                 while (atomic_read(&root->fs_info->async_submit_draining) &&
901                       atomic_read(&root->fs_info->async_delalloc_pages)) {
902                         wait_event(root->fs_info->async_submit_wait,
903                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
904                            0));
905                 }
906
907                 *nr_written += nr_pages;
908                 start = cur_end + 1;
909         }
910         *page_started = 1;
911         return 0;
912 }
913
914 static noinline int csum_exist_in_range(struct btrfs_root *root,
915                                         u64 bytenr, u64 num_bytes)
916 {
917         int ret;
918         struct btrfs_ordered_sum *sums;
919         LIST_HEAD(list);
920
921         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
922                                        bytenr + num_bytes - 1, &list);
923         if (ret == 0 && list_empty(&list))
924                 return 0;
925
926         while (!list_empty(&list)) {
927                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
928                 list_del(&sums->list);
929                 kfree(sums);
930         }
931         return 1;
932 }
933
934 /*
935  * when nowcow writeback call back.  This checks for snapshots or COW copies
936  * of the extents that exist in the file, and COWs the file as required.
937  *
938  * If no cow copies or snapshots exist, we write directly to the existing
939  * blocks on disk
940  */
941 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
942                               u64 start, u64 end, int *page_started, int force,
943                               unsigned long *nr_written)
944 {
945         struct btrfs_root *root = BTRFS_I(inode)->root;
946         struct btrfs_trans_handle *trans;
947         struct extent_buffer *leaf;
948         struct btrfs_path *path;
949         struct btrfs_file_extent_item *fi;
950         struct btrfs_key found_key;
951         u64 cow_start;
952         u64 cur_offset;
953         u64 extent_end;
954         u64 disk_bytenr;
955         u64 num_bytes;
956         int extent_type;
957         int ret;
958         int type;
959         int nocow;
960         int check_prev = 1;
961
962         path = btrfs_alloc_path();
963         BUG_ON(!path);
964         trans = btrfs_join_transaction(root, 1);
965         BUG_ON(!trans);
966
967         cow_start = (u64)-1;
968         cur_offset = start;
969         while (1) {
970                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
971                                                cur_offset, 0);
972                 BUG_ON(ret < 0);
973                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
974                         leaf = path->nodes[0];
975                         btrfs_item_key_to_cpu(leaf, &found_key,
976                                               path->slots[0] - 1);
977                         if (found_key.objectid == inode->i_ino &&
978                             found_key.type == BTRFS_EXTENT_DATA_KEY)
979                                 path->slots[0]--;
980                 }
981                 check_prev = 0;
982 next_slot:
983                 leaf = path->nodes[0];
984                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
985                         ret = btrfs_next_leaf(root, path);
986                         if (ret < 0)
987                                 BUG_ON(1);
988                         if (ret > 0)
989                                 break;
990                         leaf = path->nodes[0];
991                 }
992
993                 nocow = 0;
994                 disk_bytenr = 0;
995                 num_bytes = 0;
996                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
997
998                 if (found_key.objectid > inode->i_ino ||
999                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1000                     found_key.offset > end)
1001                         break;
1002
1003                 if (found_key.offset > cur_offset) {
1004                         extent_end = found_key.offset;
1005                         goto out_check;
1006                 }
1007
1008                 fi = btrfs_item_ptr(leaf, path->slots[0],
1009                                     struct btrfs_file_extent_item);
1010                 extent_type = btrfs_file_extent_type(leaf, fi);
1011
1012                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1013                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1014                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1015                         extent_end = found_key.offset +
1016                                 btrfs_file_extent_num_bytes(leaf, fi);
1017                         if (extent_end <= start) {
1018                                 path->slots[0]++;
1019                                 goto next_slot;
1020                         }
1021                         if (disk_bytenr == 0)
1022                                 goto out_check;
1023                         if (btrfs_file_extent_compression(leaf, fi) ||
1024                             btrfs_file_extent_encryption(leaf, fi) ||
1025                             btrfs_file_extent_other_encoding(leaf, fi))
1026                                 goto out_check;
1027                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1028                                 goto out_check;
1029                         if (btrfs_extent_readonly(root, disk_bytenr))
1030                                 goto out_check;
1031                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1032                                                   disk_bytenr))
1033                                 goto out_check;
1034                         disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1035                         disk_bytenr += cur_offset - found_key.offset;
1036                         num_bytes = min(end + 1, extent_end) - cur_offset;
1037                         /*
1038                          * force cow if csum exists in the range.
1039                          * this ensure that csum for a given extent are
1040                          * either valid or do not exist.
1041                          */
1042                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1043                                 goto out_check;
1044                         nocow = 1;
1045                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1046                         extent_end = found_key.offset +
1047                                 btrfs_file_extent_inline_len(leaf, fi);
1048                         extent_end = ALIGN(extent_end, root->sectorsize);
1049                 } else {
1050                         BUG_ON(1);
1051                 }
1052 out_check:
1053                 if (extent_end <= start) {
1054                         path->slots[0]++;
1055                         goto next_slot;
1056                 }
1057                 if (!nocow) {
1058                         if (cow_start == (u64)-1)
1059                                 cow_start = cur_offset;
1060                         cur_offset = extent_end;
1061                         if (cur_offset > end)
1062                                 break;
1063                         path->slots[0]++;
1064                         goto next_slot;
1065                 }
1066
1067                 btrfs_release_path(root, path);
1068                 if (cow_start != (u64)-1) {
1069                         ret = cow_file_range(inode, locked_page, cow_start,
1070                                         found_key.offset - 1, page_started,
1071                                         nr_written, 1);
1072                         BUG_ON(ret);
1073                         cow_start = (u64)-1;
1074                 }
1075
1076                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1077                         struct extent_map *em;
1078                         struct extent_map_tree *em_tree;
1079                         em_tree = &BTRFS_I(inode)->extent_tree;
1080                         em = alloc_extent_map(GFP_NOFS);
1081                         em->start = cur_offset;
1082                         em->orig_start = em->start;
1083                         em->len = num_bytes;
1084                         em->block_len = num_bytes;
1085                         em->block_start = disk_bytenr;
1086                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1087                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1088                         while (1) {
1089                                 spin_lock(&em_tree->lock);
1090                                 ret = add_extent_mapping(em_tree, em);
1091                                 spin_unlock(&em_tree->lock);
1092                                 if (ret != -EEXIST) {
1093                                         free_extent_map(em);
1094                                         break;
1095                                 }
1096                                 btrfs_drop_extent_cache(inode, em->start,
1097                                                 em->start + em->len - 1, 0);
1098                         }
1099                         type = BTRFS_ORDERED_PREALLOC;
1100                 } else {
1101                         type = BTRFS_ORDERED_NOCOW;
1102                 }
1103
1104                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1105                                                num_bytes, num_bytes, type);
1106                 BUG_ON(ret);
1107
1108                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1109                                         cur_offset, cur_offset + num_bytes - 1,
1110                                         locked_page, 1, 1, 1, 0, 0, 0);
1111                 cur_offset = extent_end;
1112                 if (cur_offset > end)
1113                         break;
1114         }
1115         btrfs_release_path(root, path);
1116
1117         if (cur_offset <= end && cow_start == (u64)-1)
1118                 cow_start = cur_offset;
1119         if (cow_start != (u64)-1) {
1120                 ret = cow_file_range(inode, locked_page, cow_start, end,
1121                                      page_started, nr_written, 1);
1122                 BUG_ON(ret);
1123         }
1124
1125         ret = btrfs_end_transaction(trans, root);
1126         BUG_ON(ret);
1127         btrfs_free_path(path);
1128         return 0;
1129 }
1130
1131 /*
1132  * extent_io.c call back to do delayed allocation processing
1133  */
1134 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1135                               u64 start, u64 end, int *page_started,
1136                               unsigned long *nr_written)
1137 {
1138         int ret;
1139
1140         if (btrfs_test_flag(inode, NODATACOW))
1141                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1142                                          page_started, 1, nr_written);
1143         else if (btrfs_test_flag(inode, PREALLOC))
1144                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1145                                          page_started, 0, nr_written);
1146         else
1147                 ret = cow_file_range_async(inode, locked_page, start, end,
1148                                            page_started, nr_written);
1149
1150         return ret;
1151 }
1152
1153 /*
1154  * extent_io.c set_bit_hook, used to track delayed allocation
1155  * bytes in this file, and to maintain the list of inodes that
1156  * have pending delalloc work to be done.
1157  */
1158 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1159                        unsigned long old, unsigned long bits)
1160 {
1161         /*
1162          * set_bit and clear bit hooks normally require _irqsave/restore
1163          * but in this case, we are only testeing for the DELALLOC
1164          * bit, which is only set or cleared with irqs on
1165          */
1166         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1167                 struct btrfs_root *root = BTRFS_I(inode)->root;
1168                 spin_lock(&root->fs_info->delalloc_lock);
1169                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1170                 root->fs_info->delalloc_bytes += end - start + 1;
1171                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1172                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1173                                       &root->fs_info->delalloc_inodes);
1174                 }
1175                 spin_unlock(&root->fs_info->delalloc_lock);
1176         }
1177         return 0;
1178 }
1179
1180 /*
1181  * extent_io.c clear_bit_hook, see set_bit_hook for why
1182  */
1183 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1184                          unsigned long old, unsigned long bits)
1185 {
1186         /*
1187          * set_bit and clear bit hooks normally require _irqsave/restore
1188          * but in this case, we are only testeing for the DELALLOC
1189          * bit, which is only set or cleared with irqs on
1190          */
1191         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1192                 struct btrfs_root *root = BTRFS_I(inode)->root;
1193
1194                 spin_lock(&root->fs_info->delalloc_lock);
1195                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1196                         printk(KERN_INFO "btrfs warning: delalloc account "
1197                                "%llu %llu\n",
1198                                (unsigned long long)end - start + 1,
1199                                (unsigned long long)
1200                                root->fs_info->delalloc_bytes);
1201                         root->fs_info->delalloc_bytes = 0;
1202                         BTRFS_I(inode)->delalloc_bytes = 0;
1203                 } else {
1204                         root->fs_info->delalloc_bytes -= end - start + 1;
1205                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1206                 }
1207                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1208                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1209                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1210                 }
1211                 spin_unlock(&root->fs_info->delalloc_lock);
1212         }
1213         return 0;
1214 }
1215
1216 /*
1217  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1218  * we don't create bios that span stripes or chunks
1219  */
1220 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1221                          size_t size, struct bio *bio,
1222                          unsigned long bio_flags)
1223 {
1224         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1225         struct btrfs_mapping_tree *map_tree;
1226         u64 logical = (u64)bio->bi_sector << 9;
1227         u64 length = 0;
1228         u64 map_length;
1229         int ret;
1230
1231         if (bio_flags & EXTENT_BIO_COMPRESSED)
1232                 return 0;
1233
1234         length = bio->bi_size;
1235         map_tree = &root->fs_info->mapping_tree;
1236         map_length = length;
1237         ret = btrfs_map_block(map_tree, READ, logical,
1238                               &map_length, NULL, 0);
1239
1240         if (map_length < length + size)
1241                 return 1;
1242         return 0;
1243 }
1244
1245 /*
1246  * in order to insert checksums into the metadata in large chunks,
1247  * we wait until bio submission time.   All the pages in the bio are
1248  * checksummed and sums are attached onto the ordered extent record.
1249  *
1250  * At IO completion time the cums attached on the ordered extent record
1251  * are inserted into the btree
1252  */
1253 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1254                                     struct bio *bio, int mirror_num,
1255                                     unsigned long bio_flags)
1256 {
1257         struct btrfs_root *root = BTRFS_I(inode)->root;
1258         int ret = 0;
1259
1260         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1261         BUG_ON(ret);
1262         return 0;
1263 }
1264
1265 /*
1266  * in order to insert checksums into the metadata in large chunks,
1267  * we wait until bio submission time.   All the pages in the bio are
1268  * checksummed and sums are attached onto the ordered extent record.
1269  *
1270  * At IO completion time the cums attached on the ordered extent record
1271  * are inserted into the btree
1272  */
1273 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1274                           int mirror_num, unsigned long bio_flags)
1275 {
1276         struct btrfs_root *root = BTRFS_I(inode)->root;
1277         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1278 }
1279
1280 /*
1281  * extent_io.c submission hook. This does the right thing for csum calculation
1282  * on write, or reading the csums from the tree before a read
1283  */
1284 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1285                           int mirror_num, unsigned long bio_flags)
1286 {
1287         struct btrfs_root *root = BTRFS_I(inode)->root;
1288         int ret = 0;
1289         int skip_sum;
1290
1291         skip_sum = btrfs_test_flag(inode, NODATASUM);
1292
1293         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1294         BUG_ON(ret);
1295
1296         if (!(rw & (1 << BIO_RW))) {
1297                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1298                         return btrfs_submit_compressed_read(inode, bio,
1299                                                     mirror_num, bio_flags);
1300                 } else if (!skip_sum)
1301                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1302                 goto mapit;
1303         } else if (!skip_sum) {
1304                 /* csum items have already been cloned */
1305                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1306                         goto mapit;
1307                 /* we're doing a write, do the async checksumming */
1308                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1309                                    inode, rw, bio, mirror_num,
1310                                    bio_flags, __btrfs_submit_bio_start,
1311                                    __btrfs_submit_bio_done);
1312         }
1313
1314 mapit:
1315         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1316 }
1317
1318 /*
1319  * given a list of ordered sums record them in the inode.  This happens
1320  * at IO completion time based on sums calculated at bio submission time.
1321  */
1322 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1323                              struct inode *inode, u64 file_offset,
1324                              struct list_head *list)
1325 {
1326         struct btrfs_ordered_sum *sum;
1327
1328         btrfs_set_trans_block_group(trans, inode);
1329
1330         list_for_each_entry(sum, list, list) {
1331                 btrfs_csum_file_blocks(trans,
1332                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1333         }
1334         return 0;
1335 }
1336
1337 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1338 {
1339         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1340                 WARN_ON(1);
1341         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1342                                    GFP_NOFS);
1343 }
1344
1345 /* see btrfs_writepage_start_hook for details on why this is required */
1346 struct btrfs_writepage_fixup {
1347         struct page *page;
1348         struct btrfs_work work;
1349 };
1350
1351 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1352 {
1353         struct btrfs_writepage_fixup *fixup;
1354         struct btrfs_ordered_extent *ordered;
1355         struct page *page;
1356         struct inode *inode;
1357         u64 page_start;
1358         u64 page_end;
1359
1360         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1361         page = fixup->page;
1362 again:
1363         lock_page(page);
1364         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1365                 ClearPageChecked(page);
1366                 goto out_page;
1367         }
1368
1369         inode = page->mapping->host;
1370         page_start = page_offset(page);
1371         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1372
1373         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1374
1375         /* already ordered? We're done */
1376         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1377                              EXTENT_ORDERED, 0)) {
1378                 goto out;
1379         }
1380
1381         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1382         if (ordered) {
1383                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1384                               page_end, GFP_NOFS);
1385                 unlock_page(page);
1386                 btrfs_start_ordered_extent(inode, ordered, 1);
1387                 goto again;
1388         }
1389
1390         btrfs_set_extent_delalloc(inode, page_start, page_end);
1391         ClearPageChecked(page);
1392 out:
1393         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1394 out_page:
1395         unlock_page(page);
1396         page_cache_release(page);
1397 }
1398
1399 /*
1400  * There are a few paths in the higher layers of the kernel that directly
1401  * set the page dirty bit without asking the filesystem if it is a
1402  * good idea.  This causes problems because we want to make sure COW
1403  * properly happens and the data=ordered rules are followed.
1404  *
1405  * In our case any range that doesn't have the ORDERED bit set
1406  * hasn't been properly setup for IO.  We kick off an async process
1407  * to fix it up.  The async helper will wait for ordered extents, set
1408  * the delalloc bit and make it safe to write the page.
