4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #ifdef CONFIG_HIGH_RES_TIMERS
59 #include <linux/hrtime.h>
60 # if defined(schedule_next_int)
61 /* Old high-res timer code, do translations. */
62 # define get_arch_cycles(a) quick_update_jiffies_sub(a)
63 # define arch_cycles_per_jiffy cycles_per_jiffies
65 static inline void add_usec_to_timer(struct timer_list *t, long v)
67 t->arch_cycle_expires += nsec_to_arch_cycle(v * 1000);
68 while (t->arch_cycle_expires >= arch_cycles_per_jiffy)
71 t->arch_cycle_expires -= arch_cycles_per_jiffy;
75 #include <linux/interrupt.h>
76 #include <linux/rcupdate.h>
77 #include <linux/ipmi_smi.h>
79 #include "ipmi_si_sm.h"
80 #include <linux/init.h>
81 #include <linux/dmi.h>
83 /* Measure times between events in the driver. */
86 /* Call every 10 ms. */
87 #define SI_TIMEOUT_TIME_USEC 10000
88 #define SI_USEC_PER_JIFFY (1000000/HZ)
89 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
90 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
98 SI_CLEARING_FLAGS_THEN_SET_IRQ,
100 SI_ENABLE_INTERRUPTS1,
101 SI_ENABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG 2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
111 SI_KCS, SI_SMIC, SI_BT
113 static char *si_to_str[] = { "KCS", "SMIC", "BT" };
115 #define DEVICE_NAME "ipmi_si"
117 static struct device_driver ipmi_driver =
120 .bus = &platform_bus_type
127 struct si_sm_data *si_sm;
128 struct si_sm_handlers *handlers;
129 enum si_type si_type;
132 struct list_head xmit_msgs;
133 struct list_head hp_xmit_msgs;
134 struct ipmi_smi_msg *curr_msg;
135 enum si_intf_state si_state;
137 /* Used to handle the various types of I/O that can occur with
140 int (*io_setup)(struct smi_info *info);
141 void (*io_cleanup)(struct smi_info *info);
142 int (*irq_setup)(struct smi_info *info);
143 void (*irq_cleanup)(struct smi_info *info);
144 unsigned int io_size;
145 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
146 void (*addr_source_cleanup)(struct smi_info *info);
147 void *addr_source_data;
149 /* Per-OEM handler, called from handle_flags().
150 Returns 1 when handle_flags() needs to be re-run
151 or 0 indicating it set si_state itself.
153 int (*oem_data_avail_handler)(struct smi_info *smi_info);
155 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
156 is set to hold the flags until we are done handling everything
158 #define RECEIVE_MSG_AVAIL 0x01
159 #define EVENT_MSG_BUFFER_FULL 0x02
160 #define WDT_PRE_TIMEOUT_INT 0x08
161 #define OEM0_DATA_AVAIL 0x20
162 #define OEM1_DATA_AVAIL 0x40
163 #define OEM2_DATA_AVAIL 0x80
164 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
167 unsigned char msg_flags;
169 /* If set to true, this will request events the next time the
170 state machine is idle. */
173 /* If true, run the state machine to completion on every send
174 call. Generally used after a panic to make sure stuff goes
176 int run_to_completion;
178 /* The I/O port of an SI interface. */
181 /* The space between start addresses of the two ports. For
182 instance, if the first port is 0xca2 and the spacing is 4, then
183 the second port is 0xca6. */
184 unsigned int spacing;
186 /* zero if no irq; */
189 /* The timer for this si. */
190 struct timer_list si_timer;
192 /* The time (in jiffies) the last timeout occurred at. */
193 unsigned long last_timeout_jiffies;
195 /* Used to gracefully stop the timer without race conditions. */
196 atomic_t stop_operation;
198 /* The driver will disable interrupts when it gets into a
199 situation where it cannot handle messages due to lack of
200 memory. Once that situation clears up, it will re-enable
202 int interrupt_disabled;
204 /* From the get device id response... */
205 struct ipmi_device_id device_id;
207 /* Driver model stuff. */
209 struct platform_device *pdev;
211 /* True if we allocated the device, false if it came from
212 * someplace else (like PCI). */
215 /* Slave address, could be reported from DMI. */
216 unsigned char slave_addr;
218 /* Counters and things for the proc filesystem. */
219 spinlock_t count_lock;
220 unsigned long short_timeouts;
221 unsigned long long_timeouts;
222 unsigned long timeout_restarts;
224 unsigned long interrupts;
225 unsigned long attentions;
226 unsigned long flag_fetches;
227 unsigned long hosed_count;
228 unsigned long complete_transactions;
229 unsigned long events;
230 unsigned long watchdog_pretimeouts;
231 unsigned long incoming_messages;
233 struct task_struct *thread;
235 struct list_head link;
238 static int try_smi_init(struct smi_info *smi);
240 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
241 static int register_xaction_notifier(struct notifier_block * nb)
243 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
246 static void si_restart_short_timer(struct smi_info *smi_info);
248 static void deliver_recv_msg(struct smi_info *smi_info,
249 struct ipmi_smi_msg *msg)
251 /* Deliver the message to the upper layer with the lock
253 spin_unlock(&(smi_info->si_lock));
254 ipmi_smi_msg_received(smi_info->intf, msg);
255 spin_lock(&(smi_info->si_lock));
258 static void return_hosed_msg(struct smi_info *smi_info)
260 struct ipmi_smi_msg *msg = smi_info->curr_msg;
262 /* Make it a reponse */
263 msg->rsp[0] = msg->data[0] | 4;
264 msg->rsp[1] = msg->data[1];
265 msg->rsp[2] = 0xFF; /* Unknown error. */
268 smi_info->curr_msg = NULL;
269 deliver_recv_msg(smi_info, msg);
272 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
275 struct list_head *entry = NULL;
280 /* No need to save flags, we aleady have interrupts off and we
281 already hold the SMI lock. */
282 spin_lock(&(smi_info->msg_lock));
284 /* Pick the high priority queue first. */
285 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
286 entry = smi_info->hp_xmit_msgs.next;
287 } else if (!list_empty(&(smi_info->xmit_msgs))) {
288 entry = smi_info->xmit_msgs.next;
292 smi_info->curr_msg = NULL;
298 smi_info->curr_msg = list_entry(entry,
303 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
305 err = atomic_notifier_call_chain(&xaction_notifier_list,
307 if (err & NOTIFY_STOP_MASK) {
308 rv = SI_SM_CALL_WITHOUT_DELAY;
311 err = smi_info->handlers->start_transaction(
313 smi_info->curr_msg->data,
314 smi_info->curr_msg->data_size);
316 return_hosed_msg(smi_info);
319 rv = SI_SM_CALL_WITHOUT_DELAY;
322 spin_unlock(&(smi_info->msg_lock));
327 static void start_enable_irq(struct smi_info *smi_info)
329 unsigned char msg[2];
331 /* If we are enabling interrupts, we have to tell the
333 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
334 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
336 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
337 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
340 static void start_clear_flags(struct smi_info *smi_info)
342 unsigned char msg[3];
344 /* Make sure the watchdog pre-timeout flag is not set at startup. */
345 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
346 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
347 msg[2] = WDT_PRE_TIMEOUT_INT;
349 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
350 smi_info->si_state = SI_CLEARING_FLAGS;
353 /* When we have a situtaion where we run out of memory and cannot
354 allocate messages, we just leave them in the BMC and run the system
355 polled until we can allocate some memory. Once we have some
356 memory, we will re-enable the interrupt. */
357 static inline void disable_si_irq(struct smi_info *smi_info)
359 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
360 disable_irq_nosync(smi_info->irq);
361 smi_info->interrupt_disabled = 1;
365 static inline void enable_si_irq(struct smi_info *smi_info)
367 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
368 enable_irq(smi_info->irq);
369 smi_info->interrupt_disabled = 0;
