2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
46 #include <linux/init.h>
48 #include <linux/file.h>
51 #include <linux/kmod.h>
54 #include <asm/unaligned.h>
56 #define MAJOR_NR MD_MAJOR
59 /* 63 partitions with the alternate major number (mdp) */
60 #define MdpMinorShift 6
63 #define dprintk(x...) ((void)(DEBUG && printk(x)))
67 static void autostart_arrays (int part);
70 static mdk_personality_t *pers[MAX_PERSONALITY];
71 static DEFINE_SPINLOCK(pers_lock);
74 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75 * is 1000 KB/sec, so the extra system load does not show up that much.
76 * Increase it if you want to have more _guaranteed_ speed. Note that
77 * the RAID driver will use the maximum available bandwith if the IO
78 * subsystem is idle. There is also an 'absolute maximum' reconstruction
79 * speed limit - in case reconstruction slows down your system despite
82 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
85 static int sysctl_speed_limit_min = 1000;
86 static int sysctl_speed_limit_max = 200000;
88 static struct ctl_table_header *raid_table_header;
90 static ctl_table raid_table[] = {
92 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
93 .procname = "speed_limit_min",
94 .data = &sysctl_speed_limit_min,
95 .maxlen = sizeof(int),
97 .proc_handler = &proc_dointvec,
100 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
101 .procname = "speed_limit_max",
102 .data = &sysctl_speed_limit_max,
103 .maxlen = sizeof(int),
105 .proc_handler = &proc_dointvec,
110 static ctl_table raid_dir_table[] = {
112 .ctl_name = DEV_RAID,
121 static ctl_table raid_root_table[] = {
127 .child = raid_dir_table,
132 static struct block_device_operations md_fops;
135 * Enables to iterate over all existing md arrays
136 * all_mddevs_lock protects this list.
138 static LIST_HEAD(all_mddevs);
139 static DEFINE_SPINLOCK(all_mddevs_lock);
143 * iterates through all used mddevs in the system.
144 * We take care to grab the all_mddevs_lock whenever navigating
145 * the list, and to always hold a refcount when unlocked.
146 * Any code which breaks out of this loop while own
147 * a reference to the current mddev and must mddev_put it.
149 #define ITERATE_MDDEV(mddev,tmp) \
151 for (({ spin_lock(&all_mddevs_lock); \
152 tmp = all_mddevs.next; \
154 ({ if (tmp != &all_mddevs) \
155 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
156 spin_unlock(&all_mddevs_lock); \
157 if (mddev) mddev_put(mddev); \
158 mddev = list_entry(tmp, mddev_t, all_mddevs); \
159 tmp != &all_mddevs;}); \
160 ({ spin_lock(&all_mddevs_lock); \
165 static int md_fail_request (request_queue_t *q, struct bio *bio)
167 bio_io_error(bio, bio->bi_size);
171 static inline mddev_t *mddev_get(mddev_t *mddev)
173 atomic_inc(&mddev->active);
177 static void mddev_put(mddev_t *mddev)
179 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
181 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
182 list_del(&mddev->all_mddevs);
183 blk_put_queue(mddev->queue);
186 spin_unlock(&all_mddevs_lock);
189 static mddev_t * mddev_find(dev_t unit)
191 mddev_t *mddev, *new = NULL;
194 spin_lock(&all_mddevs_lock);
195 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
196 if (mddev->unit == unit) {
198 spin_unlock(&all_mddevs_lock);
204 list_add(&new->all_mddevs, &all_mddevs);
205 spin_unlock(&all_mddevs_lock);
208 spin_unlock(&all_mddevs_lock);
210 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
214 memset(new, 0, sizeof(*new));
217 if (MAJOR(unit) == MD_MAJOR)
218 new->md_minor = MINOR(unit);
220 new->md_minor = MINOR(unit) >> MdpMinorShift;
222 init_MUTEX(&new->reconfig_sem);
223 INIT_LIST_HEAD(&new->disks);
224 INIT_LIST_HEAD(&new->all_mddevs);
225 init_timer(&new->safemode_timer);
226 atomic_set(&new->active, 1);
227 spin_lock_init(&new->write_lock);
228 init_waitqueue_head(&new->sb_wait);
230 new->queue = blk_alloc_queue(GFP_KERNEL);
236 blk_queue_make_request(new->queue, md_fail_request);
241 static inline int mddev_lock(mddev_t * mddev)
243 return down_interruptible(&mddev->reconfig_sem);
246 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
248 down(&mddev->reconfig_sem);
251 static inline int mddev_trylock(mddev_t * mddev)
253 return down_trylock(&mddev->reconfig_sem);
256 static inline void mddev_unlock(mddev_t * mddev)
258 up(&mddev->reconfig_sem);
260 md_wakeup_thread(mddev->thread);
263 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
266 struct list_head *tmp;
268 ITERATE_RDEV(mddev,rdev,tmp) {
269 if (rdev->desc_nr == nr)
275 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
277 struct list_head *tmp;
280 ITERATE_RDEV(mddev,rdev,tmp) {
281 if (rdev->bdev->bd_dev == dev)
287 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
289 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
290 return MD_NEW_SIZE_BLOCKS(size);
293 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
297 size = rdev->sb_offset;
300 size &= ~((sector_t)chunk_size/1024 - 1);
304 static int alloc_disk_sb(mdk_rdev_t * rdev)
309 rdev->sb_page = alloc_page(GFP_KERNEL);
310 if (!rdev->sb_page) {
311 printk(KERN_ALERT "md: out of memory.\n");
318 static void free_disk_sb(mdk_rdev_t * rdev)
321 page_cache_release(rdev->sb_page);
323 rdev->sb_page = NULL;
330 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
332 mdk_rdev_t *rdev = bio->bi_private;
336 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
337 md_error(rdev->mddev, rdev);
339 if (atomic_dec_and_test(&rdev->mddev->pending_writes))
340 wake_up(&rdev->mddev->sb_wait);
345 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
346 sector_t sector, int size, struct page *page)
348 /* write first size bytes of page to sector of rdev
349 * Increment mddev->pending_writes before returning
350 * and decrement it on completion, waking up sb_wait
351 * if zero is reached.
352 * If an error occurred, call md_error
354 struct bio *bio = bio_alloc(GFP_NOIO, 1);
356 bio->bi_bdev = rdev->bdev;
357 bio->bi_sector = sector;
358 bio_add_page(bio, page, size, 0);
359 bio->bi_private = rdev;
360 bio->bi_end_io = super_written;
361 atomic_inc(&mddev->pending_writes);
362 submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
365 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
370 complete((struct completion*)bio->bi_private);
374 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
375 struct page *page, int rw)
377 struct bio *bio = bio_alloc(GFP_NOIO, 1);
378 struct completion event;
381 rw |= (1 << BIO_RW_SYNC);
384 bio->bi_sector = sector;
385 bio_add_page(bio, page, size, 0);
386 init_completion(&event);
387 bio->bi_private = &event;
388 bio->bi_end_io = bi_complete;
390 wait_for_completion(&event);
392 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
397 static int read_disk_sb(mdk_rdev_t * rdev, int size)
399 char b[BDEVNAME_SIZE];
400 if (!rdev->sb_page) {
408 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
414 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
415 bdevname(rdev->bdev,b));
419 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
421 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
422 (sb1->set_uuid1 == sb2->set_uuid1) &&
423 (sb1->set_uuid2 == sb2->set_uuid2) &&
424 (sb1->set_uuid3 == sb2->set_uuid3))
432 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
435 mdp_super_t *tmp1, *tmp2;
437 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
438 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
440 if (!tmp1 || !tmp2) {
442 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
450 * nr_disks is not constant
455 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
466 static unsigned int calc_sb_csum(mdp_super_t * sb)
468 unsigned int disk_csum, csum;
470 disk_csum = sb->sb_csum;
472 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
473 sb->sb_csum = disk_csum;
479 * Handle superblock details.
480 * We want to be able to handle multiple superblock formats
481 * so we have a common interface to them all, and an array of
482 * different handlers.
483 * We rely on user-space to write the initial superblock, and support
484 * reading and updating of superblocks.
485 * Interface methods are:
486 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
487 * loads and validates a superblock on dev.
488 * if refdev != NULL, compare superblocks on both devices
490 * 0 - dev has a superblock that is compatible with refdev
491 * 1 - dev has a superblock that is compatible and newer than refdev
492 * so dev should be used as the refdev in future
493 * -EINVAL superblock incompatible or invalid
494 * -othererror e.g. -EIO
496 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
497 * Verify that dev is acceptable into mddev.
498 * The first time, mddev->raid_disks will be 0, and data from
499 * dev should be merged in. Subsequent calls check that dev
500 * is new enough. Return 0 or -EINVAL
502 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
503 * Update the superblock for rdev with data in mddev
504 * This does not write to disc.
510 struct module *owner;
511 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
512 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
513 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
517 * load_super for 0.90.0
519 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
521 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
527 * Calculate the position of the superblock,
528 * it's at the end of the disk.
530 * It also happens to be a multiple of 4Kb.
532 sb_offset = calc_dev_sboffset(rdev->bdev);
533 rdev->sb_offset = sb_offset;
535 ret = read_disk_sb(rdev, MD_SB_BYTES);
540 bdevname(rdev->bdev, b);
541 sb = (mdp_super_t*)page_address(rdev->sb_page);
543 if (sb->md_magic != MD_SB_MAGIC) {
544 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
549 if (sb->major_version != 0 ||
550 sb->minor_version != 90) {
551 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
552 sb->major_version, sb->minor_version,
557 if (sb->raid_disks <= 0)
560 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
561 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
566 rdev->preferred_minor = sb->md_minor;
567 rdev->data_offset = 0;
568 rdev->sb_size = MD_SB_BYTES;
570 if (sb->level == LEVEL_MULTIPATH)
573 rdev->desc_nr = sb->this_disk.number;
579 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
580 if (!uuid_equal(refsb, sb)) {
581 printk(KERN_WARNING "md: %s has different UUID to %s\n",
582 b, bdevname(refdev->bdev,b2));
585 if (!sb_equal(refsb, sb)) {
586 printk(KERN_WARNING "md: %s has same UUID"
587 " but different superblock to %s\n",
588 b, bdevname(refdev->bdev, b2));
592 ev2 = md_event(refsb);
598 rdev->size = calc_dev_size(rdev, sb->chunk_size);
605 * validate_super for 0.90.0
607 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
610 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
612 rdev->raid_disk = -1;
614 if (mddev->raid_disks == 0) {
615 mddev->major_version = 0;
616 mddev->minor_version = sb->minor_version;
617 mddev->patch_version = sb->patch_version;
618 mddev->persistent = ! sb->not_persistent;
619 mddev->chunk_size = sb->chunk_size;
620 mddev->ctime = sb->ctime;
621 mddev->utime = sb->utime;
622 mddev->level = sb->level;
623 mddev->layout = sb->layout;
624 mddev->raid_disks = sb->raid_disks;
625 mddev->size = sb->size;
626 mddev->events = md_event(sb);
627 mddev->bitmap_offset = 0;
628 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
630 if (sb->state & (1<<MD_SB_CLEAN))
631 mddev->recovery_cp = MaxSector;
633 if (sb->events_hi == sb->cp_events_hi &&
634 sb->events_lo == sb->cp_events_lo) {
635 mddev->recovery_cp = sb->recovery_cp;
637 mddev->recovery_cp = 0;
640 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
641 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
642 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
643 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
645 mddev->max_disks = MD_SB_DISKS;
647 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
648 mddev->bitmap_file == NULL) {
649 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
650 /* FIXME use a better test */
651 printk(KERN_WARNING "md: bitmaps only support for raid1\n");
654 mddev->bitmap_offset = mddev->default_bitmap_offset;
657 } else if (mddev->pers == NULL) {
658 /* Insist on good event counter while assembling */
659 __u64 ev1 = md_event(sb);
661 if (ev1 < mddev->events)
663 } else if (mddev->bitmap) {
664 /* if adding to array with a bitmap, then we can accept an
665 * older device ... but not too old.