1409  */
1410 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1411 {
1412         struct inode *inode = page->mapping->host;
1413         struct btrfs_writepage_fixup *fixup;
1414         struct btrfs_root *root = BTRFS_I(inode)->root;
1415         int ret;
1416
1417         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1418                              EXTENT_ORDERED, 0);
1419         if (ret)
1420                 return 0;
1421
1422         if (PageChecked(page))
1423                 return -EAGAIN;
1424
1425         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1426         if (!fixup)
1427                 return -EAGAIN;
1428
1429         SetPageChecked(page);
1430         page_cache_get(page);
1431         fixup->work.func = btrfs_writepage_fixup_worker;
1432         fixup->page = page;
1433         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1434         return -EAGAIN;
1435 }
1436
1437 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1438                                        struct inode *inode, u64 file_pos,
1439                                        u64 disk_bytenr, u64 disk_num_bytes,
1440                                        u64 num_bytes, u64 ram_bytes,
1441                                        u8 compression, u8 encryption,
1442                                        u16 other_encoding, int extent_type)
1443 {
1444         struct btrfs_root *root = BTRFS_I(inode)->root;
1445         struct btrfs_file_extent_item *fi;
1446         struct btrfs_path *path;
1447         struct extent_buffer *leaf;
1448         struct btrfs_key ins;
1449         u64 hint;
1450         int ret;
1451
1452         path = btrfs_alloc_path();
1453         BUG_ON(!path);
1454
1455         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1456                                  file_pos + num_bytes, file_pos, &hint);
1457         BUG_ON(ret);
1458
1459         ins.objectid = inode->i_ino;
1460         ins.offset = file_pos;
1461         ins.type = BTRFS_EXTENT_DATA_KEY;
1462         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1463         BUG_ON(ret);
1464         leaf = path->nodes[0];
1465         fi = btrfs_item_ptr(leaf, path->slots[0],
1466                             struct btrfs_file_extent_item);
1467         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1468         btrfs_set_file_extent_type(leaf, fi, extent_type);
1469         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1470         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1471         btrfs_set_file_extent_offset(leaf, fi, 0);
1472         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1473         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1474         btrfs_set_file_extent_compression(leaf, fi, compression);
1475         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1476         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1477         btrfs_mark_buffer_dirty(leaf);
1478
1479         inode_add_bytes(inode, num_bytes);
1480         btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1481
1482         ins.objectid = disk_bytenr;
1483         ins.offset = disk_num_bytes;
1484         ins.type = BTRFS_EXTENT_ITEM_KEY;
1485         ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1486                                           root->root_key.objectid,
1487                                           trans->transid, inode->i_ino, &ins);
1488         BUG_ON(ret);
1489
1490         btrfs_free_path(path);
1491         return 0;
1492 }
1493
1494 /* as ordered data IO finishes, this gets called so we can finish
1495  * an ordered extent if the range of bytes in the file it covers are
1496  * fully written.
1497  */
1498 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1499 {
1500         struct btrfs_root *root = BTRFS_I(inode)->root;
1501         struct btrfs_trans_handle *trans;
1502         struct btrfs_ordered_extent *ordered_extent;
1503         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1504         int compressed = 0;
1505         int ret;
1506
1507         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1508         if (!ret)
1509                 return 0;
1510
1511         trans = btrfs_join_transaction(root, 1);
1512
1513         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1514         BUG_ON(!ordered_extent);
1515         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1516                 goto nocow;
1517
1518         lock_extent(io_tree, ordered_extent->file_offset,
1519                     ordered_extent->file_offset + ordered_extent->len - 1,
1520                     GFP_NOFS);
1521
1522         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1523                 compressed = 1;
1524         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1525                 BUG_ON(compressed);
1526                 ret = btrfs_mark_extent_written(trans, root, inode,
1527                                                 ordered_extent->file_offset,
1528                                                 ordered_extent->file_offset +
1529                                                 ordered_extent->len);
1530                 BUG_ON(ret);
1531         } else {
1532                 ret = insert_reserved_file_extent(trans, inode,
1533                                                 ordered_extent->file_offset,
1534                                                 ordered_extent->start,
1535                                                 ordered_extent->disk_len,
1536                                                 ordered_extent->len,
1537                                                 ordered_extent->len,
1538                                                 compressed, 0, 0,
1539                                                 BTRFS_FILE_EXTENT_REG);
1540                 BUG_ON(ret);
1541         }
1542         unlock_extent(io_tree, ordered_extent->file_offset,
1543                     ordered_extent->file_offset + ordered_extent->len - 1,
1544                     GFP_NOFS);
1545 nocow:
1546         add_pending_csums(trans, inode, ordered_extent->file_offset,
1547                           &ordered_extent->list);
1548
1549         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1550         btrfs_ordered_update_i_size(inode, ordered_extent);
1551         btrfs_update_inode(trans, root, inode);
1552         btrfs_remove_ordered_extent(inode, ordered_extent);
1553         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1554
1555         /* once for us */
1556         btrfs_put_ordered_extent(ordered_extent);
1557         /* once for the tree */
1558         btrfs_put_ordered_extent(ordered_extent);
1559
1560         btrfs_end_transaction(trans, root);
1561         return 0;
1562 }
1563
1564 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1565                                 struct extent_state *state, int uptodate)
1566 {
1567         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1568 }
1569
1570 /*
1571  * When IO fails, either with EIO or csum verification fails, we
1572  * try other mirrors that might have a good copy of the data.  This
1573  * io_failure_record is used to record state as we go through all the
1574  * mirrors.  If another mirror has good data, the page is set up to date
1575  * and things continue.  If a good mirror can't be found, the original
1576  * bio end_io callback is called to indicate things have failed.
1577  */
1578 struct io_failure_record {
1579         struct page *page;
1580         u64 start;
1581         u64 len;
1582         u64 logical;
1583         unsigned long bio_flags;
1584         int last_mirror;
1585 };
1586
1587 static int btrfs_io_failed_hook(struct bio *failed_bio,
1588                          struct page *page, u64 start, u64 end,
1589                          struct extent_state *state)
1590 {
1591         struct io_failure_record *failrec = NULL;
1592         u64 private;
1593         struct extent_map *em;
1594         struct inode *inode = page->mapping->host;
1595         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1596         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1597         struct bio *bio;
1598         int num_copies;
1599         int ret;
1600         int rw;
1601         u64 logical;
1602
1603         ret = get_state_private(failure_tree, start, &private);
1604         if (ret) {
1605                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1606                 if (!failrec)
1607                         return -ENOMEM;
1608                 failrec->start = start;
1609                 failrec->len = end - start + 1;
1610                 failrec->last_mirror = 0;
1611                 failrec->bio_flags = 0;
1612
1613                 spin_lock(&em_tree->lock);
1614                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1615                 if (em->start > start || em->start + em->len < start) {
1616                         free_extent_map(em);
1617                         em = NULL;
1618                 }
1619                 spin_unlock(&em_tree->lock);
1620
1621                 if (!em || IS_ERR(em)) {
1622                         kfree(failrec);
1623                         return -EIO;
1624                 }
1625                 logical = start - em->start;
1626                 logical = em->block_start + logical;
1627                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1628                         logical = em->block_start;
1629                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1630                 }
1631                 failrec->logical = logical;
1632                 free_extent_map(em);
1633                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1634                                 EXTENT_DIRTY, GFP_NOFS);
1635                 set_state_private(failure_tree, start,
1636                                  (u64)(unsigned long)failrec);
1637         } else {
1638                 failrec = (struct io_failure_record *)(unsigned long)private;
1639         }
1640         num_copies = btrfs_num_copies(
1641                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1642                               failrec->logical, failrec->len);
1643         failrec->last_mirror++;
1644         if (!state) {
1645                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1646                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1647                                                     failrec->start,
1648                                                     EXTENT_LOCKED);
1649                 if (state && state->start != failrec->start)
1650                         state = NULL;
1651                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1652         }
1653         if (!state || failrec->last_mirror > num_copies) {
1654                 set_state_private(failure_tree, failrec->start, 0);
1655                 clear_extent_bits(failure_tree, failrec->start,
1656                                   failrec->start + failrec->len - 1,
1657                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1658                 kfree(failrec);
1659                 return -EIO;
1660         }
1661         bio = bio_alloc(GFP_NOFS, 1);
1662         bio->bi_private = state;
1663         bio->bi_end_io = failed_bio->bi_end_io;
1664         bio->bi_sector = failrec->logical >> 9;
1665         bio->bi_bdev = failed_bio->bi_bdev;
1666         bio->bi_size = 0;
1667
1668         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1669         if (failed_bio->bi_rw & (1 << BIO_RW))
1670                 rw = WRITE;
1671         else
1672                 rw = READ;
1673
1674         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1675                                                       failrec->last_mirror,
1676                                                       failrec->bio_flags);
1677         return 0;
1678 }
1679
1680 /*
1681  * each time an IO finishes, we do a fast check in the IO failure tree
1682  * to see if we need to process or clean up an io_failure_record
1683  */
1684 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1685 {
1686         u64 private;
1687         u64 private_failure;
1688         struct io_failure_record *failure;
1689         int ret;
1690
1691         private = 0;
1692         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1693                              (u64)-1, 1, EXTENT_DIRTY)) {
1694                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1695                                         start, &private_failure);
1696                 if (ret == 0) {
1697                         failure = (struct io_failure_record *)(unsigned long)
1698                                    private_failure;
1699                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1700                                           failure->start, 0);
1701                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1702                                           failure->start,
1703                                           failure->start + failure->len - 1,
1704                                           EXTENT_DIRTY | EXTENT_LOCKED,
1705                                           GFP_NOFS);
1706                         kfree(failure);
1707                 }
1708         }
1709         return 0;
1710 }
1711
1712 /*
1713  * when reads are done, we need to check csums to verify the data is correct
1714  * if there's a match, we allow the bio to finish.  If not, we go through
1715  * the io_failure_record routines to find good copies
1716  */
1717 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1718                                struct extent_state *state)
1719 {
1720         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1721         struct inode *inode = page->mapping->host;
1722         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1723         char *kaddr;
1724         u64 private = ~(u32)0;
1725         int ret;
1726         struct btrfs_root *root = BTRFS_I(inode)->root;
1727         u32 csum = ~(u32)0;
1728
1729         if (PageChecked(page)) {
1730                 ClearPageChecked(page);
1731                 goto good;
1732         }
1733         if (btrfs_test_flag(inode, NODATASUM))
1734                 return 0;
1735
1736         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1737             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1738                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1739                                   GFP_NOFS);
1740                 return 0;
1741         }
1742
1743         if (state && state->start == start) {
1744                 private = state->private;
1745                 ret = 0;
1746         } else {
1747                 ret = get_state_private(io_tree, start, &private);
1748         }
1749         kaddr = kmap_atomic(page, KM_USER0);
1750         if (ret)
1751                 goto zeroit;
1752
1753         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1754         btrfs_csum_final(csum, (char *)&csum);
1755         if (csum != private)
1756                 goto zeroit;
1757
1758         kunmap_atomic(kaddr, KM_USER0);
1759 good:
1760         /* if the io failure tree for this inode is non-empty,
1761          * check to see if we've recovered from a failed IO
1762          */
1763         btrfs_clean_io_failures(inode, start);
1764         return 0;
1765
1766 zeroit:
1767         printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1768                "private %llu\n", page->mapping->host->i_ino,
1769                (unsigned long long)start, csum,
1770                (unsigned long long)private);
1771         memset(kaddr + offset, 1, end - start + 1);
1772         flush_dcache_page(page);
1773         kunmap_atomic(kaddr, KM_USER0);
1774         if (private == 0)
1775                 return 0;
1776         return -EIO;
1777 }
1778
1779 /*
1780  * This creates an orphan entry for the given inode in case something goes
1781  * wrong in the middle of an unlink/truncate.
1782  */
1783 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1784 {
1785         struct btrfs_root *root = BTRFS_I(inode)->root;
1786         int ret = 0;
1787
1788         spin_lock(&root->list_lock);
1789
1790         /* already on the orphan list, we're good */
1791         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1792                 spin_unlock(&root->list_lock);
1793                 return 0;
1794         }
1795
1796         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1797
1798         spin_unlock(&root->list_lock);
1799
1800         /*
1801          * insert an orphan item to track this unlinked/truncated file
1802          */
1803         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1804
1805         return ret;
1806 }
1807
1808 /*
1809  * We have done the truncate/delete so we can go ahead and remove the orphan
1810  * item for this particular inode.
1811  */
1812 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1813 {
1814         struct btrfs_root *root = BTRFS_I(inode)->root;
1815         int ret = 0;
1816
1817         spin_lock(&root->list_lock);
1818
1819         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1820                 spin_unlock(&root->list_lock);
1821                 return 0;
1822         }
1823
1824         list_del_init(&BTRFS_I(inode)->i_orphan);
1825         if (!trans) {
1826                 spin_unlock(&root->list_lock);
1827                 return 0;
1828         }
1829
1830         spin_unlock(&root->list_lock);
1831
1832         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1833
1834         return ret;
1835 }
1836
1837 /*
1838  * this cleans up any orphans that may be left on the list from the last use
1839  * of this root.
1840  */
1841 void btrfs_orphan_cleanup(struct btrfs_root *root)
1842 {
1843         struct btrfs_path *path;
1844         struct extent_buffer *leaf;
1845         struct btrfs_item *item;
1846         struct btrfs_key key, found_key;
1847         struct btrfs_trans_handle *trans;
1848         struct inode *inode;
1849         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1850
1851         path = btrfs_alloc_path();
1852         if (!path)
1853                 return;
1854         path->reada = -1;
1855
1856         key.objectid = BTRFS_ORPHAN_OBJECTID;
1857         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1858         key.offset = (u64)-1;
1859
1860
1861         while (1) {
1862                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1863                 if (ret < 0) {
1864                         printk(KERN_ERR "Error searching slot for orphan: %d"
1865                                "\n", ret);
1866                         break;
1867                 }
1868
1869                 /*
1870                  * if ret == 0 means we found what we were searching for, which
1871                  * is weird, but possible, so only screw with path if we didnt
1872                  * find the key and see if we have stuff that matches
1873                  */
1874                 if (ret > 0) {
1875                         if (path->slots[0] == 0)
1876                                 break;
1877                         path->slots[0]--;
1878                 }
1879
1880                 /* pull out the item */
1881                 leaf = path->nodes[0];
1882                 item = btrfs_item_nr(leaf, path->slots[0]);
1883                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1884
1885                 /* make sure the item matches what we want */
1886                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1887                         break;
1888                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1889                         break;
1890
1891                 /* release the path since we're done with it */
1892                 btrfs_release_path(root, path);
1893
1894                 /*
1895                  * this is where we are basically btrfs_lookup, without the
1896                  * crossing root thing.  we store the inode number in the
1897                  * offset of the orphan item.