373 static void handle_flags(struct smi_info *smi_info)
376 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
377 /* Watchdog pre-timeout */
378 spin_lock(&smi_info->count_lock);
379 smi_info->watchdog_pretimeouts++;
380 spin_unlock(&smi_info->count_lock);
382 start_clear_flags(smi_info);
383 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
384 spin_unlock(&(smi_info->si_lock));
385 ipmi_smi_watchdog_pretimeout(smi_info->intf);
386 spin_lock(&(smi_info->si_lock));
387 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
388 /* Messages available. */
389 smi_info->curr_msg = ipmi_alloc_smi_msg();
390 if (!smi_info->curr_msg) {
391 disable_si_irq(smi_info);
392 smi_info->si_state = SI_NORMAL;
395 enable_si_irq(smi_info);
397 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
398 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
399 smi_info->curr_msg->data_size = 2;
401 smi_info->handlers->start_transaction(
403 smi_info->curr_msg->data,
404 smi_info->curr_msg->data_size);
405 smi_info->si_state = SI_GETTING_MESSAGES;
406 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
407 /* Events available. */
408 smi_info->curr_msg = ipmi_alloc_smi_msg();
409 if (!smi_info->curr_msg) {
410 disable_si_irq(smi_info);
411 smi_info->si_state = SI_NORMAL;
414 enable_si_irq(smi_info);
416 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
417 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
418 smi_info->curr_msg->data_size = 2;
420 smi_info->handlers->start_transaction(
422 smi_info->curr_msg->data,
423 smi_info->curr_msg->data_size);
424 smi_info->si_state = SI_GETTING_EVENTS;
425 } else if (smi_info->msg_flags & OEM_DATA_AVAIL) {
426 if (smi_info->oem_data_avail_handler)
427 if (smi_info->oem_data_avail_handler(smi_info))
430 smi_info->si_state = SI_NORMAL;
434 static void handle_transaction_done(struct smi_info *smi_info)
436 struct ipmi_smi_msg *msg;
441 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
443 switch (smi_info->si_state) {
445 if (!smi_info->curr_msg)
448 smi_info->curr_msg->rsp_size
449 = smi_info->handlers->get_result(
451 smi_info->curr_msg->rsp,
452 IPMI_MAX_MSG_LENGTH);
454 /* Do this here becase deliver_recv_msg() releases the
455 lock, and a new message can be put in during the
456 time the lock is released. */
457 msg = smi_info->curr_msg;
458 smi_info->curr_msg = NULL;
459 deliver_recv_msg(smi_info, msg);
462 case SI_GETTING_FLAGS:
464 unsigned char msg[4];
467 /* We got the flags from the SMI, now handle them. */
468 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
470 /* Error fetching flags, just give up for
472 smi_info->si_state = SI_NORMAL;
473 } else if (len < 4) {
474 /* Hmm, no flags. That's technically illegal, but
475 don't use uninitialized data. */
476 smi_info->si_state = SI_NORMAL;
478 smi_info->msg_flags = msg[3];
479 handle_flags(smi_info);
484 case SI_CLEARING_FLAGS:
485 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
487 unsigned char msg[3];
489 /* We cleared the flags. */
490 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
492 /* Error clearing flags */
494 "ipmi_si: Error clearing flags: %2.2x\n",
497 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
498 start_enable_irq(smi_info);
500 smi_info->si_state = SI_NORMAL;
504 case SI_GETTING_EVENTS:
506 smi_info->curr_msg->rsp_size
507 = smi_info->handlers->get_result(
509 smi_info->curr_msg->rsp,
510 IPMI_MAX_MSG_LENGTH);
512 /* Do this here becase deliver_recv_msg() releases the
513 lock, and a new message can be put in during the
514 time the lock is released. */
515 msg = smi_info->curr_msg;
516 smi_info->curr_msg = NULL;
517 if (msg->rsp[2] != 0) {
518 /* Error getting event, probably done. */
521 /* Take off the event flag. */
522 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
523 handle_flags(smi_info);
525 spin_lock(&smi_info->count_lock);
527 spin_unlock(&smi_info->count_lock);
529 /* Do this before we deliver the message
530 because delivering the message releases the
531 lock and something else can mess with the
533 handle_flags(smi_info);
535 deliver_recv_msg(smi_info, msg);
540 case SI_GETTING_MESSAGES:
542 smi_info->curr_msg->rsp_size
543 = smi_info->handlers->get_result(
545 smi_info->curr_msg->rsp,
546 IPMI_MAX_MSG_LENGTH);
548 /* Do this here becase deliver_recv_msg() releases the
549 lock, and a new message can be put in during the
550 time the lock is released. */
551 msg = smi_info->curr_msg;
552 smi_info->curr_msg = NULL;
553 if (msg->rsp[2] != 0) {
554 /* Error getting event, probably done. */
557 /* Take off the msg flag. */
558 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
559 handle_flags(smi_info);
561 spin_lock(&smi_info->count_lock);
562 smi_info->incoming_messages++;
563 spin_unlock(&smi_info->count_lock);
565 /* Do this before we deliver the message
566 because delivering the message releases the
567 lock and something else can mess with the
569 handle_flags(smi_info);
571 deliver_recv_msg(smi_info, msg);
576 case SI_ENABLE_INTERRUPTS1:
578 unsigned char msg[4];
580 /* We got the flags from the SMI, now handle them. */
581 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
584 "ipmi_si: Could not enable interrupts"
585 ", failed get, using polled mode.\n");
586 smi_info->si_state = SI_NORMAL;
588 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
589 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
590 msg[2] = msg[3] | 1; /* enable msg queue int */
591 smi_info->handlers->start_transaction(
592 smi_info->si_sm, msg, 3);
593 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
598 case SI_ENABLE_INTERRUPTS2:
600 unsigned char msg[4];
602 /* We got the flags from the SMI, now handle them. */
603 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
606 "ipmi_si: Could not enable interrupts"
607 ", failed set, using polled mode.\n");
609 smi_info->si_state = SI_NORMAL;
615 /* Called on timeouts and events. Timeouts should pass the elapsed
616 time, interrupts should pass in zero. */
617 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
620 enum si_sm_result si_sm_result;
623 /* There used to be a loop here that waited a little while
624 (around 25us) before giving up. That turned out to be
625 pointless, the minimum delays I was seeing were in the 300us
626 range, which is far too long to wait in an interrupt. So
627 we just run until the state machine tells us something
628 happened or it needs a delay. */
629 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
631 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
633 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
636 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
638 spin_lock(&smi_info->count_lock);
639 smi_info->complete_transactions++;
640 spin_unlock(&smi_info->count_lock);
642 handle_transaction_done(smi_info);
643 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
645 else if (si_sm_result == SI_SM_HOSED)
647 spin_lock(&smi_info->count_lock);
648 smi_info->hosed_count++;
649 spin_unlock(&smi_info->count_lock);
651 /* Do the before return_hosed_msg, because that
652 releases the lock. */
653 smi_info->si_state = SI_NORMAL;
654 if (smi_info->curr_msg != NULL) {
655 /* If we were handling a user message, format
656 a response to send to the upper layer to
657 tell it about the error. */
658 return_hosed_msg(smi_info);
660 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
663 /* We prefer handling attn over new messages. */
664 if (si_sm_result == SI_SM_ATTN)
666 unsigned char msg[2];
668 spin_lock(&smi_info->count_lock);
669 smi_info->attentions++;
670 spin_unlock(&smi_info->count_lock);
672 /* Got a attn, send down a get message flags to see
673 what's causing it. It would be better to handle
674 this in the upper layer, but due to the way