667 __u64 ev1 = md_event(sb);
668 if (ev1 < mddev->bitmap->events_cleared)
670 } else /* just a hot-add of a new device, leave raid_disk at -1 */
673 if (mddev->level != LEVEL_MULTIPATH) {
676 desc = sb->disks + rdev->desc_nr;
678 if (desc->state & (1<<MD_DISK_FAULTY))
680 else if (desc->state & (1<<MD_DISK_SYNC) &&
681 desc->raid_disk < mddev->raid_disks) {
683 rdev->raid_disk = desc->raid_disk;
685 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
686 set_bit(WriteMostly, &rdev->flags);
687 } else /* MULTIPATH are always insync */
693 * sync_super for 0.90.0
695 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
698 struct list_head *tmp;
700 int next_spare = mddev->raid_disks;
702 /* make rdev->sb match mddev data..
705 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
706 * 3/ any empty disks < next_spare become removed
708 * disks[0] gets initialised to REMOVED because
709 * we cannot be sure from other fields if it has
710 * been initialised or not.
713 int active=0, working=0,failed=0,spare=0,nr_disks=0;
715 sb = (mdp_super_t*)page_address(rdev->sb_page);
717 memset(sb, 0, sizeof(*sb));
719 sb->md_magic = MD_SB_MAGIC;
720 sb->major_version = mddev->major_version;
721 sb->minor_version = mddev->minor_version;
722 sb->patch_version = mddev->patch_version;
723 sb->gvalid_words = 0; /* ignored */
724 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
725 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
726 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
727 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
729 sb->ctime = mddev->ctime;
730 sb->level = mddev->level;
731 sb->size = mddev->size;
732 sb->raid_disks = mddev->raid_disks;
733 sb->md_minor = mddev->md_minor;
734 sb->not_persistent = !mddev->persistent;
735 sb->utime = mddev->utime;
737 sb->events_hi = (mddev->events>>32);
738 sb->events_lo = (u32)mddev->events;
742 sb->recovery_cp = mddev->recovery_cp;
743 sb->cp_events_hi = (mddev->events>>32);
744 sb->cp_events_lo = (u32)mddev->events;
745 if (mddev->recovery_cp == MaxSector)
746 sb->state = (1<< MD_SB_CLEAN);
750 sb->layout = mddev->layout;
751 sb->chunk_size = mddev->chunk_size;
753 if (mddev->bitmap && mddev->bitmap_file == NULL)
754 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
756 sb->disks[0].state = (1<<MD_DISK_REMOVED);
757 ITERATE_RDEV(mddev,rdev2,tmp) {
759 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
760 rdev2->desc_nr = rdev2->raid_disk;
762 rdev2->desc_nr = next_spare++;
763 d = &sb->disks[rdev2->desc_nr];
765 d->number = rdev2->desc_nr;
766 d->major = MAJOR(rdev2->bdev->bd_dev);
767 d->minor = MINOR(rdev2->bdev->bd_dev);
768 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
769 d->raid_disk = rdev2->raid_disk;
771 d->raid_disk = rdev2->desc_nr; /* compatibility */
773 d->state = (1<<MD_DISK_FAULTY);
775 } else if (rdev2->in_sync) {
776 d->state = (1<<MD_DISK_ACTIVE);
777 d->state |= (1<<MD_DISK_SYNC);
785 if (test_bit(WriteMostly, &rdev2->flags))
786 d->state |= (1<<MD_DISK_WRITEMOSTLY);
789 /* now set the "removed" and "faulty" bits on any missing devices */
790 for (i=0 ; i < mddev->raid_disks ; i++) {
791 mdp_disk_t *d = &sb->disks[i];
792 if (d->state == 0 && d->number == 0) {
795 d->state = (1<<MD_DISK_REMOVED);
796 d->state |= (1<<MD_DISK_FAULTY);
800 sb->nr_disks = nr_disks;
801 sb->active_disks = active;
802 sb->working_disks = working;
803 sb->failed_disks = failed;
804 sb->spare_disks = spare;
806 sb->this_disk = sb->disks[rdev->desc_nr];
807 sb->sb_csum = calc_sb_csum(sb);
811 * version 1 superblock
814 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
816 unsigned int disk_csum, csum;
817 unsigned long long newcsum;
818 int size = 256 + le32_to_cpu(sb->max_dev)*2;
819 unsigned int *isuper = (unsigned int*)sb;
822 disk_csum = sb->sb_csum;
825 for (i=0; size>=4; size -= 4 )
826 newcsum += le32_to_cpu(*isuper++);
829 newcsum += le16_to_cpu(*(unsigned short*) isuper);
831 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
832 sb->sb_csum = disk_csum;
833 return cpu_to_le32(csum);
836 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
838 struct mdp_superblock_1 *sb;
841 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
845 * Calculate the position of the superblock.
846 * It is always aligned to a 4K boundary and
847 * depeding on minor_version, it can be:
848 * 0: At least 8K, but less than 12K, from end of device
849 * 1: At start of device
850 * 2: 4K from start of device.
852 switch(minor_version) {
854 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
856 sb_offset &= ~(sector_t)(4*2-1);
857 /* convert from sectors to K */
869 rdev->sb_offset = sb_offset;
871 /* superblock is rarely larger than 1K, but it can be larger,
872 * and it is safe to read 4k, so we do that
874 ret = read_disk_sb(rdev, 4096);
878 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
880 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
881 sb->major_version != cpu_to_le32(1) ||
882 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
883 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
884 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
887 if (calc_sb_1_csum(sb) != sb->sb_csum) {
888 printk("md: invalid superblock checksum on %s\n",
889 bdevname(rdev->bdev,b));
892 if (le64_to_cpu(sb->data_size) < 10) {
893 printk("md: data_size too small on %s\n",
894 bdevname(rdev->bdev,b));
897 rdev->preferred_minor = 0xffff;
898 rdev->data_offset = le64_to_cpu(sb->data_offset);
900 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
901 bmask = block_size(rdev->bdev)-1;
902 if (rdev->sb_size & bmask)
903 rdev-> sb_size = (rdev->sb_size | bmask)+1;
909 struct mdp_superblock_1 *refsb =
910 (struct mdp_superblock_1*)page_address(refdev->sb_page);
912 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
913 sb->level != refsb->level ||
914 sb->layout != refsb->layout ||
915 sb->chunksize != refsb->chunksize) {
916 printk(KERN_WARNING "md: %s has strangely different"
917 " superblock to %s\n",
918 bdevname(rdev->bdev,b),
919 bdevname(refdev->bdev,b2));
922 ev1 = le64_to_cpu(sb->events);
923 ev2 = le64_to_cpu(refsb->events);
929 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
931 rdev->size = rdev->sb_offset;
932 if (rdev->size < le64_to_cpu(sb->data_size)/2)
934 rdev->size = le64_to_cpu(sb->data_size)/2;
935 if (le32_to_cpu(sb->chunksize))
936 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
940 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
942 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
944 rdev->raid_disk = -1;
946 if (mddev->raid_disks == 0) {
947 mddev->major_version = 1;
948 mddev->patch_version = 0;
949 mddev->persistent = 1;
950 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
951 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
952 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
953 mddev->level = le32_to_cpu(sb->level);
954 mddev->layout = le32_to_cpu(sb->layout);
955 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
956 mddev->size = le64_to_cpu(sb->size)/2;
957 mddev->events = le64_to_cpu(sb->events);
958 mddev->bitmap_offset = 0;
959 mddev->default_bitmap_offset = 0;
960 if (mddev->minor_version == 0)
961 mddev->default_bitmap_offset = -(64*1024)/512;
963 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
964 memcpy(mddev->uuid, sb->set_uuid, 16);
966 mddev->max_disks = (4096-256)/2;
968 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
969 mddev->bitmap_file == NULL ) {
970 if (mddev->level != 1) {
971 printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
974 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
976 } else if (mddev->pers == NULL) {
977 /* Insist of good event counter while assembling */
978 __u64 ev1 = le64_to_cpu(sb->events);
980 if (ev1 < mddev->events)
982 } else if (mddev->bitmap) {
983 /* If adding to array with a bitmap, then we can accept an
984 * older device, but not too old.
