Merge branch 'master'
[linux-2.6] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  *
13  *  This program is free software; you can redistribute it and/or modify it
14  *  under the terms of the GNU General Public License as published by the
15  *  Free Software Foundation; either version 2 of the License, or (at your
16  *  option) any later version.
17  *
18  *
19  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  *  You should have received a copy of the GNU General Public License along
31  *  with this program; if not, write to the Free Software Foundation, Inc.,
32  *  675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34
35 /*
36  * This file holds the "policy" for the interface to the SMI state
37  * machine.  It does the configuration, handles timers and interrupts,
38  * and drives the real SMI state machine.
39  */
40
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #ifdef CONFIG_HIGH_RES_TIMERS
59 #include <linux/hrtime.h>
60 # if defined(schedule_next_int)
61 /* Old high-res timer code, do translations. */
62 #  define get_arch_cycles(a) quick_update_jiffies_sub(a)
63 #  define arch_cycles_per_jiffy cycles_per_jiffies
64 # endif
65 static inline void add_usec_to_timer(struct timer_list *t, long v)
66 {
67         t->arch_cycle_expires += nsec_to_arch_cycle(v * 1000);
68         while (t->arch_cycle_expires >= arch_cycles_per_jiffy)
69         {
70                 t->expires++;
71                 t->arch_cycle_expires -= arch_cycles_per_jiffy;
72         }
73 }
74 #endif
75 #include <linux/interrupt.h>
76 #include <linux/rcupdate.h>
77 #include <linux/ipmi_smi.h>
78 #include <asm/io.h>
79 #include "ipmi_si_sm.h"
80 #include <linux/init.h>
81 #include <linux/dmi.h>
82
83 /* Measure times between events in the driver. */
84 #undef DEBUG_TIMING
85
86 /* Call every 10 ms. */
87 #define SI_TIMEOUT_TIME_USEC    10000
88 #define SI_USEC_PER_JIFFY       (1000000/HZ)
89 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
90 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
91                                        short timeout */
92
93 enum si_intf_state {
94         SI_NORMAL,
95         SI_GETTING_FLAGS,
96         SI_GETTING_EVENTS,
97         SI_CLEARING_FLAGS,
98         SI_CLEARING_FLAGS_THEN_SET_IRQ,
99         SI_GETTING_MESSAGES,
100         SI_ENABLE_INTERRUPTS1,
101         SI_ENABLE_INTERRUPTS2
102         /* FIXME - add watchdog stuff. */
103 };
104
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG             2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
109
110 enum si_type {
111     SI_KCS, SI_SMIC, SI_BT
112 };
113 static char *si_to_str[] = { "KCS", "SMIC", "BT" };
114
115 #define DEVICE_NAME "ipmi_si"
116
117 static struct device_driver ipmi_driver =
118 {
119         .name = DEVICE_NAME,
120         .bus = &platform_bus_type
121 };
122
123 struct smi_info
124 {
125         int                    intf_num;
126         ipmi_smi_t             intf;
127         struct si_sm_data      *si_sm;
128         struct si_sm_handlers  *handlers;
129         enum si_type           si_type;
130         spinlock_t             si_lock;
131         spinlock_t             msg_lock;
132         struct list_head       xmit_msgs;
133         struct list_head       hp_xmit_msgs;
134         struct ipmi_smi_msg    *curr_msg;
135         enum si_intf_state     si_state;
136
137         /* Used to handle the various types of I/O that can occur with
138            IPMI */
139         struct si_sm_io io;
140         int (*io_setup)(struct smi_info *info);
141         void (*io_cleanup)(struct smi_info *info);
142         int (*irq_setup)(struct smi_info *info);
143         void (*irq_cleanup)(struct smi_info *info);
144         unsigned int io_size;
145         char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
146         void (*addr_source_cleanup)(struct smi_info *info);
147         void *addr_source_data;
148
149         /* Per-OEM handler, called from handle_flags().
150            Returns 1 when handle_flags() needs to be re-run
151            or 0 indicating it set si_state itself.