675 interrupts work with the SMI, that's not really
677 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
678 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
680 smi_info->handlers->start_transaction(
681 smi_info->si_sm, msg, 2);
682 smi_info->si_state = SI_GETTING_FLAGS;
686 /* If we are currently idle, try to start the next message. */
687 if (si_sm_result == SI_SM_IDLE) {
688 spin_lock(&smi_info->count_lock);
690 spin_unlock(&smi_info->count_lock);
692 si_sm_result = start_next_msg(smi_info);
693 if (si_sm_result != SI_SM_IDLE)
697 if ((si_sm_result == SI_SM_IDLE)
698 && (atomic_read(&smi_info->req_events)))
700 /* We are idle and the upper layer requested that I fetch
702 unsigned char msg[2];
704 spin_lock(&smi_info->count_lock);
705 smi_info->flag_fetches++;
706 spin_unlock(&smi_info->count_lock);
708 atomic_set(&smi_info->req_events, 0);
709 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
710 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
712 smi_info->handlers->start_transaction(
713 smi_info->si_sm, msg, 2);
714 smi_info->si_state = SI_GETTING_FLAGS;
721 static void sender(void *send_info,
722 struct ipmi_smi_msg *msg,
725 struct smi_info *smi_info = send_info;
726 enum si_sm_result result;
732 spin_lock_irqsave(&(smi_info->msg_lock), flags);
735 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
738 if (smi_info->run_to_completion) {
739 /* If we are running to completion, then throw it in
740 the list and run transactions until everything is
741 clear. Priority doesn't matter here. */
742 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
744 /* We have to release the msg lock and claim the smi
745 lock in this case, because of race conditions. */
746 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
748 spin_lock_irqsave(&(smi_info->si_lock), flags);
749 result = smi_event_handler(smi_info, 0);
750 while (result != SI_SM_IDLE) {
751 udelay(SI_SHORT_TIMEOUT_USEC);
752 result = smi_event_handler(smi_info,
753 SI_SHORT_TIMEOUT_USEC);
755 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
759 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
761 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
764 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
766 spin_lock_irqsave(&(smi_info->si_lock), flags);
767 if ((smi_info->si_state == SI_NORMAL)
768 && (smi_info->curr_msg == NULL))
770 start_next_msg(smi_info);
771 si_restart_short_timer(smi_info);
773 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
776 static void set_run_to_completion(void *send_info, int i_run_to_completion)
778 struct smi_info *smi_info = send_info;
779 enum si_sm_result result;
782 spin_lock_irqsave(&(smi_info->si_lock), flags);
784 smi_info->run_to_completion = i_run_to_completion;
785 if (i_run_to_completion) {
786 result = smi_event_handler(smi_info, 0);
787 while (result != SI_SM_IDLE) {
788 udelay(SI_SHORT_TIMEOUT_USEC);
789 result = smi_event_handler(smi_info,
790 SI_SHORT_TIMEOUT_USEC);
794 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
797 static int ipmi_thread(void *data)
799 struct smi_info *smi_info = data;
801 enum si_sm_result smi_result;
803 set_user_nice(current, 19);
804 while (!kthread_should_stop()) {
805 spin_lock_irqsave(&(smi_info->si_lock), flags);
806 smi_result = smi_event_handler(smi_info, 0);
807 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
808 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
811 else if (smi_result == SI_SM_CALL_WITH_DELAY)
814 schedule_timeout_interruptible(1);
820 static void poll(void *send_info)
822 struct smi_info *smi_info = send_info;
824 smi_event_handler(smi_info, 0);
827 static void request_events(void *send_info)
829 struct smi_info *smi_info = send_info;
831 atomic_set(&smi_info->req_events, 1);
834 static int initialized = 0;
836 /* Must be called with interrupts off and with the si_lock held. */
837 static void si_restart_short_timer(struct smi_info *smi_info)
839 #if defined(CONFIG_HIGH_RES_TIMERS)
841 unsigned long jiffies_now;
844 if (del_timer(&(smi_info->si_timer))) {
845 /* If we don't delete the timer, then it will go off
846 immediately, anyway. So we only process if we
847 actually delete the timer. */
850 seq = read_seqbegin_irqsave(&xtime_lock, flags);
851 jiffies_now = jiffies;
852 smi_info->si_timer.expires = jiffies_now;
853 smi_info->si_timer.arch_cycle_expires
854 = get_arch_cycles(jiffies_now);
855 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
857 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
859 add_timer(&(smi_info->si_timer));
860 spin_lock_irqsave(&smi_info->count_lock, flags);
861 smi_info->timeout_restarts++;
862 spin_unlock_irqrestore(&smi_info->count_lock, flags);
867 static void smi_timeout(unsigned long data)
869 struct smi_info *smi_info = (struct smi_info *) data;
870 enum si_sm_result smi_result;
872 unsigned long jiffies_now;
878 if (atomic_read(&smi_info->stop_operation))
881 spin_lock_irqsave(&(smi_info->si_lock), flags);
884 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
886 jiffies_now = jiffies;
887 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
888 * SI_USEC_PER_JIFFY);
889 smi_result = smi_event_handler(smi_info, time_diff);
891 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
893 smi_info->last_timeout_jiffies = jiffies_now;
895 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
896 /* Running with interrupts, only do long timeouts. */
897 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
898 spin_lock_irqsave(&smi_info->count_lock, flags);
899 smi_info->long_timeouts++;
900 spin_unlock_irqrestore(&smi_info->count_lock, flags);
904 /* If the state machine asks for a short delay, then shorten
905 the timer timeout. */
906 if (smi_result == SI_SM_CALL_WITH_DELAY) {
907 #if defined(CONFIG_HIGH_RES_TIMERS)
910 spin_lock_irqsave(&smi_info->count_lock, flags);
911 smi_info->short_timeouts++;
912 spin_unlock_irqrestore(&smi_info->count_lock, flags);
913 #if defined(CONFIG_HIGH_RES_TIMERS)
915 seq = read_seqbegin_irqsave(&xtime_lock, flags);
916 smi_info->si_timer.expires = jiffies;
917 smi_info->si_timer.arch_cycle_expires
918 = get_arch_cycles(smi_info->si_timer.expires);
919 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
920 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
922 smi_info->si_timer.expires = jiffies + 1;
925 spin_lock_irqsave(&smi_info->count_lock, flags);
926 smi_info->long_timeouts++;
927 spin_unlock_irqrestore(&smi_info->count_lock, flags);
928 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
929 #if defined(CONFIG_HIGH_RES_TIMERS)
930 smi_info->si_timer.arch_cycle_expires = 0;
935 add_timer(&(smi_info->si_timer));
938 static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
940 struct smi_info *smi_info = data;
946 spin_lock_irqsave(&(smi_info->si_lock), flags);
948 spin_lock(&smi_info->count_lock);
949 smi_info->interrupts++;
950 spin_unlock(&smi_info->count_lock);
952 if (atomic_read(&smi_info->stop_operation))
957 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
959 smi_event_handler(smi_info, 0);
961 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
965 static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
967 struct smi_info *smi_info = data;
968 /* We need to clear the IRQ flag for the BT interface. */
969 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
970 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
971 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
972 return si_irq_handler(irq, data, regs);
975 static int smi_start_processing(void *send_info,
978 struct smi_info *new_smi = send_info;
980 new_smi->intf = intf;
982 /* Set up the timer that drives the interface. */
983 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
984 new_smi->last_timeout_jiffies = jiffies;