986 __u64 ev1 = le64_to_cpu(sb->events);
987 if (ev1 < mddev->bitmap->events_cleared)
989 } else /* just a hot-add of a new device, leave raid_disk at -1 */
992 if (mddev->level != LEVEL_MULTIPATH) {
994 rdev->desc_nr = le32_to_cpu(sb->dev_number);
995 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
997 case 0xffff: /* spare */
1000 case 0xfffe: /* faulty */
1006 rdev->raid_disk = role;
1010 if (sb->devflags & WriteMostly1)
1011 set_bit(WriteMostly, &rdev->flags);
1012 } else /* MULTIPATH are always insync */
1018 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1020 struct mdp_superblock_1 *sb;
1021 struct list_head *tmp;
1024 /* make rdev->sb match mddev and rdev data. */
1026 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1028 sb->feature_map = 0;
1030 memset(sb->pad1, 0, sizeof(sb->pad1));
1031 memset(sb->pad2, 0, sizeof(sb->pad2));
1032 memset(sb->pad3, 0, sizeof(sb->pad3));
1034 sb->utime = cpu_to_le64((__u64)mddev->utime);
1035 sb->events = cpu_to_le64(mddev->events);
1037 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1039 sb->resync_offset = cpu_to_le64(0);
1041 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1042 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1043 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1047 ITERATE_RDEV(mddev,rdev2,tmp)
1048 if (rdev2->desc_nr+1 > max_dev)
1049 max_dev = rdev2->desc_nr+1;
1051 sb->max_dev = cpu_to_le32(max_dev);
1052 for (i=0; i<max_dev;i++)
1053 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1055 ITERATE_RDEV(mddev,rdev2,tmp) {
1058 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1059 else if (rdev2->in_sync)
1060 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1062 sb->dev_roles[i] = cpu_to_le16(0xffff);
1065 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1066 sb->sb_csum = calc_sb_1_csum(sb);
1070 static struct super_type super_types[] = {
1073 .owner = THIS_MODULE,
1074 .load_super = super_90_load,
1075 .validate_super = super_90_validate,
1076 .sync_super = super_90_sync,
1080 .owner = THIS_MODULE,
1081 .load_super = super_1_load,
1082 .validate_super = super_1_validate,
1083 .sync_super = super_1_sync,
1087 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1089 struct list_head *tmp;
1092 ITERATE_RDEV(mddev,rdev,tmp)
1093 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1099 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1101 struct list_head *tmp;
1104 ITERATE_RDEV(mddev1,rdev,tmp)
1105 if (match_dev_unit(mddev2, rdev))
1111 static LIST_HEAD(pending_raid_disks);
1113 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1115 mdk_rdev_t *same_pdev;
1116 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1122 same_pdev = match_dev_unit(mddev, rdev);
1125 "%s: WARNING: %s appears to be on the same physical"
1126 " disk as %s. True\n protection against single-disk"
1127 " failure might be compromised.\n",
1128 mdname(mddev), bdevname(rdev->bdev,b),
1129 bdevname(same_pdev->bdev,b2));
1131 /* Verify rdev->desc_nr is unique.
1132 * If it is -1, assign a free number, else
1133 * check number is not in use
1135 if (rdev->desc_nr < 0) {
1137 if (mddev->pers) choice = mddev->raid_disks;
1138 while (find_rdev_nr(mddev, choice))
1140 rdev->desc_nr = choice;
1142 if (find_rdev_nr(mddev, rdev->desc_nr))
1146 list_add(&rdev->same_set, &mddev->disks);
1147 rdev->mddev = mddev;
1148 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1152 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1154 char b[BDEVNAME_SIZE];
1159 list_del_init(&rdev->same_set);
1160 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1165 * prevent the device from being mounted, repartitioned or
1166 * otherwise reused by a RAID array (or any other kernel
1167 * subsystem), by bd_claiming the device.
1169 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1172 struct block_device *bdev;
1173 char b[BDEVNAME_SIZE];
1175 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1177 printk(KERN_ERR "md: could not open %s.\n",
1178 __bdevname(dev, b));
1179 return PTR_ERR(bdev);
1181 err = bd_claim(bdev, rdev);
1183 printk(KERN_ERR "md: could not bd_claim %s.\n",
1192 static void unlock_rdev(mdk_rdev_t *rdev)
1194 struct block_device *bdev = rdev->bdev;
1202 void md_autodetect_dev(dev_t dev);
1204 static void export_rdev(mdk_rdev_t * rdev)
1206 char b[BDEVNAME_SIZE];
1207 printk(KERN_INFO "md: export_rdev(%s)\n",
1208 bdevname(rdev->bdev,b));
1212 list_del_init(&rdev->same_set);
1214 md_autodetect_dev(rdev->bdev->bd_dev);
1220 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1222 unbind_rdev_from_array(rdev);
1226 static void export_array(mddev_t *mddev)
1228 struct list_head *tmp;
1231 ITERATE_RDEV(mddev,rdev,tmp) {
1236 kick_rdev_from_array(rdev);
1238 if (!list_empty(&mddev->disks))
1240 mddev->raid_disks = 0;
1241 mddev->major_version = 0;
1244 static void print_desc(mdp_disk_t *desc)
1246 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1247 desc->major,desc->minor,desc->raid_disk,desc->state);
1250 static void print_sb(mdp_super_t *sb)
1255 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1256 sb->major_version, sb->minor_version, sb->patch_version,
1257 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1259 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1260 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1261 sb->md_minor, sb->layout, sb->chunk_size);
1262 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1263 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1264 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1265 sb->failed_disks, sb->spare_disks,
1266 sb->sb_csum, (unsigned long)sb->events_lo);
1269 for (i = 0; i < MD_SB_DISKS; i++) {
1272 desc = sb->disks + i;
1273 if (desc->number || desc->major || desc->minor ||
1274 desc->raid_disk || (desc->state && (desc->state != 4))) {
1275 printk(" D %2d: ", i);
1279 printk(KERN_INFO "md: THIS: ");
1280 print_desc(&sb->this_disk);
1284 static void print_rdev(mdk_rdev_t *rdev)
1286 char b[BDEVNAME_SIZE];
1287 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1288 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1289 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1290 if (rdev->sb_loaded) {
1291 printk(KERN_INFO "md: rdev superblock:\n");
1292 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1294 printk(KERN_INFO "md: no rdev superblock!\n");
1297 void md_print_devices(void)
1299 struct list_head *tmp, *tmp2;
1302 char b[BDEVNAME_SIZE];
1305 printk("md: **********************************\n");
1306 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1307 printk("md: **********************************\n");
1308 ITERATE_MDDEV(mddev,tmp) {
1311 bitmap_print_sb(mddev->bitmap);
1313 printk("%s: ", mdname(mddev));
1314 ITERATE_RDEV(mddev,rdev,tmp2)
1315 printk("<%s>", bdevname(rdev->bdev,b));
1318 ITERATE_RDEV(mddev,rdev,tmp2)
1321 printk("md: **********************************\n");
1326 static void sync_sbs(mddev_t * mddev)
1329 struct list_head *tmp;
1331 ITERATE_RDEV(mddev,rdev,tmp) {
1332 super_types[mddev->major_version].
1333 sync_super(mddev, rdev);
1334 rdev->sb_loaded = 1;
1338 static void md_update_sb(mddev_t * mddev)
1341 struct list_head *tmp;
1346 spin_lock(&mddev->write_lock);
1347 sync_req = mddev->in_sync;
1348 mddev->utime = get_seconds();
1351 if (!mddev->events) {
1353 * oops, this 64-bit counter should never wrap.
1354 * Either we are in around ~1 trillion A.C., assuming
1355 * 1 reboot per second, or we have a bug:
1360 mddev->sb_dirty = 2;
1364 * do not write anything to disk if using
1365 * nonpersistent superblocks
1367 if (!mddev->persistent) {
1368 mddev->sb_dirty = 0;
1369 spin_unlock(&mddev->write_lock);
1370 wake_up(&mddev->sb_wait);
1373 spin_unlock(&mddev->write_lock);
1376 "md: updating %s RAID superblock on device (in sync %d)\n",
1377 mdname(mddev),mddev->in_sync);
1379 err = bitmap_update_sb(mddev->bitmap);
1380 ITERATE_RDEV(mddev,rdev,tmp) {
1381 char b[BDEVNAME_SIZE];
1382 dprintk(KERN_INFO "md: ");
1384 dprintk("(skipping faulty ");
1386 dprintk("%s ", bdevname(rdev->bdev,b));
1387 if (!rdev->faulty) {
1388 md_super_write(mddev,rdev,
1389 rdev->sb_offset<<1, rdev->sb_size,
1391 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1392 bdevname(rdev->bdev,b),
1393 (unsigned long long)rdev->sb_offset);
1397 if (mddev->level == LEVEL_MULTIPATH)
1398 /* only need to write one superblock... */
1401 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1402 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1404 spin_lock(&mddev->write_lock);
1405 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1406 /* have to write it out again */
1407 spin_unlock(&mddev->write_lock);
1410 mddev->sb_dirty = 0;
1411 spin_unlock(&mddev->write_lock);
1412 wake_up(&mddev->sb_wait);
1417 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1419 * mark the device faulty if:
1421 * - the device is nonexistent (zero size)
1422 * - the device has no valid superblock
1424 * a faulty rdev _never_ has rdev->sb set.
1426 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1428 char b[BDEVNAME_SIZE];
1433 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1435 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1436 return ERR_PTR(-ENOMEM);
1438 memset(rdev, 0, sizeof(*rdev));
1440 if ((err = alloc_disk_sb(rdev)))
1443 err = lock_rdev(rdev, newdev);
1450 rdev->data_offset = 0;
1451 atomic_set(&rdev->nr_pending, 0);
1453 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1456 "md: %s has zero or unknown size, marking faulty!\n",
1457 bdevname(rdev->bdev,b));
1462 if (super_format >= 0) {
1463 err = super_types[super_format].
1464 load_super(rdev, NULL, super_minor);
1465 if (err == -EINVAL) {
1467 "md: %s has invalid sb, not importing!\n",
1468 bdevname(rdev->bdev,b));
1473 "md: could not read %s's sb, not importing!\n",
1474 bdevname(rdev->bdev,b));
1478 INIT_LIST_HEAD(&rdev->same_set);
1483 if (rdev->sb_page) {
1489 return ERR_PTR(err);
1493 * Check a full RAID array for plausibility
1497 static void analyze_sbs(mddev_t * mddev)
1500 struct list_head *tmp;
1501 mdk_rdev_t *rdev, *freshest;
1502 char b[BDEVNAME_SIZE];
1505 ITERATE_RDEV(mddev,rdev,tmp)
1506 switch (super_types[mddev->major_version].
1507 load_super(rdev, freshest, mddev->minor_version)) {
1515 "md: fatal superblock inconsistency in %s"
1516 " -- removing from array\n",
1517 bdevname(rdev->bdev,b));
1518 kick_rdev_from_array(rdev);
1522 super_types[mddev->major_version].
1523 validate_super(mddev, freshest);
1526 ITERATE_RDEV(mddev,rdev,tmp) {
1527 if (rdev != freshest)
1528 if (super_types[mddev->major_version].
