[XFS] Fix broken inode cluster setup.
[linux-2.6] / fs / xfs / xfs_log_recover.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_imap.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
48 #include "xfs_rw.h"
49
50 STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void     xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53                                                xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void     xlog_recover_check_summary(xlog_t *);
56 STATIC void     xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
57 #else
58 #define xlog_recover_check_summary(log)
59 #define xlog_recover_check_ail(mp, lip, gen)
60 #endif
61
62
63 /*
64  * Sector aligned buffer routines for buffer create/read/write/access
65  */
66
67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)   \
68         ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
69         ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)   ((bno) & ~(log)->l_sectbb_mask)
71
72 xfs_buf_t *
73 xlog_get_bp(
74         xlog_t          *log,
75         int             num_bblks)
76 {
77         ASSERT(num_bblks > 0);
78
79         if (log->l_sectbb_log) {
80                 if (num_bblks > 1)
81                         num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
82                 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
83         }
84         return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
85 }
86
87 void
88 xlog_put_bp(
89         xfs_buf_t       *bp)
90 {
91         xfs_buf_free(bp);
92 }
93
94
95 /*
96  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
97  */
98 int
99 xlog_bread(
100         xlog_t          *log,
101         xfs_daddr_t     blk_no,
102         int             nbblks,
103         xfs_buf_t       *bp)
104 {
105         int             error;
106
107         if (log->l_sectbb_log) {
108                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
109                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
110         }
111
112         ASSERT(nbblks > 0);
113         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
114         ASSERT(bp);
115
116         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
117         XFS_BUF_READ(bp);
118         XFS_BUF_BUSY(bp);
119         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
120         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
121
122         xfsbdstrat(log->l_mp, bp);
123         if ((error = xfs_iowait(bp)))
124                 xfs_ioerror_alert("xlog_bread", log->l_mp,
125                                   bp, XFS_BUF_ADDR(bp));
126         return error;
127 }
128
129 /*
130  * Write out the buffer at the given block for the given number of blocks.
131  * The buffer is kept locked across the write and is returned locked.
132  * This can only be used for synchronous log writes.
133  */
134 STATIC int
135 xlog_bwrite(
136         xlog_t          *log,
137         xfs_daddr_t     blk_no,
138         int             nbblks,
139         xfs_buf_t       *bp)
140 {
141         int             error;
142
143         if (log->l_sectbb_log) {
144                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
146         }
147
148         ASSERT(nbblks > 0);
149         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150
151         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152         XFS_BUF_ZEROFLAGS(bp);
153         XFS_BUF_BUSY(bp);
154         XFS_BUF_HOLD(bp);
155         XFS_BUF_PSEMA(bp, PRIBIO);
156         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158
159         if ((error = xfs_bwrite(log->l_mp, bp)))
160                 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161                                   bp, XFS_BUF_ADDR(bp));
162         return error;
163 }
164
165 STATIC xfs_caddr_t
166 xlog_align(
167         xlog_t          *log,
168         xfs_daddr_t     blk_no,
169         int             nbblks,
170         xfs_buf_t       *bp)
171 {
172         xfs_caddr_t     ptr;
173
174         if (!log->l_sectbb_log)
175                 return XFS_BUF_PTR(bp);
176
177         ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178         ASSERT(XFS_BUF_SIZE(bp) >=
179                 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
180         return ptr;
181 }
182
183 #ifdef DEBUG
184 /*
185  * dump debug superblock and log record information
186  */
187 STATIC void
188 xlog_header_check_dump(
189         xfs_mount_t             *mp,
190         xlog_rec_header_t       *head)
191 {
192         int                     b;
193
194         cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __FUNCTION__);
195         for (b = 0; b < 16; b++)
196                 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197         cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198         cmn_err(CE_DEBUG, "    log : uuid = ");
199         for (b = 0; b < 16; b++)
200                 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
201         cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
202 }
203 #else
204 #define xlog_header_check_dump(mp, head)
205 #endif
206
207 /*
208  * check log record header for recovery
209  */
210 STATIC int
211 xlog_header_check_recover(
212         xfs_mount_t             *mp,
213         xlog_rec_header_t       *head)
214 {
215         ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
216
217         /*
218          * IRIX doesn't write the h_fmt field and leaves it zeroed
219          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220          * a dirty log created in IRIX.
221          */
222         if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
223                 xlog_warn(
224         "XFS: dirty log written in incompatible format - can't recover");
225                 xlog_header_check_dump(mp, head);
226                 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227                                  XFS_ERRLEVEL_HIGH, mp);
228                 return XFS_ERROR(EFSCORRUPTED);
229         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230                 xlog_warn(
231         "XFS: dirty log entry has mismatched uuid - can't recover");
232                 xlog_header_check_dump(mp, head);
233                 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234                                  XFS_ERRLEVEL_HIGH, mp);
235                 return XFS_ERROR(EFSCORRUPTED);
236         }
237         return 0;
238 }
239
240 /*
241  * read the head block of the log and check the header
242  */
243 STATIC int
244 xlog_header_check_mount(
245         xfs_mount_t             *mp,
246         xlog_rec_header_t       *head)
247 {
248         ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
249
250         if (uuid_is_nil(&head->h_fs_uuid)) {
251                 /*
252                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253                  * h_fs_uuid is nil, we assume this log was last mounted
254                  * by IRIX and continue.
255                  */
256                 xlog_warn("XFS: nil uuid in log - IRIX style log");
257         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258                 xlog_warn("XFS: log has mismatched uuid - can't recover");
259                 xlog_header_check_dump(mp, head);
260                 XFS_ERROR_REPORT("xlog_header_check_mount",
261                                  XFS_ERRLEVEL_HIGH, mp);
262                 return XFS_ERROR(EFSCORRUPTED);
263         }
264         return 0;
265 }
266
267 STATIC void
268 xlog_recover_iodone(
269         struct xfs_buf  *bp)
270 {
271         xfs_mount_t     *mp;
272
273         ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274
275         if (XFS_BUF_GETERROR(bp)) {
276                 /*
277                  * We're not going to bother about retrying
278                  * this during recovery. One strike!
279                  */
280                 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281                 xfs_ioerror_alert("xlog_recover_iodone",
282                                   mp, bp, XFS_BUF_ADDR(bp));
283                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
284         }
285         XFS_BUF_SET_FSPRIVATE(bp, NULL);
286         XFS_BUF_CLR_IODONE_FUNC(bp);
287         xfs_biodone(bp);
288 }
289
290 /*
291  * This routine finds (to an approximation) the first block in the physical
292  * log which contains the given cycle.  It uses a binary search algorithm.
293  * Note that the algorithm can not be perfect because the disk will not
294  * necessarily be perfect.
295  */
296 int
297 xlog_find_cycle_start(
298         xlog_t          *log,
299         xfs_buf_t       *bp,
300         xfs_daddr_t     first_blk,
301         xfs_daddr_t     *last_blk,
302         uint            cycle)
303 {
304         xfs_caddr_t     offset;
305         xfs_daddr_t     mid_blk;
306         uint            mid_cycle;
307         int             error;
308
309         mid_blk = BLK_AVG(first_blk, *last_blk);
310         while (mid_blk != first_blk && mid_blk != *last_blk) {
311                 if ((error = xlog_bread(log, mid_blk, 1, bp)))
312                         return error;
313                 offset = xlog_align(log, mid_blk, 1, bp);
314                 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
315                 if (mid_cycle == cycle) {
316                         *last_blk = mid_blk;
317                         /* last_half_cycle == mid_cycle */
318                 } else {
319                         first_blk = mid_blk;
320                         /* first_half_cycle == mid_cycle */
321                 }
322                 mid_blk = BLK_AVG(first_blk, *last_blk);
323         }
324         ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325                (mid_blk == *last_blk && mid_blk-1 == first_blk));
326
327         return 0;
328 }
329
330 /*
331  * Check that the range of blocks does not contain the cycle number
332  * given.  The scan needs to occur from front to back and the ptr into the
333  * region must be updated since a later routine will need to perform another
334  * test.  If the region is completely good, we end up returning the same
335  * last block number.
336  *
337  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
338  * since we don't ever expect logs to get this large.
339  */
340 STATIC int
341 xlog_find_verify_cycle(
342         xlog_t          *log,
343         xfs_daddr_t     start_blk,
344         int             nbblks,
345         uint            stop_on_cycle_no,
346         xfs_daddr_t     *new_blk)
347 {
348         xfs_daddr_t     i, j;
349         uint            cycle;
350         xfs_buf_t       *bp;
351         xfs_daddr_t     bufblks;
352         xfs_caddr_t     buf = NULL;
353         int             error = 0;
354
355         bufblks = 1 << ffs(nbblks);
356
357         while (!(bp = xlog_get_bp(log, bufblks))) {
358                 /* can't get enough memory to do everything in one big buffer */
359                 bufblks >>= 1;
360                 if (bufblks <= log->l_sectbb_log)
361                         return ENOMEM;
362         }
363
364         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
365                 int     bcount;
366
367                 bcount = min(bufblks, (start_blk + nbblks - i));
368
369                 if ((error = xlog_bread(log, i, bcount, bp)))
370                         goto out;
371
372                 buf = xlog_align(log, i, bcount, bp);
373                 for (j = 0; j < bcount; j++) {
374                         cycle = GET_CYCLE(buf, ARCH_CONVERT);
375                         if (cycle == stop_on_cycle_no) {
376                                 *new_blk = i+j;
377                                 goto out;
378                         }
379
380                         buf += BBSIZE;
381                 }
382         }
383
384         *new_blk = -1;
385
386 out:
387         xlog_put_bp(bp);
388         return error;
389 }
390
391 /*
392  * Potentially backup over partial log record write.
393  *
394  * In the typical case, last_blk is the number of the block directly after
395  * a good log record.  Therefore, we subtract one to get the block number
396  * of the last block in the given buffer.  extra_bblks contains the number
397  * of blocks we would have read on a previous read.  This happens when the
398  * last log record is split over the end of the physical log.
399  *
400  * extra_bblks is the number of blocks potentially verified on a previous
401  * call to this routine.
402  */
403 STATIC int
404 xlog_find_verify_log_record(
405         xlog_t                  *log,
406         xfs_daddr_t             start_blk,
407         xfs_daddr_t             *last_blk,
408         int                     extra_bblks)
409 {
410         xfs_daddr_t             i;
411         xfs_buf_t               *bp;
412         xfs_caddr_t             offset = NULL;
413         xlog_rec_header_t       *head = NULL;
414         int                     error = 0;
415         int                     smallmem = 0;
416         int                     num_blks = *last_blk - start_blk;
417         int                     xhdrs;
418
419         ASSERT(start_blk != 0 || *last_blk != start_blk);
420
421         if (!(bp = xlog_get_bp(log, num_blks))) {
422                 if (!(bp = xlog_get_bp(log, 1)))
423                         return ENOMEM;
424                 smallmem = 1;
425         } else {
426                 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
427                         goto out;
428                 offset = xlog_align(log, start_blk, num_blks, bp);
429                 offset += ((num_blks - 1) << BBSHIFT);
430         }
431
432         for (i = (*last_blk) - 1; i >= 0; i--) {
433                 if (i < start_blk) {
434                         /* valid log record not found */
435                         xlog_warn(
436                 "XFS: Log inconsistent (didn't find previous header)");
437                         ASSERT(0);
438                         error = XFS_ERROR(EIO);
439                         goto out;
440                 }
441
442                 if (smallmem) {
443                         if ((error = xlog_bread(log, i, 1, bp)))
444                                 goto out;
445                         offset = xlog_align(log, i, 1, bp);
446                 }
447
448                 head = (xlog_rec_header_t *)offset;
449
450                 if (XLOG_HEADER_MAGIC_NUM ==
451                     INT_GET(head->h_magicno, ARCH_CONVERT))
452                         break;
453
454                 if (!smallmem)
455                         offset -= BBSIZE;
456         }
457
458         /*
459          * We hit the beginning of the physical log & still no header.  Return
460          * to caller.  If caller can handle a return of -1, then this routine
461          * will be called again for the end of the physical log.
462          */
463         if (i == -1) {
464                 error = -1;
465                 goto out;
466         }
467
468         /*
469          * We have the final block of the good log (the first block
470          * of the log record _before_ the head. So we check the uuid.
471          */
472         if ((error = xlog_header_check_mount(log->l_mp, head)))
473                 goto out;
474
475         /*
476          * We may have found a log record header before we expected one.
477          * last_blk will be the 1st block # with a given cycle #.  We may end
478          * up reading an entire log record.  In this case, we don't want to
479          * reset last_blk.  Only when last_blk points in the middle of a log
480          * record do we update last_blk.
481          */
482         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
483                 uint    h_size = INT_GET(head->h_size, ARCH_CONVERT);
484
485                 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
486                 if (h_size % XLOG_HEADER_CYCLE_SIZE)
487                         xhdrs++;
488         } else {
489                 xhdrs = 1;
490         }
491
492         if (*last_blk - i + extra_bblks
493                         != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
494                 *last_blk = i;
495
496 out:
497         xlog_put_bp(bp);
498         return error;
499 }
500
501 /*
502  * Head is defined to be the point of the log where the next log write
503  * write could go.  This means that incomplete LR writes at the end are
504  * eliminated when calculating the head.  We aren't guaranteed that previous
505  * LR have complete transactions.  We only know that a cycle number of
506  * current cycle number -1 won't be present in the log if we start writing
507  * from our current block number.
508  *
509  * last_blk contains the block number of the first block with a given
510  * cycle number.
511  *
512  * Return: zero if normal, non-zero if error.
513  */
514 STATIC int
515 xlog_find_head(
516         xlog_t          *log,
517         xfs_daddr_t     *return_head_blk)
518 {
519         xfs_buf_t       *bp;
520         xfs_caddr_t     offset;
521         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
522         int             num_scan_bblks;
523         uint            first_half_cycle, last_half_cycle;
524         uint            stop_on_cycle;
525         int             error, log_bbnum = log->l_logBBsize;
526
527         /* Is the end of the log device zeroed? */
528         if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
529                 *return_head_blk = first_blk;
530
531                 /* Is the whole lot zeroed? */
532                 if (!first_blk) {
533                         /* Linux XFS shouldn't generate totally zeroed logs -
534                          * mkfs etc write a dummy unmount record to a fresh
535                          * log so we can store the uuid in there
536                          */
537                         xlog_warn("XFS: totally zeroed log");
538                 }
539
540                 return 0;
541         } else if (error) {
542                 xlog_warn("XFS: empty log check failed");
543                 return error;
544         }
545
546         first_blk = 0;                  /* get cycle # of 1st block */
547         bp = xlog_get_bp(log, 1);
548         if (!bp)
549                 return ENOMEM;
550         if ((error = xlog_bread(log, 0, 1, bp)))
551                 goto bp_err;
552         offset = xlog_align(log, 0, 1, bp);
553         first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
554
555         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
556         if ((error = xlog_bread(log, last_blk, 1, bp)))
557                 goto bp_err;
558         offset = xlog_align(log, last_blk, 1, bp);
559         last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
560         ASSERT(last_half_cycle != 0);
561
562         /*
563          * If the 1st half cycle number is equal to the last half cycle number,
564          * then the entire log is stamped with the same cycle number.  In this
565          * case, head_blk can't be set to zero (which makes sense).  The below
566          * math doesn't work out properly with head_blk equal to zero.  Instead,
567          * we set it to log_bbnum which is an invalid block number, but this
568          * value makes the math correct.  If head_blk doesn't changed through
569          * all the tests below, *head_blk is set to zero at the very end rather
570          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
571          * in a circular file.
572          */
573         if (first_half_cycle == last_half_cycle) {
574                 /*
575                  * In this case we believe that the entire log should have
576                  * cycle number last_half_cycle.  We need to scan backwards
577                  * from the end verifying that there are no holes still
578                  * containing last_half_cycle - 1.  If we find such a hole,
579                  * then the start of that hole will be the new head.  The
580                  * simple case looks like
581                  *        x | x ... | x - 1 | x
582                  * Another case that fits this picture would be
583                  *        x | x + 1 | x ... | x
584                  * In this case the head really is somewhere at the end of the
585                  * log, as one of the latest writes at the beginning was
586                  * incomplete.
587                  * One more case is
588                  *        x | x + 1 | x ... | x - 1 | x
589                  * This is really the combination of the above two cases, and
590                  * the head has to end up at the start of the x-1 hole at the
591                  * end of the log.
592                  *
593                  * In the 256k log case, we will read from the beginning to the
594                  * end of the log and search for cycle numbers equal to x-1.