1898                  */
1899                 inode = btrfs_iget_locked(root->fs_info->sb,
1900                                           found_key.offset, root);
1901                 if (!inode)
1902                         break;
1903
1904                 if (inode->i_state & I_NEW) {
1905                         BTRFS_I(inode)->root = root;
1906
1907                         /* have to set the location manually */
1908                         BTRFS_I(inode)->location.objectid = inode->i_ino;
1909                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1910                         BTRFS_I(inode)->location.offset = 0;
1911
1912                         btrfs_read_locked_inode(inode);
1913                         unlock_new_inode(inode);
1914                 }
1915
1916                 /*
1917                  * add this inode to the orphan list so btrfs_orphan_del does
1918                  * the proper thing when we hit it
1919                  */
1920                 spin_lock(&root->list_lock);
1921                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1922                 spin_unlock(&root->list_lock);
1923
1924                 /*
1925                  * if this is a bad inode, means we actually succeeded in
1926                  * removing the inode, but not the orphan record, which means
1927                  * we need to manually delete the orphan since iput will just
1928                  * do a destroy_inode
1929                  */
1930                 if (is_bad_inode(inode)) {
1931                         trans = btrfs_start_transaction(root, 1);
1932                         btrfs_orphan_del(trans, inode);
1933                         btrfs_end_transaction(trans, root);
1934                         iput(inode);
1935                         continue;
1936                 }
1937
1938                 /* if we have links, this was a truncate, lets do that */
1939                 if (inode->i_nlink) {
1940                         nr_truncate++;
1941                         btrfs_truncate(inode);
1942                 } else {
1943                         nr_unlink++;
1944                 }
1945
1946                 /* this will do delete_inode and everything for us */
1947                 iput(inode);
1948         }
1949
1950         if (nr_unlink)
1951                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1952         if (nr_truncate)
1953                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1954
1955         btrfs_free_path(path);
1956 }
1957
1958 /*
1959  * read an inode from the btree into the in-memory inode
1960  */
1961 void btrfs_read_locked_inode(struct inode *inode)
1962 {
1963         struct btrfs_path *path;
1964         struct extent_buffer *leaf;
1965         struct btrfs_inode_item *inode_item;
1966         struct btrfs_timespec *tspec;
1967         struct btrfs_root *root = BTRFS_I(inode)->root;
1968         struct btrfs_key location;
1969         u64 alloc_group_block;
1970         u32 rdev;
1971         int ret;
1972
1973         path = btrfs_alloc_path();
1974         BUG_ON(!path);
1975         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1976
1977         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1978         if (ret)
1979                 goto make_bad;
1980
1981         leaf = path->nodes[0];
1982         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1983                                     struct btrfs_inode_item);
1984
1985         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1986         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1987         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1988         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1989         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1990
1991         tspec = btrfs_inode_atime(inode_item);
1992         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1993         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1994
1995         tspec = btrfs_inode_mtime(inode_item);
1996         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1997         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1998
1999         tspec = btrfs_inode_ctime(inode_item);
2000         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2001         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2002
2003         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2004         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2005         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2006         inode->i_generation = BTRFS_I(inode)->generation;
2007         inode->i_rdev = 0;
2008         rdev = btrfs_inode_rdev(leaf, inode_item);
2009
2010         BTRFS_I(inode)->index_cnt = (u64)-1;
2011         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2012
2013         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2014         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2015                                                 alloc_group_block, 0);
2016         btrfs_free_path(path);
2017         inode_item = NULL;
2018
2019         switch (inode->i_mode & S_IFMT) {
2020         case S_IFREG:
2021                 inode->i_mapping->a_ops = &btrfs_aops;
2022                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2023                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2024                 inode->i_fop = &btrfs_file_operations;
2025                 inode->i_op = &btrfs_file_inode_operations;
2026                 break;
2027         case S_IFDIR:
2028                 inode->i_fop = &btrfs_dir_file_operations;
2029                 if (root == root->fs_info->tree_root)
2030                         inode->i_op = &btrfs_dir_ro_inode_operations;
2031                 else
2032                         inode->i_op = &btrfs_dir_inode_operations;
2033                 break;
2034         case S_IFLNK:
2035                 inode->i_op = &btrfs_symlink_inode_operations;
2036                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2037                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2038                 break;
2039         default:
2040                 init_special_inode(inode, inode->i_mode, rdev);
2041                 break;
2042         }
2043         return;
2044
2045 make_bad:
2046         btrfs_free_path(path);
2047         make_bad_inode(inode);
2048 }
2049
2050 /*
2051  * given a leaf and an inode, copy the inode fields into the leaf
2052  */
2053 static void fill_inode_item(struct btrfs_trans_handle *trans,
2054                             struct extent_buffer *leaf,
2055                             struct btrfs_inode_item *item,
2056                             struct inode *inode)
2057 {
2058         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2059         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2060         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2061         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2062         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2063
2064         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2065                                inode->i_atime.tv_sec);
2066         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2067                                 inode->i_atime.tv_nsec);
2068
2069         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2070                                inode->i_mtime.tv_sec);
2071         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2072                                 inode->i_mtime.tv_nsec);
2073
2074         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2075                                inode->i_ctime.tv_sec);
2076         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2077                                 inode->i_ctime.tv_nsec);
2078
2079         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2080         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2081         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2082         btrfs_set_inode_transid(leaf, item, trans->transid);
2083         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2084         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2085         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2086 }
2087
2088 /*
2089  * copy everything in the in-memory inode into the btree.
2090  */
2091 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2092                                 struct btrfs_root *root, struct inode *inode)
2093 {
2094         struct btrfs_inode_item *inode_item;
2095         struct btrfs_path *path;
2096         struct extent_buffer *leaf;
2097         int ret;
2098
2099         path = btrfs_alloc_path();
2100         BUG_ON(!path);
2101         ret = btrfs_lookup_inode(trans, root, path,
2102                                  &BTRFS_I(inode)->location, 1);
2103         if (ret) {
2104                 if (ret > 0)
2105                         ret = -ENOENT;
2106                 goto failed;
2107         }
2108
2109         leaf = path->nodes[0];
2110         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2111                                   struct btrfs_inode_item);
2112
2113         fill_inode_item(trans, leaf, inode_item, inode);
2114         btrfs_mark_buffer_dirty(leaf);
2115         btrfs_set_inode_last_trans(trans, inode);
2116         ret = 0;
2117 failed:
2118         btrfs_free_path(path);
2119         return ret;
2120 }
2121
2122
2123 /*
2124  * unlink helper that gets used here in inode.c and in the tree logging
2125  * recovery code.  It remove a link in a directory with a given name, and
2126  * also drops the back refs in the inode to the directory
2127  */
2128 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2129                        struct btrfs_root *root,
2130                        struct inode *dir, struct inode *inode,
2131                        const char *name, int name_len)
2132 {
2133         struct btrfs_path *path;
2134         int ret = 0;
2135         struct extent_buffer *leaf;
2136         struct btrfs_dir_item *di;
2137         struct btrfs_key key;
2138         u64 index;
2139
2140         path = btrfs_alloc_path();
2141         if (!path) {
2142                 ret = -ENOMEM;
2143                 goto err;
2144         }
2145
2146         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2147                                     name, name_len, -1);
2148         if (IS_ERR(di)) {
2149                 ret = PTR_ERR(di);
2150                 goto err;
2151         }
2152         if (!di) {
2153                 ret = -ENOENT;
2154                 goto err;
2155         }
2156         leaf = path->nodes[0];
2157         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2158         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2159         if (ret)
2160                 goto err;
2161         btrfs_release_path(root, path);
2162
2163         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2164                                   inode->i_ino,
2165                                   dir->i_ino, &index);
2166         if (ret) {
2167                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2168                        "inode %lu parent %lu\n", name_len, name,
2169                        inode->i_ino, dir->i_ino);
2170                 goto err;
2171         }
2172
2173         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2174                                          index, name, name_len, -1);
2175         if (IS_ERR(di)) {
2176                 ret = PTR_ERR(di);
2177                 goto err;
2178         }
2179         if (!di) {
2180                 ret = -ENOENT;
2181                 goto err;
2182         }
2183         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2184         btrfs_release_path(root, path);
2185
2186         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2187                                          inode, dir->i_ino);
2188         BUG_ON(ret != 0 && ret != -ENOENT);
2189         if (ret != -ENOENT)
2190                 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2191
2192         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2193                                            dir, index);
2194         BUG_ON(ret);
2195 err:
2196         btrfs_free_path(path);
2197         if (ret)
2198                 goto out;
2199
2200         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2201         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2202         btrfs_update_inode(trans, root, dir);
2203         btrfs_drop_nlink(inode);
2204         ret = btrfs_update_inode(trans, root, inode);
2205         dir->i_sb->s_dirt = 1;
2206 out:
2207         return ret;
2208 }
2209
2210 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2211 {
2212         struct btrfs_root *root;
2213         struct btrfs_trans_handle *trans;
2214         struct inode *inode = dentry->d_inode;
2215         int ret;
2216         unsigned long nr = 0;
2217
2218         root = BTRFS_I(dir)->root;
2219
2220         ret = btrfs_check_free_space(root, 1, 1);
2221         if (ret)
2222                 goto fail;
2223
2224         trans = btrfs_start_transaction(root, 1);
2225
2226         btrfs_set_trans_block_group(trans, dir);
2227         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2228                                  dentry->d_name.name, dentry->d_name.len);
2229
2230         if (inode->i_nlink == 0)
2231                 ret = btrfs_orphan_add(trans, inode);
2232
2233         nr = trans->blocks_used;
2234
2235         btrfs_end_transaction_throttle(trans, root);
2236 fail:
2237         btrfs_btree_balance_dirty(root, nr);
2238         return ret;
2239 }
2240
2241 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2242 {
2243         struct inode *inode = dentry->d_inode;
2244         int err = 0;
2245         int ret;
2246         struct btrfs_root *root = BTRFS_I(dir)->root;
2247         struct btrfs_trans_handle *trans;
2248         unsigned long nr = 0;
2249
2250         /*
2251          * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2252          * the root of a subvolume or snapshot
2253          */
2254         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2255             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2256                 return -ENOTEMPTY;
2257         }
2258
2259         ret = btrfs_check_free_space(root, 1, 1);
2260         if (ret)
2261                 goto fail;
2262
2263         trans = btrfs_start_transaction(root, 1);
2264         btrfs_set_trans_block_group(trans, dir);
2265
2266         err = btrfs_orphan_add(trans, inode);
2267         if (err)
2268                 goto fail_trans;
2269
2270         /* now the directory is empty */
2271         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2272                                  dentry->d_name.name, dentry->d_name.len);
2273         if (!err)
2274                 btrfs_i_size_write(inode, 0);
2275
2276 fail_trans:
2277         nr = trans->blocks_used;
2278         ret = btrfs_end_transaction_throttle(trans, root);
2279 fail:
2280         btrfs_btree_balance_dirty(root, nr);
2281
2282         if (ret && !err)
2283                 err = ret;
2284         return err;
2285 }
2286
2287 #if 0
2288 /*
2289  * when truncating bytes in a file, it is possible to avoid reading
2290  * the leaves that contain only checksum items.  This can be the
2291  * majority of the IO required to delete a large file, but it must
2292  * be done carefully.
2293  *
2294  * The keys in the level just above the leaves are checked to make sure
2295  * the lowest key in a given leaf is a csum key, and starts at an offset
2296  * after the new  size.
2297  *
2298  * Then the key for the next leaf is checked to make sure it also has
2299  * a checksum item for the same file.  If it does, we know our target leaf
2300  * contains only checksum items, and it can be safely freed without reading
2301  * it.
2302  *
2303  * This is just an optimization targeted at large files.  It may do
2304  * nothing.  It will return 0 unless things went badly.
2305  */
2306 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2307                                      struct btrfs_root *root,
2308                                      struct btrfs_path *path,
2309                                      struct inode *inode, u64 new_size)
2310 {
2311         struct btrfs_key key;
2312         int ret;
2313         int nritems;
2314         struct btrfs_key found_key;
2315         struct btrfs_key other_key;
2316         struct btrfs_leaf_ref *ref;
2317         u64 leaf_gen;
2318         u64 leaf_start;
2319
2320         path->lowest_level = 1;
2321         key.objectid = inode->i_ino;
2322         key.type = BTRFS_CSUM_ITEM_KEY;
2323         key.offset = new_size;
2324 again:
2325         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2326         if (ret < 0)
2327                 goto out;
2328
2329         if (path->nodes[1] == NULL) {
2330                 ret = 0;
2331                 goto out;
2332         }
2333         ret = 0;
2334         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2335         nritems = btrfs_header_nritems(path->nodes[1]);
2336
2337         if (!nritems)
2338                 goto out;
2339
2340         if (path->slots[1] >= nritems)
2341                 goto next_node;
2342
2343         /* did we find a key greater than anything we want to delete? */
2344         if (found_key.objectid > inode->i_ino ||
2345            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2346                 goto out;
2347
2348         /* we check the next key in the node to make sure the leave contains
2349          * only checksum items.  This comparison doesn't work if our
2350          * leaf is the last one in the node
2351          */
2352         if (path->slots[1] + 1 >= nritems) {
2353 next_node:
2354                 /* search forward from the last key in the node, this
2355                  * will bring us into the next node in the tree
2356                  */
2357                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2358
2359                 /* unlikely, but we inc below, so check to be safe */
2360                 if (found_key.offset == (u64)-1)
2361                         goto out;
2362
2363                 /* search_forward needs a path with locks held, do the
2364                  * search again for the original key.  It is possible
2365                  * this will race with a balance and return a path that
2366                  * we could modify, but this drop is just an optimization
2367                  * and is allowed to miss some leaves.
2368                  */
2369                 btrfs_release_path(root, path);
2370                 found_key.offset++;
2371
2372                 /* setup a max key for search_forward */
2373                 other_key.offset = (u64)-1;
2374                 other_key.type = key.type;
2375                 other_key.objectid = key.objectid;
2376
2377                 path->keep_locks = 1;
2378                 ret = btrfs_search_forward(root, &found_key, &other_key,
2379                                            path, 0, 0);
2380                 path->keep_locks = 0;
2381                 if (ret || found_key.objectid != key.objectid ||
2382                     found_key.type != key.type) {
2383                         ret = 0;
2384                         goto out;
2385                 }
2386
2387                 key.offset = found_key.offset;
2388                 btrfs_release_path(root, path);
2389                 cond_resched();
2390                 goto again;
2391         }
2392
2393         /* we know there's one more slot after us in the tree,
2394          * read that key so we can verify it is also a checksum item
2395          */
2396         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2397
2398         if (found_key.objectid < inode->i_ino)
2399                 goto next_key;
2400
2401         if (found_key.type != key.type || found_key.offset < new_size)
2402                 goto next_key;
2403
2404         /*
2405          * if the key for the next leaf isn't a csum key from this objectid,
2406          * we can't be sure there aren't good items inside this leaf.
2407          * Bail out
2408          */
2409         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2410                 goto out;
2411
2412         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2413         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2414         /*
2415          * it is safe to delete this leaf, it contains only
2416          * csum items from this inode at an offset >= new_size
2417          */
2418         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2419         BUG_ON(ret);
2420
2421         if (root->ref_cows && leaf_gen < trans->transid) {
2422                 ref = btrfs_alloc_leaf_ref(root, 0);
2423                 if (ref) {
2424                         ref->root_gen = root->root_key.offset;
2425                         ref->bytenr = leaf_start;
2426                         ref->owner = 0;
2427                         ref->generation = leaf_gen;
2428                         ref->nritems = 0;
2429
2430                         ret = btrfs_add_leaf_ref(root, ref, 0);
2431                         WARN_ON(ret);
2432                         btrfs_free_leaf_ref(root, ref);
2433                 } else {
2434                         WARN_ON(1);
2435                 }
2436         }
2437 next_key:
2438         btrfs_release_path(root, path);
2439
2440         if (other_key.objectid == inode->i_ino &&
2441             other_key.type == key.type && other_key.offset > key.offset) {
2442                 key.offset = other_key.offset;
2443                 cond_resched();
2444                 goto again;
2445         }
2446         ret = 0;
2447 out:
2448         /* fixup any changes we've made to the path */
2449         path->lowest_level = 0;
2450         path->keep_locks = 0;
2451         btrfs_release_path(root, path);
2452         return ret;
2453 }
2454
2455 #endif
2456
2457 /*
2458  * this can truncate away extent items, csum items and directory items.
2459  * It starts at a high offset and removes keys until it can't find
2460  * any higher than new_size
2461  *
2462  * csum items that cross the new i_size are truncated to the new size
2463  * as well.