985 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
987 if (new_smi->si_type != SI_BT) {
988 new_smi->thread = kthread_run(ipmi_thread, new_smi,
989 "kipmi%d", new_smi->intf_num);
990 if (IS_ERR(new_smi->thread)) {
991 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
992 " kernel thread due to error %ld, only using"
993 " timers to drive the interface\n",
994 PTR_ERR(new_smi->thread));
995 new_smi->thread = NULL;
1002 static struct ipmi_smi_handlers handlers =
1004 .owner = THIS_MODULE,
1005 .start_processing = smi_start_processing,
1007 .request_events = request_events,
1008 .set_run_to_completion = set_run_to_completion,
1012 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1013 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
1015 #define SI_MAX_PARMS 4
1016 static LIST_HEAD(smi_infos);
1017 static DEFINE_MUTEX(smi_infos_lock);
1018 static int smi_num; /* Used to sequence the SMIs */
1020 #define DEFAULT_REGSPACING 1
1022 static int si_trydefaults = 1;
1023 static char *si_type[SI_MAX_PARMS];
1024 #define MAX_SI_TYPE_STR 30
1025 static char si_type_str[MAX_SI_TYPE_STR];
1026 static unsigned long addrs[SI_MAX_PARMS];
1027 static int num_addrs;
1028 static unsigned int ports[SI_MAX_PARMS];
1029 static int num_ports;
1030 static int irqs[SI_MAX_PARMS];
1031 static int num_irqs;
1032 static int regspacings[SI_MAX_PARMS];
1033 static int num_regspacings = 0;
1034 static int regsizes[SI_MAX_PARMS];
1035 static int num_regsizes = 0;
1036 static int regshifts[SI_MAX_PARMS];
1037 static int num_regshifts = 0;
1038 static int slave_addrs[SI_MAX_PARMS];
1039 static int num_slave_addrs = 0;
1042 module_param_named(trydefaults, si_trydefaults, bool, 0);
1043 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1044 " default scan of the KCS and SMIC interface at the standard"
1046 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1047 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1048 " interface separated by commas. The types are 'kcs',"
1049 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1050 " the first interface to kcs and the second to bt");
1051 module_param_array(addrs, long, &num_addrs, 0);
1052 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1053 " addresses separated by commas. Only use if an interface"
1054 " is in memory. Otherwise, set it to zero or leave"
1056 module_param_array(ports, int, &num_ports, 0);
1057 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1058 " addresses separated by commas. Only use if an interface"
1059 " is a port. Otherwise, set it to zero or leave"
1061 module_param_array(irqs, int, &num_irqs, 0);
1062 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1063 " addresses separated by commas. Only use if an interface"
1064 " has an interrupt. Otherwise, set it to zero or leave"
1066 module_param_array(regspacings, int, &num_regspacings, 0);
1067 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1068 " and each successive register used by the interface. For"
1069 " instance, if the start address is 0xca2 and the spacing"
1070 " is 2, then the second address is at 0xca4. Defaults"
1072 module_param_array(regsizes, int, &num_regsizes, 0);
1073 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1074 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1075 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1076 " the 8-bit IPMI register has to be read from a larger"
1078 module_param_array(regshifts, int, &num_regshifts, 0);
1079 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1080 " IPMI register, in bits. For instance, if the data"
1081 " is read from a 32-bit word and the IPMI data is in"
1082 " bit 8-15, then the shift would be 8");
1083 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1084 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1085 " the controller. Normally this is 0x20, but can be"
1086 " overridden by this parm. This is an array indexed"
1087 " by interface number.");
1090 #define IPMI_IO_ADDR_SPACE 0
1091 #define IPMI_MEM_ADDR_SPACE 1
1092 static char *addr_space_to_str[] = { "I/O", "memory" };
1094 static void std_irq_cleanup(struct smi_info *info)
1096 if (info->si_type == SI_BT)
1097 /* Disable the interrupt in the BT interface. */
1098 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1099 free_irq(info->irq, info);
1102 static int std_irq_setup(struct smi_info *info)
1109 if (info->si_type == SI_BT) {
1110 rv = request_irq(info->irq,
1116 /* Enable the interrupt in the BT interface. */
1117 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1118 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1120 rv = request_irq(info->irq,
1127 "ipmi_si: %s unable to claim interrupt %d,"
1128 " running polled\n",
1129 DEVICE_NAME, info->irq);
1132 info->irq_cleanup = std_irq_cleanup;
1133 printk(" Using irq %d\n", info->irq);
1139 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1141 unsigned int addr = io->addr_data;
1143 return inb(addr + (offset * io->regspacing));
1146 static void port_outb(struct si_sm_io *io, unsigned int offset,
1149 unsigned int addr = io->addr_data;
1151 outb(b, addr + (offset * io->regspacing));
1154 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1156 unsigned int addr = io->addr_data;
1158 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1161 static void port_outw(struct si_sm_io *io, unsigned int offset,
1164 unsigned int addr = io->addr_data;
1166 outw(b << io->regshift, addr + (offset * io->regspacing));
1169 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1171 unsigned int addr = io->addr_data;
1173 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1176 static void port_outl(struct si_sm_io *io, unsigned int offset,
1179 unsigned int addr = io->addr_data;
1181 outl(b << io->regshift, addr+(offset * io->regspacing));
1184 static void port_cleanup(struct smi_info *info)
1186 unsigned int addr = info->io.addr_data;
1190 mapsize = ((info->io_size * info->io.regspacing)
1191 - (info->io.regspacing - info->io.regsize));
1193 release_region (addr, mapsize);
1197 static int port_setup(struct smi_info *info)
1199 unsigned int addr = info->io.addr_data;
1205 info->io_cleanup = port_cleanup;
1207 /* Figure out the actual inb/inw/inl/etc routine to use based
1208 upon the register size. */
1209 switch (info->io.regsize) {
1211 info->io.inputb = port_inb;
1212 info->io.outputb = port_outb;
1215 info->io.inputb = port_inw;
1216 info->io.outputb = port_outw;
1219 info->io.inputb = port_inl;
1220 info->io.outputb = port_outl;
1223 printk("ipmi_si: Invalid register size: %d\n",
1228 /* Calculate the total amount of memory to claim. This is an
1229 * unusual looking calculation, but it avoids claiming any
1230 * more memory than it has to. It will claim everything
1231 * between the first address to the end of the last full
1233 mapsize = ((info->io_size * info->io.regspacing)
1234 - (info->io.regspacing - info->io.regsize));
1236 if (request_region(addr, mapsize, DEVICE_NAME) == NULL)
1241 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1243 return readb((io->addr)+(offset * io->regspacing));
1246 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1249 writeb(b, (io->addr)+(offset * io->regspacing));
1252 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1254 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1258 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1261 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1264 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1266 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1270 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1273 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1277 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1279 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1283 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1286 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1290 static void mem_cleanup(struct smi_info *info)