595                  * We don't worry about the x+1 blocks that we encounter,
596                  * because we know that they cannot be the head since the log
597                  * started with x.
598                  */
599                 head_blk = log_bbnum;
600                 stop_on_cycle = last_half_cycle - 1;
601         } else {
602                 /*
603                  * In this case we want to find the first block with cycle
604                  * number matching last_half_cycle.  We expect the log to be
605                  * some variation on
606                  *        x + 1 ... | x ...
607                  * The first block with cycle number x (last_half_cycle) will
608                  * be where the new head belongs.  First we do a binary search
609                  * for the first occurrence of last_half_cycle.  The binary
610                  * search may not be totally accurate, so then we scan back
611                  * from there looking for occurrences of last_half_cycle before
612                  * us.  If that backwards scan wraps around the beginning of
613                  * the log, then we look for occurrences of last_half_cycle - 1
614                  * at the end of the log.  The cases we're looking for look
615                  * like
616                  *        x + 1 ... | x | x + 1 | x ...
617                  *                               ^ binary search stopped here
618                  * or
619                  *        x + 1 ... | x ... | x - 1 | x
620                  *        <---------> less than scan distance
621                  */
622                 stop_on_cycle = last_half_cycle;
623                 if ((error = xlog_find_cycle_start(log, bp, first_blk,
624                                                 &head_blk, last_half_cycle)))
625                         goto bp_err;
626         }
627
628         /*
629          * Now validate the answer.  Scan back some number of maximum possible
630          * blocks and make sure each one has the expected cycle number.  The
631          * maximum is determined by the total possible amount of buffering
632          * in the in-core log.  The following number can be made tighter if
633          * we actually look at the block size of the filesystem.
634          */
635         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
636         if (head_blk >= num_scan_bblks) {
637                 /*
638                  * We are guaranteed that the entire check can be performed
639                  * in one buffer.
640                  */
641                 start_blk = head_blk - num_scan_bblks;
642                 if ((error = xlog_find_verify_cycle(log,
643                                                 start_blk, num_scan_bblks,
644                                                 stop_on_cycle, &new_blk)))
645                         goto bp_err;
646                 if (new_blk != -1)
647                         head_blk = new_blk;
648         } else {                /* need to read 2 parts of log */
649                 /*
650                  * We are going to scan backwards in the log in two parts.
651                  * First we scan the physical end of the log.  In this part
652                  * of the log, we are looking for blocks with cycle number
653                  * last_half_cycle - 1.
654                  * If we find one, then we know that the log starts there, as
655                  * we've found a hole that didn't get written in going around
656                  * the end of the physical log.  The simple case for this is
657                  *        x + 1 ... | x ... | x - 1 | x
658                  *        <---------> less than scan distance
659                  * If all of the blocks at the end of the log have cycle number
660                  * last_half_cycle, then we check the blocks at the start of
661                  * the log looking for occurrences of last_half_cycle.  If we
662                  * find one, then our current estimate for the location of the
663                  * first occurrence of last_half_cycle is wrong and we move
664                  * back to the hole we've found.  This case looks like
665                  *        x + 1 ... | x | x + 1 | x ...
666                  *                               ^ binary search stopped here
667                  * Another case we need to handle that only occurs in 256k
668                  * logs is
669                  *        x + 1 ... | x ... | x+1 | x ...
670                  *                   ^ binary search stops here
671                  * In a 256k log, the scan at the end of the log will see the
672                  * x + 1 blocks.  We need to skip past those since that is
673                  * certainly not the head of the log.  By searching for
674                  * last_half_cycle-1 we accomplish that.
675                  */
676                 start_blk = log_bbnum - num_scan_bblks + head_blk;
677                 ASSERT(head_blk <= INT_MAX &&
678                         (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
679                 if ((error = xlog_find_verify_cycle(log, start_blk,
680                                         num_scan_bblks - (int)head_blk,
681                                         (stop_on_cycle - 1), &new_blk)))
682                         goto bp_err;
683                 if (new_blk != -1) {
684                         head_blk = new_blk;
685                         goto bad_blk;
686                 }
687
688                 /*
689                  * Scan beginning of log now.  The last part of the physical
690                  * log is good.  This scan needs to verify that it doesn't find
691                  * the last_half_cycle.
692                  */
693                 start_blk = 0;
694                 ASSERT(head_blk <= INT_MAX);
695                 if ((error = xlog_find_verify_cycle(log,
696                                         start_blk, (int)head_blk,
697                                         stop_on_cycle, &new_blk)))
698                         goto bp_err;
699                 if (new_blk != -1)
700                         head_blk = new_blk;
701         }
702
703  bad_blk:
704         /*
705          * Now we need to make sure head_blk is not pointing to a block in
706          * the middle of a log record.
707          */
708         num_scan_bblks = XLOG_REC_SHIFT(log);
709         if (head_blk >= num_scan_bblks) {
710                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
711
712                 /* start ptr at last block ptr before head_blk */
713                 if ((error = xlog_find_verify_log_record(log, start_blk,
714                                                         &head_blk, 0)) == -1) {
715                         error = XFS_ERROR(EIO);
716                         goto bp_err;
717                 } else if (error)
718                         goto bp_err;
719         } else {
720                 start_blk = 0;
721                 ASSERT(head_blk <= INT_MAX);
722                 if ((error = xlog_find_verify_log_record(log, start_blk,
723                                                         &head_blk, 0)) == -1) {
724                         /* We hit the beginning of the log during our search */
725                         start_blk = log_bbnum - num_scan_bblks + head_blk;
726                         new_blk = log_bbnum;
727                         ASSERT(start_blk <= INT_MAX &&
728                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
729                         ASSERT(head_blk <= INT_MAX);
730                         if ((error = xlog_find_verify_log_record(log,
731                                                         start_blk, &new_blk,
732                                                         (int)head_blk)) == -1) {
733                                 error = XFS_ERROR(EIO);
734                                 goto bp_err;
735                         } else if (error)
736                                 goto bp_err;
737                         if (new_blk != log_bbnum)
738                                 head_blk = new_blk;
739                 } else if (error)
740                         goto bp_err;
741         }
742
743         xlog_put_bp(bp);
744         if (head_blk == log_bbnum)
745                 *return_head_blk = 0;
746         else
747                 *return_head_blk = head_blk;
748         /*
749          * When returning here, we have a good block number.  Bad block
750          * means that during a previous crash, we didn't have a clean break
751          * from cycle number N to cycle number N-1.  In this case, we need
752          * to find the first block with cycle number N-1.
753          */
754         return 0;
755
756  bp_err:
757         xlog_put_bp(bp);
758
759         if (error)
760             xlog_warn("XFS: failed to find log head");
761         return error;
762 }
763
764 /*
765  * Find the sync block number or the tail of the log.
766  *
767  * This will be the block number of the last record to have its
768  * associated buffers synced to disk.  Every log record header has
769  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
770  * to get a sync block number.  The only concern is to figure out which
771  * log record header to believe.
772  *
773  * The following algorithm uses the log record header with the largest
774  * lsn.  The entire log record does not need to be valid.  We only care
775  * that the header is valid.
776  *
777  * We could speed up search by using current head_blk buffer, but it is not
778  * available.
779  */
780 int
781 xlog_find_tail(
782         xlog_t                  *log,
783         xfs_daddr_t             *head_blk,
784         xfs_daddr_t             *tail_blk)
785 {
786         xlog_rec_header_t       *rhead;
787         xlog_op_header_t        *op_head;
788         xfs_caddr_t             offset = NULL;
789         xfs_buf_t               *bp;
790         int                     error, i, found;
791         xfs_daddr_t             umount_data_blk;
792         xfs_daddr_t             after_umount_blk;
793         xfs_lsn_t               tail_lsn;
794         int                     hblks;
795
796         found = 0;
797
798         /*
799          * Find previous log record
800          */
801         if ((error = xlog_find_head(log, head_blk)))
802                 return error;
803
804         bp = xlog_get_bp(log, 1);
805         if (!bp)
806                 return ENOMEM;
807         if (*head_blk == 0) {                           /* special case */
808                 if ((error = xlog_bread(log, 0, 1, bp)))
809                         goto bread_err;
810                 offset = xlog_align(log, 0, 1, bp);
811                 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
812                         *tail_blk = 0;
813                         /* leave all other log inited values alone */
814                         goto exit;
815                 }
816         }
817
818         /*
819          * Search backwards looking for log record header block
820          */
821         ASSERT(*head_blk < INT_MAX);
822         for (i = (int)(*head_blk) - 1; i >= 0; i--) {
823                 if ((error = xlog_bread(log, i, 1, bp)))
824                         goto bread_err;
825                 offset = xlog_align(log, i, 1, bp);
826                 if (XLOG_HEADER_MAGIC_NUM ==
827                     INT_GET(*(uint *)offset, ARCH_CONVERT)) {
828                         found = 1;
829                         break;
830                 }
831         }
832         /*
833          * If we haven't found the log record header block, start looking
834          * again from the end of the physical log.  XXXmiken: There should be
835          * a check here to make sure we didn't search more than N blocks in
836          * the previous code.
837          */
838         if (!found) {
839                 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840                         if ((error = xlog_bread(log, i, 1, bp)))
841                                 goto bread_err;
842                         offset = xlog_align(log, i, 1, bp);
843                         if (XLOG_HEADER_MAGIC_NUM ==
844                             INT_GET(*(uint*)offset, ARCH_CONVERT)) {
845                                 found = 2;
846                                 break;
847                         }
848                 }
849         }
850         if (!found) {
851                 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852                 ASSERT(0);
853                 return XFS_ERROR(EIO);
854         }
855
856         /* find blk_no of tail of log */
857         rhead = (xlog_rec_header_t *)offset;
858         *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
859
860         /*
861          * Reset log values according to the state of the log when we
862          * crashed.  In the case where head_blk == 0, we bump curr_cycle
863          * one because the next write starts a new cycle rather than
864          * continuing the cycle of the last good log record.  At this
865          * point we have guaranteed that all partial log records have been
866          * accounted for.  Therefore, we know that the last good log record
867          * written was complete and ended exactly on the end boundary
868          * of the physical log.
869          */
870         log->l_prev_block = i;
871         log->l_curr_block = (int)*head_blk;
872         log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
873         if (found == 2)
874                 log->l_curr_cycle++;
875         log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
876         log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
877         log->l_grant_reserve_cycle = log->l_curr_cycle;
878         log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879         log->l_grant_write_cycle = log->l_curr_cycle;
880         log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881
882         /*
883          * Look for unmount record.  If we find it, then we know there
884          * was a clean unmount.  Since 'i' could be the last block in
885          * the physical log, we convert to a log block before comparing
886          * to the head_blk.
887          *
888          * Save the current tail lsn to use to pass to
889          * xlog_clear_stale_blocks() below.  We won't want to clear the
890          * unmount record if there is one, so we pass the lsn of the
891          * unmount record rather than the block after it.
892          */
893         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
894                 int     h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
895                 int     h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
896
897                 if ((h_version & XLOG_VERSION_2) &&
898                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
901                                 hblks++;
902                 } else {
903                         hblks = 1;
904                 }
905         } else {
906                 hblks = 1;
907         }
908         after_umount_blk = (i + hblks + (int)
909                 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
910         tail_lsn = log->l_tail_lsn;
911         if (*head_blk == after_umount_blk &&
912             INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
913                 umount_data_blk = (i + hblks) % log->l_logBBsize;
914                 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915                         goto bread_err;
916                 }
917                 offset = xlog_align(log, umount_data_blk, 1, bp);
918                 op_head = (xlog_op_header_t *)offset;
919                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920                         /*
921                          * Set tail and last sync so that newly written
922                          * log records will point recovery to after the
923                          * current unmount record.
924                          */
925                         ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
926                                         after_umount_blk);
927                         ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
928                                         after_umount_blk);
929                         *tail_blk = after_umount_blk;
930
931                         /*
932                          * Note that the unmount was clean. If the unmount
933                          * was not clean, we need to know this to rebuild the
934                          * superblock counters from the perag headers if we
935                          * have a filesystem using non-persistent counters.
936                          */
937                         log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
938                 }
939         }
940
941         /*
942          * Make sure that there are no blocks in front of the head
943          * with the same cycle number as the head.  This can happen
944          * because we allow multiple outstanding log writes concurrently,
945          * and the later writes might make it out before earlier ones.
946          *
947          * We use the lsn from before modifying it so that we'll never
948          * overwrite the unmount record after a clean unmount.
949          *
950          * Do this only if we are going to recover the filesystem
951          *
952          * NOTE: This used to say "if (!readonly)"
953          * However on Linux, we can & do recover a read-only filesystem.
954          * We only skip recovery if NORECOVERY is specified on mount,
955          * in which case we would not be here.
956          *
957          * But... if the -device- itself is readonly, just skip this.
958          * We can't recover this device anyway, so it won't matter.
959          */
960         if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
961                 error = xlog_clear_stale_blocks(log, tail_lsn);
962         }
963
964 bread_err:
965 exit:
966         xlog_put_bp(bp);
967
968         if (error)
969                 xlog_warn("XFS: failed to locate log tail");
970         return error;
971 }
972
973 /*
974  * Is the log zeroed at all?
975  *
976  * The last binary search should be changed to perform an X block read
977  * once X becomes small enough.  You can then search linearly through
978  * the X blocks.  This will cut down on the number of reads we need to do.
979  *
980  * If the log is partially zeroed, this routine will pass back the blkno
981  * of the first block with cycle number 0.  It won't have a complete LR
982  * preceding it.
983  *
984  * Return:
985  *      0  => the log is completely written to
986  *      -1 => use *blk_no as the first block of the log
987  *      >0 => error has occurred
988  */
989 int
990 xlog_find_zeroed(
991         xlog_t          *log,
992         xfs_daddr_t     *blk_no)
993 {
994         xfs_buf_t       *bp;
995         xfs_caddr_t     offset;
996         uint            first_cycle, last_cycle;
997         xfs_daddr_t     new_blk, last_blk, start_blk;
998         xfs_daddr_t     num_scan_bblks;
999         int             error, log_bbnum = log->l_logBBsize;
1000
1001         *blk_no = 0;
1002
1003         /* check totally zeroed log */
1004         bp = xlog_get_bp(log, 1);
1005         if (!bp)
1006                 return ENOMEM;
1007         if ((error = xlog_bread(log, 0, 1, bp)))
1008                 goto bp_err;
1009         offset = xlog_align(log, 0, 1, bp);
1010         first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1011         if (first_cycle == 0) {         /* completely zeroed log */
1012                 *blk_no = 0;
1013                 xlog_put_bp(bp);
1014                 return -1;
1015         }
1016
1017         /* check partially zeroed log */
1018         if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1019                 goto bp_err;
1020         offset = xlog_align(log, log_bbnum-1, 1, bp);
1021         last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1022         if (last_cycle != 0) {          /* log completely written to */
1023                 xlog_put_bp(bp);
1024                 return 0;
1025         } else if (first_cycle != 1) {
1026                 /*
1027                  * If the cycle of the last block is zero, the cycle of
1028                  * the first block must be 1. If it's not, maybe we're
1029                  * not looking at a log... Bail out.
1030                  */
1031                 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1032                 return XFS_ERROR(EINVAL);
1033         }
1034
1035         /* we have a partially zeroed log */
1036         last_blk = log_bbnum-1;
1037         if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1038                 goto bp_err;
1039
1040         /*
1041          * Validate the answer.  Because there is no way to guarantee that
1042          * the entire log is made up of log records which are the same size,
1043          * we scan over the defined maximum blocks.  At this point, the maximum
1044          * is not chosen to mean anything special.   XXXmiken
1045          */
1046         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1047         ASSERT(num_scan_bblks <= INT_MAX);
1048
1049         if (last_blk < num_scan_bblks)
1050                 num_scan_bblks = last_blk;
1051         start_blk = last_blk - num_scan_bblks;
1052
1053         /*
1054          * We search for any instances of cycle number 0 that occur before
1055          * our current estimate of the head.  What we're trying to detect is
1056          *        1 ... | 0 | 1 | 0...
1057          *                       ^ binary search ends here
1058          */
1059         if ((error = xlog_find_verify_cycle(log, start_blk,
1060                                          (int)num_scan_bblks, 0, &new_blk)))
1061                 goto bp_err;
1062         if (new_blk != -1)
1063                 last_blk = new_blk;
1064
1065         /*
1066          * Potentially backup over partial log record write.  We don't need
1067          * to search the end of the log because we know it is zero.