1529 validate_super(mddev, rdev)) {
1530 printk(KERN_WARNING "md: kicking non-fresh %s"
1532 bdevname(rdev->bdev,b));
1533 kick_rdev_from_array(rdev);
1536 if (mddev->level == LEVEL_MULTIPATH) {
1537 rdev->desc_nr = i++;
1538 rdev->raid_disk = rdev->desc_nr;
1545 if (mddev->recovery_cp != MaxSector &&
1547 printk(KERN_ERR "md: %s: raid array is not clean"
1548 " -- starting background reconstruction\n",
1555 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1557 static DECLARE_MUTEX(disks_sem);
1558 mddev_t *mddev = mddev_find(dev);
1559 struct gendisk *disk;
1560 int partitioned = (MAJOR(dev) != MD_MAJOR);
1561 int shift = partitioned ? MdpMinorShift : 0;
1562 int unit = MINOR(dev) >> shift;
1568 if (mddev->gendisk) {
1573 disk = alloc_disk(1 << shift);
1579 disk->major = MAJOR(dev);
1580 disk->first_minor = unit << shift;
1582 sprintf(disk->disk_name, "md_d%d", unit);
1583 sprintf(disk->devfs_name, "md/d%d", unit);
1585 sprintf(disk->disk_name, "md%d", unit);
1586 sprintf(disk->devfs_name, "md/%d", unit);
1588 disk->fops = &md_fops;
1589 disk->private_data = mddev;
1590 disk->queue = mddev->queue;
1592 mddev->gendisk = disk;
1597 void md_wakeup_thread(mdk_thread_t *thread);
1599 static void md_safemode_timeout(unsigned long data)
1601 mddev_t *mddev = (mddev_t *) data;
1603 mddev->safemode = 1;
1604 md_wakeup_thread(mddev->thread);
1608 static int do_md_run(mddev_t * mddev)
1612 struct list_head *tmp;
1614 struct gendisk *disk;
1615 char b[BDEVNAME_SIZE];
1617 if (list_empty(&mddev->disks))
1618 /* cannot run an array with no devices.. */
1625 * Analyze all RAID superblock(s)
1627 if (!mddev->raid_disks)
1630 chunk_size = mddev->chunk_size;
1631 pnum = level_to_pers(mddev->level);
1633 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1636 * 'default chunksize' in the old md code used to
1637 * be PAGE_SIZE, baaad.
1638 * we abort here to be on the safe side. We don't
1639 * want to continue the bad practice.
1642 "no chunksize specified, see 'man raidtab'\n");
1645 if (chunk_size > MAX_CHUNK_SIZE) {
1646 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1647 chunk_size, MAX_CHUNK_SIZE);
1651 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1653 if ( (1 << ffz(~chunk_size)) != chunk_size) {
1654 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1657 if (chunk_size < PAGE_SIZE) {
1658 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1659 chunk_size, PAGE_SIZE);
1663 /* devices must have minimum size of one chunk */
1664 ITERATE_RDEV(mddev,rdev,tmp) {
1667 if (rdev->size < chunk_size / 1024) {
1669 "md: Dev %s smaller than chunk_size:"
1671 bdevname(rdev->bdev,b),
1672 (unsigned long long)rdev->size,
1682 request_module("md-personality-%d", pnum);
1687 * Drop all container device buffers, from now on
1688 * the only valid external interface is through the md
1690 * Also find largest hardsector size
1692 ITERATE_RDEV(mddev,rdev,tmp) {
1695 sync_blockdev(rdev->bdev);
1696 invalidate_bdev(rdev->bdev, 0);
1699 md_probe(mddev->unit, NULL, NULL);
1700 disk = mddev->gendisk;
1704 spin_lock(&pers_lock);
1705 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1706 spin_unlock(&pers_lock);
1707 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1712 mddev->pers = pers[pnum];
1713 spin_unlock(&pers_lock);
1715 mddev->recovery = 0;
1716 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1718 /* before we start the array running, initialise the bitmap */
1719 err = bitmap_create(mddev);
1721 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1722 mdname(mddev), err);
1724 err = mddev->pers->run(mddev);
1726 printk(KERN_ERR "md: pers->run() failed ...\n");
1727 module_put(mddev->pers->owner);
1729 bitmap_destroy(mddev);
1732 atomic_set(&mddev->writes_pending,0);
1733 mddev->safemode = 0;
1734 mddev->safemode_timer.function = md_safemode_timeout;
1735 mddev->safemode_timer.data = (unsigned long) mddev;
1736 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1739 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1740 md_wakeup_thread(mddev->thread);
1742 if (mddev->sb_dirty)
1743 md_update_sb(mddev);
1745 set_capacity(disk, mddev->array_size<<1);
1747 /* If we call blk_queue_make_request here, it will
1748 * re-initialise max_sectors etc which may have been
1749 * refined inside -> run. So just set the bits we need to set.
1750 * Most initialisation happended when we called
1751 * blk_queue_make_request(..., md_fail_request)
1754 mddev->queue->queuedata = mddev;
1755 mddev->queue->make_request_fn = mddev->pers->make_request;
1761 static int restart_array(mddev_t *mddev)
1763 struct gendisk *disk = mddev->gendisk;
1767 * Complain if it has no devices
1770 if (list_empty(&mddev->disks))
1778 mddev->safemode = 0;
1780 set_disk_ro(disk, 0);
1782 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1785 * Kick recovery or resync if necessary
1787 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1788 md_wakeup_thread(mddev->thread);
1791 printk(KERN_ERR "md: %s has no personality assigned.\n",
1800 static int do_md_stop(mddev_t * mddev, int ro)
1803 struct gendisk *disk = mddev->gendisk;
1806 if (atomic_read(&mddev->active)>2) {
1807 printk("md: %s still in use.\n",mdname(mddev));
1811 if (mddev->sync_thread) {
1812 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1813 md_unregister_thread(mddev->sync_thread);
1814 mddev->sync_thread = NULL;
1817 del_timer_sync(&mddev->safemode_timer);
1819 invalidate_partition(disk, 0);
1827 bitmap_flush(mddev);
1828 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1830 set_disk_ro(disk, 0);
1831 blk_queue_make_request(mddev->queue, md_fail_request);
1832 mddev->pers->stop(mddev);
1833 module_put(mddev->pers->owner);
1838 if (!mddev->in_sync) {
1839 /* mark array as shutdown cleanly */
1841 md_update_sb(mddev);
1844 set_disk_ro(disk, 1);
1847 bitmap_destroy(mddev);
1848 if (mddev->bitmap_file) {
1849 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1850 fput(mddev->bitmap_file);
1851 mddev->bitmap_file = NULL;
1853 mddev->bitmap_offset = 0;
1856 * Free resources if final stop
1859 struct gendisk *disk;
1860 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1862 export_array(mddev);
1864 mddev->array_size = 0;
1865 disk = mddev->gendisk;
1867 set_capacity(disk, 0);
1870 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1877 static void autorun_array(mddev_t *mddev)
1880 struct list_head *tmp;
1883 if (list_empty(&mddev->disks))
1886 printk(KERN_INFO "md: running: ");
1888 ITERATE_RDEV(mddev,rdev,tmp) {
1889 char b[BDEVNAME_SIZE];
1890 printk("<%s>", bdevname(rdev->bdev,b));
1894 err = do_md_run (mddev);
1896 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1897 do_md_stop (mddev, 0);
1902 * lets try to run arrays based on all disks that have arrived
1903 * until now. (those are in pending_raid_disks)
1905 * the method: pick the first pending disk, collect all disks with
1906 * the same UUID, remove all from the pending list and put them into
1907 * the 'same_array' list. Then order this list based on superblock
1908 * update time (freshest comes first), kick out 'old' disks and
1909 * compare superblocks. If everything's fine then run it.
1911 * If "unit" is allocated, then bump its reference count
1913 static void autorun_devices(int part)
1915 struct list_head candidates;
1916 struct list_head *tmp;
1917 mdk_rdev_t *rdev0, *rdev;
1919 char b[BDEVNAME_SIZE];
1921 printk(KERN_INFO "md: autorun ...\n");
1922 while (!list_empty(&pending_raid_disks)) {
1924 rdev0 = list_entry(pending_raid_disks.next,
1925 mdk_rdev_t, same_set);
1927 printk(KERN_INFO "md: considering %s ...\n",
1928 bdevname(rdev0->bdev,b));
1929 INIT_LIST_HEAD(&candidates);
1930 ITERATE_RDEV_PENDING(rdev,tmp)
1931 if (super_90_load(rdev, rdev0, 0) >= 0) {
1932 printk(KERN_INFO "md: adding %s ...\n",
1933 bdevname(rdev->bdev,b));
1934 list_move(&rdev->same_set, &candidates);
1937 * now we have a set of devices, with all of them having
1938 * mostly sane superblocks. It's time to allocate the
1941 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1942 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1943 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1947 dev = MKDEV(mdp_major,
1948 rdev0->preferred_minor << MdpMinorShift);
1950 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1952 md_probe(dev, NULL, NULL);
1953 mddev = mddev_find(dev);
1956 "md: cannot allocate memory for md drive.\n");
1959 if (mddev_lock(mddev))
1960 printk(KERN_WARNING "md: %s locked, cannot run\n",
1962 else if (mddev->raid_disks || mddev->major_version
1963 || !list_empty(&mddev->disks)) {
1965 "md: %s already running, cannot run %s\n",
1966 mdname(mddev), bdevname(rdev0->bdev,b));
1967 mddev_unlock(mddev);
1969 printk(KERN_INFO "md: created %s\n", mdname(mddev));
1970 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1971 list_del_init(&rdev->same_set);
1972 if (bind_rdev_to_array(rdev, mddev))
1975 autorun_array(mddev);
1976 mddev_unlock(mddev);
1978 /* on success, candidates will be empty, on error
1981 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1985 printk(KERN_INFO "md: ... autorun DONE.\n");
1989 * import RAID devices based on one partition
1990 * if possible, the array gets run as well.