1292 unsigned long addr = info->io.addr_data;
1295 if (info->io.addr) {
1296 iounmap(info->io.addr);
1298 mapsize = ((info->io_size * info->io.regspacing)
1299 - (info->io.regspacing - info->io.regsize));
1301 release_mem_region(addr, mapsize);
1305 static int mem_setup(struct smi_info *info)
1307 unsigned long addr = info->io.addr_data;
1313 info->io_cleanup = mem_cleanup;
1315 /* Figure out the actual readb/readw/readl/etc routine to use based
1316 upon the register size. */
1317 switch (info->io.regsize) {
1319 info->io.inputb = intf_mem_inb;
1320 info->io.outputb = intf_mem_outb;
1323 info->io.inputb = intf_mem_inw;
1324 info->io.outputb = intf_mem_outw;
1327 info->io.inputb = intf_mem_inl;
1328 info->io.outputb = intf_mem_outl;
1332 info->io.inputb = mem_inq;
1333 info->io.outputb = mem_outq;
1337 printk("ipmi_si: Invalid register size: %d\n",
1342 /* Calculate the total amount of memory to claim. This is an
1343 * unusual looking calculation, but it avoids claiming any
1344 * more memory than it has to. It will claim everything
1345 * between the first address to the end of the last full
1347 mapsize = ((info->io_size * info->io.regspacing)
1348 - (info->io.regspacing - info->io.regsize));
1350 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1353 info->io.addr = ioremap(addr, mapsize);
1354 if (info->io.addr == NULL) {
1355 release_mem_region(addr, mapsize);
1362 static __devinit void hardcode_find_bmc(void)
1365 struct smi_info *info;
1367 for (i = 0; i < SI_MAX_PARMS; i++) {
1368 if (!ports[i] && !addrs[i])
1371 info = kzalloc(sizeof(*info), GFP_KERNEL);
1375 info->addr_source = "hardcoded";
1377 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1378 info->si_type = SI_KCS;
1379 } else if (strcmp(si_type[i], "smic") == 0) {
1380 info->si_type = SI_SMIC;
1381 } else if (strcmp(si_type[i], "bt") == 0) {
1382 info->si_type = SI_BT;
1385 "ipmi_si: Interface type specified "
1386 "for interface %d, was invalid: %s\n",
1394 info->io_setup = port_setup;
1395 info->io.addr_data = ports[i];
1396 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1397 } else if (addrs[i]) {
1399 info->io_setup = mem_setup;
1400 info->io.addr_data = addrs[i];
1401 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1404 "ipmi_si: Interface type specified "
1405 "for interface %d, "
1406 "but port and address were not set or "
1407 "set to zero.\n", i);
1412 info->io.addr = NULL;
1413 info->io.regspacing = regspacings[i];
1414 if (!info->io.regspacing)
1415 info->io.regspacing = DEFAULT_REGSPACING;
1416 info->io.regsize = regsizes[i];
1417 if (!info->io.regsize)
1418 info->io.regsize = DEFAULT_REGSPACING;
1419 info->io.regshift = regshifts[i];
1420 info->irq = irqs[i];
1422 info->irq_setup = std_irq_setup;
1430 #include <linux/acpi.h>
1432 /* Once we get an ACPI failure, we don't try any more, because we go
1433 through the tables sequentially. Once we don't find a table, there
1435 static int acpi_failure = 0;
1437 /* For GPE-type interrupts. */
1438 static u32 ipmi_acpi_gpe(void *context)
1440 struct smi_info *smi_info = context;
1441 unsigned long flags;
1446 spin_lock_irqsave(&(smi_info->si_lock), flags);
1448 spin_lock(&smi_info->count_lock);
1449 smi_info->interrupts++;
1450 spin_unlock(&smi_info->count_lock);
1452 if (atomic_read(&smi_info->stop_operation))
1456 do_gettimeofday(&t);
1457 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1459 smi_event_handler(smi_info, 0);
1461 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1463 return ACPI_INTERRUPT_HANDLED;
1466 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1471 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1474 static int acpi_gpe_irq_setup(struct smi_info *info)
1481 /* FIXME - is level triggered right? */
1482 status = acpi_install_gpe_handler(NULL,
1484 ACPI_GPE_LEVEL_TRIGGERED,
1487 if (status != AE_OK) {
1489 "ipmi_si: %s unable to claim ACPI GPE %d,"
1490 " running polled\n",
1491 DEVICE_NAME, info->irq);
1495 info->irq_cleanup = acpi_gpe_irq_cleanup;
1496 printk(" Using ACPI GPE %d\n", info->irq);
1503 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1514 s8 CreatorRevision[4];
1517 s16 SpecificationRevision;
1520 * Bit 0 - SCI interrupt supported
1521 * Bit 1 - I/O APIC/SAPIC
1525 /* If bit 0 of InterruptType is set, then this is the SCI
1526 interrupt in the GPEx_STS register. */
1531 /* If bit 1 of InterruptType is set, then this is the I/O
1532 APIC/SAPIC interrupt. */
1533 u32 GlobalSystemInterrupt;
1535 /* The actual register address. */
1536 struct acpi_generic_address addr;
1540 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1543 static __devinit int try_init_acpi(struct SPMITable *spmi)
1545 struct smi_info *info;
1549 if (spmi->IPMIlegacy != 1) {
1550 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1554 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1555 addr_space = IPMI_MEM_ADDR_SPACE;
1557 addr_space = IPMI_IO_ADDR_SPACE;
1559 info = kzalloc(sizeof(*info), GFP_KERNEL);
1561 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1565 info->addr_source = "ACPI";
1567 /* Figure out the interface type. */
1568 switch (spmi->InterfaceType)
1571 info->si_type = SI_KCS;
1574 info->si_type = SI_SMIC;
1577 info->si_type = SI_BT;
1580 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1581 spmi->InterfaceType);
1586 if (spmi->InterruptType & 1) {
1587 /* We've got a GPE interrupt. */
1588 info->irq = spmi->GPE;
1589 info->irq_setup = acpi_gpe_irq_setup;
1590 } else if (spmi->InterruptType & 2) {
1591 /* We've got an APIC/SAPIC interrupt. */
1592 info->irq = spmi->GlobalSystemInterrupt;
1593 info->irq_setup = std_irq_setup;
1595 /* Use the default interrupt setting. */
1597 info->irq_setup = NULL;
1600 if (spmi->addr.register_bit_width) {
1601 /* A (hopefully) properly formed register bit width. */
1602 info->io.regspacing = spmi->addr.register_bit_width / 8;
1604 info->io.regspacing = DEFAULT_REGSPACING;
1606 info->io.regsize = info->io.regspacing;
1607 info->io.regshift = spmi->addr.register_bit_offset;
1609 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1611 info->io_setup = mem_setup;
1612 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1613 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1615 info->io_setup = port_setup;
1616 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1619 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1622 info->io.addr_data = spmi->addr.address;
1629 static __devinit void acpi_find_bmc(void)
1632 struct SPMITable *spmi;
1641 for (i = 0; ; i++) {
1642 status = acpi_get_firmware_table("SPMI", i+1,
1643 ACPI_LOGICAL_ADDRESSING,
1644 (struct acpi_table_header **)
1646 if (status != AE_OK)
1649 try_init_acpi(spmi);
1655 struct dmi_ipmi_data
1659 unsigned long base_addr;
1665 static int __devinit decode_dmi(struct dmi_header *dm,
1666 struct dmi_ipmi_data *dmi)
1668 u8 *data = (u8 *)dm;
1669 unsigned long base_addr;
1671 u8 len = dm->length;
1673 dmi->type = data[4];
1675 memcpy(&base_addr, data+8, sizeof(unsigned long));
1677 if (base_addr & 1) {
1679 base_addr &= 0xFFFE;
1680 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1684 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1686 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1688 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1690 dmi->irq = data[0x11];
1692 /* The top two bits of byte 0x10 hold the register spacing. */
1693 reg_spacing = (data[0x10] & 0xC0) >> 6;
1694 switch(reg_spacing){
1695 case 0x00: /* Byte boundaries */
1698 case 0x01: /* 32-bit boundaries */
1701 case 0x02: /* 16-byte boundaries */