1068          */
1069         if ((error = xlog_find_verify_log_record(log, start_blk,
1070                                 &last_blk, 0)) == -1) {
1071             error = XFS_ERROR(EIO);
1072             goto bp_err;
1073         } else if (error)
1074             goto bp_err;
1075
1076         *blk_no = last_blk;
1077 bp_err:
1078         xlog_put_bp(bp);
1079         if (error)
1080                 return error;
1081         return -1;
1082 }
1083
1084 /*
1085  * These are simple subroutines used by xlog_clear_stale_blocks() below
1086  * to initialize a buffer full of empty log record headers and write
1087  * them into the log.
1088  */
1089 STATIC void
1090 xlog_add_record(
1091         xlog_t                  *log,
1092         xfs_caddr_t             buf,
1093         int                     cycle,
1094         int                     block,
1095         int                     tail_cycle,
1096         int                     tail_block)
1097 {
1098         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1099
1100         memset(buf, 0, BBSIZE);
1101         INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1102         INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1103         INT_SET(recp->h_version, ARCH_CONVERT,
1104                         XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1105         ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1106         ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1107         INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1108         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1109 }
1110
1111 STATIC int
1112 xlog_write_log_records(
1113         xlog_t          *log,
1114         int             cycle,
1115         int             start_block,
1116         int             blocks,
1117         int             tail_cycle,
1118         int             tail_block)
1119 {
1120         xfs_caddr_t     offset;
1121         xfs_buf_t       *bp;
1122         int             balign, ealign;
1123         int             sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1124         int             end_block = start_block + blocks;
1125         int             bufblks;
1126         int             error = 0;
1127         int             i, j = 0;
1128
1129         bufblks = 1 << ffs(blocks);
1130         while (!(bp = xlog_get_bp(log, bufblks))) {
1131                 bufblks >>= 1;
1132                 if (bufblks <= log->l_sectbb_log)
1133                         return ENOMEM;
1134         }
1135
1136         /* We may need to do a read at the start to fill in part of
1137          * the buffer in the starting sector not covered by the first
1138          * write below.
1139          */
1140         balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1141         if (balign != start_block) {
1142                 if ((error = xlog_bread(log, start_block, 1, bp))) {
1143                         xlog_put_bp(bp);
1144                         return error;
1145                 }
1146                 j = start_block - balign;
1147         }
1148
1149         for (i = start_block; i < end_block; i += bufblks) {
1150                 int             bcount, endcount;
1151
1152                 bcount = min(bufblks, end_block - start_block);
1153                 endcount = bcount - j;
1154
1155                 /* We may need to do a read at the end to fill in part of
1156                  * the buffer in the final sector not covered by the write.
1157                  * If this is the same sector as the above read, skip it.
1158                  */
1159                 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1160                 if (j == 0 && (start_block + endcount > ealign)) {
1161                         offset = XFS_BUF_PTR(bp);
1162                         balign = BBTOB(ealign - start_block);
1163                         XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1164                         if ((error = xlog_bread(log, ealign, sectbb, bp)))
1165                                 break;
1166                         XFS_BUF_SET_PTR(bp, offset, bufblks);
1167                 }
1168
1169                 offset = xlog_align(log, start_block, endcount, bp);
1170                 for (; j < endcount; j++) {
1171                         xlog_add_record(log, offset, cycle, i+j,
1172                                         tail_cycle, tail_block);
1173                         offset += BBSIZE;
1174                 }
1175                 error = xlog_bwrite(log, start_block, endcount, bp);
1176                 if (error)
1177                         break;
1178                 start_block += endcount;
1179                 j = 0;
1180         }
1181         xlog_put_bp(bp);
1182         return error;
1183 }
1184
1185 /*
1186  * This routine is called to blow away any incomplete log writes out
1187  * in front of the log head.  We do this so that we won't become confused
1188  * if we come up, write only a little bit more, and then crash again.
1189  * If we leave the partial log records out there, this situation could
1190  * cause us to think those partial writes are valid blocks since they
1191  * have the current cycle number.  We get rid of them by overwriting them
1192  * with empty log records with the old cycle number rather than the
1193  * current one.
1194  *
1195  * The tail lsn is passed in rather than taken from
1196  * the log so that we will not write over the unmount record after a
1197  * clean unmount in a 512 block log.  Doing so would leave the log without
1198  * any valid log records in it until a new one was written.  If we crashed
1199  * during that time we would not be able to recover.
1200  */
1201 STATIC int
1202 xlog_clear_stale_blocks(
1203         xlog_t          *log,
1204         xfs_lsn_t       tail_lsn)
1205 {
1206         int             tail_cycle, head_cycle;
1207         int             tail_block, head_block;
1208         int             tail_distance, max_distance;
1209         int             distance;
1210         int             error;
1211
1212         tail_cycle = CYCLE_LSN(tail_lsn);
1213         tail_block = BLOCK_LSN(tail_lsn);
1214         head_cycle = log->l_curr_cycle;
1215         head_block = log->l_curr_block;
1216
1217         /*
1218          * Figure out the distance between the new head of the log
1219          * and the tail.  We want to write over any blocks beyond the
1220          * head that we may have written just before the crash, but
1221          * we don't want to overwrite the tail of the log.
1222          */
1223         if (head_cycle == tail_cycle) {
1224                 /*
1225                  * The tail is behind the head in the physical log,
1226                  * so the distance from the head to the tail is the
1227                  * distance from the head to the end of the log plus
1228                  * the distance from the beginning of the log to the
1229                  * tail.
1230                  */
1231                 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1232                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1233                                          XFS_ERRLEVEL_LOW, log->l_mp);
1234                         return XFS_ERROR(EFSCORRUPTED);
1235                 }
1236                 tail_distance = tail_block + (log->l_logBBsize - head_block);
1237         } else {
1238                 /*
1239                  * The head is behind the tail in the physical log,
1240                  * so the distance from the head to the tail is just
1241                  * the tail block minus the head block.
1242                  */
1243                 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1244                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1245                                          XFS_ERRLEVEL_LOW, log->l_mp);
1246                         return XFS_ERROR(EFSCORRUPTED);
1247                 }
1248                 tail_distance = tail_block - head_block;
1249         }
1250
1251         /*
1252          * If the head is right up against the tail, we can't clear
1253          * anything.
1254          */
1255         if (tail_distance <= 0) {
1256                 ASSERT(tail_distance == 0);
1257                 return 0;
1258         }
1259
1260         max_distance = XLOG_TOTAL_REC_SHIFT(log);
1261         /*
1262          * Take the smaller of the maximum amount of outstanding I/O
1263          * we could have and the distance to the tail to clear out.
1264          * We take the smaller so that we don't overwrite the tail and
1265          * we don't waste all day writing from the head to the tail
1266          * for no reason.
1267          */
1268         max_distance = MIN(max_distance, tail_distance);
1269
1270         if ((head_block + max_distance) <= log->l_logBBsize) {
1271                 /*
1272                  * We can stomp all the blocks we need to without
1273                  * wrapping around the end of the log.  Just do it
1274                  * in a single write.  Use the cycle number of the
1275                  * current cycle minus one so that the log will look like:
1276                  *     n ... | n - 1 ...
1277                  */
1278                 error = xlog_write_log_records(log, (head_cycle - 1),
1279                                 head_block, max_distance, tail_cycle,
1280                                 tail_block);
1281                 if (error)
1282                         return error;
1283         } else {
1284                 /*
1285                  * We need to wrap around the end of the physical log in
1286                  * order to clear all the blocks.  Do it in two separate
1287                  * I/Os.  The first write should be from the head to the
1288                  * end of the physical log, and it should use the current
1289                  * cycle number minus one just like above.
1290                  */
1291                 distance = log->l_logBBsize - head_block;
1292                 error = xlog_write_log_records(log, (head_cycle - 1),
1293                                 head_block, distance, tail_cycle,
1294                                 tail_block);
1295
1296                 if (error)
1297                         return error;
1298
1299                 /*
1300                  * Now write the blocks at the start of the physical log.
1301                  * This writes the remainder of the blocks we want to clear.
1302                  * It uses the current cycle number since we're now on the
1303                  * same cycle as the head so that we get:
1304                  *    n ... n ... | n - 1 ...
1305                  *    ^^^^^ blocks we're writing
1306                  */
1307                 distance = max_distance - (log->l_logBBsize - head_block);
1308                 error = xlog_write_log_records(log, head_cycle, 0, distance,
1309                                 tail_cycle, tail_block);
1310                 if (error)
1311                         return error;
1312         }
1313
1314         return 0;
1315 }
1316
1317 /******************************************************************************
1318  *
1319  *              Log recover routines
1320  *
1321  ******************************************************************************
1322  */
1323
1324 STATIC xlog_recover_t *
1325 xlog_recover_find_tid(
1326         xlog_recover_t          *q,
1327         xlog_tid_t              tid)
1328 {
1329         xlog_recover_t          *p = q;
1330
1331         while (p != NULL) {
1332                 if (p->r_log_tid == tid)
1333                     break;
1334                 p = p->r_next;
1335         }
1336         return p;
1337 }
1338
1339 STATIC void
1340 xlog_recover_put_hashq(
1341         xlog_recover_t          **q,
1342         xlog_recover_t          *trans)
1343 {
1344         trans->r_next = *q;
1345         *q = trans;
1346 }
1347
1348 STATIC void
1349 xlog_recover_add_item(
1350         xlog_recover_item_t     **itemq)
1351 {
1352         xlog_recover_item_t     *item;
1353
1354         item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1355         xlog_recover_insert_item_backq(itemq, item);
1356 }
1357
1358 STATIC int
1359 xlog_recover_add_to_cont_trans(
1360         xlog_recover_t          *trans,
1361         xfs_caddr_t             dp,
1362         int                     len)
1363 {
1364         xlog_recover_item_t     *item;
1365         xfs_caddr_t             ptr, old_ptr;
1366         int                     old_len;
1367
1368         item = trans->r_itemq;
1369         if (item == NULL) {
1370                 /* finish copying rest of trans header */
1371                 xlog_recover_add_item(&trans->r_itemq);
1372                 ptr = (xfs_caddr_t) &trans->r_theader +
1373                                 sizeof(xfs_trans_header_t) - len;
1374                 memcpy(ptr, dp, len); /* d, s, l */
1375                 return 0;
1376         }
1377         item = item->ri_prev;
1378
1379         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1380         old_len = item->ri_buf[item->ri_cnt-1].i_len;
1381
1382         ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1383         memcpy(&ptr[old_len], dp, len); /* d, s, l */
1384         item->ri_buf[item->ri_cnt-1].i_len += len;
1385         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1386         return 0;
1387 }
1388
1389 /*
1390  * The next region to add is the start of a new region.  It could be
1391  * a whole region or it could be the first part of a new region.  Because
1392  * of this, the assumption here is that the type and size fields of all
1393  * format structures fit into the first 32 bits of the structure.
1394  *
1395  * This works because all regions must be 32 bit aligned.  Therefore, we
1396  * either have both fields or we have neither field.  In the case we have
1397  * neither field, the data part of the region is zero length.  We only have
1398  * a log_op_header and can throw away the header since a new one will appear
1399  * later.  If we have at least 4 bytes, then we can determine how many regions
1400  * will appear in the current log item.
1401  */
1402 STATIC int
1403 xlog_recover_add_to_trans(
1404         xlog_recover_t          *trans,
1405         xfs_caddr_t             dp,
1406         int                     len)
1407 {
1408         xfs_inode_log_format_t  *in_f;                  /* any will do */
1409         xlog_recover_item_t     *item;
1410         xfs_caddr_t             ptr;
1411
1412         if (!len)
1413                 return 0;
1414         item = trans->r_itemq;
1415         if (item == NULL) {
1416                 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1417                 if (len == sizeof(xfs_trans_header_t))
1418                         xlog_recover_add_item(&trans->r_itemq);
1419                 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1420                 return 0;
1421         }
1422
1423         ptr = kmem_alloc(len, KM_SLEEP);
1424         memcpy(ptr, dp, len);
1425         in_f = (xfs_inode_log_format_t *)ptr;
1426
1427         if (item->ri_prev->ri_total != 0 &&
1428              item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1429                 xlog_recover_add_item(&trans->r_itemq);
1430         }
1431         item = trans->r_itemq;
1432         item = item->ri_prev;
1433
1434         if (item->ri_total == 0) {              /* first region to be added */
1435                 item->ri_total  = in_f->ilf_size;
1436                 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1437                 item->ri_buf = kmem_zalloc((item->ri_total *
1438                                             sizeof(xfs_log_iovec_t)), KM_SLEEP);
1439         }
1440         ASSERT(item->ri_total > item->ri_cnt);
1441         /* Description region is ri_buf[0] */
1442         item->ri_buf[item->ri_cnt].i_addr = ptr;
1443         item->ri_buf[item->ri_cnt].i_len  = len;
1444         item->ri_cnt++;
1445         return 0;
1446 }
1447
1448 STATIC void
1449 xlog_recover_new_tid(
1450         xlog_recover_t          **q,
1451         xlog_tid_t              tid,
1452         xfs_lsn_t               lsn)
1453 {
1454         xlog_recover_t          *trans;
1455
1456         trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1457         trans->r_log_tid   = tid;
1458         trans->r_lsn       = lsn;
1459         xlog_recover_put_hashq(q, trans);
1460 }
1461
1462 STATIC int
1463 xlog_recover_unlink_tid(
1464         xlog_recover_t          **q,
1465         xlog_recover_t          *trans)
1466 {
1467         xlog_recover_t          *tp;
1468         int                     found = 0;
1469
1470         ASSERT(trans != NULL);
1471         if (trans == *q) {
1472                 *q = (*q)->r_next;
1473         } else {
1474                 tp = *q;
1475                 while (tp) {
1476                         if (tp->r_next == trans) {
1477                                 found = 1;
1478                                 break;
1479                         }
1480                         tp = tp->r_next;
1481                 }
1482                 if (!found) {
1483                         xlog_warn(
1484                              "XFS: xlog_recover_unlink_tid: trans not found");
1485                         ASSERT(0);
1486                         return XFS_ERROR(EIO);
1487                 }
1488                 tp->r_next = tp->r_next->r_next;
1489         }
1490         return 0;
1491 }
1492
1493 STATIC void
1494 xlog_recover_insert_item_backq(
1495         xlog_recover_item_t     **q,
1496         xlog_recover_item_t     *item)
1497 {
1498         if (*q == NULL) {
1499                 item->ri_prev = item->ri_next = item;
1500                 *q = item;
1501         } else {
1502                 item->ri_next           = *q;
1503                 item->ri_prev           = (*q)->ri_prev;
1504                 (*q)->ri_prev           = item;
1505                 item->ri_prev->ri_next  = item;
1506         }
1507 }
1508
1509 STATIC void
1510 xlog_recover_insert_item_frontq(
1511         xlog_recover_item_t     **q,
1512         xlog_recover_item_t     *item)
1513 {
1514         xlog_recover_insert_item_backq(q, item);
1515         *q = item;
1516 }
1517
1518 STATIC int
1519 xlog_recover_reorder_trans(
1520         xlog_recover_t          *trans)
1521 {
1522         xlog_recover_item_t     *first_item, *itemq, *itemq_next;
1523         xfs_buf_log_format_t    *buf_f;
1524         ushort                  flags = 0;
1525
1526         first_item = itemq = trans->r_itemq;
1527         trans->r_itemq = NULL;
1528         do {
1529                 itemq_next = itemq->ri_next;
1530                 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1531
1532                 switch (ITEM_TYPE(itemq)) {
1533                 case XFS_LI_BUF:
1534                         flags = buf_f->blf_flags;
1535                         if (!(flags & XFS_BLI_CANCEL)) {
1536                                 xlog_recover_insert_item_frontq(&trans->r_itemq,
1537                                                                 itemq);
1538                                 break;
1539                         }
1540                 case XFS_LI_INODE:
1541                 case XFS_LI_DQUOT:
1542                 case XFS_LI_QUOTAOFF:
1543                 case XFS_LI_EFD:
1544                 case XFS_LI_EFI:
1545                         xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1546                         break;
1547                 default:
1548                         xlog_warn(
1549         "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1550                         ASSERT(0);
1551                         return XFS_ERROR(EIO);
1552                 }
1553                 itemq = itemq_next;
1554         } while (first_item != itemq);
1555         return 0;
1556 }
1557
1558 /*
1559  * Build up the table of buf cancel records so that we don't replay
1560  * cancelled data in the second pass.  For buffer records that are
1561  * not cancel records, there is nothing to do here so we just return.
1562  *
1563  * If we get a cancel record which is already in the table, this indicates
1564  * that the buffer was cancelled multiple times.  In order to ensure
1565  * that during pass 2 we keep the record in the table until we reach its
1566  * last occurrence in the log, we keep a reference count in the cancel
1567  * record in the table to tell us how many times we expect to see this
1568  * record during the second pass.