2464  *
2465  * min_type is the minimum key type to truncate down to.  If set to 0, this
2466  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2467  */
2468 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2469                                         struct btrfs_root *root,
2470                                         struct inode *inode,
2471                                         u64 new_size, u32 min_type)
2472 {
2473         int ret;
2474         struct btrfs_path *path;
2475         struct btrfs_key key;
2476         struct btrfs_key found_key;
2477         u32 found_type;
2478         struct extent_buffer *leaf;
2479         struct btrfs_file_extent_item *fi;
2480         u64 extent_start = 0;
2481         u64 extent_num_bytes = 0;
2482         u64 item_end = 0;
2483         u64 root_gen = 0;
2484         u64 root_owner = 0;
2485         int found_extent;
2486         int del_item;
2487         int pending_del_nr = 0;
2488         int pending_del_slot = 0;
2489         int extent_type = -1;
2490         int encoding;
2491         u64 mask = root->sectorsize - 1;
2492
2493         if (root->ref_cows)
2494                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2495         path = btrfs_alloc_path();
2496         path->reada = -1;
2497         BUG_ON(!path);
2498
2499         /* FIXME, add redo link to tree so we don't leak on crash */
2500         key.objectid = inode->i_ino;
2501         key.offset = (u64)-1;
2502         key.type = (u8)-1;
2503
2504         btrfs_init_path(path);
2505
2506 search_again:
2507         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2508         if (ret < 0)
2509                 goto error;
2510
2511         if (ret > 0) {
2512                 /* there are no items in the tree for us to truncate, we're
2513                  * done
2514                  */
2515                 if (path->slots[0] == 0) {
2516                         ret = 0;
2517                         goto error;
2518                 }
2519                 path->slots[0]--;
2520         }
2521
2522         while (1) {
2523                 fi = NULL;
2524                 leaf = path->nodes[0];
2525                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2526                 found_type = btrfs_key_type(&found_key);
2527                 encoding = 0;
2528
2529                 if (found_key.objectid != inode->i_ino)
2530                         break;
2531
2532                 if (found_type < min_type)
2533                         break;
2534
2535                 item_end = found_key.offset;
2536                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2537                         fi = btrfs_item_ptr(leaf, path->slots[0],
2538                                             struct btrfs_file_extent_item);
2539                         extent_type = btrfs_file_extent_type(leaf, fi);
2540                         encoding = btrfs_file_extent_compression(leaf, fi);
2541                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2542                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2543
2544                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2545                                 item_end +=
2546                                     btrfs_file_extent_num_bytes(leaf, fi);
2547                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2548                                 item_end += btrfs_file_extent_inline_len(leaf,
2549                                                                          fi);
2550                         }
2551                         item_end--;
2552                 }
2553                 if (item_end < new_size) {
2554                         if (found_type == BTRFS_DIR_ITEM_KEY)
2555                                 found_type = BTRFS_INODE_ITEM_KEY;
2556                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2557                                 found_type = BTRFS_EXTENT_DATA_KEY;
2558                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2559                                 found_type = BTRFS_XATTR_ITEM_KEY;
2560                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2561                                 found_type = BTRFS_INODE_REF_KEY;
2562                         else if (found_type)
2563                                 found_type--;
2564                         else
2565                                 break;
2566                         btrfs_set_key_type(&key, found_type);
2567                         goto next;
2568                 }
2569                 if (found_key.offset >= new_size)
2570                         del_item = 1;
2571                 else
2572                         del_item = 0;
2573                 found_extent = 0;
2574
2575                 /* FIXME, shrink the extent if the ref count is only 1 */
2576                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2577                         goto delete;
2578
2579                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2580                         u64 num_dec;
2581                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2582                         if (!del_item && !encoding) {
2583                                 u64 orig_num_bytes =
2584                                         btrfs_file_extent_num_bytes(leaf, fi);
2585                                 extent_num_bytes = new_size -
2586                                         found_key.offset + root->sectorsize - 1;
2587                                 extent_num_bytes = extent_num_bytes &
2588                                         ~((u64)root->sectorsize - 1);
2589                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2590                                                          extent_num_bytes);
2591                                 num_dec = (orig_num_bytes -
2592                                            extent_num_bytes);
2593                                 if (root->ref_cows && extent_start != 0)
2594                                         inode_sub_bytes(inode, num_dec);
2595                                 btrfs_mark_buffer_dirty(leaf);
2596                         } else {
2597                                 extent_num_bytes =
2598                                         btrfs_file_extent_disk_num_bytes(leaf,
2599                                                                          fi);
2600                                 /* FIXME blocksize != 4096 */
2601                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2602                                 if (extent_start != 0) {
2603                                         found_extent = 1;
2604                                         if (root->ref_cows)
2605                                                 inode_sub_bytes(inode, num_dec);
2606                                 }
2607                                 root_gen = btrfs_header_generation(leaf);
2608                                 root_owner = btrfs_header_owner(leaf);
2609                         }
2610                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2611                         /*
2612                          * we can't truncate inline items that have had
2613                          * special encodings
2614                          */
2615                         if (!del_item &&
2616                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2617                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2618                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2619                                 u32 size = new_size - found_key.offset;
2620
2621                                 if (root->ref_cows) {
2622                                         inode_sub_bytes(inode, item_end + 1 -
2623                                                         new_size);
2624                                 }
2625                                 size =
2626                                     btrfs_file_extent_calc_inline_size(size);
2627                                 ret = btrfs_truncate_item(trans, root, path,
2628                                                           size, 1);
2629                                 BUG_ON(ret);
2630                         } else if (root->ref_cows) {
2631                                 inode_sub_bytes(inode, item_end + 1 -
2632                                                 found_key.offset);
2633                         }
2634                 }
2635 delete:
2636                 if (del_item) {
2637                         if (!pending_del_nr) {
2638                                 /* no pending yet, add ourselves */
2639                                 pending_del_slot = path->slots[0];
2640                                 pending_del_nr = 1;
2641                         } else if (pending_del_nr &&
2642                                    path->slots[0] + 1 == pending_del_slot) {
2643                                 /* hop on the pending chunk */
2644                                 pending_del_nr++;
2645                                 pending_del_slot = path->slots[0];
2646                         } else {
2647                                 BUG();
2648                         }
2649                 } else {
2650                         break;
2651                 }
2652                 if (found_extent) {
2653                         ret = btrfs_free_extent(trans, root, extent_start,
2654                                                 extent_num_bytes,
2655                                                 leaf->start, root_owner,
2656                                                 root_gen, inode->i_ino, 0);
2657                         BUG_ON(ret);
2658                 }
2659 next:
2660                 if (path->slots[0] == 0) {
2661                         if (pending_del_nr)
2662                                 goto del_pending;
2663                         btrfs_release_path(root, path);
2664                         goto search_again;
2665                 }
2666
2667                 path->slots[0]--;
2668                 if (pending_del_nr &&
2669                     path->slots[0] + 1 != pending_del_slot) {
2670                         struct btrfs_key debug;
2671 del_pending:
2672                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2673                                               pending_del_slot);
2674                         ret = btrfs_del_items(trans, root, path,
2675                                               pending_del_slot,
2676                                               pending_del_nr);
2677                         BUG_ON(ret);
2678                         pending_del_nr = 0;
2679                         btrfs_release_path(root, path);
2680                         goto search_again;
2681                 }
2682         }
2683         ret = 0;
2684 error:
2685         if (pending_del_nr) {
2686                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2687                                       pending_del_nr);
2688         }
2689         btrfs_free_path(path);
2690         inode->i_sb->s_dirt = 1;
2691         return ret;
2692 }
2693
2694 /*
2695  * taken from block_truncate_page, but does cow as it zeros out
2696  * any bytes left in the last page in the file.
2697  */
2698 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2699 {
2700         struct inode *inode = mapping->host;
2701         struct btrfs_root *root = BTRFS_I(inode)->root;
2702         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2703         struct btrfs_ordered_extent *ordered;
2704         char *kaddr;
2705         u32 blocksize = root->sectorsize;
2706         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2707         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2708         struct page *page;
2709         int ret = 0;
2710         u64 page_start;
2711         u64 page_end;
2712
2713         if ((offset & (blocksize - 1)) == 0)
2714                 goto out;
2715
2716         ret = -ENOMEM;
2717 again:
2718         page = grab_cache_page(mapping, index);
2719         if (!page)
2720                 goto out;
2721
2722         page_start = page_offset(page);
2723         page_end = page_start + PAGE_CACHE_SIZE - 1;
2724
2725         if (!PageUptodate(page)) {
2726                 ret = btrfs_readpage(NULL, page);
2727                 lock_page(page);
2728                 if (page->mapping != mapping) {
2729                         unlock_page(page);
2730                         page_cache_release(page);
2731                         goto again;
2732                 }
2733                 if (!PageUptodate(page)) {
2734                         ret = -EIO;
2735                         goto out_unlock;
2736                 }
2737         }
2738         wait_on_page_writeback(page);
2739
2740         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2741         set_page_extent_mapped(page);
2742
2743         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2744         if (ordered) {
2745                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2746                 unlock_page(page);
2747                 page_cache_release(page);
2748                 btrfs_start_ordered_extent(inode, ordered, 1);
2749                 btrfs_put_ordered_extent(ordered);
2750                 goto again;
2751         }
2752
2753         btrfs_set_extent_delalloc(inode, page_start, page_end);
2754         ret = 0;
2755         if (offset != PAGE_CACHE_SIZE) {
2756                 kaddr = kmap(page);
2757                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2758                 flush_dcache_page(page);
2759                 kunmap(page);
2760         }
2761         ClearPageChecked(page);
2762         set_page_dirty(page);
2763         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2764
2765 out_unlock:
2766         unlock_page(page);
2767         page_cache_release(page);
2768 out:
2769         return ret;
2770 }
2771
2772 int btrfs_cont_expand(struct inode *inode, loff_t size)
2773 {
2774         struct btrfs_trans_handle *trans;
2775         struct btrfs_root *root = BTRFS_I(inode)->root;
2776         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2777         struct extent_map *em;
2778         u64 mask = root->sectorsize - 1;
2779         u64 hole_start = (inode->i_size + mask) & ~mask;
2780         u64 block_end = (size + mask) & ~mask;
2781         u64 last_byte;
2782         u64 cur_offset;
2783         u64 hole_size;
2784         int err;
2785
2786         if (size <= hole_start)
2787                 return 0;
2788
2789         err = btrfs_check_free_space(root, 1, 0);
2790         if (err)
2791                 return err;
2792
2793         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2794
2795         while (1) {
2796                 struct btrfs_ordered_extent *ordered;
2797                 btrfs_wait_ordered_range(inode, hole_start,
2798                                          block_end - hole_start);
2799                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2800                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2801                 if (!ordered)
2802                         break;
2803                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2804                 btrfs_put_ordered_extent(ordered);
2805         }
2806
2807         trans = btrfs_start_transaction(root, 1);
2808         btrfs_set_trans_block_group(trans, inode);
2809
2810         cur_offset = hole_start;
2811         while (1) {
2812                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2813                                 block_end - cur_offset, 0);
2814                 BUG_ON(IS_ERR(em) || !em);
2815                 last_byte = min(extent_map_end(em), block_end);
2816                 last_byte = (last_byte + mask) & ~mask;
2817                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2818                         u64 hint_byte = 0;
2819                         hole_size = last_byte - cur_offset;
2820                         err = btrfs_drop_extents(trans, root, inode,
2821                                                  cur_offset,
2822                                                  cur_offset + hole_size,
2823                                                  cur_offset, &hint_byte);
2824                         if (err)
2825                                 break;
2826                         err = btrfs_insert_file_extent(trans, root,
2827                                         inode->i_ino, cur_offset, 0,
2828                                         0, hole_size, 0, hole_size,
2829                                         0, 0, 0);
2830                         btrfs_drop_extent_cache(inode, hole_start,
2831                                         last_byte - 1, 0);
2832                 }
2833                 free_extent_map(em);
2834                 cur_offset = last_byte;
2835                 if (err || cur_offset >= block_end)
2836                         break;
2837         }
2838
2839         btrfs_end_transaction(trans, root);
2840         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2841         return err;
2842 }
2843
2844 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2845 {
2846         struct inode *inode = dentry->d_inode;
2847         int err;
2848
2849         err = inode_change_ok(inode, attr);
2850         if (err)
2851                 return err;
2852
2853         if (S_ISREG(inode->i_mode) &&
2854             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2855                 err = btrfs_cont_expand(inode, attr->ia_size);
2856                 if (err)
2857                         return err;
2858         }
2859
2860         err = inode_setattr(inode, attr);
2861
2862         if (!err && ((attr->ia_valid & ATTR_MODE)))
2863                 err = btrfs_acl_chmod(inode);
2864         return err;
2865 }
2866
2867 void btrfs_delete_inode(struct inode *inode)
2868 {
2869         struct btrfs_trans_handle *trans;
2870         struct btrfs_root *root = BTRFS_I(inode)->root;
2871         unsigned long nr;
2872         int ret;
2873
2874         truncate_inode_pages(&inode->i_data, 0);
2875         if (is_bad_inode(inode)) {
2876                 btrfs_orphan_del(NULL, inode);
2877                 goto no_delete;
2878         }
2879         btrfs_wait_ordered_range(inode, 0, (u64)-1);
2880
2881         btrfs_i_size_write(inode, 0);
2882         trans = btrfs_join_transaction(root, 1);
2883
2884         btrfs_set_trans_block_group(trans, inode);
2885         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2886         if (ret) {
2887                 btrfs_orphan_del(NULL, inode);
2888                 goto no_delete_lock;
2889         }
2890
2891         btrfs_orphan_del(trans, inode);
2892
2893         nr = trans->blocks_used;
2894         clear_inode(inode);
2895
2896         btrfs_end_transaction(trans, root);
2897         btrfs_btree_balance_dirty(root, nr);
2898         return;
2899
2900 no_delete_lock:
2901         nr = trans->blocks_used;
2902         btrfs_end_transaction(trans, root);
2903         btrfs_btree_balance_dirty(root, nr);
2904 no_delete:
2905         clear_inode(inode);
2906 }
2907
2908 /*
2909  * this returns the key found in the dir entry in the location pointer.
2910  * If no dir entries were found, location->objectid is 0.
2911  */
2912 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2913                                struct btrfs_key *location)
2914 {
2915         const char *name = dentry->d_name.name;
2916         int namelen = dentry->d_name.len;
2917         struct btrfs_dir_item *di;
2918         struct btrfs_path *path;
2919         struct btrfs_root *root = BTRFS_I(dir)->root;
2920         int ret = 0;
2921
2922         path = btrfs_alloc_path();
2923         BUG_ON(!path);
2924
2925         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2926                                     namelen, 0);
2927         if (IS_ERR(di))
2928                 ret = PTR_ERR(di);
2929
2930         if (!di || IS_ERR(di))
2931                 goto out_err;
2932
2933         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2934 out:
2935         btrfs_free_path(path);
2936         return ret;
2937 out_err:
2938         location->objectid = 0;
2939         goto out;
2940 }
2941
2942 /*
2943  * when we hit a tree root in a directory, the btrfs part of the inode
2944  * needs to be changed to reflect the root directory of the tree root.  This
2945  * is kind of like crossing a mount point.
2946  */
2947 static int fixup_tree_root_location(struct btrfs_root *root,
2948                              struct btrfs_key *location,
2949                              struct btrfs_root **sub_root,
2950                              struct dentry *dentry)
2951 {
2952         struct btrfs_root_item *ri;
2953
2954         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2955                 return 0;
2956         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2957                 return 0;
2958
2959         *sub_root = btrfs_read_fs_root(root->fs_info, location,
2960                                         dentry->d_name.name,
2961                                         dentry->d_name.len);
2962         if (IS_ERR(*sub_root))
2963                 return PTR_ERR(*sub_root);
2964
2965         ri = &(*sub_root)->root_item;
2966         location->objectid = btrfs_root_dirid(ri);
2967         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2968         location->offset = 0;
2969
2970         return 0;
2971 }
2972
2973 static noinline void init_btrfs_i(struct inode *inode)
2974 {
2975         struct btrfs_inode *bi = BTRFS_I(inode);
2976
2977         bi->i_acl = NULL;
2978         bi->i_default_acl = NULL;
2979
2980         bi->generation = 0;
2981         bi->sequence = 0;
2982         bi->last_trans = 0;
2983         bi->logged_trans = 0;
2984         bi->delalloc_bytes = 0;
2985         bi->disk_i_size = 0;
2986         bi->flags = 0;
2987         bi->index_cnt = (u64)-1;
2988         bi->log_dirty_trans = 0;
2989         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2990         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2991                              inode->i_mapping, GFP_NOFS);
2992         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2993                              inode->i_mapping, GFP_NOFS);
2994         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2995         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2996         mutex_init(&BTRFS_I(inode)->extent_mutex);
2997         mutex_init(&BTRFS_I(inode)->log_mutex);
2998 }
2999
3000 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3001 {
3002         struct btrfs_iget_args *args = p;
3003         inode->i_ino = args->ino;
3004         init_btrfs_i(inode);
3005         BTRFS_I(inode)->root = args->root;
3006         return 0;
3007 }
3008
3009 static int btrfs_find_actor(struct inode *inode, void *opaque)
3010 {
3011         struct btrfs_iget_args *args = opaque;
3012         return args->ino == inode->i_ino &&
3013                 args->root == BTRFS_I(inode)->root;
3014 }
3015
3016 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3017                             struct btrfs_root *root, int wait)
3018 {
3019         struct inode *inode;
3020         struct btrfs_iget_args args;
3021         args.ino = objectid;
3022         args.root = root;
3023
3024         if (wait) {
3025                 inode = ilookup5(s, objectid, btrfs_find_actor,
3026                                  (void *)&args);
3027         } else {
3028                 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3029                                         (void *)&args);
3030         }
3031         return inode;
3032 }
3033
3034 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3035                                 struct btrfs_root *root)
3036 {
3037         struct inode *inode;
3038         struct btrfs_iget_args args;
3039         args.ino = objectid;
3040         args.root = root;
3041
3042         inode = iget5_locked(s, objectid, btrfs_find_actor,
3043                              btrfs_init_locked_inode,
3044                              (void *)&args);
3045         return inode;
3046 }
3047
3048 /* Get an inode object given its location and corresponding root.