1705 /* Some other interface, just ignore it. */
1710 /* Note that technically, the lower bit of the base
1711 * address should be 1 if the address is I/O and 0 if
1712 * the address is in memory. So many systems get that
1713 * wrong (and all that I have seen are I/O) so we just
1714 * ignore that bit and assume I/O. Systems that use
1715 * memory should use the newer spec, anyway. */
1716 dmi->base_addr = base_addr & 0xfffe;
1717 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1721 dmi->slave_addr = data[6];
1726 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1728 struct smi_info *info;
1730 info = kzalloc(sizeof(*info), GFP_KERNEL);
1733 "ipmi_si: Could not allocate SI data\n");
1737 info->addr_source = "SMBIOS";
1739 switch (ipmi_data->type) {
1740 case 0x01: /* KCS */
1741 info->si_type = SI_KCS;
1743 case 0x02: /* SMIC */
1744 info->si_type = SI_SMIC;
1747 info->si_type = SI_BT;
1753 switch (ipmi_data->addr_space) {
1754 case IPMI_MEM_ADDR_SPACE:
1755 info->io_setup = mem_setup;
1756 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1759 case IPMI_IO_ADDR_SPACE:
1760 info->io_setup = port_setup;
1761 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1767 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
1768 ipmi_data->addr_space);
1771 info->io.addr_data = ipmi_data->base_addr;
1773 info->io.regspacing = ipmi_data->offset;
1774 if (!info->io.regspacing)
1775 info->io.regspacing = DEFAULT_REGSPACING;
1776 info->io.regsize = DEFAULT_REGSPACING;
1777 info->io.regshift = 0;
1779 info->slave_addr = ipmi_data->slave_addr;
1781 info->irq = ipmi_data->irq;
1783 info->irq_setup = std_irq_setup;
1788 static void __devinit dmi_find_bmc(void)
1790 struct dmi_device *dev = NULL;
1791 struct dmi_ipmi_data data;
1794 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1795 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
1797 try_init_dmi(&data);
1800 #endif /* CONFIG_DMI */
1804 #define PCI_ERMC_CLASSCODE 0x0C0700
1805 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
1806 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
1807 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
1808 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
1809 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
1811 #define PCI_HP_VENDOR_ID 0x103C
1812 #define PCI_MMC_DEVICE_ID 0x121A
1813 #define PCI_MMC_ADDR_CW 0x10
1815 static void ipmi_pci_cleanup(struct smi_info *info)
1817 struct pci_dev *pdev = info->addr_source_data;
1819 pci_disable_device(pdev);
1822 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
1823 const struct pci_device_id *ent)
1826 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
1827 struct smi_info *info;
1828 int first_reg_offset = 0;
1830 info = kzalloc(sizeof(*info), GFP_KERNEL);
1834 info->addr_source = "PCI";
1836 switch (class_type) {
1837 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
1838 info->si_type = SI_SMIC;
1841 case PCI_ERMC_CLASSCODE_TYPE_KCS:
1842 info->si_type = SI_KCS;
1845 case PCI_ERMC_CLASSCODE_TYPE_BT:
1846 info->si_type = SI_BT;
1851 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
1852 pci_name(pdev), class_type);
1856 rv = pci_enable_device(pdev);
1858 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
1864 info->addr_source_cleanup = ipmi_pci_cleanup;
1865 info->addr_source_data = pdev;
1867 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
1868 first_reg_offset = 1;
1870 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
1871 info->io_setup = port_setup;
1872 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1874 info->io_setup = mem_setup;
1875 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1877 info->io.addr_data = pci_resource_start(pdev, 0);
1879 info->io.regspacing = DEFAULT_REGSPACING;
1880 info->io.regsize = DEFAULT_REGSPACING;
1881 info->io.regshift = 0;
1883 info->irq = pdev->irq;
1885 info->irq_setup = std_irq_setup;
1887 info->dev = &pdev->dev;
1889 return try_smi_init(info);
1892 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
1897 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
1902 static int ipmi_pci_resume(struct pci_dev *pdev)
1908 static struct pci_device_id ipmi_pci_devices[] = {
1909 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
1910 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE) }
1912 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
1914 static struct pci_driver ipmi_pci_driver = {
1915 .name = DEVICE_NAME,
1916 .id_table = ipmi_pci_devices,
1917 .probe = ipmi_pci_probe,
1918 .remove = __devexit_p(ipmi_pci_remove),
1920 .suspend = ipmi_pci_suspend,
1921 .resume = ipmi_pci_resume,
1924 #endif /* CONFIG_PCI */
1927 static int try_get_dev_id(struct smi_info *smi_info)
1929 unsigned char msg[2];
1930 unsigned char *resp;
1931 unsigned long resp_len;
1932 enum si_sm_result smi_result;
1935 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1939 /* Do a Get Device ID command, since it comes back with some
1941 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1942 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1943 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1945 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1948 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1949 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1950 schedule_timeout_uninterruptible(1);
1951 smi_result = smi_info->handlers->event(
1952 smi_info->si_sm, 100);
1954 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1956 smi_result = smi_info->handlers->event(
1957 smi_info->si_sm, 0);
1962 if (smi_result == SI_SM_HOSED) {
1963 /* We couldn't get the state machine to run, so whatever's at
1964 the port is probably not an IPMI SMI interface. */
1969 /* Otherwise, we got some data. */
1970 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1971 resp, IPMI_MAX_MSG_LENGTH);
1972 if (resp_len < 14) {
1973 /* That's odd, it should be longer. */
1978 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1979 /* That's odd, it shouldn't be able to fail. */
1984 /* Record info from the get device id, in case we need it. */
1985 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
1992 static int type_file_read_proc(char *page, char **start, off_t off,
1993 int count, int *eof, void *data)
1995 char *out = (char *) page;
1996 struct smi_info *smi = data;
1998 switch (smi->si_type) {
2000 return sprintf(out, "kcs\n");
2002 return sprintf(out, "smic\n");
2004 return sprintf(out, "bt\n");
2010 static int stat_file_read_proc(char *page, char **start, off_t off,
2011 int count, int *eof, void *data)
2013 char *out = (char *) page;
2014 struct smi_info *smi = data;
2016 out += sprintf(out, "interrupts_enabled: %d\n",
2017 smi->irq && !smi->interrupt_disabled);
2018 out += sprintf(out, "short_timeouts: %ld\n",
2019 smi->short_timeouts);
2020 out += sprintf(out, "long_timeouts: %ld\n",
2021 smi->long_timeouts);
2022 out += sprintf(out, "timeout_restarts: %ld\n",
2023 smi->timeout_restarts);
2024 out += sprintf(out, "idles: %ld\n",
2026 out += sprintf(out, "interrupts: %ld\n",
2028 out += sprintf(out, "attentions: %ld\n",
2030 out += sprintf(out, "flag_fetches: %ld\n",
2032 out += sprintf(out, "hosed_count: %ld\n",
2034 out += sprintf(out, "complete_transactions: %ld\n",
2035 smi->complete_transactions);
2036 out += sprintf(out, "events: %ld\n",
2038 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2039 smi->watchdog_pretimeouts);
2040 out += sprintf(out, "incoming_messages: %ld\n",
2041 smi->incoming_messages);
2043 return (out - ((char *) page));
2047 * oem_data_avail_to_receive_msg_avail
2048 * @info - smi_info structure with msg_flags set
2050 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2051 * Returns 1 indicating need to re-run handle_flags().