1993 static int autostart_array(dev_t startdev)
1995 char b[BDEVNAME_SIZE];
1996 int err = -EINVAL, i;
1997 mdp_super_t *sb = NULL;
1998 mdk_rdev_t *start_rdev = NULL, *rdev;
2000 start_rdev = md_import_device(startdev, 0, 0);
2001 if (IS_ERR(start_rdev))
2005 /* NOTE: this can only work for 0.90.0 superblocks */
2006 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2007 if (sb->major_version != 0 ||
2008 sb->minor_version != 90 ) {
2009 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2010 export_rdev(start_rdev);
2014 if (start_rdev->faulty) {
2016 "md: can not autostart based on faulty %s!\n",
2017 bdevname(start_rdev->bdev,b));
2018 export_rdev(start_rdev);
2021 list_add(&start_rdev->same_set, &pending_raid_disks);
2023 for (i = 0; i < MD_SB_DISKS; i++) {
2024 mdp_disk_t *desc = sb->disks + i;
2025 dev_t dev = MKDEV(desc->major, desc->minor);
2029 if (dev == startdev)
2031 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2033 rdev = md_import_device(dev, 0, 0);
2037 list_add(&rdev->same_set, &pending_raid_disks);
2041 * possibly return codes
2049 static int get_version(void __user * arg)
2053 ver.major = MD_MAJOR_VERSION;
2054 ver.minor = MD_MINOR_VERSION;
2055 ver.patchlevel = MD_PATCHLEVEL_VERSION;
2057 if (copy_to_user(arg, &ver, sizeof(ver)))
2063 static int get_array_info(mddev_t * mddev, void __user * arg)
2065 mdu_array_info_t info;
2066 int nr,working,active,failed,spare;
2068 struct list_head *tmp;
2070 nr=working=active=failed=spare=0;
2071 ITERATE_RDEV(mddev,rdev,tmp) {
2084 info.major_version = mddev->major_version;
2085 info.minor_version = mddev->minor_version;
2086 info.patch_version = MD_PATCHLEVEL_VERSION;
2087 info.ctime = mddev->ctime;
2088 info.level = mddev->level;
2089 info.size = mddev->size;
2091 info.raid_disks = mddev->raid_disks;
2092 info.md_minor = mddev->md_minor;
2093 info.not_persistent= !mddev->persistent;
2095 info.utime = mddev->utime;
2098 info.state = (1<<MD_SB_CLEAN);
2099 if (mddev->bitmap && mddev->bitmap_offset)
2100 info.state = (1<<MD_SB_BITMAP_PRESENT);
2101 info.active_disks = active;
2102 info.working_disks = working;
2103 info.failed_disks = failed;
2104 info.spare_disks = spare;
2106 info.layout = mddev->layout;
2107 info.chunk_size = mddev->chunk_size;
2109 if (copy_to_user(arg, &info, sizeof(info)))
2115 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2117 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2118 char *ptr, *buf = NULL;
2121 file = kmalloc(sizeof(*file), GFP_KERNEL);
2125 /* bitmap disabled, zero the first byte and copy out */
2126 if (!mddev->bitmap || !mddev->bitmap->file) {
2127 file->pathname[0] = '\0';
2131 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2135 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2139 strcpy(file->pathname, ptr);
2143 if (copy_to_user(arg, file, sizeof(*file)))
2151 static int get_disk_info(mddev_t * mddev, void __user * arg)
2153 mdu_disk_info_t info;
2157 if (copy_from_user(&info, arg, sizeof(info)))
2162 rdev = find_rdev_nr(mddev, nr);
2164 info.major = MAJOR(rdev->bdev->bd_dev);
2165 info.minor = MINOR(rdev->bdev->bd_dev);
2166 info.raid_disk = rdev->raid_disk;
2169 info.state |= (1<<MD_DISK_FAULTY);
2170 else if (rdev->in_sync) {
2171 info.state |= (1<<MD_DISK_ACTIVE);
2172 info.state |= (1<<MD_DISK_SYNC);
2174 if (test_bit(WriteMostly, &rdev->flags))
2175 info.state |= (1<<MD_DISK_WRITEMOSTLY);
2177 info.major = info.minor = 0;
2178 info.raid_disk = -1;
2179 info.state = (1<<MD_DISK_REMOVED);
2182 if (copy_to_user(arg, &info, sizeof(info)))
2188 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2190 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2192 dev_t dev = MKDEV(info->major,info->minor);
2194 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2197 if (!mddev->raid_disks) {
2199 /* expecting a device which has a superblock */
2200 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2203 "md: md_import_device returned %ld\n",
2205 return PTR_ERR(rdev);
2207 if (!list_empty(&mddev->disks)) {
2208 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2209 mdk_rdev_t, same_set);
2210 int err = super_types[mddev->major_version]
2211 .load_super(rdev, rdev0, mddev->minor_version);
2214 "md: %s has different UUID to %s\n",
2215 bdevname(rdev->bdev,b),
2216 bdevname(rdev0->bdev,b2));
2221 err = bind_rdev_to_array(rdev, mddev);
2228 * add_new_disk can be used once the array is assembled
2229 * to add "hot spares". They must already have a superblock
2234 if (!mddev->pers->hot_add_disk) {
2236 "%s: personality does not support diskops!\n",
2240 if (mddev->persistent)
2241 rdev = md_import_device(dev, mddev->major_version,
2242 mddev->minor_version);
2244 rdev = md_import_device(dev, -1, -1);
2247 "md: md_import_device returned %ld\n",
2249 return PTR_ERR(rdev);
2251 /* set save_raid_disk if appropriate */
2252 if (!mddev->persistent) {
2253 if (info->state & (1<<MD_DISK_SYNC) &&
2254 info->raid_disk < mddev->raid_disks)
2255 rdev->raid_disk = info->raid_disk;
2257 rdev->raid_disk = -1;
2259 super_types[mddev->major_version].
2260 validate_super(mddev, rdev);
2261 rdev->saved_raid_disk = rdev->raid_disk;
2263 rdev->in_sync = 0; /* just to be sure */
2264 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2265 set_bit(WriteMostly, &rdev->flags);
2267 rdev->raid_disk = -1;
2268 err = bind_rdev_to_array(rdev, mddev);
2272 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2273 md_wakeup_thread(mddev->thread);
2277 /* otherwise, add_new_disk is only allowed
2278 * for major_version==0 superblocks
2280 if (mddev->major_version != 0) {
2281 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2286 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2288 rdev = md_import_device (dev, -1, 0);
2291 "md: error, md_import_device() returned %ld\n",
2293 return PTR_ERR(rdev);
2295 rdev->desc_nr = info->number;
2296 if (info->raid_disk < mddev->raid_disks)
2297 rdev->raid_disk = info->raid_disk;
2299 rdev->raid_disk = -1;
2302 if (rdev->raid_disk < mddev->raid_disks)
2303 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2307 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2308 set_bit(WriteMostly, &rdev->flags);
2310 err = bind_rdev_to_array(rdev, mddev);
2316 if (!mddev->persistent) {
2317 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2318 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2320 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2321 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2323 if (!mddev->size || (mddev->size > rdev->size))
2324 mddev->size = rdev->size;
2330 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2332 char b[BDEVNAME_SIZE];
2338 rdev = find_rdev(mddev, dev);
2342 if (rdev->raid_disk >= 0)
2345 kick_rdev_from_array(rdev);
2346 md_update_sb(mddev);
2350 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2351 bdevname(rdev->bdev,b), mdname(mddev));
2355 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2357 char b[BDEVNAME_SIZE];
2365 if (mddev->major_version != 0) {
2366 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2367 " version-0 superblocks.\n",
2371 if (!mddev->pers->hot_add_disk) {
2373 "%s: personality does not support diskops!\n",
2378 rdev = md_import_device (dev, -1, 0);
2381 "md: error, md_import_device() returned %ld\n",
2386 if (mddev->persistent)
2387 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2390 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2392 size = calc_dev_size(rdev, mddev->chunk_size);
2395 if (size < mddev->size) {
2397 "%s: disk size %llu blocks < array size %llu\n",
2398 mdname(mddev), (unsigned long long)size,
2399 (unsigned long long)mddev->size);
2406 "md: can not hot-add faulty %s disk to %s!\n",
2407 bdevname(rdev->bdev,b), mdname(mddev));
2413 bind_rdev_to_array(rdev, mddev);
2416 * The rest should better be atomic, we can have disk failures
2417 * noticed in interrupt contexts ...
2420 if (rdev->desc_nr == mddev->max_disks) {
2421 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2424 goto abort_unbind_export;
2427 rdev->raid_disk = -1;
2429 md_update_sb(mddev);
2432 * Kick recovery, maybe this spare has to be added to the
2433 * array immediately.
2435 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2436 md_wakeup_thread(mddev->thread);
2440 abort_unbind_export:
2441 unbind_rdev_from_array(rdev);
2448 /* similar to deny_write_access, but accounts for our holding a reference
2449 * to the file ourselves */
2450 static int deny_bitmap_write_access(struct file * file)
2452 struct inode *inode = file->f_mapping->host;
2454 spin_lock(&inode->i_lock);
2455 if (atomic_read(&inode->i_writecount) > 1) {
2456 spin_unlock(&inode->i_lock);
2459 atomic_set(&inode->i_writecount, -1);
2460 spin_unlock(&inode->i_lock);
2465 static int set_bitmap_file(mddev_t *mddev, int fd)
2470 if (!mddev->pers->quiesce)
2472 if (mddev->recovery || mddev->sync_thread)
2474 /* we should be able to change the bitmap.. */
2480 return -EEXIST; /* cannot add when bitmap is present */
2481 mddev->bitmap_file = fget(fd);
2483 if (mddev->bitmap_file == NULL) {
2484 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2489 err = deny_bitmap_write_access(mddev->bitmap_file);
2491 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2493 fput(mddev->bitmap_file);
2494 mddev->bitmap_file = NULL;
2497 mddev->bitmap_offset = 0; /* file overrides offset */
2498 } else if (mddev->bitmap == NULL)
2499 return -ENOENT; /* cannot remove what isn't there */
2502 mddev->pers->quiesce(mddev, 1);
2504 err = bitmap_create(mddev);
2506 bitmap_destroy(mddev);
2507 mddev->pers->quiesce(mddev, 0);
2508 } else if (fd < 0) {
2509 if (mddev->bitmap_file)
2510 fput(mddev->bitmap_file);
2511 mddev->bitmap_file = NULL;
2518 * set_array_info is used two different ways
2519 * The original usage is when creating a new array.
2520 * In this usage, raid_disks is > 0 and it together with
2521 * level, size, not_persistent,layout,chunksize determine the
2522 * shape of the array.
2523 * This will always create an array with a type-0.90.0 superblock.
2524 * The newer usage is when assembling an array.
2525 * In this case raid_disks will be 0, and the major_version field is
2526 * use to determine which style super-blocks are to be found on the devices.
2527 * The minor and patch _version numbers are also kept incase the
2528 * super_block handler wishes to interpret them.
2530 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2533 if (info->raid_disks == 0) {
2534 /* just setting version number for superblock loading */
2535 if (info->major_version < 0 ||
2536 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2537 super_types[info->major_version].name == NULL) {
2538 /* maybe try to auto-load a module? */
2540 "md: superblock version %d not known\n",
2541 info->major_version);
2544 mddev->major_version = info->major_version;
2545 mddev->minor_version = info->minor_version;
2546 mddev->patch_version = info->patch_version;
2549 mddev->major_version = MD_MAJOR_VERSION;
2550 mddev->minor_version = MD_MINOR_VERSION;
2551 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2552 mddev->ctime = get_seconds();
2554 mddev->level = info->level;
2555 mddev->size = info->size;
2556 mddev->raid_disks = info->raid_disks;
2557 /* don't set md_minor, it is determined by which /dev/md* was
2560 if (info->state & (1<<MD_SB_CLEAN))
2561 mddev->recovery_cp = MaxSector;
2563 mddev->recovery_cp = 0;
2564 mddev->persistent = ! info->not_persistent;
2566 mddev->layout = info->layout;
2567 mddev->chunk_size = info->chunk_size;
2569 mddev->max_disks = MD_SB_DISKS;
2571 mddev->sb_dirty = 1;
2574 * Generate a 128 bit UUID
2576 get_random_bytes(mddev->uuid, 16);
2582 * update_array_info is used to change the configuration of an
2584 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2585 * fields in the info are checked against the array.
2586 * Any differences that cannot be handled will cause an error.
2587 * Normally, only one change can be managed at a time.