1569  */
1570 STATIC void
1571 xlog_recover_do_buffer_pass1(
1572         xlog_t                  *log,
1573         xfs_buf_log_format_t    *buf_f)
1574 {
1575         xfs_buf_cancel_t        *bcp;
1576         xfs_buf_cancel_t        *nextp;
1577         xfs_buf_cancel_t        *prevp;
1578         xfs_buf_cancel_t        **bucket;
1579         xfs_daddr_t             blkno = 0;
1580         uint                    len = 0;
1581         ushort                  flags = 0;
1582
1583         switch (buf_f->blf_type) {
1584         case XFS_LI_BUF:
1585                 blkno = buf_f->blf_blkno;
1586                 len = buf_f->blf_len;
1587                 flags = buf_f->blf_flags;
1588                 break;
1589         }
1590
1591         /*
1592          * If this isn't a cancel buffer item, then just return.
1593          */
1594         if (!(flags & XFS_BLI_CANCEL))
1595                 return;
1596
1597         /*
1598          * Insert an xfs_buf_cancel record into the hash table of
1599          * them.  If there is already an identical record, bump
1600          * its reference count.
1601          */
1602         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1603                                           XLOG_BC_TABLE_SIZE];
1604         /*
1605          * If the hash bucket is empty then just insert a new record into
1606          * the bucket.
1607          */
1608         if (*bucket == NULL) {
1609                 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1610                                                      KM_SLEEP);
1611                 bcp->bc_blkno = blkno;
1612                 bcp->bc_len = len;
1613                 bcp->bc_refcount = 1;
1614                 bcp->bc_next = NULL;
1615                 *bucket = bcp;
1616                 return;
1617         }
1618
1619         /*
1620          * The hash bucket is not empty, so search for duplicates of our
1621          * record.  If we find one them just bump its refcount.  If not
1622          * then add us at the end of the list.
1623          */
1624         prevp = NULL;
1625         nextp = *bucket;
1626         while (nextp != NULL) {
1627                 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1628                         nextp->bc_refcount++;
1629                         return;
1630                 }
1631                 prevp = nextp;
1632                 nextp = nextp->bc_next;
1633         }
1634         ASSERT(prevp != NULL);
1635         bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1636                                              KM_SLEEP);
1637         bcp->bc_blkno = blkno;
1638         bcp->bc_len = len;
1639         bcp->bc_refcount = 1;
1640         bcp->bc_next = NULL;
1641         prevp->bc_next = bcp;
1642 }
1643
1644 /*
1645  * Check to see whether the buffer being recovered has a corresponding
1646  * entry in the buffer cancel record table.  If it does then return 1
1647  * so that it will be cancelled, otherwise return 0.  If the buffer is
1648  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1649  * the refcount on the entry in the table and remove it from the table
1650  * if this is the last reference.
1651  *
1652  * We remove the cancel record from the table when we encounter its
1653  * last occurrence in the log so that if the same buffer is re-used
1654  * again after its last cancellation we actually replay the changes
1655  * made at that point.
1656  */
1657 STATIC int
1658 xlog_check_buffer_cancelled(
1659         xlog_t                  *log,
1660         xfs_daddr_t             blkno,
1661         uint                    len,
1662         ushort                  flags)
1663 {
1664         xfs_buf_cancel_t        *bcp;
1665         xfs_buf_cancel_t        *prevp;
1666         xfs_buf_cancel_t        **bucket;
1667
1668         if (log->l_buf_cancel_table == NULL) {
1669                 /*
1670                  * There is nothing in the table built in pass one,
1671                  * so this buffer must not be cancelled.
1672                  */
1673                 ASSERT(!(flags & XFS_BLI_CANCEL));
1674                 return 0;
1675         }
1676
1677         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1678                                           XLOG_BC_TABLE_SIZE];
1679         bcp = *bucket;
1680         if (bcp == NULL) {
1681                 /*
1682                  * There is no corresponding entry in the table built
1683                  * in pass one, so this buffer has not been cancelled.
1684                  */
1685                 ASSERT(!(flags & XFS_BLI_CANCEL));
1686                 return 0;
1687         }
1688
1689         /*
1690          * Search for an entry in the buffer cancel table that
1691          * matches our buffer.
1692          */
1693         prevp = NULL;
1694         while (bcp != NULL) {
1695                 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1696                         /*
1697                          * We've go a match, so return 1 so that the
1698                          * recovery of this buffer is cancelled.
1699                          * If this buffer is actually a buffer cancel
1700                          * log item, then decrement the refcount on the
1701                          * one in the table and remove it if this is the
1702                          * last reference.
1703                          */
1704                         if (flags & XFS_BLI_CANCEL) {
1705                                 bcp->bc_refcount--;
1706                                 if (bcp->bc_refcount == 0) {
1707                                         if (prevp == NULL) {
1708                                                 *bucket = bcp->bc_next;
1709                                         } else {
1710                                                 prevp->bc_next = bcp->bc_next;
1711                                         }
1712                                         kmem_free(bcp,
1713                                                   sizeof(xfs_buf_cancel_t));
1714                                 }
1715                         }
1716                         return 1;
1717                 }
1718                 prevp = bcp;
1719                 bcp = bcp->bc_next;
1720         }
1721         /*
1722          * We didn't find a corresponding entry in the table, so
1723          * return 0 so that the buffer is NOT cancelled.
1724          */
1725         ASSERT(!(flags & XFS_BLI_CANCEL));
1726         return 0;
1727 }
1728
1729 STATIC int
1730 xlog_recover_do_buffer_pass2(
1731         xlog_t                  *log,
1732         xfs_buf_log_format_t    *buf_f)
1733 {
1734         xfs_daddr_t             blkno = 0;
1735         ushort                  flags = 0;
1736         uint                    len = 0;
1737
1738         switch (buf_f->blf_type) {
1739         case XFS_LI_BUF:
1740                 blkno = buf_f->blf_blkno;
1741                 flags = buf_f->blf_flags;
1742                 len = buf_f->blf_len;
1743                 break;
1744         }
1745
1746         return xlog_check_buffer_cancelled(log, blkno, len, flags);
1747 }
1748
1749 /*
1750  * Perform recovery for a buffer full of inodes.  In these buffers,
1751  * the only data which should be recovered is that which corresponds
1752  * to the di_next_unlinked pointers in the on disk inode structures.
1753  * The rest of the data for the inodes is always logged through the
1754  * inodes themselves rather than the inode buffer and is recovered
1755  * in xlog_recover_do_inode_trans().
1756  *
1757  * The only time when buffers full of inodes are fully recovered is
1758  * when the buffer is full of newly allocated inodes.  In this case
1759  * the buffer will not be marked as an inode buffer and so will be
1760  * sent to xlog_recover_do_reg_buffer() below during recovery.
1761  */
1762 STATIC int
1763 xlog_recover_do_inode_buffer(
1764         xfs_mount_t             *mp,
1765         xlog_recover_item_t     *item,
1766         xfs_buf_t               *bp,
1767         xfs_buf_log_format_t    *buf_f)
1768 {
1769         int                     i;
1770         int                     item_index;
1771         int                     bit;
1772         int                     nbits;
1773         int                     reg_buf_offset;
1774         int                     reg_buf_bytes;
1775         int                     next_unlinked_offset;
1776         int                     inodes_per_buf;
1777         xfs_agino_t             *logged_nextp;
1778         xfs_agino_t             *buffer_nextp;
1779         unsigned int            *data_map = NULL;
1780         unsigned int            map_size = 0;
1781
1782         switch (buf_f->blf_type) {
1783         case XFS_LI_BUF:
1784                 data_map = buf_f->blf_data_map;
1785                 map_size = buf_f->blf_map_size;
1786                 break;
1787         }
1788         /*
1789          * Set the variables corresponding to the current region to
1790          * 0 so that we'll initialize them on the first pass through
1791          * the loop.
1792          */
1793         reg_buf_offset = 0;
1794         reg_buf_bytes = 0;
1795         bit = 0;
1796         nbits = 0;
1797         item_index = 0;
1798         inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1799         for (i = 0; i < inodes_per_buf; i++) {
1800                 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1801                         offsetof(xfs_dinode_t, di_next_unlinked);
1802
1803                 while (next_unlinked_offset >=
1804                        (reg_buf_offset + reg_buf_bytes)) {
1805                         /*
1806                          * The next di_next_unlinked field is beyond
1807                          * the current logged region.  Find the next
1808                          * logged region that contains or is beyond
1809                          * the current di_next_unlinked field.
1810                          */
1811                         bit += nbits;
1812                         bit = xfs_next_bit(data_map, map_size, bit);
1813
1814                         /*
1815                          * If there are no more logged regions in the
1816                          * buffer, then we're done.
1817                          */
1818                         if (bit == -1) {
1819                                 return 0;
1820                         }
1821
1822                         nbits = xfs_contig_bits(data_map, map_size,
1823                                                          bit);
1824                         ASSERT(nbits > 0);
1825                         reg_buf_offset = bit << XFS_BLI_SHIFT;
1826                         reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1827                         item_index++;
1828                 }
1829
1830                 /*
1831                  * If the current logged region starts after the current
1832                  * di_next_unlinked field, then move on to the next
1833                  * di_next_unlinked field.
1834                  */
1835                 if (next_unlinked_offset < reg_buf_offset) {
1836                         continue;
1837                 }
1838
1839                 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1840                 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1841                 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1842
1843                 /*
1844                  * The current logged region contains a copy of the
1845                  * current di_next_unlinked field.  Extract its value
1846                  * and copy it to the buffer copy.
1847                  */
1848                 logged_nextp = (xfs_agino_t *)
1849                                ((char *)(item->ri_buf[item_index].i_addr) +
1850                                 (next_unlinked_offset - reg_buf_offset));
1851                 if (unlikely(*logged_nextp == 0)) {
1852                         xfs_fs_cmn_err(CE_ALERT, mp,
1853                                 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1854                                 item, bp);
1855                         XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1856                                          XFS_ERRLEVEL_LOW, mp);
1857                         return XFS_ERROR(EFSCORRUPTED);
1858                 }
1859
1860                 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1861                                               next_unlinked_offset);
1862                 *buffer_nextp = *logged_nextp;
1863         }
1864
1865         return 0;
1866 }
1867
1868 /*
1869  * Perform a 'normal' buffer recovery.  Each logged region of the
1870  * buffer should be copied over the corresponding region in the
1871  * given buffer.  The bitmap in the buf log format structure indicates
1872  * where to place the logged data.
1873  */
1874 /*ARGSUSED*/
1875 STATIC void
1876 xlog_recover_do_reg_buffer(
1877         xlog_recover_item_t     *item,
1878         xfs_buf_t               *bp,
1879         xfs_buf_log_format_t    *buf_f)
1880 {
1881         int                     i;
1882         int                     bit;
1883         int                     nbits;
1884         unsigned int            *data_map = NULL;
1885         unsigned int            map_size = 0;
1886         int                     error;
1887
1888         switch (buf_f->blf_type) {
1889         case XFS_LI_BUF:
1890                 data_map = buf_f->blf_data_map;
1891                 map_size = buf_f->blf_map_size;
1892                 break;
1893         }
1894         bit = 0;
1895         i = 1;  /* 0 is the buf format structure */
1896         while (1) {
1897                 bit = xfs_next_bit(data_map, map_size, bit);
1898                 if (bit == -1)
1899                         break;
1900                 nbits = xfs_contig_bits(data_map, map_size, bit);
1901                 ASSERT(nbits > 0);
1902                 ASSERT(item->ri_buf[i].i_addr != NULL);
1903                 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1904                 ASSERT(XFS_BUF_COUNT(bp) >=
1905                        ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1906
1907                 /*
1908                  * Do a sanity check if this is a dquot buffer. Just checking
1909                  * the first dquot in the buffer should do. XXXThis is
1910                  * probably a good thing to do for other buf types also.
1911                  */
1912                 error = 0;
1913                 if (buf_f->blf_flags &
1914                    (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1915                         error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1916                                                item->ri_buf[i].i_addr,
1917                                                -1, 0, XFS_QMOPT_DOWARN,
1918                                                "dquot_buf_recover");
1919                 }
1920                 if (!error)
1921                         memcpy(xfs_buf_offset(bp,
1922                                 (uint)bit << XFS_BLI_SHIFT),    /* dest */
1923                                 item->ri_buf[i].i_addr,         /* source */
1924                                 nbits<<XFS_BLI_SHIFT);          /* length */
1925                 i++;
1926                 bit += nbits;
1927         }
1928
1929         /* Shouldn't be any more regions */
1930         ASSERT(i == item->ri_total);
1931 }
1932
1933 /*
1934  * Do some primitive error checking on ondisk dquot data structures.
1935  */
1936 int
1937 xfs_qm_dqcheck(
1938         xfs_disk_dquot_t *ddq,
1939         xfs_dqid_t       id,
1940         uint             type,    /* used only when IO_dorepair is true */
1941         uint             flags,
1942         char             *str)
1943 {
1944         xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
1945         int             errs = 0;
1946
1947         /*
1948          * We can encounter an uninitialized dquot buffer for 2 reasons:
1949          * 1. If we crash while deleting the quotainode(s), and those blks got
1950          *    used for user data. This is because we take the path of regular
1951          *    file deletion; however, the size field of quotainodes is never
1952          *    updated, so all the tricks that we play in itruncate_finish
1953          *    don't quite matter.
1954          *
1955          * 2. We don't play the quota buffers when there's a quotaoff logitem.
1956          *    But the allocation will be replayed so we'll end up with an
1957          *    uninitialized quota block.
1958          *
1959          * This is all fine; things are still consistent, and we haven't lost
1960          * any quota information. Just don't complain about bad dquot blks.
1961          */
1962         if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1963                 if (flags & XFS_QMOPT_DOWARN)
1964                         cmn_err(CE_ALERT,
1965                         "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1966                         str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1967                 errs++;
1968         }
1969         if (ddq->d_version != XFS_DQUOT_VERSION) {
1970                 if (flags & XFS_QMOPT_DOWARN)
1971                         cmn_err(CE_ALERT,
1972                         "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1973                         str, id, ddq->d_version, XFS_DQUOT_VERSION);
1974                 errs++;
1975         }
1976
1977         if (ddq->d_flags != XFS_DQ_USER &&
1978             ddq->d_flags != XFS_DQ_PROJ &&
1979             ddq->d_flags != XFS_DQ_GROUP) {
1980                 if (flags & XFS_QMOPT_DOWARN)
1981                         cmn_err(CE_ALERT,
1982                         "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1983                         str, id, ddq->d_flags);
1984                 errs++;
1985         }
1986
1987         if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1988                 if (flags & XFS_QMOPT_DOWARN)
1989                         cmn_err(CE_ALERT,
1990                         "%s : ondisk-dquot 0x%p, ID mismatch: "
1991                         "0x%x expected, found id 0x%x",
1992                         str, ddq, id, be32_to_cpu(ddq->d_id));
1993                 errs++;
1994         }
1995
1996         if (!errs && ddq->d_id) {
1997                 if (ddq->d_blk_softlimit &&
1998                     be64_to_cpu(ddq->d_bcount) >=
1999                                 be64_to_cpu(ddq->d_blk_softlimit)) {
2000                         if (!ddq->d_btimer) {
2001                                 if (flags & XFS_QMOPT_DOWARN)
2002                                         cmn_err(CE_ALERT,
2003                                         "%s : Dquot ID 0x%x (0x%p) "
2004                                         "BLK TIMER NOT STARTED",
2005                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2006                                 errs++;
2007                         }
2008                 }
2009                 if (ddq->d_ino_softlimit &&
2010                     be64_to_cpu(ddq->d_icount) >=
2011                                 be64_to_cpu(ddq->d_ino_softlimit)) {
2012                         if (!ddq->d_itimer) {
2013                                 if (flags & XFS_QMOPT_DOWARN)
2014                                         cmn_err(CE_ALERT,
2015                                         "%s : Dquot ID 0x%x (0x%p) "
2016                                         "INODE TIMER NOT STARTED",
2017                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2018                                 errs++;
2019                         }
2020                 }
2021                 if (ddq->d_rtb_softlimit &&
2022                     be64_to_cpu(ddq->d_rtbcount) >=
2023                                 be64_to_cpu(ddq->d_rtb_softlimit)) {
2024                         if (!ddq->d_rtbtimer) {
2025                                 if (flags & XFS_QMOPT_DOWARN)
2026                                         cmn_err(CE_ALERT,
2027                                         "%s : Dquot ID 0x%x (0x%p) "
2028                                         "RTBLK TIMER NOT STARTED",
2029                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2030                                 errs++;
2031                         }
2032                 }
2033         }
2034
2035         if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2036                 return errs;
2037
2038         if (flags & XFS_QMOPT_DOWARN)
2039                 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2040
2041         /*
2042          * Typically, a repair is only requested by quotacheck.