2053 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2055 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2061 * setup_dell_poweredge_oem_data_handler
2062 * @info - smi_info.device_id must be populated
2064 * Systems that match, but have firmware version < 1.40 may assert
2065 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2066 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2067 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2068 * as RECEIVE_MSG_AVAIL instead.
2070 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2071 * assert the OEM[012] bits, and if it did, the driver would have to
2072 * change to handle that properly, we don't actually check for the
2074 * Device ID = 0x20 BMC on PowerEdge 8G servers
2075 * Device Revision = 0x80
2076 * Firmware Revision1 = 0x01 BMC version 1.40
2077 * Firmware Revision2 = 0x40 BCD encoded
2078 * IPMI Version = 0x51 IPMI 1.5
2079 * Manufacturer ID = A2 02 00 Dell IANA
2081 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2082 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2085 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2086 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2087 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2088 #define DELL_IANA_MFR_ID 0x0002a2
2089 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2091 struct ipmi_device_id *id = &smi_info->device_id;
2092 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2093 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2094 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2095 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2096 smi_info->oem_data_avail_handler =
2097 oem_data_avail_to_receive_msg_avail;
2099 else if (ipmi_version_major(id) < 1 ||
2100 (ipmi_version_major(id) == 1 &&
2101 ipmi_version_minor(id) < 5)) {
2102 smi_info->oem_data_avail_handler =
2103 oem_data_avail_to_receive_msg_avail;
2108 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2109 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2111 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2113 /* Make it a reponse */
2114 msg->rsp[0] = msg->data[0] | 4;
2115 msg->rsp[1] = msg->data[1];
2116 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2118 smi_info->curr_msg = NULL;
2119 deliver_recv_msg(smi_info, msg);
2123 * dell_poweredge_bt_xaction_handler
2124 * @info - smi_info.device_id must be populated
2126 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2127 * not respond to a Get SDR command if the length of the data
2128 * requested is exactly 0x3A, which leads to command timeouts and no
2129 * data returned. This intercepts such commands, and causes userspace
2130 * callers to try again with a different-sized buffer, which succeeds.
2133 #define STORAGE_NETFN 0x0A
2134 #define STORAGE_CMD_GET_SDR 0x23
2135 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2136 unsigned long unused,
2139 struct smi_info *smi_info = in;
2140 unsigned char *data = smi_info->curr_msg->data;
2141 unsigned int size = smi_info->curr_msg->data_size;
2143 (data[0]>>2) == STORAGE_NETFN &&
2144 data[1] == STORAGE_CMD_GET_SDR &&
2146 return_hosed_msg_badsize(smi_info);
2152 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2153 .notifier_call = dell_poweredge_bt_xaction_handler,
2157 * setup_dell_poweredge_bt_xaction_handler
2158 * @info - smi_info.device_id must be filled in already
2160 * Fills in smi_info.device_id.start_transaction_pre_hook
2161 * when we know what function to use there.
2164 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2166 struct ipmi_device_id *id = &smi_info->device_id;
2167 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2168 smi_info->si_type == SI_BT)
2169 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2173 * setup_oem_data_handler
2174 * @info - smi_info.device_id must be filled in already
2176 * Fills in smi_info.device_id.oem_data_available_handler
2177 * when we know what function to use there.
2180 static void setup_oem_data_handler(struct smi_info *smi_info)
2182 setup_dell_poweredge_oem_data_handler(smi_info);
2185 static void setup_xaction_handlers(struct smi_info *smi_info)
2187 setup_dell_poweredge_bt_xaction_handler(smi_info);
2190 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2192 if (smi_info->intf) {
2193 /* The timer and thread are only running if the
2194 interface has been started up and registered. */
2195 if (smi_info->thread != NULL)
2196 kthread_stop(smi_info->thread);
2197 del_timer_sync(&smi_info->si_timer);
2201 static __devinitdata struct ipmi_default_vals
2207 { .type = SI_KCS, .port = 0xca2 },
2208 { .type = SI_SMIC, .port = 0xca9 },
2209 { .type = SI_BT, .port = 0xe4 },
2213 static __devinit void default_find_bmc(void)
2215 struct smi_info *info;
2218 for (i = 0; ; i++) {
2219 if (!ipmi_defaults[i].port)
2222 info = kzalloc(sizeof(*info), GFP_KERNEL);
2226 info->addr_source = NULL;
2228 info->si_type = ipmi_defaults[i].type;
2229 info->io_setup = port_setup;
2230 info->io.addr_data = ipmi_defaults[i].port;
2231 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2233 info->io.addr = NULL;
2234 info->io.regspacing = DEFAULT_REGSPACING;
2235 info->io.regsize = DEFAULT_REGSPACING;
2236 info->io.regshift = 0;
2238 if (try_smi_init(info) == 0) {
2240 printk(KERN_INFO "ipmi_si: Found default %s state"
2241 " machine at %s address 0x%lx\n",
2242 si_to_str[info->si_type],
2243 addr_space_to_str[info->io.addr_type],
2244 info->io.addr_data);
2250 static int is_new_interface(struct smi_info *info)
2254 list_for_each_entry(e, &smi_infos, link) {
2255 if (e->io.addr_type != info->io.addr_type)
2257 if (e->io.addr_data == info->io.addr_data)
2264 static int try_smi_init(struct smi_info *new_smi)
2268 if (new_smi->addr_source) {
2269 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2270 " machine at %s address 0x%lx, slave address 0x%x,"
2272 new_smi->addr_source,
2273 si_to_str[new_smi->si_type],
2274 addr_space_to_str[new_smi->io.addr_type],
2275 new_smi->io.addr_data,
2276 new_smi->slave_addr, new_smi->irq);
2279 mutex_lock(&smi_infos_lock);
2280 if (!is_new_interface(new_smi)) {
2281 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2286 /* So we know not to free it unless we have allocated one. */
2287 new_smi->intf = NULL;
2288 new_smi->si_sm = NULL;
2289 new_smi->handlers = NULL;
2291 switch (new_smi->si_type) {
2293 new_smi->handlers = &kcs_smi_handlers;
2297 new_smi->handlers = &smic_smi_handlers;