2589 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2595 /* calculate expected state,ignoring low bits */
2596 if (mddev->bitmap && mddev->bitmap_offset)
2597 state |= (1 << MD_SB_BITMAP_PRESENT);
2599 if (mddev->major_version != info->major_version ||
2600 mddev->minor_version != info->minor_version ||
2601 /* mddev->patch_version != info->patch_version || */
2602 mddev->ctime != info->ctime ||
2603 mddev->level != info->level ||
2604 /* mddev->layout != info->layout || */
2605 !mddev->persistent != info->not_persistent||
2606 mddev->chunk_size != info->chunk_size ||
2607 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2608 ((state^info->state) & 0xfffffe00)
2611 /* Check there is only one change */
2612 if (mddev->size != info->size) cnt++;
2613 if (mddev->raid_disks != info->raid_disks) cnt++;
2614 if (mddev->layout != info->layout) cnt++;
2615 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
2616 if (cnt == 0) return 0;
2617 if (cnt > 1) return -EINVAL;
2619 if (mddev->layout != info->layout) {
2621 * we don't need to do anything at the md level, the
2622 * personality will take care of it all.
2624 if (mddev->pers->reconfig == NULL)
2627 return mddev->pers->reconfig(mddev, info->layout, -1);
2629 if (mddev->size != info->size) {
2631 struct list_head *tmp;
2632 if (mddev->pers->resize == NULL)
2634 /* The "size" is the amount of each device that is used.
2635 * This can only make sense for arrays with redundancy.
2636 * linear and raid0 always use whatever space is available
2637 * We can only consider changing the size if no resync
2638 * or reconstruction is happening, and if the new size
2639 * is acceptable. It must fit before the sb_offset or,
2640 * if that is <data_offset, it must fit before the
2641 * size of each device.
2642 * If size is zero, we find the largest size that fits.
2644 if (mddev->sync_thread)
2646 ITERATE_RDEV(mddev,rdev,tmp) {
2648 int fit = (info->size == 0);
2649 if (rdev->sb_offset > rdev->data_offset)
2650 avail = (rdev->sb_offset*2) - rdev->data_offset;
2652 avail = get_capacity(rdev->bdev->bd_disk)
2653 - rdev->data_offset;
2654 if (fit && (info->size == 0 || info->size > avail/2))
2655 info->size = avail/2;
2656 if (avail < ((sector_t)info->size << 1))
2659 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2661 struct block_device *bdev;
2663 bdev = bdget_disk(mddev->gendisk, 0);
2665 down(&bdev->bd_inode->i_sem);
2666 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2667 up(&bdev->bd_inode->i_sem);
2672 if (mddev->raid_disks != info->raid_disks) {
2673 /* change the number of raid disks */
2674 if (mddev->pers->reshape == NULL)
2676 if (info->raid_disks <= 0 ||
2677 info->raid_disks >= mddev->max_disks)
2679 if (mddev->sync_thread)
2681 rv = mddev->pers->reshape(mddev, info->raid_disks);
2683 struct block_device *bdev;
2685 bdev = bdget_disk(mddev->gendisk, 0);
2687 down(&bdev->bd_inode->i_sem);
2688 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2689 up(&bdev->bd_inode->i_sem);
2694 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
2695 if (mddev->pers->quiesce == NULL)
2697 if (mddev->recovery || mddev->sync_thread)
2699 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
2700 /* add the bitmap */
2703 if (mddev->default_bitmap_offset == 0)
2705 mddev->bitmap_offset = mddev->default_bitmap_offset;
2706 mddev->pers->quiesce(mddev, 1);
2707 rv = bitmap_create(mddev);
2709 bitmap_destroy(mddev);
2710 mddev->pers->quiesce(mddev, 0);
2712 /* remove the bitmap */
2715 if (mddev->bitmap->file)
2717 mddev->pers->quiesce(mddev, 1);
2718 bitmap_destroy(mddev);
2719 mddev->pers->quiesce(mddev, 0);
2720 mddev->bitmap_offset = 0;
2723 md_update_sb(mddev);
2727 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2731 if (mddev->pers == NULL)
2734 rdev = find_rdev(mddev, dev);
2738 md_error(mddev, rdev);
2742 static int md_ioctl(struct inode *inode, struct file *file,
2743 unsigned int cmd, unsigned long arg)
2746 void __user *argp = (void __user *)arg;
2747 struct hd_geometry __user *loc = argp;
2748 mddev_t *mddev = NULL;
2750 if (!capable(CAP_SYS_ADMIN))
2754 * Commands dealing with the RAID driver but not any
2760 err = get_version(argp);
2763 case PRINT_RAID_DEBUG:
2771 autostart_arrays(arg);
2778 * Commands creating/starting a new array:
2781 mddev = inode->i_bdev->bd_disk->private_data;
2789 if (cmd == START_ARRAY) {
2790 /* START_ARRAY doesn't need to lock the array as autostart_array
2791 * does the locking, and it could even be a different array
2796 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2797 "This will not be supported beyond 2.6\n",
2798 current->comm, current->pid);
2801 err = autostart_array(new_decode_dev(arg));
2803 printk(KERN_WARNING "md: autostart failed!\n");
2809 err = mddev_lock(mddev);
2812 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2819 case SET_ARRAY_INFO:
2821 mdu_array_info_t info;
2823 memset(&info, 0, sizeof(info));
2824 else if (copy_from_user(&info, argp, sizeof(info))) {
2829 err = update_array_info(mddev, &info);
2831 printk(KERN_WARNING "md: couldn't update"
2832 " array info. %d\n", err);
2837 if (!list_empty(&mddev->disks)) {
2839 "md: array %s already has disks!\n",
2844 if (mddev->raid_disks) {
2846 "md: array %s already initialised!\n",
2851 err = set_array_info(mddev, &info);
2853 printk(KERN_WARNING "md: couldn't set"
2854 " array info. %d\n", err);
2864 * Commands querying/configuring an existing array:
2866 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2867 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2868 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2869 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
2875 * Commands even a read-only array can execute:
2879 case GET_ARRAY_INFO:
2880 err = get_array_info(mddev, argp);
2883 case GET_BITMAP_FILE:
2884 err = get_bitmap_file(mddev, argp);
2888 err = get_disk_info(mddev, argp);
2891 case RESTART_ARRAY_RW:
2892 err = restart_array(mddev);
2896 err = do_md_stop (mddev, 0);
2900 err = do_md_stop (mddev, 1);
2904 * We have a problem here : there is no easy way to give a CHS
2905 * virtual geometry. We currently pretend that we have a 2 heads
2906 * 4 sectors (with a BIG number of cylinders...). This drives
2907 * dosfs just mad... ;-)
2914 err = put_user (2, (char __user *) &loc->heads);
2917 err = put_user (4, (char __user *) &loc->sectors);
2920 err = put_user(get_capacity(mddev->gendisk)/8,
2921 (short __user *) &loc->cylinders);
2924 err = put_user (get_start_sect(inode->i_bdev),
2925 (long __user *) &loc->start);
2930 * The remaining ioctls are changing the state of the
2931 * superblock, so we do not allow read-only arrays
2943 mdu_disk_info_t info;
2944 if (copy_from_user(&info, argp, sizeof(info)))
2947 err = add_new_disk(mddev, &info);
2951 case HOT_REMOVE_DISK:
2952 err = hot_remove_disk(mddev, new_decode_dev(arg));
2956 err = hot_add_disk(mddev, new_decode_dev(arg));
2959 case SET_DISK_FAULTY:
2960 err = set_disk_faulty(mddev, new_decode_dev(arg));
2964 err = do_md_run (mddev);
2967 case SET_BITMAP_FILE:
2968 err = set_bitmap_file(mddev, (int)arg);
2972 if (_IOC_TYPE(cmd) == MD_MAJOR)
2973 printk(KERN_WARNING "md: %s(pid %d) used"
2974 " obsolete MD ioctl, upgrade your"
2975 " software to use new ictls.\n",
2976 current->comm, current->pid);
2983 mddev_unlock(mddev);
2993 static int md_open(struct inode *inode, struct file *file)
2996 * Succeed if we can lock the mddev, which confirms that
2997 * it isn't being stopped right now.
2999 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3002 if ((err = mddev_lock(mddev)))
3007 mddev_unlock(mddev);
3009 check_disk_change(inode->i_bdev);
3014 static int md_release(struct inode *inode, struct file * file)
3016 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3025 static int md_media_changed(struct gendisk *disk)
3027 mddev_t *mddev = disk->private_data;
3029 return mddev->changed;
3032 static int md_revalidate(struct gendisk *disk)
3034 mddev_t *mddev = disk->private_data;
3039 static struct block_device_operations md_fops =
3041 .owner = THIS_MODULE,
3043 .release = md_release,
3045 .media_changed = md_media_changed,
3046 .revalidate_disk= md_revalidate,
3049 static int md_thread(void * arg)
3051 mdk_thread_t *thread = arg;
3054 * md_thread is a 'system-thread', it's priority should be very
3055 * high. We avoid resource deadlocks individually in each
3056 * raid personality. (RAID5 does preallocation) We also use RR and
3057 * the very same RT priority as kswapd, thus we will never get
3058 * into a priority inversion deadlock.
3060 * we definitely have to have equal or higher priority than
3061 * bdflush, otherwise bdflush will deadlock if there are too
3062 * many dirty RAID5 blocks.
3065 complete(thread->event);
3066 while (!kthread_should_stop()) {
3067 void (*run)(mddev_t *);
3069 wait_event_interruptible_timeout(thread->wqueue,
3070 test_bit(THREAD_WAKEUP, &thread->flags)
3071 || kthread_should_stop(),
3075 clear_bit(THREAD_WAKEUP, &thread->flags);
3085 void md_wakeup_thread(mdk_thread_t *thread)
3088 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3089 set_bit(THREAD_WAKEUP, &thread->flags);
3090 wake_up(&thread->wqueue);
3094 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3097 mdk_thread_t *thread;
3098 struct completion event;
3100 thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3104 memset(thread, 0, sizeof(mdk_thread_t));
3105 init_waitqueue_head(&thread->wqueue);
3107 init_completion(&event);
3108 thread->event = &event;
3110 thread->mddev = mddev;
3111 thread->name = name;
3112 thread->timeout = MAX_SCHEDULE_TIMEOUT;
3113 thread->tsk = kthread_run(md_thread, thread, mdname(thread->mddev));
3114 if (IS_ERR(thread->tsk)) {
3118 wait_for_completion(&event);
3122 void md_unregister_thread(mdk_thread_t *thread)
3124 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3126 kthread_stop(thread->tsk);
3130 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3137 if (!rdev || rdev->faulty)
3140 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3142 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3143 __builtin_return_address(0),__builtin_return_address(1),
3144 __builtin_return_address(2),__builtin_return_address(3));
3146 if (!mddev->pers->error_handler)
3148 mddev->pers->error_handler(mddev,rdev);
3149 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3150 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3151 md_wakeup_thread(mddev->thread);
3154 /* seq_file implementation /proc/mdstat */
3156 static void status_unused(struct seq_file *seq)
3160 struct list_head *tmp;
3162 seq_printf(seq, "unused devices: ");
3164 ITERATE_RDEV_PENDING(rdev,tmp) {
3165 char b[BDEVNAME_SIZE];
3167 seq_printf(seq, "%s ",
3168 bdevname(rdev->bdev,b));
3171 seq_printf(seq, "<none>");
3173 seq_printf(seq, "\n");
3177 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3179 unsigned long max_blocks, resync, res, dt, db, rt;
3181 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3183 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3184 max_blocks = mddev->resync_max_sectors >> 1;
3186 max_blocks = mddev->size;
3189 * Should not happen.