2043          */
2044         ASSERT(id != -1);
2045         ASSERT(flags & XFS_QMOPT_DQREPAIR);
2046         memset(d, 0, sizeof(xfs_dqblk_t));
2047
2048         d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2049         d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2050         d->dd_diskdq.d_flags = type;
2051         d->dd_diskdq.d_id = cpu_to_be32(id);
2052
2053         return errs;
2054 }
2055
2056 /*
2057  * Perform a dquot buffer recovery.
2058  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2059  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2060  * Else, treat it as a regular buffer and do recovery.
2061  */
2062 STATIC void
2063 xlog_recover_do_dquot_buffer(
2064         xfs_mount_t             *mp,
2065         xlog_t                  *log,
2066         xlog_recover_item_t     *item,
2067         xfs_buf_t               *bp,
2068         xfs_buf_log_format_t    *buf_f)
2069 {
2070         uint                    type;
2071
2072         /*
2073          * Filesystems are required to send in quota flags at mount time.
2074          */
2075         if (mp->m_qflags == 0) {
2076                 return;
2077         }
2078
2079         type = 0;
2080         if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2081                 type |= XFS_DQ_USER;
2082         if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2083                 type |= XFS_DQ_PROJ;
2084         if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2085                 type |= XFS_DQ_GROUP;
2086         /*
2087          * This type of quotas was turned off, so ignore this buffer
2088          */
2089         if (log->l_quotaoffs_flag & type)
2090                 return;
2091
2092         xlog_recover_do_reg_buffer(item, bp, buf_f);
2093 }
2094
2095 /*
2096  * This routine replays a modification made to a buffer at runtime.
2097  * There are actually two types of buffer, regular and inode, which
2098  * are handled differently.  Inode buffers are handled differently
2099  * in that we only recover a specific set of data from them, namely
2100  * the inode di_next_unlinked fields.  This is because all other inode
2101  * data is actually logged via inode records and any data we replay
2102  * here which overlaps that may be stale.
2103  *
2104  * When meta-data buffers are freed at run time we log a buffer item
2105  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2106  * of the buffer in the log should not be replayed at recovery time.
2107  * This is so that if the blocks covered by the buffer are reused for
2108  * file data before we crash we don't end up replaying old, freed
2109  * meta-data into a user's file.
2110  *
2111  * To handle the cancellation of buffer log items, we make two passes
2112  * over the log during recovery.  During the first we build a table of
2113  * those buffers which have been cancelled, and during the second we
2114  * only replay those buffers which do not have corresponding cancel
2115  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2116  * for more details on the implementation of the table of cancel records.
2117  */
2118 STATIC int
2119 xlog_recover_do_buffer_trans(
2120         xlog_t                  *log,
2121         xlog_recover_item_t     *item,
2122         int                     pass)
2123 {
2124         xfs_buf_log_format_t    *buf_f;
2125         xfs_mount_t             *mp;
2126         xfs_buf_t               *bp;
2127         int                     error;
2128         int                     cancel;
2129         xfs_daddr_t             blkno;
2130         int                     len;
2131         ushort                  flags;
2132
2133         buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2134
2135         if (pass == XLOG_RECOVER_PASS1) {
2136                 /*
2137                  * In this pass we're only looking for buf items
2138                  * with the XFS_BLI_CANCEL bit set.
2139                  */
2140                 xlog_recover_do_buffer_pass1(log, buf_f);
2141                 return 0;
2142         } else {
2143                 /*
2144                  * In this pass we want to recover all the buffers
2145                  * which have not been cancelled and are not
2146                  * cancellation buffers themselves.  The routine
2147                  * we call here will tell us whether or not to
2148                  * continue with the replay of this buffer.
2149                  */
2150                 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2151                 if (cancel) {
2152                         return 0;
2153                 }
2154         }
2155         switch (buf_f->blf_type) {
2156         case XFS_LI_BUF:
2157                 blkno = buf_f->blf_blkno;
2158                 len = buf_f->blf_len;
2159                 flags = buf_f->blf_flags;
2160                 break;
2161         default:
2162                 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2163                         "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2164                         buf_f->blf_type, log->l_mp->m_logname ?
2165                         log->l_mp->m_logname : "internal");
2166                 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2167                                  XFS_ERRLEVEL_LOW, log->l_mp);
2168                 return XFS_ERROR(EFSCORRUPTED);
2169         }
2170
2171         mp = log->l_mp;
2172         if (flags & XFS_BLI_INODE_BUF) {
2173                 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2174                                                                 XFS_BUF_LOCK);
2175         } else {
2176                 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2177         }
2178         if (XFS_BUF_ISERROR(bp)) {
2179                 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2180                                   bp, blkno);
2181                 error = XFS_BUF_GETERROR(bp);
2182                 xfs_buf_relse(bp);
2183                 return error;
2184         }
2185
2186         error = 0;
2187         if (flags & XFS_BLI_INODE_BUF) {
2188                 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2189         } else if (flags &
2190                   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2191                 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2192         } else {
2193                 xlog_recover_do_reg_buffer(item, bp, buf_f);
2194         }
2195         if (error)
2196                 return XFS_ERROR(error);
2197
2198         /*
2199          * Perform delayed write on the buffer.  Asynchronous writes will be
2200          * slower when taking into account all the buffers to be flushed.
2201          *
2202          * Also make sure that only inode buffers with good sizes stay in
2203          * the buffer cache.  The kernel moves inodes in buffers of 1 block
2204          * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2205          * buffers in the log can be a different size if the log was generated
2206          * by an older kernel using unclustered inode buffers or a newer kernel
2207          * running with a different inode cluster size.  Regardless, if the
2208          * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2209          * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2210          * the buffer out of the buffer cache so that the buffer won't
2211          * overlap with future reads of those inodes.
2212          */
2213         if (XFS_DINODE_MAGIC ==
2214             INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2215             (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2216                         (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2217                 XFS_BUF_STALE(bp);
2218                 error = xfs_bwrite(mp, bp);
2219         } else {
2220                 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2221                        XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2222                 XFS_BUF_SET_FSPRIVATE(bp, mp);
2223                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2224                 xfs_bdwrite(mp, bp);
2225         }
2226
2227         return (error);
2228 }
2229
2230 STATIC int
2231 xlog_recover_do_inode_trans(
2232         xlog_t                  *log,
2233         xlog_recover_item_t     *item,
2234         int                     pass)
2235 {
2236         xfs_inode_log_format_t  *in_f;
2237         xfs_mount_t             *mp;
2238         xfs_buf_t               *bp;
2239         xfs_imap_t              imap;
2240         xfs_dinode_t            *dip;
2241         xfs_ino_t               ino;
2242         int                     len;
2243         xfs_caddr_t             src;
2244         xfs_caddr_t             dest;
2245         int                     error;
2246         int                     attr_index;
2247         uint                    fields;
2248         xfs_icdinode_t          *dicp;
2249         int                     need_free = 0;
2250
2251         if (pass == XLOG_RECOVER_PASS1) {
2252                 return 0;
2253         }
2254
2255         if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2256                 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2257         } else {
2258                 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2259                         sizeof(xfs_inode_log_format_t), KM_SLEEP);
2260                 need_free = 1;
2261                 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2262                 if (error)
2263                         goto error;
2264         }
2265         ino = in_f->ilf_ino;
2266         mp = log->l_mp;
2267         if (ITEM_TYPE(item) == XFS_LI_INODE) {
2268                 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2269                 imap.im_len = in_f->ilf_len;
2270                 imap.im_boffset = in_f->ilf_boffset;
2271         } else {
2272                 /*
2273                  * It's an old inode format record.  We don't know where
2274                  * its cluster is located on disk, and we can't allow
2275                  * xfs_imap() to figure it out because the inode btrees
2276                  * are not ready to be used.  Therefore do not pass the
2277                  * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2278                  * us only the single block in which the inode lives
2279                  * rather than its cluster, so we must make sure to
2280                  * invalidate the buffer when we write it out below.
2281                  */
2282                 imap.im_blkno = 0;
2283                 xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2284         }
2285
2286         /*
2287          * Inode buffers can be freed, look out for it,
2288          * and do not replay the inode.
2289          */
2290         if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2291                 error = 0;
2292                 goto error;
2293         }
2294
2295         bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2296                                                                 XFS_BUF_LOCK);
2297         if (XFS_BUF_ISERROR(bp)) {
2298                 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2299                                   bp, imap.im_blkno);
2300                 error = XFS_BUF_GETERROR(bp);
2301                 xfs_buf_relse(bp);
2302                 goto error;
2303         }
2304         error = 0;
2305         ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2306         dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2307
2308         /*
2309          * Make sure the place we're flushing out to really looks
2310          * like an inode!
2311          */
2312         if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
2313                 xfs_buf_relse(bp);
2314                 xfs_fs_cmn_err(CE_ALERT, mp,
2315                         "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2316                         dip, bp, ino);
2317                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2318                                  XFS_ERRLEVEL_LOW, mp);
2319                 error = EFSCORRUPTED;
2320                 goto error;
2321         }
2322         dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2323         if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2324                 xfs_buf_relse(bp);
2325                 xfs_fs_cmn_err(CE_ALERT, mp,
2326                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2327                         item, ino);
2328                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2329                                  XFS_ERRLEVEL_LOW, mp);
2330                 error = EFSCORRUPTED;
2331                 goto error;
2332         }
2333
2334         /* Skip replay when the on disk inode is newer than the log one */
2335         if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
2336                 /*
2337                  * Deal with the wrap case, DI_MAX_FLUSH is less
2338                  * than smaller numbers
2339                  */
2340                 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2341                     dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2342                         /* do nothing */
2343                 } else {
2344                         xfs_buf_relse(bp);
2345                         error = 0;
2346                         goto error;
2347                 }
2348         }
2349         /* Take the opportunity to reset the flush iteration count */
2350         dicp->di_flushiter = 0;
2351
2352         if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2353                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2354                     (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2355                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2356                                          XFS_ERRLEVEL_LOW, mp, dicp);
2357                         xfs_buf_relse(bp);
2358                         xfs_fs_cmn_err(CE_ALERT, mp,
2359                                 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2360                                 item, dip, bp, ino);
2361                         error = EFSCORRUPTED;
2362                         goto error;
2363                 }
2364         } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2365                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2366                     (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2367                     (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2368                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2369                                              XFS_ERRLEVEL_LOW, mp, dicp);
2370                         xfs_buf_relse(bp);
2371                         xfs_fs_cmn_err(CE_ALERT, mp,
2372                                 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2373                                 item, dip, bp, ino);
2374                         error = EFSCORRUPTED;
2375                         goto error;
2376                 }
2377         }
2378         if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2379                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2380                                      XFS_ERRLEVEL_LOW, mp, dicp);
2381                 xfs_buf_relse(bp);
2382                 xfs_fs_cmn_err(CE_ALERT, mp,
2383                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2384                         item, dip, bp, ino,
2385                         dicp->di_nextents + dicp->di_anextents,
2386                         dicp->di_nblocks);
2387                 error = EFSCORRUPTED;
2388                 goto error;
2389         }
2390         if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2391                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2392                                      XFS_ERRLEVEL_LOW, mp, dicp);
2393                 xfs_buf_relse(bp);
2394                 xfs_fs_cmn_err(CE_ALERT, mp,
2395                         "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2396                         item, dip, bp, ino, dicp->di_forkoff);
2397                 error = EFSCORRUPTED;
2398                 goto error;
2399         }
2400         if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2401                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2402                                      XFS_ERRLEVEL_LOW, mp, dicp);
2403                 xfs_buf_relse(bp);
2404                 xfs_fs_cmn_err(CE_ALERT, mp,
2405                         "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2406                         item->ri_buf[1].i_len, item);
2407                 error = EFSCORRUPTED;
2408                 goto error;
2409         }
2410
2411         /* The core is in in-core format */
2412         xfs_dinode_to_disk(&dip->di_core,
2413                 (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2414
2415         /* the rest is in on-disk format */
2416         if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2417                 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2418                         item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2419                         item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2420         }
2421
2422         fields = in_f->ilf_fields;
2423         switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2424         case XFS_ILOG_DEV:
2425                 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
2426                 break;
2427         case XFS_ILOG_UUID:
2428                 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2429                 break;
2430         }
2431
2432         if (in_f->ilf_size == 2)
2433                 goto write_inode_buffer;
2434         len = item->ri_buf[2].i_len;
2435         src = item->ri_buf[2].i_addr;
2436         ASSERT(in_f->ilf_size <= 4);
2437         ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2438         ASSERT(!(fields & XFS_ILOG_DFORK) ||
2439                (len == in_f->ilf_dsize));
2440
2441         switch (fields & XFS_ILOG_DFORK) {
2442         case XFS_ILOG_DDATA:
2443         case XFS_ILOG_DEXT:
2444                 memcpy(&dip->di_u, src, len);
2445                 break;
2446
2447         case XFS_ILOG_DBROOT:
2448                 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2449                                  &(dip->di_u.di_bmbt),
2450                                  XFS_DFORK_DSIZE(dip, mp));
2451                 break;
2452
2453         default:
2454                 /*
2455                  * There are no data fork flags set.
2456                  */
2457                 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2458                 break;
2459         }
2460
2461         /*
2462          * If we logged any attribute data, recover it.  There may or
2463          * may not have been any other non-core data logged in this
2464          * transaction.
2465          */
2466         if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2467                 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2468                         attr_index = 3;
2469                 } else {
2470                         attr_index = 2;
2471                 }
2472                 len = item->ri_buf[attr_index].i_len;
2473                 src = item->ri_buf[attr_index].i_addr;
2474                 ASSERT(len == in_f->ilf_asize);
2475
2476                 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2477                 case XFS_ILOG_ADATA:
2478                 case XFS_ILOG_AEXT:
2479                         dest = XFS_DFORK_APTR(dip);
2480                         ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2481                         memcpy(dest, src, len);
2482                         break;
2483
2484                 case XFS_ILOG_ABROOT:
2485                         dest = XFS_DFORK_APTR(dip);
2486                         xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2487                                          (xfs_bmdr_block_t*)dest,
2488                                          XFS_DFORK_ASIZE(dip, mp));
2489                         break;
2490
2491                 default:
2492                         xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2493                         ASSERT(0);
2494                         xfs_buf_relse(bp);
2495                         error = EIO;
2496                         goto error;
2497                 }
2498         }
2499
2500 write_inode_buffer:
2501         if (ITEM_TYPE(item) == XFS_LI_INODE) {
2502                 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2503                        XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2504                 XFS_BUF_SET_FSPRIVATE(bp, mp);
2505                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2506                 xfs_bdwrite(mp, bp);
2507         } else {
2508                 XFS_BUF_STALE(bp);
2509                 error = xfs_bwrite(mp, bp);
2510         }
2511
2512 error:
2513         if (need_free)
2514                 kmem_free(in_f, sizeof(*in_f));
2515         return XFS_ERROR(error);
2516 }
2517
2518 /*
2519  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2520  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2521  * of that type.
2522  */
2523 STATIC int
2524 xlog_recover_do_quotaoff_trans(
2525         xlog_t                  *log,
2526         xlog_recover_item_t     *item,
2527         int                     pass)
2528 {
2529         xfs_qoff_logformat_t    *qoff_f;
2530
2531         if (pass == XLOG_RECOVER_PASS2) {
2532                 return (0);
2533         }
2534
2535         qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2536         ASSERT(qoff_f);
2537
2538         /*
2539          * The logitem format's flag tells us if this was user quotaoff,
2540          * group/project quotaoff or both.
2541          */
2542         if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2543                 log->l_quotaoffs_flag |= XFS_DQ_USER;
2544         if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2545                 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2546         if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2547                 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2548
2549         return (0);
2550 }
2551
2552 /*
2553  * Recover a dquot record
2554  */
2555 STATIC int
2556 xlog_recover_do_dquot_trans(
2557         xlog_t                  *log,
2558         xlog_recover_item_t     *item,
2559         int                     pass)
2560 {
2561         xfs_mount_t             *mp;
2562         xfs_buf_t               *bp;
2563         struct xfs_disk_dquot   *ddq, *recddq;
2564         int                     error;
2565         xfs_dq_logformat_t      *dq_f;
2566         uint                    type;
2567
2568         if (pass == XLOG_RECOVER_PASS1) {
2569                 return 0;
2570         }
2571         mp = log->l_mp;
2572
2573         /*
2574          * Filesystems are required to send in quota flags at mount time.