3049  * Returns in *is_new if the inode was read from disk
3050  */
3051 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3052                          struct btrfs_root *root, int *is_new)
3053 {
3054         struct inode *inode;
3055
3056         inode = btrfs_iget_locked(s, location->objectid, root);
3057         if (!inode)
3058                 return ERR_PTR(-EACCES);
3059
3060         if (inode->i_state & I_NEW) {
3061                 BTRFS_I(inode)->root = root;
3062                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3063                 btrfs_read_locked_inode(inode);
3064                 unlock_new_inode(inode);
3065                 if (is_new)
3066                         *is_new = 1;
3067         } else {
3068                 if (is_new)
3069                         *is_new = 0;
3070         }
3071
3072         return inode;
3073 }
3074
3075 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3076 {
3077         struct inode *inode;
3078         struct btrfs_inode *bi = BTRFS_I(dir);
3079         struct btrfs_root *root = bi->root;
3080         struct btrfs_root *sub_root = root;
3081         struct btrfs_key location;
3082         int ret, new;
3083
3084         if (dentry->d_name.len > BTRFS_NAME_LEN)
3085                 return ERR_PTR(-ENAMETOOLONG);
3086
3087         ret = btrfs_inode_by_name(dir, dentry, &location);
3088
3089         if (ret < 0)
3090                 return ERR_PTR(ret);
3091
3092         inode = NULL;
3093         if (location.objectid) {
3094                 ret = fixup_tree_root_location(root, &location, &sub_root,
3095                                                 dentry);
3096                 if (ret < 0)
3097                         return ERR_PTR(ret);
3098                 if (ret > 0)
3099                         return ERR_PTR(-ENOENT);
3100                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3101                 if (IS_ERR(inode))
3102                         return ERR_CAST(inode);
3103         }
3104         return inode;
3105 }
3106
3107 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3108                                    struct nameidata *nd)
3109 {
3110         struct inode *inode;
3111
3112         if (dentry->d_name.len > BTRFS_NAME_LEN)
3113                 return ERR_PTR(-ENAMETOOLONG);
3114
3115         inode = btrfs_lookup_dentry(dir, dentry);
3116         if (IS_ERR(inode))
3117                 return ERR_CAST(inode);
3118
3119         return d_splice_alias(inode, dentry);
3120 }
3121
3122 static unsigned char btrfs_filetype_table[] = {
3123         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3124 };
3125
3126 static int btrfs_real_readdir(struct file *filp, void *dirent,
3127                               filldir_t filldir)
3128 {
3129         struct inode *inode = filp->f_dentry->d_inode;
3130         struct btrfs_root *root = BTRFS_I(inode)->root;
3131         struct btrfs_item *item;
3132         struct btrfs_dir_item *di;
3133         struct btrfs_key key;
3134         struct btrfs_key found_key;
3135         struct btrfs_path *path;
3136         int ret;
3137         u32 nritems;
3138         struct extent_buffer *leaf;
3139         int slot;
3140         int advance;
3141         unsigned char d_type;
3142         int over = 0;
3143         u32 di_cur;
3144         u32 di_total;
3145         u32 di_len;
3146         int key_type = BTRFS_DIR_INDEX_KEY;
3147         char tmp_name[32];
3148         char *name_ptr;
3149         int name_len;
3150
3151         /* FIXME, use a real flag for deciding about the key type */
3152         if (root->fs_info->tree_root == root)
3153                 key_type = BTRFS_DIR_ITEM_KEY;
3154
3155         /* special case for "." */
3156         if (filp->f_pos == 0) {
3157                 over = filldir(dirent, ".", 1,
3158                                1, inode->i_ino,
3159                                DT_DIR);
3160                 if (over)
3161                         return 0;
3162                 filp->f_pos = 1;
3163         }
3164         /* special case for .., just use the back ref */
3165         if (filp->f_pos == 1) {
3166                 u64 pino = parent_ino(filp->f_path.dentry);
3167                 over = filldir(dirent, "..", 2,
3168                                2, pino, DT_DIR);
3169                 if (over)
3170                         return 0;
3171                 filp->f_pos = 2;
3172         }
3173         path = btrfs_alloc_path();
3174         path->reada = 2;
3175
3176         btrfs_set_key_type(&key, key_type);
3177         key.offset = filp->f_pos;
3178         key.objectid = inode->i_ino;
3179
3180         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3181         if (ret < 0)
3182                 goto err;
3183         advance = 0;
3184
3185         while (1) {
3186                 leaf = path->nodes[0];
3187                 nritems = btrfs_header_nritems(leaf);
3188                 slot = path->slots[0];
3189                 if (advance || slot >= nritems) {
3190                         if (slot >= nritems - 1) {
3191                                 ret = btrfs_next_leaf(root, path);
3192                                 if (ret)
3193                                         break;
3194                                 leaf = path->nodes[0];
3195                                 nritems = btrfs_header_nritems(leaf);
3196                                 slot = path->slots[0];
3197                         } else {
3198                                 slot++;
3199                                 path->slots[0]++;
3200                         }
3201                 }
3202
3203                 advance = 1;
3204                 item = btrfs_item_nr(leaf, slot);
3205                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3206
3207                 if (found_key.objectid != key.objectid)
3208                         break;
3209                 if (btrfs_key_type(&found_key) != key_type)
3210                         break;
3211                 if (found_key.offset < filp->f_pos)
3212                         continue;
3213
3214                 filp->f_pos = found_key.offset;
3215
3216                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3217                 di_cur = 0;
3218                 di_total = btrfs_item_size(leaf, item);
3219
3220                 while (di_cur < di_total) {
3221                         struct btrfs_key location;
3222
3223                         name_len = btrfs_dir_name_len(leaf, di);
3224                         if (name_len <= sizeof(tmp_name)) {
3225                                 name_ptr = tmp_name;
3226                         } else {
3227                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3228                                 if (!name_ptr) {
3229                                         ret = -ENOMEM;
3230                                         goto err;
3231                                 }
3232                         }
3233                         read_extent_buffer(leaf, name_ptr,
3234                                            (unsigned long)(di + 1), name_len);
3235
3236                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3237                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3238
3239                         /* is this a reference to our own snapshot? If so
3240                          * skip it
3241                          */
3242                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3243                             location.objectid == root->root_key.objectid) {
3244                                 over = 0;
3245                                 goto skip;
3246                         }
3247                         over = filldir(dirent, name_ptr, name_len,
3248                                        found_key.offset, location.objectid,
3249                                        d_type);
3250
3251 skip:
3252                         if (name_ptr != tmp_name)
3253                                 kfree(name_ptr);
3254
3255                         if (over)
3256                                 goto nopos;
3257                         di_len = btrfs_dir_name_len(leaf, di) +
3258                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3259                         di_cur += di_len;
3260                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3261                 }
3262         }
3263
3264         /* Reached end of directory/root. Bump pos past the last item. */
3265         if (key_type == BTRFS_DIR_INDEX_KEY)
3266                 filp->f_pos = INT_LIMIT(off_t);
3267         else
3268                 filp->f_pos++;
3269 nopos:
3270         ret = 0;
3271 err:
3272         btrfs_free_path(path);
3273         return ret;
3274 }
3275
3276 int btrfs_write_inode(struct inode *inode, int wait)
3277 {
3278         struct btrfs_root *root = BTRFS_I(inode)->root;
3279         struct btrfs_trans_handle *trans;
3280         int ret = 0;
3281
3282         if (root->fs_info->btree_inode == inode)
3283                 return 0;
3284
3285         if (wait) {
3286                 trans = btrfs_join_transaction(root, 1);
3287                 btrfs_set_trans_block_group(trans, inode);
3288                 ret = btrfs_commit_transaction(trans, root);
3289         }
3290         return ret;
3291 }
3292
3293 /*
3294  * This is somewhat expensive, updating the tree every time the
3295  * inode changes.  But, it is most likely to find the inode in cache.
3296  * FIXME, needs more benchmarking...there are no reasons other than performance
3297  * to keep or drop this code.
3298  */
3299 void btrfs_dirty_inode(struct inode *inode)
3300 {
3301         struct btrfs_root *root = BTRFS_I(inode)->root;
3302         struct btrfs_trans_handle *trans;
3303
3304         trans = btrfs_join_transaction(root, 1);
3305         btrfs_set_trans_block_group(trans, inode);
3306         btrfs_update_inode(trans, root, inode);
3307         btrfs_end_transaction(trans, root);
3308 }
3309
3310 /*
3311  * find the highest existing sequence number in a directory
3312  * and then set the in-memory index_cnt variable to reflect
3313  * free sequence numbers
3314  */
3315 static int btrfs_set_inode_index_count(struct inode *inode)
3316 {
3317         struct btrfs_root *root = BTRFS_I(inode)->root;
3318         struct btrfs_key key, found_key;
3319         struct btrfs_path *path;
3320         struct extent_buffer *leaf;
3321         int ret;
3322
3323         key.objectid = inode->i_ino;
3324         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3325         key.offset = (u64)-1;
3326
3327         path = btrfs_alloc_path();
3328         if (!path)
3329                 return -ENOMEM;
3330
3331         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3332         if (ret < 0)
3333                 goto out;
3334         /* FIXME: we should be able to handle this */
3335         if (ret == 0)
3336                 goto out;
3337         ret = 0;
3338
3339         /*
3340          * MAGIC NUMBER EXPLANATION:
3341          * since we search a directory based on f_pos we have to start at 2
3342          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3343          * else has to start at 2
3344          */
3345         if (path->slots[0] == 0) {
3346                 BTRFS_I(inode)->index_cnt = 2;
3347                 goto out;
3348         }
3349
3350         path->slots[0]--;
3351
3352         leaf = path->nodes[0];
3353         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3354
3355         if (found_key.objectid != inode->i_ino ||
3356             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3357                 BTRFS_I(inode)->index_cnt = 2;
3358                 goto out;
3359         }
3360
3361         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3362 out:
3363         btrfs_free_path(path);
3364         return ret;
3365 }
3366
3367 /*
3368  * helper to find a free sequence number in a given directory.  This current
3369  * code is very simple, later versions will do smarter things in the btree
3370  */
3371 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3372 {
3373         int ret = 0;
3374
3375         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3376                 ret = btrfs_set_inode_index_count(dir);
3377                 if (ret)
3378                         return ret;
3379         }
3380
3381         *index = BTRFS_I(dir)->index_cnt;
3382         BTRFS_I(dir)->index_cnt++;
3383
3384         return ret;
3385 }
3386
3387 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3388                                      struct btrfs_root *root,
3389                                      struct inode *dir,
3390                                      const char *name, int name_len,
3391                                      u64 ref_objectid, u64 objectid,
3392                                      u64 alloc_hint, int mode, u64 *index)
3393 {
3394         struct inode *inode;
3395         struct btrfs_inode_item *inode_item;
3396         struct btrfs_key *location;
3397         struct btrfs_path *path;
3398         struct btrfs_inode_ref *ref;
3399         struct btrfs_key key[2];
3400         u32 sizes[2];
3401         unsigned long ptr;
3402         int ret;
3403         int owner;
3404
3405         path = btrfs_alloc_path();
3406         BUG_ON(!path);
3407
3408         inode = new_inode(root->fs_info->sb);
3409         if (!inode)
3410                 return ERR_PTR(-ENOMEM);
3411
3412         if (dir) {
3413                 ret = btrfs_set_inode_index(dir, index);
3414                 if (ret)
3415                         return ERR_PTR(ret);
3416         }
3417         /*
3418          * index_cnt is ignored for everything but a dir,
3419          * btrfs_get_inode_index_count has an explanation for the magic
3420          * number
3421          */
3422         init_btrfs_i(inode);
3423         BTRFS_I(inode)->index_cnt = 2;
3424         BTRFS_I(inode)->root = root;
3425         BTRFS_I(inode)->generation = trans->transid;
3426
3427         if (mode & S_IFDIR)
3428                 owner = 0;
3429         else
3430                 owner = 1;
3431         BTRFS_I(inode)->block_group =
3432                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3433         if ((mode & S_IFREG)) {
3434                 if (btrfs_test_opt(root, NODATASUM))
3435                         btrfs_set_flag(inode, NODATASUM);
3436                 if (btrfs_test_opt(root, NODATACOW))
3437                         btrfs_set_flag(inode, NODATACOW);
3438         }
3439
3440         key[0].objectid = objectid;
3441         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3442         key[0].offset = 0;
3443
3444         key[1].objectid = objectid;
3445         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3446         key[1].offset = ref_objectid;
3447
3448         sizes[0] = sizeof(struct btrfs_inode_item);
3449         sizes[1] = name_len + sizeof(*ref);
3450
3451         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3452         if (ret != 0)
3453                 goto fail;
3454
3455         if (objectid > root->highest_inode)
3456                 root->highest_inode = objectid;
3457
3458         inode->i_uid = current_fsuid();
3459         inode->i_gid = current_fsgid();
3460         inode->i_mode = mode;
3461         inode->i_ino = objectid;
3462         inode_set_bytes(inode, 0);
3463         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3464         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3465                                   struct btrfs_inode_item);
3466         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3467
3468         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3469                              struct btrfs_inode_ref);
3470         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3471         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3472         ptr = (unsigned long)(ref + 1);
3473         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3474
3475         btrfs_mark_buffer_dirty(path->nodes[0]);
3476         btrfs_free_path(path);
3477
3478         location = &BTRFS_I(inode)->location;
3479         location->objectid = objectid;
3480         location->offset = 0;
3481         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3482
3483         insert_inode_hash(inode);
3484         return inode;
3485 fail:
3486         if (dir)
3487                 BTRFS_I(dir)->index_cnt--;
3488         btrfs_free_path(path);
3489         return ERR_PTR(ret);
3490 }
3491
3492 static inline u8 btrfs_inode_type(struct inode *inode)
3493 {
3494         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3495 }
3496
3497 /*
3498  * utility function to add 'inode' into 'parent_inode' with
3499  * a give name and a given sequence number.
3500  * if 'add_backref' is true, also insert a backref from the
3501  * inode to the parent directory.