3195 res = (resync/1024)*1000/(max_blocks/1024 + 1);
3197 int i, x = res/50, y = 20-x;
3198 seq_printf(seq, "[");
3199 for (i = 0; i < x; i++)
3200 seq_printf(seq, "=");
3201 seq_printf(seq, ">");
3202 for (i = 0; i < y; i++)
3203 seq_printf(seq, ".");
3204 seq_printf(seq, "] ");
3206 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3207 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3208 "resync" : "recovery"),
3209 res/10, res % 10, resync, max_blocks);
3212 * We do not want to overflow, so the order of operands and
3213 * the * 100 / 100 trick are important. We do a +1 to be
3214 * safe against division by zero. We only estimate anyway.
3216 * dt: time from mark until now
3217 * db: blocks written from mark until now
3218 * rt: remaining time
3220 dt = ((jiffies - mddev->resync_mark) / HZ);
3222 db = resync - (mddev->resync_mark_cnt/2);
3223 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3225 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3227 seq_printf(seq, " speed=%ldK/sec", db/dt);
3230 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3232 struct list_head *tmp;
3242 spin_lock(&all_mddevs_lock);
3243 list_for_each(tmp,&all_mddevs)
3245 mddev = list_entry(tmp, mddev_t, all_mddevs);
3247 spin_unlock(&all_mddevs_lock);
3250 spin_unlock(&all_mddevs_lock);
3252 return (void*)2;/* tail */
3256 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3258 struct list_head *tmp;
3259 mddev_t *next_mddev, *mddev = v;
3265 spin_lock(&all_mddevs_lock);
3267 tmp = all_mddevs.next;
3269 tmp = mddev->all_mddevs.next;
3270 if (tmp != &all_mddevs)
3271 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3273 next_mddev = (void*)2;
3276 spin_unlock(&all_mddevs_lock);
3284 static void md_seq_stop(struct seq_file *seq, void *v)
3288 if (mddev && v != (void*)1 && v != (void*)2)
3292 static int md_seq_show(struct seq_file *seq, void *v)
3296 struct list_head *tmp2;
3299 struct bitmap *bitmap;
3301 if (v == (void*)1) {
3302 seq_printf(seq, "Personalities : ");
3303 spin_lock(&pers_lock);
3304 for (i = 0; i < MAX_PERSONALITY; i++)
3306 seq_printf(seq, "[%s] ", pers[i]->name);
3308 spin_unlock(&pers_lock);
3309 seq_printf(seq, "\n");
3312 if (v == (void*)2) {
3317 if (mddev_lock(mddev)!=0)
3319 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3320 seq_printf(seq, "%s : %sactive", mdname(mddev),
3321 mddev->pers ? "" : "in");
3324 seq_printf(seq, " (read-only)");
3325 seq_printf(seq, " %s", mddev->pers->name);
3329 ITERATE_RDEV(mddev,rdev,tmp2) {
3330 char b[BDEVNAME_SIZE];
3331 seq_printf(seq, " %s[%d]",
3332 bdevname(rdev->bdev,b), rdev->desc_nr);
3333 if (test_bit(WriteMostly, &rdev->flags))
3334 seq_printf(seq, "(W)");
3336 seq_printf(seq, "(F)");
3342 if (!list_empty(&mddev->disks)) {
3344 seq_printf(seq, "\n %llu blocks",
3345 (unsigned long long)mddev->array_size);
3347 seq_printf(seq, "\n %llu blocks",
3348 (unsigned long long)size);
3352 mddev->pers->status (seq, mddev);
3353 seq_printf(seq, "\n ");
3354 if (mddev->curr_resync > 2) {
3355 status_resync (seq, mddev);
3356 seq_printf(seq, "\n ");
3357 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3358 seq_printf(seq, " resync=DELAYED\n ");
3360 seq_printf(seq, "\n ");
3362 if ((bitmap = mddev->bitmap)) {
3363 unsigned long chunk_kb;
3364 unsigned long flags;
3365 spin_lock_irqsave(&bitmap->lock, flags);
3366 chunk_kb = bitmap->chunksize >> 10;
3367 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3369 bitmap->pages - bitmap->missing_pages,
3371 (bitmap->pages - bitmap->missing_pages)
3372 << (PAGE_SHIFT - 10),
3373 chunk_kb ? chunk_kb : bitmap->chunksize,
3374 chunk_kb ? "KB" : "B");
3376 seq_printf(seq, ", file: ");
3377 seq_path(seq, bitmap->file->f_vfsmnt,
3378 bitmap->file->f_dentry," \t\n");
3381 seq_printf(seq, "\n");
3382 spin_unlock_irqrestore(&bitmap->lock, flags);
3385 seq_printf(seq, "\n");
3387 mddev_unlock(mddev);
3392 static struct seq_operations md_seq_ops = {
3393 .start = md_seq_start,
3394 .next = md_seq_next,
3395 .stop = md_seq_stop,
3396 .show = md_seq_show,
3399 static int md_seq_open(struct inode *inode, struct file *file)
3403 error = seq_open(file, &md_seq_ops);
3407 static struct file_operations md_seq_fops = {
3408 .open = md_seq_open,
3410 .llseek = seq_lseek,
3411 .release = seq_release,
3414 int register_md_personality(int pnum, mdk_personality_t *p)
3416 if (pnum >= MAX_PERSONALITY) {
3418 "md: tried to install personality %s as nr %d, but max is %lu\n",
3419 p->name, pnum, MAX_PERSONALITY-1);
3423 spin_lock(&pers_lock);
3425 spin_unlock(&pers_lock);
3430 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3431 spin_unlock(&pers_lock);
3435 int unregister_md_personality(int pnum)
3437 if (pnum >= MAX_PERSONALITY)
3440 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3441 spin_lock(&pers_lock);
3443 spin_unlock(&pers_lock);
3447 static int is_mddev_idle(mddev_t *mddev)
3450 struct list_head *tmp;
3452 unsigned long curr_events;
3455 ITERATE_RDEV(mddev,rdev,tmp) {
3456 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3457 curr_events = disk_stat_read(disk, read_sectors) +
3458 disk_stat_read(disk, write_sectors) -
3459 atomic_read(&disk->sync_io);
3460 /* Allow some slack between valud of curr_events and last_events,
3461 * as there are some uninteresting races.
3462 * Note: the following is an unsigned comparison.
3464 if ((curr_events - rdev->last_events + 32) > 64) {
3465 rdev->last_events = curr_events;
3472 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3474 /* another "blocks" (512byte) blocks have been synced */
3475 atomic_sub(blocks, &mddev->recovery_active);
3476 wake_up(&mddev->recovery_wait);
3478 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3479 md_wakeup_thread(mddev->thread);
3480 // stop recovery, signal do_sync ....
3485 /* md_write_start(mddev, bi)
3486 * If we need to update some array metadata (e.g. 'active' flag
3487 * in superblock) before writing, schedule a superblock update
3488 * and wait for it to complete.
3490 void md_write_start(mddev_t *mddev, struct bio *bi)
3492 if (bio_data_dir(bi) != WRITE)
3495 atomic_inc(&mddev->writes_pending);
3496 if (mddev->in_sync) {
3497 spin_lock(&mddev->write_lock);
3498 if (mddev->in_sync) {
3500 mddev->sb_dirty = 1;
3501 md_wakeup_thread(mddev->thread);
3503 spin_unlock(&mddev->write_lock);
3505 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3508 void md_write_end(mddev_t *mddev)
3510 if (atomic_dec_and_test(&mddev->writes_pending)) {
3511 if (mddev->safemode == 2)
3512 md_wakeup_thread(mddev->thread);
3514 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3518 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3520 #define SYNC_MARKS 10
3521 #define SYNC_MARK_STEP (3*HZ)
3522 static void md_do_sync(mddev_t *mddev)
3525 unsigned int currspeed = 0,
3527 sector_t max_sectors,j, io_sectors;
3528 unsigned long mark[SYNC_MARKS];
3529 sector_t mark_cnt[SYNC_MARKS];
3531 struct list_head *tmp;
3532 sector_t last_check;
3535 /* just incase thread restarts... */
3536 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3539 /* we overload curr_resync somewhat here.
3540 * 0 == not engaged in resync at all
3541 * 2 == checking that there is no conflict with another sync
3542 * 1 == like 2, but have yielded to allow conflicting resync to
3544 * other == active in resync - this many blocks
3546 * Before starting a resync we must have set curr_resync to
3547 * 2, and then checked that every "conflicting" array has curr_resync
3548 * less than ours. When we find one that is the same or higher
3549 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3550 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3551 * This will mean we have to start checking from the beginning again.
3556 mddev->curr_resync = 2;
3559 if (signal_pending(current)) {
3560 flush_signals(current);
3563 ITERATE_MDDEV(mddev2,tmp) {
3564 if (mddev2 == mddev)
3566 if (mddev2->curr_resync &&
3567 match_mddev_units(mddev,mddev2)) {
3569 if (mddev < mddev2 && mddev->curr_resync == 2) {
3570 /* arbitrarily yield */
3571 mddev->curr_resync = 1;
3572 wake_up(&resync_wait);
3574 if (mddev > mddev2 && mddev->curr_resync == 1)
3575 /* no need to wait here, we can wait the next
3576 * time 'round when curr_resync == 2
3579 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3580 if (!signal_pending(current)
3581 && mddev2->curr_resync >= mddev->curr_resync) {
3582 printk(KERN_INFO "md: delaying resync of %s"
3583 " until %s has finished resync (they"
3584 " share one or more physical units)\n",
3585 mdname(mddev), mdname(mddev2));
3588 finish_wait(&resync_wait, &wq);
3591 finish_wait(&resync_wait, &wq);
3594 } while (mddev->curr_resync < 2);
3596 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3597 /* resync follows the size requested by the personality,
3598 * which defaults to physical size, but can be virtual size
3600 max_sectors = mddev->resync_max_sectors;
3602 /* recovery follows the physical size of devices */
3603 max_sectors = mddev->size << 1;
3605 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3606 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3607 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3608 printk(KERN_INFO "md: using maximum available idle IO bandwith "
3609 "(but not more than %d KB/sec) for reconstruction.\n",
3610 sysctl_speed_limit_max);
3612 is_mddev_idle(mddev); /* this also initializes IO event counters */
3613 /* we don't use the checkpoint if there's a bitmap */
3614 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
3615 j = mddev->recovery_cp;
3619 for (m = 0; m < SYNC_MARKS; m++) {
3621 mark_cnt[m] = io_sectors;
3624 mddev->resync_mark = mark[last_mark];
3625 mddev->resync_mark_cnt = mark_cnt[last_mark];
3628 * Tune reconstruction:
3630 window = 32*(PAGE_SIZE/512);
3631 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3632 window/2,(unsigned long long) max_sectors/2);
3634 atomic_set(&mddev->recovery_active, 0);
3635 init_waitqueue_head(&mddev->recovery_wait);
3640 "md: resuming recovery of %s from checkpoint.\n",
3642 mddev->curr_resync = j;
3645 while (j < max_sectors) {
3649 sectors = mddev->pers->sync_request(mddev, j, &skipped,
3650 currspeed < sysctl_speed_limit_min);
3652 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3656 if (!skipped) { /* actual IO requested */
3657 io_sectors += sectors;
3658 atomic_add(sectors, &mddev->recovery_active);
3662 if (j>1) mddev->curr_resync = j;
3665 if (last_check + window > io_sectors || j == max_sectors)
3668 last_check = io_sectors;
3670 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3671 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3675 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3677 int next = (last_mark+1) % SYNC_MARKS;
3679 mddev->resync_mark = mark[next];
3680 mddev->resync_mark_cnt = mark_cnt[next];
3681 mark[next] = jiffies;
3682 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
3687 if (signal_pending(current)) {
3689 * got a signal, exit.