2575          */
2576         if (mp->m_qflags == 0)
2577                 return (0);
2578
2579         recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2580         ASSERT(recddq);
2581         /*
2582          * This type of quotas was turned off, so ignore this record.
2583          */
2584         type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2585                         (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2586         ASSERT(type);
2587         if (log->l_quotaoffs_flag & type)
2588                 return (0);
2589
2590         /*
2591          * At this point we know that quota was _not_ turned off.
2592          * Since the mount flags are not indicating to us otherwise, this
2593          * must mean that quota is on, and the dquot needs to be replayed.
2594          * Remember that we may not have fully recovered the superblock yet,
2595          * so we can't do the usual trick of looking at the SB quota bits.
2596          *
2597          * The other possibility, of course, is that the quota subsystem was
2598          * removed since the last mount - ENOSYS.
2599          */
2600         dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2601         ASSERT(dq_f);
2602         if ((error = xfs_qm_dqcheck(recddq,
2603                            dq_f->qlf_id,
2604                            0, XFS_QMOPT_DOWARN,
2605                            "xlog_recover_do_dquot_trans (log copy)"))) {
2606                 return XFS_ERROR(EIO);
2607         }
2608         ASSERT(dq_f->qlf_len == 1);
2609
2610         error = xfs_read_buf(mp, mp->m_ddev_targp,
2611                              dq_f->qlf_blkno,
2612                              XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2613                              0, &bp);
2614         if (error) {
2615                 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2616                                   bp, dq_f->qlf_blkno);
2617                 return error;
2618         }
2619         ASSERT(bp);
2620         ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2621
2622         /*
2623          * At least the magic num portion should be on disk because this
2624          * was among a chunk of dquots created earlier, and we did some
2625          * minimal initialization then.
2626          */
2627         if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2628                            "xlog_recover_do_dquot_trans")) {
2629                 xfs_buf_relse(bp);
2630                 return XFS_ERROR(EIO);
2631         }
2632
2633         memcpy(ddq, recddq, item->ri_buf[1].i_len);
2634
2635         ASSERT(dq_f->qlf_size == 2);
2636         ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2637                XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2638         XFS_BUF_SET_FSPRIVATE(bp, mp);
2639         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2640         xfs_bdwrite(mp, bp);
2641
2642         return (0);
2643 }
2644
2645 /*
2646  * This routine is called to create an in-core extent free intent
2647  * item from the efi format structure which was logged on disk.
2648  * It allocates an in-core efi, copies the extents from the format
2649  * structure into it, and adds the efi to the AIL with the given
2650  * LSN.
2651  */
2652 STATIC int
2653 xlog_recover_do_efi_trans(
2654         xlog_t                  *log,
2655         xlog_recover_item_t     *item,
2656         xfs_lsn_t               lsn,
2657         int                     pass)
2658 {
2659         int                     error;
2660         xfs_mount_t             *mp;
2661         xfs_efi_log_item_t      *efip;
2662         xfs_efi_log_format_t    *efi_formatp;
2663         SPLDECL(s);
2664
2665         if (pass == XLOG_RECOVER_PASS1) {
2666                 return 0;
2667         }
2668
2669         efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2670
2671         mp = log->l_mp;
2672         efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2673         if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2674                                          &(efip->efi_format)))) {
2675                 xfs_efi_item_free(efip);
2676                 return error;
2677         }
2678         efip->efi_next_extent = efi_formatp->efi_nextents;
2679         efip->efi_flags |= XFS_EFI_COMMITTED;
2680
2681         AIL_LOCK(mp,s);
2682         /*
2683          * xfs_trans_update_ail() drops the AIL lock.
2684          */
2685         xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2686         return 0;
2687 }
2688
2689
2690 /*
2691  * This routine is called when an efd format structure is found in
2692  * a committed transaction in the log.  It's purpose is to cancel
2693  * the corresponding efi if it was still in the log.  To do this
2694  * it searches the AIL for the efi with an id equal to that in the
2695  * efd format structure.  If we find it, we remove the efi from the
2696  * AIL and free it.
2697  */
2698 STATIC void
2699 xlog_recover_do_efd_trans(
2700         xlog_t                  *log,
2701         xlog_recover_item_t     *item,
2702         int                     pass)
2703 {
2704         xfs_mount_t             *mp;
2705         xfs_efd_log_format_t    *efd_formatp;
2706         xfs_efi_log_item_t      *efip = NULL;
2707         xfs_log_item_t          *lip;
2708         int                     gen;
2709         __uint64_t              efi_id;
2710         SPLDECL(s);
2711
2712         if (pass == XLOG_RECOVER_PASS1) {
2713                 return;
2714         }
2715
2716         efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2717         ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2718                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2719                (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2720                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2721         efi_id = efd_formatp->efd_efi_id;
2722
2723         /*
2724          * Search for the efi with the id in the efd format structure
2725          * in the AIL.
2726          */
2727         mp = log->l_mp;
2728         AIL_LOCK(mp,s);
2729         lip = xfs_trans_first_ail(mp, &gen);
2730         while (lip != NULL) {
2731                 if (lip->li_type == XFS_LI_EFI) {
2732                         efip = (xfs_efi_log_item_t *)lip;
2733                         if (efip->efi_format.efi_id == efi_id) {
2734                                 /*
2735                                  * xfs_trans_delete_ail() drops the
2736                                  * AIL lock.
2737                                  */
2738                                 xfs_trans_delete_ail(mp, lip, s);
2739                                 break;
2740                         }
2741                 }
2742                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2743         }
2744
2745         /*
2746          * If we found it, then free it up.  If it wasn't there, it
2747          * must have been overwritten in the log.  Oh well.
2748          */
2749         if (lip != NULL) {
2750                 xfs_efi_item_free(efip);
2751         } else {
2752                 AIL_UNLOCK(mp, s);
2753         }
2754 }
2755
2756 /*
2757  * Perform the transaction
2758  *
2759  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2760  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2761  */
2762 STATIC int
2763 xlog_recover_do_trans(
2764         xlog_t                  *log,
2765         xlog_recover_t          *trans,
2766         int                     pass)
2767 {
2768         int                     error = 0;
2769         xlog_recover_item_t     *item, *first_item;
2770
2771         if ((error = xlog_recover_reorder_trans(trans)))
2772                 return error;
2773         first_item = item = trans->r_itemq;
2774         do {
2775                 /*
2776                  * we don't need to worry about the block number being
2777                  * truncated in > 1 TB buffers because in user-land,
2778                  * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2779                  * the blknos will get through the user-mode buffer
2780                  * cache properly.  The only bad case is o32 kernels
2781                  * where xfs_daddr_t is 32-bits but mount will warn us
2782                  * off a > 1 TB filesystem before we get here.
2783                  */
2784                 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2785                         if  ((error = xlog_recover_do_buffer_trans(log, item,
2786                                                                  pass)))
2787                                 break;
2788                 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2789                         if ((error = xlog_recover_do_inode_trans(log, item,
2790                                                                 pass)))
2791                                 break;
2792                 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2793                         if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2794                                                   pass)))
2795                                 break;
2796                 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2797                         xlog_recover_do_efd_trans(log, item, pass);
2798                 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2799                         if ((error = xlog_recover_do_dquot_trans(log, item,
2800                                                                    pass)))
2801                                         break;
2802                 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2803                         if ((error = xlog_recover_do_quotaoff_trans(log, item,
2804                                                                    pass)))
2805                                         break;
2806                 } else {
2807                         xlog_warn("XFS: xlog_recover_do_trans");
2808                         ASSERT(0);
2809                         error = XFS_ERROR(EIO);
2810                         break;
2811                 }
2812                 item = item->ri_next;
2813         } while (first_item != item);
2814
2815         return error;
2816 }
2817
2818 /*
2819  * Free up any resources allocated by the transaction
2820  *
2821  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2822  */
2823 STATIC void
2824 xlog_recover_free_trans(
2825         xlog_recover_t          *trans)
2826 {
2827         xlog_recover_item_t     *first_item, *item, *free_item;
2828         int                     i;
2829
2830         item = first_item = trans->r_itemq;
2831         do {
2832                 free_item = item;
2833                 item = item->ri_next;
2834                  /* Free the regions in the item. */
2835                 for (i = 0; i < free_item->ri_cnt; i++) {
2836                         kmem_free(free_item->ri_buf[i].i_addr,
2837                                   free_item->ri_buf[i].i_len);
2838                 }
2839                 /* Free the item itself */
2840                 kmem_free(free_item->ri_buf,
2841                           (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2842                 kmem_free(free_item, sizeof(xlog_recover_item_t));
2843         } while (first_item != item);
2844         /* Free the transaction recover structure */
2845         kmem_free(trans, sizeof(xlog_recover_t));
2846 }
2847
2848 STATIC int
2849 xlog_recover_commit_trans(
2850         xlog_t                  *log,
2851         xlog_recover_t          **q,
2852         xlog_recover_t          *trans,
2853         int                     pass)
2854 {
2855         int                     error;
2856
2857         if ((error = xlog_recover_unlink_tid(q, trans)))
2858                 return error;
2859         if ((error = xlog_recover_do_trans(log, trans, pass)))
2860                 return error;
2861         xlog_recover_free_trans(trans);                 /* no error */
2862         return 0;
2863 }
2864
2865 STATIC int
2866 xlog_recover_unmount_trans(
2867         xlog_recover_t          *trans)
2868 {
2869         /* Do nothing now */
2870         xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2871         return 0;
2872 }
2873
2874 /*
2875  * There are two valid states of the r_state field.  0 indicates that the
2876  * transaction structure is in a normal state.  We have either seen the
2877  * start of the transaction or the last operation we added was not a partial
2878  * operation.  If the last operation we added to the transaction was a
2879  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2880  *
2881  * NOTE: skip LRs with 0 data length.
2882  */
2883 STATIC int
2884 xlog_recover_process_data(
2885         xlog_t                  *log,
2886         xlog_recover_t          *rhash[],
2887         xlog_rec_header_t       *rhead,
2888         xfs_caddr_t             dp,
2889         int                     pass)
2890 {
2891         xfs_caddr_t             lp;
2892         int                     num_logops;
2893         xlog_op_header_t        *ohead;
2894         xlog_recover_t          *trans;
2895         xlog_tid_t              tid;
2896         int                     error;
2897         unsigned long           hash;
2898         uint                    flags;
2899
2900         lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2901         num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2902
2903         /* check the log format matches our own - else we can't recover */
2904         if (xlog_header_check_recover(log->l_mp, rhead))
2905                 return (XFS_ERROR(EIO));
2906
2907         while ((dp < lp) && num_logops) {
2908                 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2909                 ohead = (xlog_op_header_t *)dp;
2910                 dp += sizeof(xlog_op_header_t);
2911                 if (ohead->oh_clientid != XFS_TRANSACTION &&
2912                     ohead->oh_clientid != XFS_LOG) {
2913                         xlog_warn(
2914                 "XFS: xlog_recover_process_data: bad clientid");
2915                         ASSERT(0);
2916                         return (XFS_ERROR(EIO));
2917                 }
2918                 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2919                 hash = XLOG_RHASH(tid);
2920                 trans = xlog_recover_find_tid(rhash[hash], tid);
2921                 if (trans == NULL) {               /* not found; add new tid */
2922                         if (ohead->oh_flags & XLOG_START_TRANS)
2923                                 xlog_recover_new_tid(&rhash[hash], tid,
2924                                         INT_GET(rhead->h_lsn, ARCH_CONVERT));
2925                 } else {
2926                         ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2927                         flags = ohead->oh_flags & ~XLOG_END_TRANS;
2928                         if (flags & XLOG_WAS_CONT_TRANS)
2929                                 flags &= ~XLOG_CONTINUE_TRANS;
2930                         switch (flags) {
2931                         case XLOG_COMMIT_TRANS:
2932                                 error = xlog_recover_commit_trans(log,
2933                                                 &rhash[hash], trans, pass);
2934                                 break;
2935                         case XLOG_UNMOUNT_TRANS:
2936                                 error = xlog_recover_unmount_trans(trans);
2937                                 break;
2938                         case XLOG_WAS_CONT_TRANS:
2939                                 error = xlog_recover_add_to_cont_trans(trans,
2940                                                 dp, INT_GET(ohead->oh_len,
2941                                                         ARCH_CONVERT));
2942                                 break;
2943                         case XLOG_START_TRANS:
2944                                 xlog_warn(
2945                         "XFS: xlog_recover_process_data: bad transaction");
2946                                 ASSERT(0);
2947                                 error = XFS_ERROR(EIO);
2948                                 break;
2949                         case 0:
2950                         case XLOG_CONTINUE_TRANS:
2951                                 error = xlog_recover_add_to_trans(trans,
2952                                                 dp, INT_GET(ohead->oh_len,
2953                                                         ARCH_CONVERT));
2954                                 break;
2955                         default:
2956                                 xlog_warn(
2957                         "XFS: xlog_recover_process_data: bad flag");
2958                                 ASSERT(0);
2959                                 error = XFS_ERROR(EIO);
2960                                 break;
2961                         }
2962                         if (error)
2963                                 return error;
2964                 }
2965                 dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
2966                 num_logops--;
2967         }
2968         return 0;
2969 }
2970
2971 /*
2972  * Process an extent free intent item that was recovered from
2973  * the log.  We need to free the extents that it describes.
2974  */
2975 STATIC void
2976 xlog_recover_process_efi(
2977         xfs_mount_t             *mp,
2978         xfs_efi_log_item_t      *efip)
2979 {
2980         xfs_efd_log_item_t      *efdp;
2981         xfs_trans_t             *tp;
2982         int                     i;
2983         xfs_extent_t            *extp;
2984         xfs_fsblock_t           startblock_fsb;
2985
2986         ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2987
2988         /*
2989          * First check the validity of the extents described by the
2990          * EFI.  If any are bad, then assume that all are bad and
2991          * just toss the EFI.
2992          */
2993         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2994                 extp = &(efip->efi_format.efi_extents[i]);
2995                 startblock_fsb = XFS_BB_TO_FSB(mp,
2996                                    XFS_FSB_TO_DADDR(mp, extp->ext_start));
2997                 if ((startblock_fsb == 0) ||
2998                     (extp->ext_len == 0) ||
2999                     (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3000                     (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3001                         /*
3002                          * This will pull the EFI from the AIL and
3003                          * free the memory associated with it.
3004                          */
3005                         xfs_efi_release(efip, efip->efi_format.efi_nextents);
3006                         return;
3007                 }
3008         }
3009
3010         tp = xfs_trans_alloc(mp, 0);
3011         xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3012         efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3013
3014         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3015                 extp = &(efip->efi_format.efi_extents[i]);
3016                 xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3017                 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3018                                          extp->ext_len);
3019         }
3020
3021         efip->efi_flags |= XFS_EFI_RECOVERED;
3022         xfs_trans_commit(tp, 0);
3023 }
3024
3025 /*
3026  * Verify that once we've encountered something other than an EFI
3027  * in the AIL that there are no more EFIs in the AIL.
3028  */
3029 #if defined(DEBUG)
3030 STATIC void
3031 xlog_recover_check_ail(
3032         xfs_mount_t             *mp,
3033         xfs_log_item_t          *lip,
3034         int                     gen)
3035 {
3036         int                     orig_gen = gen;
3037
3038         do {
3039                 ASSERT(lip->li_type != XFS_LI_EFI);
3040                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3041                 /*
3042                  * The check will be bogus if we restart from the
3043                  * beginning of the AIL, so ASSERT that we don't.
3044                  * We never should since we're holding the AIL lock
3045                  * the entire time.
3046                  */
3047                 ASSERT(gen == orig_gen);
3048         } while (lip != NULL);
3049 }
3050 #endif  /* DEBUG */
3051
3052 /*
3053  * When this is called, all of the EFIs which did not have
3054  * corresponding EFDs should be in the AIL.  What we do now
3055  * is free the extents associated with each one.
3056  *
3057  * Since we process the EFIs in normal transactions, they
3058  * will be removed at some point after the commit.  This prevents
3059  * us from just walking down the list processing each one.
3060  * We'll use a flag in the EFI to skip those that we've already
3061  * processed and use the AIL iteration mechanism's generation
3062  * count to try to speed this up at least a bit.
3063  *
3064  * When we start, we know that the EFIs are the only things in
3065  * the AIL.  As we process them, however, other items are added
3066  * to the AIL.  Since everything added to the AIL must come after
3067  * everything already in the AIL, we stop processing as soon as
3068  * we see something other than an EFI in the AIL.