3502  */
3503 int btrfs_add_link(struct btrfs_trans_handle *trans,
3504                    struct inode *parent_inode, struct inode *inode,
3505                    const char *name, int name_len, int add_backref, u64 index)
3506 {
3507         int ret;
3508         struct btrfs_key key;
3509         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3510
3511         key.objectid = inode->i_ino;
3512         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3513         key.offset = 0;
3514
3515         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3516                                     parent_inode->i_ino,
3517                                     &key, btrfs_inode_type(inode),
3518                                     index);
3519         if (ret == 0) {
3520                 if (add_backref) {
3521                         ret = btrfs_insert_inode_ref(trans, root,
3522                                                      name, name_len,
3523                                                      inode->i_ino,
3524                                                      parent_inode->i_ino,
3525                                                      index);
3526                 }
3527                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3528                                    name_len * 2);
3529                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3530                 ret = btrfs_update_inode(trans, root, parent_inode);
3531         }
3532         return ret;
3533 }
3534
3535 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3536                             struct dentry *dentry, struct inode *inode,
3537                             int backref, u64 index)
3538 {
3539         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3540                                  inode, dentry->d_name.name,
3541                                  dentry->d_name.len, backref, index);
3542         if (!err) {
3543                 d_instantiate(dentry, inode);
3544                 return 0;
3545         }
3546         if (err > 0)
3547                 err = -EEXIST;
3548         return err;
3549 }
3550
3551 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3552                         int mode, dev_t rdev)
3553 {
3554         struct btrfs_trans_handle *trans;
3555         struct btrfs_root *root = BTRFS_I(dir)->root;
3556         struct inode *inode = NULL;
3557         int err;
3558         int drop_inode = 0;
3559         u64 objectid;
3560         unsigned long nr = 0;
3561         u64 index = 0;
3562
3563         if (!new_valid_dev(rdev))
3564                 return -EINVAL;
3565
3566         err = btrfs_check_free_space(root, 1, 0);
3567         if (err)
3568                 goto fail;
3569
3570         trans = btrfs_start_transaction(root, 1);
3571         btrfs_set_trans_block_group(trans, dir);
3572
3573         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3574         if (err) {
3575                 err = -ENOSPC;
3576                 goto out_unlock;
3577         }
3578
3579         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3580                                 dentry->d_name.len,
3581                                 dentry->d_parent->d_inode->i_ino, objectid,
3582                                 BTRFS_I(dir)->block_group, mode, &index);
3583         err = PTR_ERR(inode);
3584         if (IS_ERR(inode))
3585                 goto out_unlock;
3586
3587         err = btrfs_init_acl(inode, dir);
3588         if (err) {
3589                 drop_inode = 1;
3590                 goto out_unlock;
3591         }
3592
3593         btrfs_set_trans_block_group(trans, inode);
3594         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3595         if (err)
3596                 drop_inode = 1;
3597         else {
3598                 inode->i_op = &btrfs_special_inode_operations;
3599                 init_special_inode(inode, inode->i_mode, rdev);
3600                 btrfs_update_inode(trans, root, inode);
3601         }
3602         dir->i_sb->s_dirt = 1;
3603         btrfs_update_inode_block_group(trans, inode);
3604         btrfs_update_inode_block_group(trans, dir);
3605 out_unlock:
3606         nr = trans->blocks_used;
3607         btrfs_end_transaction_throttle(trans, root);
3608 fail:
3609         if (drop_inode) {
3610                 inode_dec_link_count(inode);
3611                 iput(inode);
3612         }
3613         btrfs_btree_balance_dirty(root, nr);
3614         return err;
3615 }
3616
3617 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3618                         int mode, struct nameidata *nd)
3619 {
3620         struct btrfs_trans_handle *trans;
3621         struct btrfs_root *root = BTRFS_I(dir)->root;
3622         struct inode *inode = NULL;
3623         int err;
3624         int drop_inode = 0;
3625         unsigned long nr = 0;
3626         u64 objectid;
3627         u64 index = 0;
3628
3629         err = btrfs_check_free_space(root, 1, 0);
3630         if (err)
3631                 goto fail;
3632         trans = btrfs_start_transaction(root, 1);
3633         btrfs_set_trans_block_group(trans, dir);
3634
3635         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3636         if (err) {
3637                 err = -ENOSPC;
3638                 goto out_unlock;
3639         }
3640
3641         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3642                                 dentry->d_name.len,
3643                                 dentry->d_parent->d_inode->i_ino,
3644                                 objectid, BTRFS_I(dir)->block_group, mode,
3645                                 &index);
3646         err = PTR_ERR(inode);
3647         if (IS_ERR(inode))
3648                 goto out_unlock;
3649
3650         err = btrfs_init_acl(inode, dir);
3651         if (err) {
3652                 drop_inode = 1;
3653                 goto out_unlock;
3654         }
3655
3656         btrfs_set_trans_block_group(trans, inode);
3657         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3658         if (err)
3659                 drop_inode = 1;
3660         else {
3661                 inode->i_mapping->a_ops = &btrfs_aops;
3662                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3663                 inode->i_fop = &btrfs_file_operations;
3664                 inode->i_op = &btrfs_file_inode_operations;
3665                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3666         }
3667         dir->i_sb->s_dirt = 1;
3668         btrfs_update_inode_block_group(trans, inode);
3669         btrfs_update_inode_block_group(trans, dir);
3670 out_unlock:
3671         nr = trans->blocks_used;
3672         btrfs_end_transaction_throttle(trans, root);
3673 fail:
3674         if (drop_inode) {
3675                 inode_dec_link_count(inode);
3676                 iput(inode);
3677         }
3678         btrfs_btree_balance_dirty(root, nr);
3679         return err;
3680 }
3681
3682 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3683                       struct dentry *dentry)
3684 {
3685         struct btrfs_trans_handle *trans;
3686         struct btrfs_root *root = BTRFS_I(dir)->root;
3687         struct inode *inode = old_dentry->d_inode;
3688         u64 index;
3689         unsigned long nr = 0;
3690         int err;
3691         int drop_inode = 0;
3692
3693         if (inode->i_nlink == 0)
3694                 return -ENOENT;
3695
3696         btrfs_inc_nlink(inode);
3697         err = btrfs_check_free_space(root, 1, 0);
3698         if (err)
3699                 goto fail;
3700         err = btrfs_set_inode_index(dir, &index);
3701         if (err)
3702                 goto fail;
3703
3704         trans = btrfs_start_transaction(root, 1);
3705
3706         btrfs_set_trans_block_group(trans, dir);
3707         atomic_inc(&inode->i_count);
3708
3709         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3710
3711         if (err)
3712                 drop_inode = 1;
3713
3714         dir->i_sb->s_dirt = 1;
3715         btrfs_update_inode_block_group(trans, dir);
3716         err = btrfs_update_inode(trans, root, inode);
3717
3718         if (err)
3719                 drop_inode = 1;
3720
3721         nr = trans->blocks_used;
3722         btrfs_end_transaction_throttle(trans, root);
3723 fail:
3724         if (drop_inode) {
3725                 inode_dec_link_count(inode);
3726                 iput(inode);
3727         }
3728         btrfs_btree_balance_dirty(root, nr);
3729         return err;
3730 }
3731
3732 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3733 {
3734         struct inode *inode = NULL;
3735         struct btrfs_trans_handle *trans;
3736         struct btrfs_root *root = BTRFS_I(dir)->root;
3737         int err = 0;
3738         int drop_on_err = 0;
3739         u64 objectid = 0;
3740         u64 index = 0;
3741         unsigned long nr = 1;
3742
3743         err = btrfs_check_free_space(root, 1, 0);
3744         if (err)
3745                 goto out_unlock;
3746
3747         trans = btrfs_start_transaction(root, 1);
3748         btrfs_set_trans_block_group(trans, dir);
3749
3750         if (IS_ERR(trans)) {
3751                 err = PTR_ERR(trans);
3752                 goto out_unlock;
3753         }
3754
3755         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3756         if (err) {
3757                 err = -ENOSPC;
3758                 goto out_unlock;
3759         }
3760
3761         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3762                                 dentry->d_name.len,
3763                                 dentry->d_parent->d_inode->i_ino, objectid,
3764                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3765                                 &index);
3766         if (IS_ERR(inode)) {
3767                 err = PTR_ERR(inode);
3768                 goto out_fail;
3769         }
3770
3771         drop_on_err = 1;
3772
3773         err = btrfs_init_acl(inode, dir);
3774         if (err)
3775                 goto out_fail;
3776
3777         inode->i_op = &btrfs_dir_inode_operations;
3778         inode->i_fop = &btrfs_dir_file_operations;
3779         btrfs_set_trans_block_group(trans, inode);
3780
3781         btrfs_i_size_write(inode, 0);
3782         err = btrfs_update_inode(trans, root, inode);
3783         if (err)
3784                 goto out_fail;
3785
3786         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3787                                  inode, dentry->d_name.name,
3788                                  dentry->d_name.len, 0, index);
3789         if (err)
3790                 goto out_fail;
3791
3792         d_instantiate(dentry, inode);
3793         drop_on_err = 0;
3794         dir->i_sb->s_dirt = 1;
3795         btrfs_update_inode_block_group(trans, inode);
3796         btrfs_update_inode_block_group(trans, dir);
3797
3798 out_fail:
3799         nr = trans->blocks_used;
3800         btrfs_end_transaction_throttle(trans, root);
3801
3802 out_unlock:
3803         if (drop_on_err)
3804                 iput(inode);
3805         btrfs_btree_balance_dirty(root, nr);
3806         return err;
3807 }
3808
3809 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3810  * and an extent that you want to insert, deal with overlap and insert
3811  * the new extent into the tree.
3812  */
3813 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3814                                 struct extent_map *existing,
3815                                 struct extent_map *em,
3816                                 u64 map_start, u64 map_len)
3817 {
3818         u64 start_diff;
3819
3820         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3821         start_diff = map_start - em->start;
3822         em->start = map_start;
3823         em->len = map_len;
3824         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3825             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3826                 em->block_start += start_diff;
3827                 em->block_len -= start_diff;
3828         }
3829         return add_extent_mapping(em_tree, em);
3830 }
3831
3832 static noinline int uncompress_inline(struct btrfs_path *path,
3833                                       struct inode *inode, struct page *page,
3834                                       size_t pg_offset, u64 extent_offset,
3835                                       struct btrfs_file_extent_item *item)
3836 {
3837         int ret;
3838         struct extent_buffer *leaf = path->nodes[0];
3839         char *tmp;
3840         size_t max_size;
3841         unsigned long inline_size;
3842         unsigned long ptr;
3843
3844         WARN_ON(pg_offset != 0);
3845         max_size = btrfs_file_extent_ram_bytes(leaf, item);
3846         inline_size = btrfs_file_extent_inline_item_len(leaf,
3847                                         btrfs_item_nr(leaf, path->slots[0]));
3848         tmp = kmalloc(inline_size, GFP_NOFS);
3849         ptr = btrfs_file_extent_inline_start(item);
3850
3851         read_extent_buffer(leaf, tmp, ptr, inline_size);
3852
3853         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3854         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3855                                     inline_size, max_size);
3856         if (ret) {
3857                 char *kaddr = kmap_atomic(page, KM_USER0);
3858                 unsigned long copy_size = min_t(u64,
3859                                   PAGE_CACHE_SIZE - pg_offset,
3860                                   max_size - extent_offset);
3861                 memset(kaddr + pg_offset, 0, copy_size);
3862                 kunmap_atomic(kaddr, KM_USER0);
3863         }
3864         kfree(tmp);
3865         return 0;
3866 }
3867
3868 /*
3869  * a bit scary, this does extent mapping from logical file offset to the disk.
3870  * the ugly parts come from merging extents from the disk with the in-ram
3871  * representation.  This gets more complex because of the data=ordered code,
3872  * where the in-ram extents might be locked pending data=ordered completion.
3873  *
3874  * This also copies inline extents directly into the page.
3875  */
3876
3877 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3878                                     size_t pg_offset, u64 start, u64 len,
3879                                     int create)
3880 {
3881         int ret;
3882         int err = 0;
3883         u64 bytenr;
3884         u64 extent_start = 0;
3885         u64 extent_end = 0;
3886         u64 objectid = inode->i_ino;
3887         u32 found_type;
3888         struct btrfs_path *path = NULL;
3889         struct btrfs_root *root = BTRFS_I(inode)->root;
3890         struct btrfs_file_extent_item *item;
3891         struct extent_buffer *leaf;
3892         struct btrfs_key found_key;
3893         struct extent_map *em = NULL;
3894         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3895         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3896         struct btrfs_trans_handle *trans = NULL;
3897         int compressed;
3898
3899 again:
3900         spin_lock(&em_tree->lock);
3901         em = lookup_extent_mapping(em_tree, start, len);
3902         if (em)
3903                 em->bdev = root->fs_info->fs_devices->latest_bdev;
3904         spin_unlock(&em_tree->lock);
3905
3906         if (em) {
3907                 if (em->start > start || em->start + em->len <= start)
3908                         free_extent_map(em);
3909                 else if (em->block_start == EXTENT_MAP_INLINE && page)
3910                         free_extent_map(em);
3911                 else
3912                         goto out;
3913         }
3914         em = alloc_extent_map(GFP_NOFS);
3915         if (!em) {
3916                 err = -ENOMEM;
3917                 goto out;
3918         }
3919         em->bdev = root->fs_info->fs_devices->latest_bdev;
3920         em->start = EXTENT_MAP_HOLE;
3921         em->orig_start = EXTENT_MAP_HOLE;
3922         em->len = (u64)-1;
3923         em->block_len = (u64)-1;
3924
3925         if (!path) {
3926                 path = btrfs_alloc_path();
3927                 BUG_ON(!path);
3928         }
3929
3930         ret = btrfs_lookup_file_extent(trans, root, path,
3931                                        objectid, start, trans != NULL);
3932         if (ret < 0) {
3933                 err = ret;
3934                 goto out;
3935         }
3936
3937         if (ret != 0) {
3938                 if (path->slots[0] == 0)
3939                         goto not_found;
3940                 path->slots[0]--;
3941         }
3942
3943         leaf = path->nodes[0];
3944         item = btrfs_item_ptr(leaf, path->slots[0],
3945                               struct btrfs_file_extent_item);
3946         /* are we inside the extent that was found? */
3947         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3948         found_type = btrfs_key_type(&found_key);
3949         if (found_key.objectid != objectid ||
3950             found_type != BTRFS_EXTENT_DATA_KEY) {
3951                 goto not_found;
3952         }
3953
3954         found_type = btrfs_file_extent_type(leaf, item);
3955         extent_start = found_key.offset;
3956         compressed = btrfs_file_extent_compression(leaf, item);
3957         if (found_type == BTRFS_FILE_EXTENT_REG ||
3958             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3959                 extent_end = extent_start +
3960                        btrfs_file_extent_num_bytes(leaf, item);
3961         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3962                 size_t size;
3963                 size = btrfs_file_extent_inline_len(leaf, item);
3964                 extent_end = (extent_start + size + root->sectorsize - 1) &
3965                         ~((u64)root->sectorsize - 1);
3966         }
3967
3968         if (start >= extent_end) {
3969                 path->slots[0]++;
3970                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3971                         ret = btrfs_next_leaf(root, path);
3972                         if (ret < 0) {
3973                                 err = ret;
3974                                 goto out;
3975                         }
3976                         if (ret > 0)
3977                                 goto not_found;
3978                         leaf = path->nodes[0];
3979                 }
3980                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3981                 if (found_key.objectid != objectid ||
3982                     found_key.type != BTRFS_EXTENT_DATA_KEY)
3983                         goto not_found;
3984                 if (start + len <= found_key.offset)
3985                         goto not_found;
3986                 em->start = start;
3987                 em->len = found_key.offset - start;
3988                 goto not_found_em;
3989         }
3990
3991         if (found_type == BTRFS_FILE_EXTENT_REG ||
3992             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3993                 em->start = extent_start;
3994                 em->len = extent_end - extent_start;
3995                 em->orig_start = extent_start -
3996                                  btrfs_file_extent_offset(leaf, item);
3997                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3998                 if (bytenr == 0) {
3999                         em->block_start = EXTENT_MAP_HOLE;
4000                         goto insert;
4001                 }
4002                 if (compressed) {
4003                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4004                         em->block_start = bytenr;
4005                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4006                                                                          item);
4007                 } else {
4008                         bytenr += btrfs_file_extent_offset(leaf, item);
4009                         em->block_start = bytenr;
4010                         em->block_len = em->len;
4011                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4012                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4013                 }
4014                 goto insert;
4015         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4016                 unsigned long ptr;
4017                 char *map;
4018                 size_t size;
4019                 size_t extent_offset;
4020                 size_t copy_size;
4021
4022                 em->block_start = EXTENT_MAP_INLINE;
4023                 if (!page || create) {
4024                         em->start = extent_start;
4025                         em->len = extent_end - extent_start;
4026                         goto out;
4027                 }
4028
4029                 size = btrfs_file_extent_inline_len(leaf, item);
4030                 extent_offset = page_offset(page) + pg_offset - extent_start;
4031                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4032                                 size - extent_offset);
4033                 em->start = extent_start + extent_offset;
4034                 em->len = (copy_size + root->sectorsize - 1) &
4035                         ~((u64)root->sectorsize - 1);
4036                 em->orig_start = EXTENT_MAP_INLINE;
4037                 if (compressed)
4038                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4039                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4040                 if (create == 0 && !PageUptodate(page)) {
4041                         if (btrfs_file_extent_compression(leaf, item) ==
4042                             BTRFS_COMPRESS_ZLIB) {
4043                                 ret = uncompress_inline(path, inode, page,
4044                                                         pg_offset,
4045                                                         extent_offset, item);
4046                                 BUG_ON(ret);
4047                         } else {
4048                                 map = kmap(page);
4049                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4050                                                    copy_size);
4051                                 kunmap(page);
4052                         }
4053                         flush_dcache_page(page);
4054                 } else if (create && PageUptodate(page)) {
4055                         if (!trans) {
4056                                 kunmap(page);
4057                                 free_extent_map(em);
4058                                 em = NULL;
4059                                 btrfs_release_path(root, path);
4060                                 trans = btrfs_join_transaction(root, 1);
4061                                 goto again;
4062                         }
4063                         map = kmap(page);
4064                         write_extent_buffer(leaf, map + pg_offset, ptr,
4065                                             copy_size);
4066                         kunmap(page);
4067                         btrfs_mark_buffer_dirty(leaf);
4068                 }