3692 "md: md_do_sync() got signal ... exiting\n");
3693 flush_signals(current);
3694 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3699 * this loop exits only if either when we are slower than
3700 * the 'hard' speed limit, or the system was IO-idle for
3702 * the system might be non-idle CPU-wise, but we only care
3703 * about not overloading the IO subsystem. (things like an
3704 * e2fsck being done on the RAID array should execute fast)
3706 mddev->queue->unplug_fn(mddev->queue);
3709 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3710 /((jiffies-mddev->resync_mark)/HZ +1) +1;
3712 if (currspeed > sysctl_speed_limit_min) {
3713 if ((currspeed > sysctl_speed_limit_max) ||
3714 !is_mddev_idle(mddev)) {
3715 msleep_interruptible(250);
3720 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3722 * this also signals 'finished resyncing' to md_stop
3725 mddev->queue->unplug_fn(mddev->queue);
3727 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3729 /* tell personality that we are finished */
3730 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
3732 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3733 mddev->curr_resync > 2 &&
3734 mddev->curr_resync >= mddev->recovery_cp) {
3735 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3737 "md: checkpointing recovery of %s.\n",
3739 mddev->recovery_cp = mddev->curr_resync;
3741 mddev->recovery_cp = MaxSector;
3745 mddev->curr_resync = 0;
3746 wake_up(&resync_wait);
3747 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3748 md_wakeup_thread(mddev->thread);
3753 * This routine is regularly called by all per-raid-array threads to
3754 * deal with generic issues like resync and super-block update.
3755 * Raid personalities that don't have a thread (linear/raid0) do not
3756 * need this as they never do any recovery or update the superblock.
3758 * It does not do any resync itself, but rather "forks" off other threads
3759 * to do that as needed.
3760 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3761 * "->recovery" and create a thread at ->sync_thread.
3762 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3763 * and wakeups up this thread which will reap the thread and finish up.
3764 * This thread also removes any faulty devices (with nr_pending == 0).
3766 * The overall approach is:
3767 * 1/ if the superblock needs updating, update it.
3768 * 2/ If a recovery thread is running, don't do anything else.
3769 * 3/ If recovery has finished, clean up, possibly marking spares active.
3770 * 4/ If there are any faulty devices, remove them.
3771 * 5/ If array is degraded, try to add spares devices
3772 * 6/ If array has spares or is not in-sync, start a resync thread.
3774 void md_check_recovery(mddev_t *mddev)
3777 struct list_head *rtmp;
3781 bitmap_daemon_work(mddev->bitmap);
3786 if (signal_pending(current)) {
3787 if (mddev->pers->sync_request) {
3788 printk(KERN_INFO "md: %s in immediate safe mode\n",
3790 mddev->safemode = 2;
3792 flush_signals(current);
3797 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3798 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
3799 (mddev->safemode == 1) ||
3800 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3801 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
3805 if (mddev_trylock(mddev)==0) {
3808 spin_lock(&mddev->write_lock);
3809 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3810 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3812 mddev->sb_dirty = 1;
3814 if (mddev->safemode == 1)
3815 mddev->safemode = 0;
3816 spin_unlock(&mddev->write_lock);
3818 if (mddev->sb_dirty)
3819 md_update_sb(mddev);
3822 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3823 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3824 /* resync/recovery still happening */
3825 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3828 if (mddev->sync_thread) {
3829 /* resync has finished, collect result */
3830 md_unregister_thread(mddev->sync_thread);
3831 mddev->sync_thread = NULL;
3832 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3833 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3835 /* activate any spares */
3836 mddev->pers->spare_active(mddev);
3838 md_update_sb(mddev);
3840 /* if array is no-longer degraded, then any saved_raid_disk
3841 * information must be scrapped
3843 if (!mddev->degraded)
3844 ITERATE_RDEV(mddev,rdev,rtmp)
3845 rdev->saved_raid_disk = -1;
3847 mddev->recovery = 0;
3848 /* flag recovery needed just to double check */
3849 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3852 if (mddev->recovery)
3853 /* probably just the RECOVERY_NEEDED flag */
3854 mddev->recovery = 0;
3856 /* no recovery is running.
3857 * remove any failed drives, then
3858 * add spares if possible.
3859 * Spare are also removed and re-added, to allow
3860 * the personality to fail the re-add.
3862 ITERATE_RDEV(mddev,rdev,rtmp)
3863 if (rdev->raid_disk >= 0 &&
3864 (rdev->faulty || ! rdev->in_sync) &&
3865 atomic_read(&rdev->nr_pending)==0) {
3866 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3867 rdev->raid_disk = -1;
3870 if (mddev->degraded) {
3871 ITERATE_RDEV(mddev,rdev,rtmp)
3872 if (rdev->raid_disk < 0
3874 if (mddev->pers->hot_add_disk(mddev,rdev))
3881 if (!spares && (mddev->recovery_cp == MaxSector )) {
3882 /* nothing we can do ... */
3885 if (mddev->pers->sync_request) {
3886 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3888 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3889 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
3890 /* We are adding a device or devices to an array
3891 * which has the bitmap stored on all devices.
3892 * So make sure all bitmap pages get written
3894 bitmap_write_all(mddev->bitmap);
3896 mddev->sync_thread = md_register_thread(md_do_sync,
3899 if (!mddev->sync_thread) {
3900 printk(KERN_ERR "%s: could not start resync"
3903 /* leave the spares where they are, it shouldn't hurt */
3904 mddev->recovery = 0;
3906 md_wakeup_thread(mddev->sync_thread);
3910 mddev_unlock(mddev);
3914 static int md_notify_reboot(struct notifier_block *this,
3915 unsigned long code, void *x)
3917 struct list_head *tmp;
3920 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3922 printk(KERN_INFO "md: stopping all md devices.\n");
3924 ITERATE_MDDEV(mddev,tmp)
3925 if (mddev_trylock(mddev)==0)
3926 do_md_stop (mddev, 1);
3928 * certain more exotic SCSI devices are known to be
3929 * volatile wrt too early system reboots. While the
3930 * right place to handle this issue is the given
3931 * driver, we do want to have a safe RAID driver ...
3938 static struct notifier_block md_notifier = {
3939 .notifier_call = md_notify_reboot,
3941 .priority = INT_MAX, /* before any real devices */
3944 static void md_geninit(void)
3946 struct proc_dir_entry *p;
3948 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3950 p = create_proc_entry("mdstat", S_IRUGO, NULL);
3952 p->proc_fops = &md_seq_fops;
3955 static int __init md_init(void)
3959 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3960 " MD_SB_DISKS=%d\n",
3961 MD_MAJOR_VERSION, MD_MINOR_VERSION,
3962 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3963 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3966 if (register_blkdev(MAJOR_NR, "md"))
3968 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3969 unregister_blkdev(MAJOR_NR, "md");
3973 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3974 md_probe, NULL, NULL);
3975 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3976 md_probe, NULL, NULL);
3978 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3979 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3980 S_IFBLK|S_IRUSR|S_IWUSR,
3983 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3984 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3985 S_IFBLK|S_IRUSR|S_IWUSR,
3989 register_reboot_notifier(&md_notifier);
3990 raid_table_header = register_sysctl_table(raid_root_table, 1);
4000 * Searches all registered partitions for autorun RAID arrays
4003 static dev_t detected_devices[128];
4006 void md_autodetect_dev(dev_t dev)
4008 if (dev_cnt >= 0 && dev_cnt < 127)
4009 detected_devices[dev_cnt++] = dev;
4013 static void autostart_arrays(int part)
4018 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4020 for (i = 0; i < dev_cnt; i++) {
4021 dev_t dev = detected_devices[i];
4023 rdev = md_import_device(dev,0, 0);
4031 list_add(&rdev->same_set, &pending_raid_disks);
4035 autorun_devices(part);
4040 static __exit void md_exit(void)
4043 struct list_head *tmp;
4045 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4046 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4047 for (i=0; i < MAX_MD_DEVS; i++)
4048 devfs_remove("md/%d", i);
4049 for (i=0; i < MAX_MD_DEVS; i++)
4050 devfs_remove("md/d%d", i);
4054 unregister_blkdev(MAJOR_NR,"md");
4055 unregister_blkdev(mdp_major, "mdp");
4056 unregister_reboot_notifier(&md_notifier);
4057 unregister_sysctl_table(raid_table_header);
4058 remove_proc_entry("mdstat", NULL);
4059 ITERATE_MDDEV(mddev,tmp) {
4060 struct gendisk *disk = mddev->gendisk;
4063 export_array(mddev);
4066 mddev->gendisk = NULL;
4071 module_init(md_init)
4072 module_exit(md_exit)
4074 EXPORT_SYMBOL(register_md_personality);
4075 EXPORT_SYMBOL(unregister_md_personality);
4076 EXPORT_SYMBOL(md_error);
4077 EXPORT_SYMBOL(md_done_sync);
4078 EXPORT_SYMBOL(md_write_start);
4079 EXPORT_SYMBOL(md_write_end);
4080 EXPORT_SYMBOL(md_register_thread);
4081 EXPORT_SYMBOL(md_unregister_thread);
4082 EXPORT_SYMBOL(md_wakeup_thread);
4083 EXPORT_SYMBOL(md_print_devices);
4084 EXPORT_SYMBOL(md_check_recovery);
4085 MODULE_LICENSE("GPL");
4087 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);