3069  */
3070 STATIC void
3071 xlog_recover_process_efis(
3072         xlog_t                  *log)
3073 {
3074         xfs_log_item_t          *lip;
3075         xfs_efi_log_item_t      *efip;
3076         int                     gen;
3077         xfs_mount_t             *mp;
3078         SPLDECL(s);
3079
3080         mp = log->l_mp;
3081         AIL_LOCK(mp,s);
3082
3083         lip = xfs_trans_first_ail(mp, &gen);
3084         while (lip != NULL) {
3085                 /*
3086                  * We're done when we see something other than an EFI.
3087                  */
3088                 if (lip->li_type != XFS_LI_EFI) {
3089                         xlog_recover_check_ail(mp, lip, gen);
3090                         break;
3091                 }
3092
3093                 /*
3094                  * Skip EFIs that we've already processed.
3095                  */
3096                 efip = (xfs_efi_log_item_t *)lip;
3097                 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3098                         lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3099                         continue;
3100                 }
3101
3102                 AIL_UNLOCK(mp, s);
3103                 xlog_recover_process_efi(mp, efip);
3104                 AIL_LOCK(mp,s);
3105                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3106         }
3107         AIL_UNLOCK(mp, s);
3108 }
3109
3110 /*
3111  * This routine performs a transaction to null out a bad inode pointer
3112  * in an agi unlinked inode hash bucket.
3113  */
3114 STATIC void
3115 xlog_recover_clear_agi_bucket(
3116         xfs_mount_t     *mp,
3117         xfs_agnumber_t  agno,
3118         int             bucket)
3119 {
3120         xfs_trans_t     *tp;
3121         xfs_agi_t       *agi;
3122         xfs_buf_t       *agibp;
3123         int             offset;
3124         int             error;
3125
3126         tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3127         xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3128
3129         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3130                                    XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3131                                    XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3132         if (error) {
3133                 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3134                 return;
3135         }
3136
3137         agi = XFS_BUF_TO_AGI(agibp);
3138         if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
3139                 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3140                 return;
3141         }
3142
3143         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3144         offset = offsetof(xfs_agi_t, agi_unlinked) +
3145                  (sizeof(xfs_agino_t) * bucket);
3146         xfs_trans_log_buf(tp, agibp, offset,
3147                           (offset + sizeof(xfs_agino_t) - 1));
3148
3149         (void) xfs_trans_commit(tp, 0);
3150 }
3151
3152 /*
3153  * xlog_iunlink_recover
3154  *
3155  * This is called during recovery to process any inodes which
3156  * we unlinked but not freed when the system crashed.  These
3157  * inodes will be on the lists in the AGI blocks.  What we do
3158  * here is scan all the AGIs and fully truncate and free any
3159  * inodes found on the lists.  Each inode is removed from the
3160  * lists when it has been fully truncated and is freed.  The
3161  * freeing of the inode and its removal from the list must be
3162  * atomic.
3163  */
3164 void
3165 xlog_recover_process_iunlinks(
3166         xlog_t          *log)
3167 {
3168         xfs_mount_t     *mp;
3169         xfs_agnumber_t  agno;
3170         xfs_agi_t       *agi;
3171         xfs_buf_t       *agibp;
3172         xfs_buf_t       *ibp;
3173         xfs_dinode_t    *dip;
3174         xfs_inode_t     *ip;
3175         xfs_agino_t     agino;
3176         xfs_ino_t       ino;
3177         int             bucket;
3178         int             error;
3179         uint            mp_dmevmask;
3180
3181         mp = log->l_mp;
3182
3183         /*
3184          * Prevent any DMAPI event from being sent while in this function.
3185          */
3186         mp_dmevmask = mp->m_dmevmask;
3187         mp->m_dmevmask = 0;
3188
3189         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3190                 /*
3191                  * Find the agi for this ag.
3192                  */
3193                 agibp = xfs_buf_read(mp->m_ddev_targp,
3194                                 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3195                                 XFS_FSS_TO_BB(mp, 1), 0);
3196                 if (XFS_BUF_ISERROR(agibp)) {
3197                         xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3198                                 log->l_mp, agibp,
3199                                 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3200                 }
3201                 agi = XFS_BUF_TO_AGI(agibp);
3202                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3203
3204                 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3205
3206                         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3207                         while (agino != NULLAGINO) {
3208
3209                                 /*
3210                                  * Release the agi buffer so that it can
3211                                  * be acquired in the normal course of the
3212                                  * transaction to truncate and free the inode.
3213                                  */
3214                                 xfs_buf_relse(agibp);
3215
3216                                 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3217                                 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3218                                 ASSERT(error || (ip != NULL));
3219
3220                                 if (!error) {
3221                                         /*
3222                                          * Get the on disk inode to find the
3223                                          * next inode in the bucket.
3224                                          */
3225                                         error = xfs_itobp(mp, NULL, ip, &dip,
3226                                                         &ibp, 0, 0);
3227                                         ASSERT(error || (dip != NULL));
3228                                 }
3229
3230                                 if (!error) {
3231                                         ASSERT(ip->i_d.di_nlink == 0);
3232
3233                                         /* setup for the next pass */
3234                                         agino = be32_to_cpu(
3235                                                         dip->di_next_unlinked);
3236                                         xfs_buf_relse(ibp);
3237                                         /*
3238                                          * Prevent any DMAPI event from
3239                                          * being sent when the
3240                                          * reference on the inode is
3241                                          * dropped.
3242                                          */
3243                                         ip->i_d.di_dmevmask = 0;
3244
3245                                         /*
3246                                          * If this is a new inode, handle
3247                                          * it specially.  Otherwise,
3248                                          * just drop our reference to the
3249                                          * inode.  If there are no
3250                                          * other references, this will
3251                                          * send the inode to
3252                                          * xfs_inactive() which will
3253                                          * truncate the file and free
3254                                          * the inode.
3255                                          */
3256                                         if (ip->i_d.di_mode == 0)
3257                                                 xfs_iput_new(ip, 0);
3258                                         else
3259                                                 VN_RELE(XFS_ITOV(ip));
3260                                 } else {
3261                                         /*
3262                                          * We can't read in the inode
3263                                          * this bucket points to, or
3264                                          * this inode is messed up.  Just
3265                                          * ditch this bucket of inodes.  We
3266                                          * will lose some inodes and space,
3267                                          * but at least we won't hang.  Call
3268                                          * xlog_recover_clear_agi_bucket()
3269                                          * to perform a transaction to clear
3270                                          * the inode pointer in the bucket.
3271                                          */
3272                                         xlog_recover_clear_agi_bucket(mp, agno,
3273                                                         bucket);
3274
3275                                         agino = NULLAGINO;
3276                                 }
3277
3278                                 /*
3279                                  * Reacquire the agibuffer and continue around
3280                                  * the loop.
3281                                  */
3282                                 agibp = xfs_buf_read(mp->m_ddev_targp,
3283                                                 XFS_AG_DADDR(mp, agno,
3284                                                         XFS_AGI_DADDR(mp)),
3285                                                 XFS_FSS_TO_BB(mp, 1), 0);
3286                                 if (XFS_BUF_ISERROR(agibp)) {
3287                                         xfs_ioerror_alert(
3288                                 "xlog_recover_process_iunlinks(#2)",
3289                                                 log->l_mp, agibp,
3290                                                 XFS_AG_DADDR(mp, agno,
3291                                                         XFS_AGI_DADDR(mp)));
3292                                 }
3293                                 agi = XFS_BUF_TO_AGI(agibp);
3294                                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3295                                         agi->agi_magicnum));
3296                         }
3297                 }
3298
3299                 /*
3300                  * Release the buffer for the current agi so we can
3301                  * go on to the next one.
3302                  */
3303                 xfs_buf_relse(agibp);
3304         }
3305
3306         mp->m_dmevmask = mp_dmevmask;
3307 }
3308
3309
3310 #ifdef DEBUG
3311 STATIC void
3312 xlog_pack_data_checksum(
3313         xlog_t          *log,
3314         xlog_in_core_t  *iclog,
3315         int             size)
3316 {
3317         int             i;
3318         uint            *up;
3319         uint            chksum = 0;
3320
3321         up = (uint *)iclog->ic_datap;
3322         /* divide length by 4 to get # words */
3323         for (i = 0; i < (size >> 2); i++) {
3324                 chksum ^= INT_GET(*up, ARCH_CONVERT);
3325                 up++;
3326         }
3327         INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3328 }
3329 #else
3330 #define xlog_pack_data_checksum(log, iclog, size)
3331 #endif
3332
3333 /*
3334  * Stamp cycle number in every block
3335  */
3336 void
3337 xlog_pack_data(
3338         xlog_t                  *log,
3339         xlog_in_core_t          *iclog,
3340         int                     roundoff)
3341 {
3342         int                     i, j, k;
3343         int                     size = iclog->ic_offset + roundoff;
3344         uint                    cycle_lsn;
3345         xfs_caddr_t             dp;
3346         xlog_in_core_2_t        *xhdr;
3347
3348         xlog_pack_data_checksum(log, iclog, size);
3349
3350         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3351
3352         dp = iclog->ic_datap;
3353         for (i = 0; i < BTOBB(size) &&
3354                 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3355                 iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3356                 *(uint *)dp = cycle_lsn;
3357                 dp += BBSIZE;
3358         }
3359
3360         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3361                 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3362                 for ( ; i < BTOBB(size); i++) {
3363                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3364                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3365                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3366                         *(uint *)dp = cycle_lsn;
3367                         dp += BBSIZE;
3368                 }
3369
3370                 for (i = 1; i < log->l_iclog_heads; i++) {
3371                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3372                 }
3373         }
3374 }
3375
3376 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3377 STATIC void
3378 xlog_unpack_data_checksum(
3379         xlog_rec_header_t       *rhead,
3380         xfs_caddr_t             dp,
3381         xlog_t                  *log)
3382 {
3383         uint                    *up = (uint *)dp;
3384         uint                    chksum = 0;
3385         int                     i;
3386
3387         /* divide length by 4 to get # words */
3388         for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3389                 chksum ^= INT_GET(*up, ARCH_CONVERT);
3390                 up++;
3391         }
3392         if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3393             if (rhead->h_chksum ||
3394                 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3395                     cmn_err(CE_DEBUG,
3396                         "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3397                             INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3398                     cmn_err(CE_DEBUG,
3399 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3400                     if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3401                             cmn_err(CE_DEBUG,
3402                                 "XFS: LogR this is a LogV2 filesystem\n");
3403                     }
3404                     log->l_flags |= XLOG_CHKSUM_MISMATCH;
3405             }
3406         }
3407 }
3408 #else
3409 #define xlog_unpack_data_checksum(rhead, dp, log)
3410 #endif
3411
3412 STATIC void
3413 xlog_unpack_data(
3414         xlog_rec_header_t       *rhead,
3415         xfs_caddr_t             dp,
3416         xlog_t                  *log)
3417 {
3418         int                     i, j, k;
3419         xlog_in_core_2_t        *xhdr;
3420
3421         for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3422                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3423                 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3424                 dp += BBSIZE;
3425         }
3426
3427         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3428                 xhdr = (xlog_in_core_2_t *)rhead;
3429                 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3430                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3431                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3432                         *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3433                         dp += BBSIZE;
3434                 }
3435         }
3436
3437         xlog_unpack_data_checksum(rhead, dp, log);
3438 }
3439
3440 STATIC int
3441 xlog_valid_rec_header(
3442         xlog_t                  *log,
3443         xlog_rec_header_t       *rhead,
3444         xfs_daddr_t             blkno)
3445 {
3446         int                     hlen;
3447
3448         if (unlikely(
3449             (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3450                         XLOG_HEADER_MAGIC_NUM))) {
3451                 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3452                                 XFS_ERRLEVEL_LOW, log->l_mp);
3453                 return XFS_ERROR(EFSCORRUPTED);
3454         }
3455         if (unlikely(
3456             (!rhead->h_version ||
3457             (INT_GET(rhead->h_version, ARCH_CONVERT) &
3458                         (~XLOG_VERSION_OKBITS)) != 0))) {
3459                 xlog_warn("XFS: %s: unrecognised log version (%d).",
3460                         __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3461                 return XFS_ERROR(EIO);
3462         }
3463
3464         /* LR body must have data or it wouldn't have been written */
3465         hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3466         if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3467                 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3468                                 XFS_ERRLEVEL_LOW, log->l_mp);
3469                 return XFS_ERROR(EFSCORRUPTED);
3470         }
3471         if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3472                 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3473                                 XFS_ERRLEVEL_LOW, log->l_mp);
3474                 return XFS_ERROR(EFSCORRUPTED);
3475         }
3476         return 0;
3477 }
3478
3479 /*
3480  * Read the log from tail to head and process the log records found.
3481  * Handle the two cases where the tail and head are in the same cycle
3482  * and where the active portion of the log wraps around the end of
3483  * the physical log separately.  The pass parameter is passed through
3484  * to the routines called to process the data and is not looked at
3485  * here.
3486  */
3487 STATIC int
3488 xlog_do_recovery_pass(
3489         xlog_t                  *log,
3490         xfs_daddr_t             head_blk,
3491         xfs_daddr_t             tail_blk,
3492         int                     pass)
3493 {
3494         xlog_rec_header_t       *rhead;
3495         xfs_daddr_t             blk_no;
3496         xfs_caddr_t             bufaddr, offset;
3497         xfs_buf_t               *hbp, *dbp;
3498         int                     error = 0, h_size;
3499         int                     bblks, split_bblks;
3500         int                     hblks, split_hblks, wrapped_hblks;
3501         xlog_recover_t          *rhash[XLOG_RHASH_SIZE];
3502
3503         ASSERT(head_blk != tail_blk);
3504
3505         /*
3506          * Read the header of the tail block and get the iclog buffer size from
3507          * h_size.  Use this to tell how many sectors make up the log header.
3508          */
3509         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3510                 /*
3511                  * When using variable length iclogs, read first sector of
3512                  * iclog header and extract the header size from it.  Get a
3513                  * new hbp that is the correct size.
3514                  */
3515                 hbp = xlog_get_bp(log, 1);
3516                 if (!hbp)
3517                         return ENOMEM;
3518                 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3519                         goto bread_err1;
3520                 offset = xlog_align(log, tail_blk, 1, hbp);
3521                 rhead = (xlog_rec_header_t *)offset;
3522                 error = xlog_valid_rec_header(log, rhead, tail_blk);
3523                 if (error)
3524                         goto bread_err1;
3525                 h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3526                 if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3527                                 & XLOG_VERSION_2) &&
3528                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3529                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3530                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
3531                                 hblks++;
3532                         xlog_put_bp(hbp);
3533                         hbp = xlog_get_bp(log, hblks);
3534                 } else {
3535                         hblks = 1;
3536                 }
3537         } else {
3538                 ASSERT(log->l_sectbb_log == 0);
3539                 hblks = 1;
3540                 hbp = xlog_get_bp(log, 1);
3541                 h_size = XLOG_BIG_RECORD_BSIZE;
3542         }
3543
3544         if (!hbp)
3545                 return ENOMEM;
3546         dbp = xlog_get_bp(log, BTOBB(h_size));
3547         if (!dbp) {
3548                 xlog_put_bp(hbp);
3549                 return ENOMEM;
3550         }
3551
3552         memset(rhash, 0, sizeof(rhash));
3553         if (tail_blk <= head_blk) {
3554                 for (blk_no = tail_blk; blk_no < head_blk; ) {
3555                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3556                                 goto bread_err2;
3557                         offset = xlog_align(log, blk_no, hblks, hbp);
3558                         rhead = (xlog_rec_header_t *)offset;
3559                         error = xlog_valid_rec_header(log, rhead, blk_no);
3560                         if (error)
3561                                 goto bread_err2;
3562
3563                         /* blocks in data section */
3564                         bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3565                         error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3566                         if (error)
3567                                 goto bread_err2;
3568                         offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3569                         xlog_unpack_data(rhead, offset, log);
3570                         if ((error = xlog_recover_process_data(log,
3571                                                 rhash, rhead, offset, pass)))
3572                                 goto bread_err2;
3573                         blk_no += bblks + hblks;
3574                 }
3575         } else {
3576                 /*
3577                  * Perform recovery around the end of the physical log.
3578                  * When the head is not on the same cycle number as the tail,
3579                  * we can't do a sequential recovery as above.