4069                 set_extent_uptodate(io_tree, em->start,
4070                                     extent_map_end(em) - 1, GFP_NOFS);
4071                 goto insert;
4072         } else {
4073                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4074                 WARN_ON(1);
4075         }
4076 not_found:
4077         em->start = start;
4078         em->len = len;
4079 not_found_em:
4080         em->block_start = EXTENT_MAP_HOLE;
4081         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4082 insert:
4083         btrfs_release_path(root, path);
4084         if (em->start > start || extent_map_end(em) <= start) {
4085                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4086                        "[%llu %llu]\n", (unsigned long long)em->start,
4087                        (unsigned long long)em->len,
4088                        (unsigned long long)start,
4089                        (unsigned long long)len);
4090                 err = -EIO;
4091                 goto out;
4092         }
4093
4094         err = 0;
4095         spin_lock(&em_tree->lock);
4096         ret = add_extent_mapping(em_tree, em);
4097         /* it is possible that someone inserted the extent into the tree
4098          * while we had the lock dropped.  It is also possible that
4099          * an overlapping map exists in the tree
4100          */
4101         if (ret == -EEXIST) {
4102                 struct extent_map *existing;
4103
4104                 ret = 0;
4105
4106                 existing = lookup_extent_mapping(em_tree, start, len);
4107                 if (existing && (existing->start > start ||
4108                     existing->start + existing->len <= start)) {
4109                         free_extent_map(existing);
4110                         existing = NULL;
4111                 }
4112                 if (!existing) {
4113                         existing = lookup_extent_mapping(em_tree, em->start,
4114                                                          em->len);
4115                         if (existing) {
4116                                 err = merge_extent_mapping(em_tree, existing,
4117                                                            em, start,
4118                                                            root->sectorsize);
4119                                 free_extent_map(existing);
4120                                 if (err) {
4121                                         free_extent_map(em);
4122                                         em = NULL;
4123                                 }
4124                         } else {
4125                                 err = -EIO;
4126                                 free_extent_map(em);
4127                                 em = NULL;
4128                         }
4129                 } else {
4130                         free_extent_map(em);
4131                         em = existing;
4132                         err = 0;
4133                 }
4134         }
4135         spin_unlock(&em_tree->lock);
4136 out:
4137         if (path)
4138                 btrfs_free_path(path);
4139         if (trans) {
4140                 ret = btrfs_end_transaction(trans, root);
4141                 if (!err)
4142                         err = ret;
4143         }
4144         if (err) {
4145                 free_extent_map(em);
4146                 WARN_ON(1);
4147                 return ERR_PTR(err);
4148         }
4149         return em;
4150 }
4151
4152 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4153                         const struct iovec *iov, loff_t offset,
4154                         unsigned long nr_segs)
4155 {
4156         return -EINVAL;
4157 }
4158
4159 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4160                 __u64 start, __u64 len)
4161 {
4162         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4163 }
4164
4165 int btrfs_readpage(struct file *file, struct page *page)
4166 {
4167         struct extent_io_tree *tree;
4168         tree = &BTRFS_I(page->mapping->host)->io_tree;
4169         return extent_read_full_page(tree, page, btrfs_get_extent);
4170 }
4171
4172 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4173 {
4174         struct extent_io_tree *tree;
4175
4176
4177         if (current->flags & PF_MEMALLOC) {
4178                 redirty_page_for_writepage(wbc, page);
4179                 unlock_page(page);
4180                 return 0;
4181         }
4182         tree = &BTRFS_I(page->mapping->host)->io_tree;
4183         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4184 }
4185
4186 int btrfs_writepages(struct address_space *mapping,
4187                      struct writeback_control *wbc)
4188 {
4189         struct extent_io_tree *tree;
4190
4191         tree = &BTRFS_I(mapping->host)->io_tree;
4192         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4193 }
4194
4195 static int
4196 btrfs_readpages(struct file *file, struct address_space *mapping,
4197                 struct list_head *pages, unsigned nr_pages)
4198 {
4199         struct extent_io_tree *tree;
4200         tree = &BTRFS_I(mapping->host)->io_tree;
4201         return extent_readpages(tree, mapping, pages, nr_pages,
4202                                 btrfs_get_extent);
4203 }
4204 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4205 {
4206         struct extent_io_tree *tree;
4207         struct extent_map_tree *map;
4208         int ret;
4209
4210         tree = &BTRFS_I(page->mapping->host)->io_tree;
4211         map = &BTRFS_I(page->mapping->host)->extent_tree;
4212         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4213         if (ret == 1) {
4214                 ClearPagePrivate(page);
4215                 set_page_private(page, 0);
4216                 page_cache_release(page);
4217         }
4218         return ret;
4219 }
4220
4221 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4222 {
4223         if (PageWriteback(page) || PageDirty(page))
4224                 return 0;
4225         return __btrfs_releasepage(page, gfp_flags);
4226 }
4227
4228 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4229 {
4230         struct extent_io_tree *tree;
4231         struct btrfs_ordered_extent *ordered;
4232         u64 page_start = page_offset(page);
4233         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4234
4235         wait_on_page_writeback(page);
4236         tree = &BTRFS_I(page->mapping->host)->io_tree;
4237         if (offset) {
4238                 btrfs_releasepage(page, GFP_NOFS);
4239                 return;
4240         }
4241
4242         lock_extent(tree, page_start, page_end, GFP_NOFS);
4243         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4244                                            page_offset(page));
4245         if (ordered) {
4246                 /*
4247                  * IO on this page will never be started, so we need
4248                  * to account for any ordered extents now
4249                  */
4250                 clear_extent_bit(tree, page_start, page_end,
4251                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4252                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
4253                 btrfs_finish_ordered_io(page->mapping->host,
4254                                         page_start, page_end);
4255                 btrfs_put_ordered_extent(ordered);
4256                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4257         }
4258         clear_extent_bit(tree, page_start, page_end,
4259                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4260                  EXTENT_ORDERED,
4261                  1, 1, GFP_NOFS);
4262         __btrfs_releasepage(page, GFP_NOFS);
4263
4264         ClearPageChecked(page);
4265         if (PagePrivate(page)) {
4266                 ClearPagePrivate(page);
4267                 set_page_private(page, 0);
4268                 page_cache_release(page);
4269         }
4270 }
4271
4272 /*
4273  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4274  * called from a page fault handler when a page is first dirtied. Hence we must
4275  * be careful to check for EOF conditions here. We set the page up correctly
4276  * for a written page which means we get ENOSPC checking when writing into
4277  * holes and correct delalloc and unwritten extent mapping on filesystems that
4278  * support these features.
4279  *
4280  * We are not allowed to take the i_mutex here so we have to play games to
4281  * protect against truncate races as the page could now be beyond EOF.  Because
4282  * vmtruncate() writes the inode size before removing pages, once we have the
4283  * page lock we can determine safely if the page is beyond EOF. If it is not
4284  * beyond EOF, then the page is guaranteed safe against truncation until we
4285  * unlock the page.
4286  */
4287 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4288 {
4289         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4290         struct btrfs_root *root = BTRFS_I(inode)->root;
4291         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4292         struct btrfs_ordered_extent *ordered;
4293         char *kaddr;
4294         unsigned long zero_start;
4295         loff_t size;
4296         int ret;
4297         u64 page_start;
4298         u64 page_end;
4299
4300         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4301         if (ret)
4302                 goto out;
4303
4304         ret = -EINVAL;
4305 again:
4306         lock_page(page);
4307         size = i_size_read(inode);
4308         page_start = page_offset(page);
4309         page_end = page_start + PAGE_CACHE_SIZE - 1;
4310
4311         if ((page->mapping != inode->i_mapping) ||
4312             (page_start >= size)) {
4313                 /* page got truncated out from underneath us */
4314                 goto out_unlock;
4315         }
4316         wait_on_page_writeback(page);
4317
4318         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4319         set_page_extent_mapped(page);
4320
4321         /*
4322          * we can't set the delalloc bits if there are pending ordered
4323          * extents.  Drop our locks and wait for them to finish
4324          */
4325         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4326         if (ordered) {
4327                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4328                 unlock_page(page);
4329                 btrfs_start_ordered_extent(inode, ordered, 1);
4330                 btrfs_put_ordered_extent(ordered);
4331                 goto again;
4332         }
4333
4334         btrfs_set_extent_delalloc(inode, page_start, page_end);
4335         ret = 0;
4336
4337         /* page is wholly or partially inside EOF */
4338         if (page_start + PAGE_CACHE_SIZE > size)
4339                 zero_start = size & ~PAGE_CACHE_MASK;
4340         else
4341                 zero_start = PAGE_CACHE_SIZE;
4342
4343         if (zero_start != PAGE_CACHE_SIZE) {
4344                 kaddr = kmap(page);
4345                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4346                 flush_dcache_page(page);
4347                 kunmap(page);
4348         }
4349         ClearPageChecked(page);
4350         set_page_dirty(page);
4351         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4352
4353 out_unlock:
4354         unlock_page(page);
4355 out:
4356         return ret;
4357 }
4358
4359 static void btrfs_truncate(struct inode *inode)
4360 {
4361         struct btrfs_root *root = BTRFS_I(inode)->root;
4362         int ret;
4363         struct btrfs_trans_handle *trans;
4364         unsigned long nr;
4365         u64 mask = root->sectorsize - 1;
4366
4367         if (!S_ISREG(inode->i_mode))
4368                 return;
4369         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4370                 return;
4371
4372         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4373         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4374
4375         trans = btrfs_start_transaction(root, 1);
4376         btrfs_set_trans_block_group(trans, inode);
4377         btrfs_i_size_write(inode, inode->i_size);
4378
4379         ret = btrfs_orphan_add(trans, inode);
4380         if (ret)
4381                 goto out;
4382         /* FIXME, add redo link to tree so we don't leak on crash */
4383         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4384                                       BTRFS_EXTENT_DATA_KEY);
4385         btrfs_update_inode(trans, root, inode);
4386
4387         ret = btrfs_orphan_del(trans, inode);
4388         BUG_ON(ret);
4389
4390 out:
4391         nr = trans->blocks_used;
4392         ret = btrfs_end_transaction_throttle(trans, root);
4393         BUG_ON(ret);
4394         btrfs_btree_balance_dirty(root, nr);
4395 }
4396
4397 /*
4398  * create a new subvolume directory/inode (helper for the ioctl).
4399  */
4400 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4401                              struct btrfs_root *new_root, struct dentry *dentry,
4402                              u64 new_dirid, u64 alloc_hint)
4403 {
4404         struct inode *inode;
4405         int error;
4406         u64 index = 0;
4407
4408         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4409                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4410         if (IS_ERR(inode))
4411                 return PTR_ERR(inode);
4412         inode->i_op = &btrfs_dir_inode_operations;
4413         inode->i_fop = &btrfs_dir_file_operations;
4414
4415         inode->i_nlink = 1;
4416         btrfs_i_size_write(inode, 0);
4417
4418         error = btrfs_update_inode(trans, new_root, inode);
4419         if (error)
4420                 return error;
4421
4422         d_instantiate(dentry, inode);
4423         return 0;
4424 }
4425
4426 /* helper function for file defrag and space balancing.  This
4427  * forces readahead on a given range of bytes in an inode
4428  */
4429 unsigned long btrfs_force_ra(struct address_space *mapping,
4430                               struct file_ra_state *ra, struct file *file,
4431                               pgoff_t offset, pgoff_t last_index)
4432 {
4433         pgoff_t req_size = last_index - offset + 1;
4434
4435         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4436         return offset + req_size;
4437 }
4438
4439 struct inode *btrfs_alloc_inode(struct super_block *sb)
4440 {
4441         struct btrfs_inode *ei;
4442
4443         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4444         if (!ei)
4445                 return NULL;
4446         ei->last_trans = 0;
4447         ei->logged_trans = 0;
4448         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4449         ei->i_acl = BTRFS_ACL_NOT_CACHED;
4450         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4451         INIT_LIST_HEAD(&ei->i_orphan);
4452         return &ei->vfs_inode;
4453 }
4454
4455 void btrfs_destroy_inode(struct inode *inode)
4456 {
4457         struct btrfs_ordered_extent *ordered;
4458         WARN_ON(!list_empty(&inode->i_dentry));
4459         WARN_ON(inode->i_data.nrpages);
4460
4461         if (BTRFS_I(inode)->i_acl &&
4462             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4463                 posix_acl_release(BTRFS_I(inode)->i_acl);
4464         if (BTRFS_I(inode)->i_default_acl &&
4465             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4466                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4467
4468         spin_lock(&BTRFS_I(inode)->root->list_lock);
4469         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4470                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4471                        " list\n", inode->i_ino);
4472                 dump_stack();
4473         }
4474         spin_unlock(&BTRFS_I(inode)->root->list_lock);
4475
4476         while (1) {
4477                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4478                 if (!ordered)
4479                         break;
4480                 else {
4481                         printk(KERN_ERR "btrfs found ordered "
4482                                "extent %llu %llu on inode cleanup\n",
4483                                (unsigned long long)ordered->file_offset,
4484                                (unsigned long long)ordered->len);
4485                         btrfs_remove_ordered_extent(inode, ordered);
4486                         btrfs_put_ordered_extent(ordered);
4487                         btrfs_put_ordered_extent(ordered);
4488                 }
4489         }
4490         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4491         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4492 }
4493
4494 static void init_once(void *foo)
4495 {
4496         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4497
4498         inode_init_once(&ei->vfs_inode);
4499 }
4500
4501 void btrfs_destroy_cachep(void)
4502 {
4503         if (btrfs_inode_cachep)
4504                 kmem_cache_destroy(btrfs_inode_cachep);
4505         if (btrfs_trans_handle_cachep)
4506                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4507         if (btrfs_transaction_cachep)
4508                 kmem_cache_destroy(btrfs_transaction_cachep);
4509         if (btrfs_bit_radix_cachep)
4510                 kmem_cache_destroy(btrfs_bit_radix_cachep);
4511         if (btrfs_path_cachep)
4512                 kmem_cache_destroy(btrfs_path_cachep);
4513 }
4514
4515 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4516                                        unsigned long extra_flags,
4517                                        void (*ctor)(void *))
4518 {
4519         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4520                                  SLAB_MEM_SPREAD | extra_flags), ctor);
4521 }
4522
4523 int btrfs_init_cachep(void)
4524 {
4525         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4526                                           sizeof(struct btrfs_inode),
4527                                           0, init_once);
4528         if (!btrfs_inode_cachep)
4529                 goto fail;
4530         btrfs_trans_handle_cachep =
4531                         btrfs_cache_create("btrfs_trans_handle_cache",
4532                                            sizeof(struct btrfs_trans_handle),
4533                                            0, NULL);
4534         if (!btrfs_trans_handle_cachep)
4535                 goto fail;
4536         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4537                                              sizeof(struct btrfs_transaction),
4538                                              0, NULL);
4539         if (!btrfs_transaction_cachep)
4540                 goto fail;
4541         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4542                                          sizeof(struct btrfs_path),
4543                                          0, NULL);
4544         if (!btrfs_path_cachep)
4545                 goto fail;
4546         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4547                                               SLAB_DESTROY_BY_RCU, NULL);
4548         if (!btrfs_bit_radix_cachep)
4549                 goto fail;
4550         return 0;
4551 fail:
4552         btrfs_destroy_cachep();
4553         return -ENOMEM;
4554 }
4555
4556 static int btrfs_getattr(struct vfsmount *mnt,
4557                          struct dentry *dentry, struct kstat *stat)
4558 {
4559         struct inode *inode = dentry->d_inode;
4560         generic_fillattr(inode, stat);
4561         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4562         stat->blksize = PAGE_CACHE_SIZE;
4563         stat->blocks = (inode_get_bytes(inode) +
4564                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4565         return 0;
4566 }
4567
4568 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4569                            struct inode *new_dir, struct dentry *new_dentry)
4570 {
4571         struct btrfs_trans_handle *trans;
4572         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4573         struct inode *new_inode = new_dentry->d_inode;
4574         struct inode *old_inode = old_dentry->d_inode;
4575         struct timespec ctime = CURRENT_TIME;
4576         u64 index = 0;
4577         int ret;
4578
4579         /* we're not allowed to rename between subvolumes */
4580         if (BTRFS_I(old_inode)->root->root_key.objectid !=
4581             BTRFS_I(new_dir)->root->root_key.objectid)
4582                 return -EXDEV;
4583
4584         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4585             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4586                 return -ENOTEMPTY;
4587         }
4588
4589         /* to rename a snapshot or subvolume, we need to juggle the
4590          * backrefs.  This isn't coded yet
4591          */
4592         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4593                 return -EXDEV;
4594
4595         ret = btrfs_check_free_space(root, 1, 0);
4596         if (ret)
4597                 goto out_unlock;
4598
4599         trans = btrfs_start_transaction(root, 1);
4600
4601         btrfs_set_trans_block_group(trans, new_dir);
4602
4603         btrfs_inc_nlink(old_dentry->d_inode);
4604         old_dir->i_ctime = old_dir->i_mtime = ctime;
4605         new_dir->i_ctime = new_dir->i_mtime = ctime;
4606         old_inode->i_ctime = ctime;
4607
4608         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4609                                  old_dentry->d_name.name,
4610                                  old_dentry->d_name.len);
4611         if (ret)
4612                 goto out_fail;
4613
4614         if (new_inode) {
4615                 new_inode->i_ctime = CURRENT_TIME;
4616                 ret = btrfs_unlink_inode(trans, root, new_dir,
4617                                          new_dentry->d_inode,
4618                                          new_dentry->d_name.name,
4619                                          new_dentry->d_name.len);
4620                 if (ret)
4621                         goto out_fail;
4622                 if (new_inode->i_nlink == 0) {
4623                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4624                         if (ret)
4625                                 goto out_fail;
4626                 }
4627
4628         }
4629         ret = btrfs_set_inode_index(new_dir, &index);
4630         if (ret)
4631                 goto out_fail;
4632
4633         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4634                              old_inode, new_dentry->d_name.name,
4635                              new_dentry->d_name.len, 1, index);
4636         if (ret)
4637                 goto out_fail;
4638
4639 out_fail:
4640         btrfs_end_transaction_throttle(trans, root);
4641 out_unlock:
4642         return ret;
4643 }
4644
4645 /*
4646  * some fairly slow code that needs optimization. This walks the list
4647  * of all the inodes with pending delalloc and forces them to disk.