2301 new_smi->handlers = &bt_smi_handlers;
2305 /* No support for anything else yet. */
2310 /* Allocate the state machine's data and initialize it. */
2311 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2312 if (!new_smi->si_sm) {
2313 printk(" Could not allocate state machine memory\n");
2317 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2320 /* Now that we know the I/O size, we can set up the I/O. */
2321 rv = new_smi->io_setup(new_smi);
2323 printk(" Could not set up I/O space\n");
2327 spin_lock_init(&(new_smi->si_lock));
2328 spin_lock_init(&(new_smi->msg_lock));
2329 spin_lock_init(&(new_smi->count_lock));
2331 /* Do low-level detection first. */
2332 if (new_smi->handlers->detect(new_smi->si_sm)) {
2333 if (new_smi->addr_source)
2334 printk(KERN_INFO "ipmi_si: Interface detection"
2340 /* Attempt a get device id command. If it fails, we probably
2341 don't have a BMC here. */
2342 rv = try_get_dev_id(new_smi);
2344 if (new_smi->addr_source)
2345 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2346 " at this location\n");
2350 setup_oem_data_handler(new_smi);
2351 setup_xaction_handlers(new_smi);
2353 /* Try to claim any interrupts. */
2354 if (new_smi->irq_setup)
2355 new_smi->irq_setup(new_smi);
2357 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2358 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2359 new_smi->curr_msg = NULL;
2360 atomic_set(&new_smi->req_events, 0);
2361 new_smi->run_to_completion = 0;
2363 new_smi->interrupt_disabled = 0;
2364 atomic_set(&new_smi->stop_operation, 0);
2365 new_smi->intf_num = smi_num;
2368 /* Start clearing the flags before we enable interrupts or the
2369 timer to avoid racing with the timer. */
2370 start_clear_flags(new_smi);
2371 /* IRQ is defined to be set when non-zero. */
2373 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2375 if (!new_smi->dev) {
2376 /* If we don't already have a device from something
2377 * else (like PCI), then register a new one. */
2378 new_smi->pdev = platform_device_alloc("ipmi_si",
2383 " Unable to allocate platform device\n");
2386 new_smi->dev = &new_smi->pdev->dev;
2387 new_smi->dev->driver = &ipmi_driver;
2389 rv = platform_device_register(new_smi->pdev);
2393 " Unable to register system interface device:"
2398 new_smi->dev_registered = 1;
2401 rv = ipmi_register_smi(&handlers,
2403 &new_smi->device_id,
2405 new_smi->slave_addr);
2408 "ipmi_si: Unable to register device: error %d\n",
2410 goto out_err_stop_timer;
2413 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2414 type_file_read_proc, NULL,
2415 new_smi, THIS_MODULE);
2418 "ipmi_si: Unable to create proc entry: %d\n",
2420 goto out_err_stop_timer;
2423 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2424 stat_file_read_proc, NULL,
2425 new_smi, THIS_MODULE);
2428 "ipmi_si: Unable to create proc entry: %d\n",
2430 goto out_err_stop_timer;
2433 list_add_tail(&new_smi->link, &smi_infos);
2435 mutex_unlock(&smi_infos_lock);
2437 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
2442 atomic_inc(&new_smi->stop_operation);
2443 wait_for_timer_and_thread(new_smi);
2447 ipmi_unregister_smi(new_smi->intf);
2449 if (new_smi->irq_cleanup)
2450 new_smi->irq_cleanup(new_smi);
2452 /* Wait until we know that we are out of any interrupt
2453 handlers might have been running before we freed the
2455 synchronize_sched();
2457 if (new_smi->si_sm) {
2458 if (new_smi->handlers)
2459 new_smi->handlers->cleanup(new_smi->si_sm);
2460 kfree(new_smi->si_sm);
2462 if (new_smi->addr_source_cleanup)
2463 new_smi->addr_source_cleanup(new_smi);
2464 if (new_smi->io_cleanup)
2465 new_smi->io_cleanup(new_smi);
2467 if (new_smi->dev_registered)
2468 platform_device_unregister(new_smi->pdev);
2472 mutex_unlock(&smi_infos_lock);
2477 static __devinit int init_ipmi_si(void)
2487 /* Register the device drivers. */
2488 rv = driver_register(&ipmi_driver);
2491 "init_ipmi_si: Unable to register driver: %d\n",
2497 /* Parse out the si_type string into its components. */
2500 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
2502 str = strchr(str, ',');
2512 printk(KERN_INFO "IPMI System Interface driver.\n");
2514 hardcode_find_bmc();
2526 pci_module_init(&ipmi_pci_driver);
2529 if (si_trydefaults) {
2530 mutex_lock(&smi_infos_lock);
2531 if (list_empty(&smi_infos)) {
2532 /* No BMC was found, try defaults. */
2533 mutex_unlock(&smi_infos_lock);
2536 mutex_unlock(&smi_infos_lock);
2540 mutex_lock(&smi_infos_lock);
2541 if (list_empty(&smi_infos)) {
2542 mutex_unlock(&smi_infos_lock);
2544 pci_unregister_driver(&ipmi_pci_driver);
2546 printk("ipmi_si: Unable to find any System Interface(s)\n");
2549 mutex_unlock(&smi_infos_lock);
2553 module_init(init_ipmi_si);
2555 static void __devexit cleanup_one_si(struct smi_info *to_clean)
2558 unsigned long flags;
2563 list_del(&to_clean->link);
2565 /* Tell the timer and interrupt handlers that we are shutting
2567 spin_lock_irqsave(&(to_clean->si_lock), flags);
2568 spin_lock(&(to_clean->msg_lock));
2570 atomic_inc(&to_clean->stop_operation);
2572 if (to_clean->irq_cleanup)
2573 to_clean->irq_cleanup(to_clean);
2575 spin_unlock(&(to_clean->msg_lock));
2576 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2578 /* Wait until we know that we are out of any interrupt
2579 handlers might have been running before we freed the
2581 synchronize_sched();
2583 wait_for_timer_and_thread(to_clean);
2585 /* Interrupts and timeouts are stopped, now make sure the
2586 interface is in a clean state. */
2587 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
2589 schedule_timeout_uninterruptible(1);
2592 rv = ipmi_unregister_smi(to_clean->intf);
2595 "ipmi_si: Unable to unregister device: errno=%d\n",
2599 to_clean->handlers->cleanup(to_clean->si_sm);
2601 kfree(to_clean->si_sm);
2603 if (to_clean->addr_source_cleanup)
2604 to_clean->addr_source_cleanup(to_clean);
2605 if (to_clean->io_cleanup)
2606 to_clean->io_cleanup(to_clean);
2608 if (to_clean->dev_registered)
2609 platform_device_unregister(to_clean->pdev);
2614 static __exit void cleanup_ipmi_si(void)
2616 struct smi_info *e, *tmp_e;
2622 pci_unregister_driver(&ipmi_pci_driver);
2625 mutex_lock(&smi_infos_lock);
2626 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2628 mutex_unlock(&smi_infos_lock);
2630 driver_unregister(&ipmi_driver);
2632 module_exit(cleanup_ipmi_si);
2634 MODULE_LICENSE("GPL");
2635 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2636 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");