3580                  */
3581                 blk_no = tail_blk;
3582                 while (blk_no < log->l_logBBsize) {
3583                         /*
3584                          * Check for header wrapping around physical end-of-log
3585                          */
3586                         offset = NULL;
3587                         split_hblks = 0;
3588                         wrapped_hblks = 0;
3589                         if (blk_no + hblks <= log->l_logBBsize) {
3590                                 /* Read header in one read */
3591                                 error = xlog_bread(log, blk_no, hblks, hbp);
3592                                 if (error)
3593                                         goto bread_err2;
3594                                 offset = xlog_align(log, blk_no, hblks, hbp);
3595                         } else {
3596                                 /* This LR is split across physical log end */
3597                                 if (blk_no != log->l_logBBsize) {
3598                                         /* some data before physical log end */
3599                                         ASSERT(blk_no <= INT_MAX);
3600                                         split_hblks = log->l_logBBsize - (int)blk_no;
3601                                         ASSERT(split_hblks > 0);
3602                                         if ((error = xlog_bread(log, blk_no,
3603                                                         split_hblks, hbp)))
3604                                                 goto bread_err2;
3605                                         offset = xlog_align(log, blk_no,
3606                                                         split_hblks, hbp);
3607                                 }
3608                                 /*
3609                                  * Note: this black magic still works with
3610                                  * large sector sizes (non-512) only because:
3611                                  * - we increased the buffer size originally
3612                                  *   by 1 sector giving us enough extra space
3613                                  *   for the second read;
3614                                  * - the log start is guaranteed to be sector
3615                                  *   aligned;
3616                                  * - we read the log end (LR header start)
3617                                  *   _first_, then the log start (LR header end)
3618                                  *   - order is important.
3619                                  */
3620                                 bufaddr = XFS_BUF_PTR(hbp);
3621                                 XFS_BUF_SET_PTR(hbp,
3622                                                 bufaddr + BBTOB(split_hblks),
3623                                                 BBTOB(hblks - split_hblks));
3624                                 wrapped_hblks = hblks - split_hblks;
3625                                 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3626                                 if (error)
3627                                         goto bread_err2;
3628                                 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3629                                 if (!offset)
3630                                         offset = xlog_align(log, 0,
3631                                                         wrapped_hblks, hbp);
3632                         }
3633                         rhead = (xlog_rec_header_t *)offset;
3634                         error = xlog_valid_rec_header(log, rhead,
3635                                                 split_hblks ? blk_no : 0);
3636                         if (error)
3637                                 goto bread_err2;
3638
3639                         bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3640                         blk_no += hblks;
3641
3642                         /* Read in data for log record */
3643                         if (blk_no + bblks <= log->l_logBBsize) {
3644                                 error = xlog_bread(log, blk_no, bblks, dbp);
3645                                 if (error)
3646                                         goto bread_err2;
3647                                 offset = xlog_align(log, blk_no, bblks, dbp);
3648                         } else {
3649                                 /* This log record is split across the
3650                                  * physical end of log */
3651                                 offset = NULL;
3652                                 split_bblks = 0;
3653                                 if (blk_no != log->l_logBBsize) {
3654                                         /* some data is before the physical
3655                                          * end of log */
3656                                         ASSERT(!wrapped_hblks);
3657                                         ASSERT(blk_no <= INT_MAX);
3658                                         split_bblks =
3659                                                 log->l_logBBsize - (int)blk_no;
3660                                         ASSERT(split_bblks > 0);
3661                                         if ((error = xlog_bread(log, blk_no,
3662                                                         split_bblks, dbp)))
3663                                                 goto bread_err2;
3664                                         offset = xlog_align(log, blk_no,
3665                                                         split_bblks, dbp);
3666                                 }
3667                                 /*
3668                                  * Note: this black magic still works with
3669                                  * large sector sizes (non-512) only because:
3670                                  * - we increased the buffer size originally
3671                                  *   by 1 sector giving us enough extra space
3672                                  *   for the second read;
3673                                  * - the log start is guaranteed to be sector
3674                                  *   aligned;
3675                                  * - we read the log end (LR header start)
3676                                  *   _first_, then the log start (LR header end)
3677                                  *   - order is important.
3678                                  */
3679                                 bufaddr = XFS_BUF_PTR(dbp);
3680                                 XFS_BUF_SET_PTR(dbp,
3681                                                 bufaddr + BBTOB(split_bblks),
3682                                                 BBTOB(bblks - split_bblks));
3683                                 if ((error = xlog_bread(log, wrapped_hblks,
3684                                                 bblks - split_bblks, dbp)))
3685                                         goto bread_err2;
3686                                 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3687                                 if (!offset)
3688                                         offset = xlog_align(log, wrapped_hblks,
3689                                                 bblks - split_bblks, dbp);
3690                         }
3691                         xlog_unpack_data(rhead, offset, log);
3692                         if ((error = xlog_recover_process_data(log, rhash,
3693                                                         rhead, offset, pass)))
3694                                 goto bread_err2;
3695                         blk_no += bblks;
3696                 }
3697
3698                 ASSERT(blk_no >= log->l_logBBsize);
3699                 blk_no -= log->l_logBBsize;
3700
3701                 /* read first part of physical log */
3702                 while (blk_no < head_blk) {
3703                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3704                                 goto bread_err2;
3705                         offset = xlog_align(log, blk_no, hblks, hbp);
3706                         rhead = (xlog_rec_header_t *)offset;
3707                         error = xlog_valid_rec_header(log, rhead, blk_no);
3708                         if (error)
3709                                 goto bread_err2;
3710                         bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3711                         if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3712                                 goto bread_err2;
3713                         offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3714                         xlog_unpack_data(rhead, offset, log);
3715                         if ((error = xlog_recover_process_data(log, rhash,
3716                                                         rhead, offset, pass)))
3717                                 goto bread_err2;
3718                         blk_no += bblks + hblks;
3719                 }
3720         }
3721
3722  bread_err2:
3723         xlog_put_bp(dbp);
3724  bread_err1:
3725         xlog_put_bp(hbp);
3726         return error;
3727 }
3728
3729 /*
3730  * Do the recovery of the log.  We actually do this in two phases.
3731  * The two passes are necessary in order to implement the function
3732  * of cancelling a record written into the log.  The first pass
3733  * determines those things which have been cancelled, and the
3734  * second pass replays log items normally except for those which
3735  * have been cancelled.  The handling of the replay and cancellations
3736  * takes place in the log item type specific routines.
3737  *
3738  * The table of items which have cancel records in the log is allocated
3739  * and freed at this level, since only here do we know when all of
3740  * the log recovery has been completed.
3741  */
3742 STATIC int
3743 xlog_do_log_recovery(
3744         xlog_t          *log,
3745         xfs_daddr_t     head_blk,
3746         xfs_daddr_t     tail_blk)
3747 {
3748         int             error;
3749
3750         ASSERT(head_blk != tail_blk);
3751
3752         /*
3753          * First do a pass to find all of the cancelled buf log items.
3754          * Store them in the buf_cancel_table for use in the second pass.
3755          */
3756         log->l_buf_cancel_table =
3757                 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3758                                                  sizeof(xfs_buf_cancel_t*),
3759                                                  KM_SLEEP);
3760         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3761                                       XLOG_RECOVER_PASS1);
3762         if (error != 0) {
3763                 kmem_free(log->l_buf_cancel_table,
3764                           XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3765                 log->l_buf_cancel_table = NULL;
3766                 return error;
3767         }
3768         /*
3769          * Then do a second pass to actually recover the items in the log.
3770          * When it is complete free the table of buf cancel items.
3771          */
3772         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3773                                       XLOG_RECOVER_PASS2);
3774 #ifdef DEBUG
3775         if (!error) {
3776                 int     i;
3777
3778                 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3779                         ASSERT(log->l_buf_cancel_table[i] == NULL);
3780         }
3781 #endif  /* DEBUG */
3782
3783         kmem_free(log->l_buf_cancel_table,
3784                   XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3785         log->l_buf_cancel_table = NULL;
3786
3787         return error;
3788 }
3789
3790 /*
3791  * Do the actual recovery
3792  */
3793 STATIC int
3794 xlog_do_recover(
3795         xlog_t          *log,
3796         xfs_daddr_t     head_blk,
3797         xfs_daddr_t     tail_blk)
3798 {
3799         int             error;
3800         xfs_buf_t       *bp;
3801         xfs_sb_t        *sbp;
3802
3803         /*
3804          * First replay the images in the log.
3805          */
3806         error = xlog_do_log_recovery(log, head_blk, tail_blk);
3807         if (error) {
3808                 return error;
3809         }
3810
3811         XFS_bflush(log->l_mp->m_ddev_targp);
3812
3813         /*
3814          * If IO errors happened during recovery, bail out.
3815          */
3816         if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3817                 return (EIO);
3818         }
3819
3820         /*
3821          * We now update the tail_lsn since much of the recovery has completed
3822          * and there may be space available to use.  If there were no extent
3823          * or iunlinks, we can free up the entire log and set the tail_lsn to
3824          * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3825          * lsn of the last known good LR on disk.  If there are extent frees
3826          * or iunlinks they will have some entries in the AIL; so we look at
3827          * the AIL to determine how to set the tail_lsn.
3828          */
3829         xlog_assign_tail_lsn(log->l_mp);
3830
3831         /*
3832          * Now that we've finished replaying all buffer and inode
3833          * updates, re-read in the superblock.
3834          */
3835         bp = xfs_getsb(log->l_mp, 0);
3836         XFS_BUF_UNDONE(bp);
3837         ASSERT(!(XFS_BUF_ISWRITE(bp)));
3838         ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3839         XFS_BUF_READ(bp);
3840         XFS_BUF_UNASYNC(bp);
3841         xfsbdstrat(log->l_mp, bp);
3842         if ((error = xfs_iowait(bp))) {
3843                 xfs_ioerror_alert("xlog_do_recover",
3844                                   log->l_mp, bp, XFS_BUF_ADDR(bp));
3845                 ASSERT(0);
3846                 xfs_buf_relse(bp);
3847                 return error;
3848         }
3849
3850         /* Convert superblock from on-disk format */
3851         sbp = &log->l_mp->m_sb;
3852         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3853         ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3854         ASSERT(XFS_SB_GOOD_VERSION(sbp));
3855         xfs_buf_relse(bp);
3856
3857         /* We've re-read the superblock so re-initialize per-cpu counters */
3858         xfs_icsb_reinit_counters(log->l_mp);
3859
3860         xlog_recover_check_summary(log);
3861
3862         /* Normal transactions can now occur */
3863         log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3864         return 0;
3865 }
3866
3867 /*
3868  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3869  *
3870  * Return error or zero.
3871  */
3872 int
3873 xlog_recover(
3874         xlog_t          *log)
3875 {
3876         xfs_daddr_t     head_blk, tail_blk;
3877         int             error;
3878
3879         /* find the tail of the log */
3880         if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3881                 return error;
3882
3883         if (tail_blk != head_blk) {
3884                 /* There used to be a comment here:
3885                  *
3886                  * disallow recovery on read-only mounts.  note -- mount
3887                  * checks for ENOSPC and turns it into an intelligent
3888                  * error message.
3889                  * ...but this is no longer true.  Now, unless you specify
3890                  * NORECOVERY (in which case this function would never be
3891                  * called), we just go ahead and recover.  We do this all
3892                  * under the vfs layer, so we can get away with it unless
3893                  * the device itself is read-only, in which case we fail.
3894                  */
3895                 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3896                         return error;
3897                 }
3898
3899                 cmn_err(CE_NOTE,
3900                         "Starting XFS recovery on filesystem: %s (logdev: %s)",
3901                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3902                         log->l_mp->m_logname : "internal");
3903
3904                 error = xlog_do_recover(log, head_blk, tail_blk);
3905                 log->l_flags |= XLOG_RECOVERY_NEEDED;
3906         }
3907         return error;
3908 }
3909
3910 /*
3911  * In the first part of recovery we replay inodes and buffers and build
3912  * up the list of extent free items which need to be processed.  Here
3913  * we process the extent free items and clean up the on disk unlinked
3914  * inode lists.  This is separated from the first part of recovery so
3915  * that the root and real-time bitmap inodes can be read in from disk in
3916  * between the two stages.  This is necessary so that we can free space
3917  * in the real-time portion of the file system.
3918  */
3919 int
3920 xlog_recover_finish(
3921         xlog_t          *log,
3922         int             mfsi_flags)
3923 {
3924         /*
3925          * Now we're ready to do the transactions needed for the
3926          * rest of recovery.  Start with completing all the extent
3927          * free intent records and then process the unlinked inode
3928          * lists.  At this point, we essentially run in normal mode
3929          * except that we're still performing recovery actions
3930          * rather than accepting new requests.
3931          */
3932         if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3933                 xlog_recover_process_efis(log);
3934                 /*
3935                  * Sync the log to get all the EFIs out of the AIL.
3936                  * This isn't absolutely necessary, but it helps in
3937                  * case the unlink transactions would have problems
3938                  * pushing the EFIs out of the way.
3939                  */
3940                 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3941                               (XFS_LOG_FORCE | XFS_LOG_SYNC));
3942
3943                 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3944                         xlog_recover_process_iunlinks(log);
3945                 }
3946
3947                 xlog_recover_check_summary(log);
3948
3949                 cmn_err(CE_NOTE,
3950                         "Ending XFS recovery on filesystem: %s (logdev: %s)",
3951                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3952                         log->l_mp->m_logname : "internal");
3953                 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3954         } else {
3955                 cmn_err(CE_DEBUG,
3956                         "!Ending clean XFS mount for filesystem: %s\n",
3957                         log->l_mp->m_fsname);
3958         }
3959         return 0;
3960 }
3961
3962
3963 #if defined(DEBUG)
3964 /*
3965  * Read all of the agf and agi counters and check that they
3966  * are consistent with the superblock counters.
3967  */
3968 void
3969 xlog_recover_check_summary(
3970         xlog_t          *log)
3971 {
3972         xfs_mount_t     *mp;
3973         xfs_agf_t       *agfp;
3974         xfs_agi_t       *agip;
3975         xfs_buf_t       *agfbp;
3976         xfs_buf_t       *agibp;
3977         xfs_daddr_t     agfdaddr;
3978         xfs_daddr_t     agidaddr;
3979         xfs_buf_t       *sbbp;
3980 #ifdef XFS_LOUD_RECOVERY
3981         xfs_sb_t        *sbp;
3982 #endif
3983         xfs_agnumber_t  agno;
3984         __uint64_t      freeblks;
3985         __uint64_t      itotal;
3986         __uint64_t      ifree;
3987
3988         mp = log->l_mp;
3989
3990         freeblks = 0LL;
3991         itotal = 0LL;
3992         ifree = 0LL;
3993         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3994                 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
3995                 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
3996                                 XFS_FSS_TO_BB(mp, 1), 0);
3997                 if (XFS_BUF_ISERROR(agfbp)) {
3998                         xfs_ioerror_alert("xlog_recover_check_summary(agf)",
3999                                                 mp, agfbp, agfdaddr);
4000                 }
4001                 agfp = XFS_BUF_TO_AGF(agfbp);
4002                 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4003                 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4004                 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4005
4006                 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4007                             be32_to_cpu(agfp->agf_flcount);
4008                 xfs_buf_relse(agfbp);
4009
4010                 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4011                 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4012                                 XFS_FSS_TO_BB(mp, 1), 0);
4013                 if (XFS_BUF_ISERROR(agibp)) {
4014                         xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4015                                           mp, agibp, agidaddr);
4016                 }
4017                 agip = XFS_BUF_TO_AGI(agibp);
4018                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4019                 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4020                 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4021
4022                 itotal += be32_to_cpu(agip->agi_count);
4023                 ifree += be32_to_cpu(agip->agi_freecount);
4024                 xfs_buf_relse(agibp);
4025         }
4026
4027         sbbp = xfs_getsb(mp, 0);
4028 #ifdef XFS_LOUD_RECOVERY
4029         sbp = &mp->m_sb;
4030         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4031         cmn_err(CE_NOTE,
4032                 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4033                 sbp->sb_icount, itotal);
4034         cmn_err(CE_NOTE,
4035                 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4036                 sbp->sb_ifree, ifree);
4037         cmn_err(CE_NOTE,
4038                 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4039                 sbp->sb_fdblocks, freeblks);
4040 #if 0
4041         /*
4042          * This is turned off until I account for the allocation
4043          * btree blocks which live in free space.
4044          */
4045         ASSERT(sbp->sb_icount == itotal);
4046         ASSERT(sbp->sb_ifree == ifree);
4047         ASSERT(sbp->sb_fdblocks == freeblks);
4048 #endif
4049 #endif
4050         xfs_buf_relse(sbbp);
4051 }
4052 #endif /* DEBUG */