4648  */
4649 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4650 {
4651         struct list_head *head = &root->fs_info->delalloc_inodes;
4652         struct btrfs_inode *binode;
4653         struct inode *inode;
4654
4655         if (root->fs_info->sb->s_flags & MS_RDONLY)
4656                 return -EROFS;
4657
4658         spin_lock(&root->fs_info->delalloc_lock);
4659         while (!list_empty(head)) {
4660                 binode = list_entry(head->next, struct btrfs_inode,
4661                                     delalloc_inodes);
4662                 inode = igrab(&binode->vfs_inode);
4663                 if (!inode)
4664                         list_del_init(&binode->delalloc_inodes);
4665                 spin_unlock(&root->fs_info->delalloc_lock);
4666                 if (inode) {
4667                         filemap_flush(inode->i_mapping);
4668                         iput(inode);
4669                 }
4670                 cond_resched();
4671                 spin_lock(&root->fs_info->delalloc_lock);
4672         }
4673         spin_unlock(&root->fs_info->delalloc_lock);
4674
4675         /* the filemap_flush will queue IO into the worker threads, but
4676          * we have to make sure the IO is actually started and that
4677          * ordered extents get created before we return
4678          */
4679         atomic_inc(&root->fs_info->async_submit_draining);
4680         while (atomic_read(&root->fs_info->nr_async_submits) ||
4681               atomic_read(&root->fs_info->async_delalloc_pages)) {
4682                 wait_event(root->fs_info->async_submit_wait,
4683                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4684                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4685         }
4686         atomic_dec(&root->fs_info->async_submit_draining);
4687         return 0;
4688 }
4689
4690 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4691                          const char *symname)
4692 {
4693         struct btrfs_trans_handle *trans;
4694         struct btrfs_root *root = BTRFS_I(dir)->root;
4695         struct btrfs_path *path;
4696         struct btrfs_key key;
4697         struct inode *inode = NULL;
4698         int err;
4699         int drop_inode = 0;
4700         u64 objectid;
4701         u64 index = 0 ;
4702         int name_len;
4703         int datasize;
4704         unsigned long ptr;
4705         struct btrfs_file_extent_item *ei;
4706         struct extent_buffer *leaf;
4707         unsigned long nr = 0;
4708
4709         name_len = strlen(symname) + 1;
4710         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4711                 return -ENAMETOOLONG;
4712
4713         err = btrfs_check_free_space(root, 1, 0);
4714         if (err)
4715                 goto out_fail;
4716
4717         trans = btrfs_start_transaction(root, 1);
4718         btrfs_set_trans_block_group(trans, dir);
4719
4720         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4721         if (err) {
4722                 err = -ENOSPC;
4723                 goto out_unlock;
4724         }
4725
4726         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4727                                 dentry->d_name.len,
4728                                 dentry->d_parent->d_inode->i_ino, objectid,
4729                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4730                                 &index);
4731         err = PTR_ERR(inode);
4732         if (IS_ERR(inode))
4733                 goto out_unlock;
4734
4735         err = btrfs_init_acl(inode, dir);
4736         if (err) {
4737                 drop_inode = 1;
4738                 goto out_unlock;
4739         }
4740
4741         btrfs_set_trans_block_group(trans, inode);
4742         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4743         if (err)
4744                 drop_inode = 1;
4745         else {
4746                 inode->i_mapping->a_ops = &btrfs_aops;
4747                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4748                 inode->i_fop = &btrfs_file_operations;
4749                 inode->i_op = &btrfs_file_inode_operations;
4750                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4751         }
4752         dir->i_sb->s_dirt = 1;
4753         btrfs_update_inode_block_group(trans, inode);
4754         btrfs_update_inode_block_group(trans, dir);
4755         if (drop_inode)
4756                 goto out_unlock;
4757
4758         path = btrfs_alloc_path();
4759         BUG_ON(!path);
4760         key.objectid = inode->i_ino;
4761         key.offset = 0;
4762         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4763         datasize = btrfs_file_extent_calc_inline_size(name_len);
4764         err = btrfs_insert_empty_item(trans, root, path, &key,
4765                                       datasize);
4766         if (err) {
4767                 drop_inode = 1;
4768                 goto out_unlock;
4769         }
4770         leaf = path->nodes[0];
4771         ei = btrfs_item_ptr(leaf, path->slots[0],
4772                             struct btrfs_file_extent_item);
4773         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4774         btrfs_set_file_extent_type(leaf, ei,
4775                                    BTRFS_FILE_EXTENT_INLINE);
4776         btrfs_set_file_extent_encryption(leaf, ei, 0);
4777         btrfs_set_file_extent_compression(leaf, ei, 0);
4778         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4779         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4780
4781         ptr = btrfs_file_extent_inline_start(ei);
4782         write_extent_buffer(leaf, symname, ptr, name_len);
4783         btrfs_mark_buffer_dirty(leaf);
4784         btrfs_free_path(path);
4785
4786         inode->i_op = &btrfs_symlink_inode_operations;
4787         inode->i_mapping->a_ops = &btrfs_symlink_aops;
4788         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4789         inode_set_bytes(inode, name_len);
4790         btrfs_i_size_write(inode, name_len - 1);
4791         err = btrfs_update_inode(trans, root, inode);
4792         if (err)
4793                 drop_inode = 1;
4794
4795 out_unlock:
4796         nr = trans->blocks_used;
4797         btrfs_end_transaction_throttle(trans, root);
4798 out_fail:
4799         if (drop_inode) {
4800                 inode_dec_link_count(inode);
4801                 iput(inode);
4802         }
4803         btrfs_btree_balance_dirty(root, nr);
4804         return err;
4805 }
4806
4807 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4808                                u64 alloc_hint, int mode)
4809 {
4810         struct btrfs_trans_handle *trans;
4811         struct btrfs_root *root = BTRFS_I(inode)->root;
4812         struct btrfs_key ins;
4813         u64 alloc_size;
4814         u64 cur_offset = start;
4815         u64 num_bytes = end - start;
4816         int ret = 0;
4817
4818         trans = btrfs_join_transaction(root, 1);
4819         BUG_ON(!trans);
4820         btrfs_set_trans_block_group(trans, inode);
4821
4822         while (num_bytes > 0) {
4823                 alloc_size = min(num_bytes, root->fs_info->max_extent);
4824                 ret = btrfs_reserve_extent(trans, root, alloc_size,
4825                                            root->sectorsize, 0, alloc_hint,
4826                                            (u64)-1, &ins, 1);
4827                 if (ret) {
4828                         WARN_ON(1);
4829                         goto out;
4830                 }
4831                 ret = insert_reserved_file_extent(trans, inode,
4832                                                   cur_offset, ins.objectid,
4833                                                   ins.offset, ins.offset,
4834                                                   ins.offset, 0, 0, 0,
4835                                                   BTRFS_FILE_EXTENT_PREALLOC);
4836                 BUG_ON(ret);
4837                 num_bytes -= ins.offset;
4838                 cur_offset += ins.offset;
4839                 alloc_hint = ins.objectid + ins.offset;
4840         }
4841 out:
4842         if (cur_offset > start) {
4843                 inode->i_ctime = CURRENT_TIME;
4844                 btrfs_set_flag(inode, PREALLOC);
4845                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4846                     cur_offset > i_size_read(inode))
4847                         btrfs_i_size_write(inode, cur_offset);
4848                 ret = btrfs_update_inode(trans, root, inode);
4849                 BUG_ON(ret);
4850         }
4851
4852         btrfs_end_transaction(trans, root);
4853         return ret;
4854 }
4855
4856 static long btrfs_fallocate(struct inode *inode, int mode,
4857                             loff_t offset, loff_t len)
4858 {
4859         u64 cur_offset;
4860         u64 last_byte;
4861         u64 alloc_start;
4862         u64 alloc_end;
4863         u64 alloc_hint = 0;
4864         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4865         struct extent_map *em;
4866         int ret;
4867
4868         alloc_start = offset & ~mask;
4869         alloc_end =  (offset + len + mask) & ~mask;
4870
4871         mutex_lock(&inode->i_mutex);
4872         if (alloc_start > inode->i_size) {
4873                 ret = btrfs_cont_expand(inode, alloc_start);
4874                 if (ret)
4875                         goto out;
4876         }
4877
4878         while (1) {
4879                 struct btrfs_ordered_extent *ordered;
4880                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4881                             alloc_end - 1, GFP_NOFS);
4882                 ordered = btrfs_lookup_first_ordered_extent(inode,
4883                                                             alloc_end - 1);
4884                 if (ordered &&
4885                     ordered->file_offset + ordered->len > alloc_start &&
4886                     ordered->file_offset < alloc_end) {
4887                         btrfs_put_ordered_extent(ordered);
4888                         unlock_extent(&BTRFS_I(inode)->io_tree,
4889                                       alloc_start, alloc_end - 1, GFP_NOFS);
4890                         btrfs_wait_ordered_range(inode, alloc_start,
4891                                                  alloc_end - alloc_start);
4892                 } else {
4893                         if (ordered)
4894                                 btrfs_put_ordered_extent(ordered);
4895                         break;
4896                 }
4897         }
4898
4899         cur_offset = alloc_start;
4900         while (1) {
4901                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4902                                       alloc_end - cur_offset, 0);
4903                 BUG_ON(IS_ERR(em) || !em);
4904                 last_byte = min(extent_map_end(em), alloc_end);
4905                 last_byte = (last_byte + mask) & ~mask;
4906                 if (em->block_start == EXTENT_MAP_HOLE) {
4907                         ret = prealloc_file_range(inode, cur_offset,
4908                                         last_byte, alloc_hint, mode);
4909                         if (ret < 0) {
4910                                 free_extent_map(em);
4911                                 break;
4912                         }
4913                 }
4914                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4915                         alloc_hint = em->block_start;
4916                 free_extent_map(em);
4917
4918                 cur_offset = last_byte;
4919                 if (cur_offset >= alloc_end) {
4920                         ret = 0;
4921                         break;
4922                 }
4923         }
4924         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4925                       GFP_NOFS);
4926 out:
4927         mutex_unlock(&inode->i_mutex);
4928         return ret;
4929 }
4930
4931 static int btrfs_set_page_dirty(struct page *page)
4932 {
4933         return __set_page_dirty_nobuffers(page);
4934 }
4935
4936 static int btrfs_permission(struct inode *inode, int mask)
4937 {
4938         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4939                 return -EACCES;
4940         return generic_permission(inode, mask, btrfs_check_acl);
4941 }
4942
4943 static struct inode_operations btrfs_dir_inode_operations = {
4944         .getattr        = btrfs_getattr,
4945         .lookup         = btrfs_lookup,
4946         .create         = btrfs_create,
4947         .unlink         = btrfs_unlink,
4948         .link           = btrfs_link,
4949         .mkdir          = btrfs_mkdir,
4950         .rmdir          = btrfs_rmdir,
4951         .rename         = btrfs_rename,
4952         .symlink        = btrfs_symlink,
4953         .setattr        = btrfs_setattr,
4954         .mknod          = btrfs_mknod,
4955         .setxattr       = btrfs_setxattr,
4956         .getxattr       = btrfs_getxattr,
4957         .listxattr      = btrfs_listxattr,
4958         .removexattr    = btrfs_removexattr,
4959         .permission     = btrfs_permission,
4960 };
4961 static struct inode_operations btrfs_dir_ro_inode_operations = {
4962         .lookup         = btrfs_lookup,
4963         .permission     = btrfs_permission,
4964 };
4965 static struct file_operations btrfs_dir_file_operations = {
4966         .llseek         = generic_file_llseek,
4967         .read           = generic_read_dir,
4968         .readdir        = btrfs_real_readdir,
4969         .unlocked_ioctl = btrfs_ioctl,
4970 #ifdef CONFIG_COMPAT
4971         .compat_ioctl   = btrfs_ioctl,
4972 #endif
4973         .release        = btrfs_release_file,
4974         .fsync          = btrfs_sync_file,
4975 };
4976
4977 static struct extent_io_ops btrfs_extent_io_ops = {
4978         .fill_delalloc = run_delalloc_range,
4979         .submit_bio_hook = btrfs_submit_bio_hook,
4980         .merge_bio_hook = btrfs_merge_bio_hook,
4981         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4982         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4983         .writepage_start_hook = btrfs_writepage_start_hook,
4984         .readpage_io_failed_hook = btrfs_io_failed_hook,
4985         .set_bit_hook = btrfs_set_bit_hook,
4986         .clear_bit_hook = btrfs_clear_bit_hook,
4987 };
4988
4989 /*
4990  * btrfs doesn't support the bmap operation because swapfiles
4991  * use bmap to make a mapping of extents in the file.  They assume
4992  * these extents won't change over the life of the file and they
4993  * use the bmap result to do IO directly to the drive.
4994  *
4995  * the btrfs bmap call would return logical addresses that aren't
4996  * suitable for IO and they also will change frequently as COW
4997  * operations happen.  So, swapfile + btrfs == corruption.
4998  *
4999  * For now we're avoiding this by dropping bmap.
5000  */
5001 static struct address_space_operations btrfs_aops = {
5002         .readpage       = btrfs_readpage,
5003         .writepage      = btrfs_writepage,
5004         .writepages     = btrfs_writepages,
5005         .readpages      = btrfs_readpages,
5006         .sync_page      = block_sync_page,
5007         .direct_IO      = btrfs_direct_IO,
5008         .invalidatepage = btrfs_invalidatepage,
5009         .releasepage    = btrfs_releasepage,
5010         .set_page_dirty = btrfs_set_page_dirty,
5011 };
5012
5013 static struct address_space_operations btrfs_symlink_aops = {
5014         .readpage       = btrfs_readpage,
5015         .writepage      = btrfs_writepage,
5016         .invalidatepage = btrfs_invalidatepage,
5017         .releasepage    = btrfs_releasepage,
5018 };
5019
5020 static struct inode_operations btrfs_file_inode_operations = {
5021         .truncate       = btrfs_truncate,
5022         .getattr        = btrfs_getattr,
5023         .setattr        = btrfs_setattr,
5024         .setxattr       = btrfs_setxattr,
5025         .getxattr       = btrfs_getxattr,
5026         .listxattr      = btrfs_listxattr,
5027         .removexattr    = btrfs_removexattr,
5028         .permission     = btrfs_permission,
5029         .fallocate      = btrfs_fallocate,
5030         .fiemap         = btrfs_fiemap,
5031 };
5032 static struct inode_operations btrfs_special_inode_operations = {
5033         .getattr        = btrfs_getattr,
5034         .setattr        = btrfs_setattr,
5035         .permission     = btrfs_permission,
5036         .setxattr       = btrfs_setxattr,
5037         .getxattr       = btrfs_getxattr,
5038         .listxattr      = btrfs_listxattr,
5039         .removexattr    = btrfs_removexattr,
5040 };
5041 static struct inode_operations btrfs_symlink_inode_operations = {
5042         .readlink       = generic_readlink,
5043         .follow_link    = page_follow_link_light,
5044         .put_link       = page_put_link,
5045         .permission     = btrfs_permission,
5046 };