152         */
153         int (*oem_data_avail_handler)(struct smi_info *smi_info);
154
155         /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
156            is set to hold the flags until we are done handling everything
157            from the flags. */
158 #define RECEIVE_MSG_AVAIL       0x01
159 #define EVENT_MSG_BUFFER_FULL   0x02
160 #define WDT_PRE_TIMEOUT_INT     0x08
161 #define OEM0_DATA_AVAIL     0x20
162 #define OEM1_DATA_AVAIL     0x40
163 #define OEM2_DATA_AVAIL     0x80
164 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
165                              OEM1_DATA_AVAIL | \
166                              OEM2_DATA_AVAIL)
167         unsigned char       msg_flags;
168
169         /* If set to true, this will request events the next time the
170            state machine is idle. */
171         atomic_t            req_events;
172
173         /* If true, run the state machine to completion on every send
174            call.  Generally used after a panic to make sure stuff goes
175            out. */
176         int                 run_to_completion;
177
178         /* The I/O port of an SI interface. */
179         int                 port;
180
181         /* The space between start addresses of the two ports.  For
182            instance, if the first port is 0xca2 and the spacing is 4, then
183            the second port is 0xca6. */
184         unsigned int        spacing;
185
186         /* zero if no irq; */
187         int                 irq;
188
189         /* The timer for this si. */
190         struct timer_list   si_timer;
191
192         /* The time (in jiffies) the last timeout occurred at. */
193         unsigned long       last_timeout_jiffies;
194
195         /* Used to gracefully stop the timer without race conditions. */
196         atomic_t            stop_operation;
197
198         /* The driver will disable interrupts when it gets into a
199            situation where it cannot handle messages due to lack of
200            memory.  Once that situation clears up, it will re-enable
201            interrupts. */
202         int interrupt_disabled;
203
204         /* From the get device id response... */
205         struct ipmi_device_id device_id;
206
207         /* Driver model stuff. */
208         struct device *dev;
209         struct platform_device *pdev;
210
211          /* True if we allocated the device, false if it came from
212           * someplace else (like PCI). */
213         int dev_registered;
214
215         /* Slave address, could be reported from DMI. */
216         unsigned char slave_addr;
217
218         /* Counters and things for the proc filesystem. */
219         spinlock_t count_lock;
220         unsigned long short_timeouts;
221         unsigned long long_timeouts;
222         unsigned long timeout_restarts;
223         unsigned long idles;
224         unsigned long interrupts;
225         unsigned long attentions;
226         unsigned long flag_fetches;
227         unsigned long hosed_count;
228         unsigned long complete_transactions;
229         unsigned long events;
230         unsigned long watchdog_pretimeouts;
231         unsigned long incoming_messages;
232
233         struct task_struct *thread;
234
235         struct list_head link;
236 };
237
238 static int try_smi_init(struct smi_info *smi);
239
240 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
241 static int register_xaction_notifier(struct notifier_block * nb)
242 {
243         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
244 }
245
246 static void si_restart_short_timer(struct smi_info *smi_info);
247
248 static void deliver_recv_msg(struct smi_info *smi_info,
249                              struct ipmi_smi_msg *msg)
250 {
251         /* Deliver the message to the upper layer with the lock
252            released. */
253         spin_unlock(&(smi_info->si_lock));
254         ipmi_smi_msg_received(smi_info->intf, msg);
255         spin_lock(&(smi_info->si_lock));
256 }
257
258 static void return_hosed_msg(struct smi_info *smi_info)
259 {
260         struct ipmi_smi_msg *msg = smi_info->curr_msg;
261
262         /* Make it a reponse */
263         msg->rsp[0] = msg->data[0] | 4;
264         msg->rsp[1] = msg->data[1];
265         msg->rsp[2] = 0xFF; /* Unknown error. */
266         msg->rsp_size = 3;
267
268         smi_info->curr_msg = NULL;
269         deliver_recv_msg(smi_info, msg);
270 }
271
272 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
273 {
274         int              rv;
275         struct list_head *entry = NULL;
276 #ifdef DEBUG_TIMING
277         struct timeval t;
278 #endif
279
280         /* No need to save flags, we aleady have interrupts off and we
281            already hold the SMI lock. */
282         spin_lock(&(smi_info->msg_lock));
283
284         /* Pick the high priority queue first. */
285         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
286                 entry = smi_info->hp_xmit_msgs.next;
287         } else if (!list_empty(&(smi_info->xmit_msgs))) {
288                 entry = smi_info->xmit_msgs.next;
289         }
290
291         if (!entry) {
292                 smi_info->curr_msg = NULL;
293                 rv = SI_SM_IDLE;
294         } else {
295                 int err;
296
297                 list_del(entry);
298                 smi_info->curr_msg = list_entry(entry,
299                                                 struct ipmi_smi_msg,
300                                                 link);
301 #ifdef DEBUG_TIMING
302                 do_gettimeofday(&t);
303                 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
304 #endif
305                 err = atomic_notifier_call_chain(&xaction_notifier_list,
306                                 0, smi_info);
307                 if (err & NOTIFY_STOP_MASK) {
308                         rv = SI_SM_CALL_WITHOUT_DELAY;
309                         goto out;
310                 }
311                 err = smi_info->handlers->start_transaction(
312                         smi_info->si_sm,
313                         smi_info->curr_msg->data,
314                         smi_info->curr_msg->data_size);
315                 if (err) {
316                         return_hosed_msg(smi_info);
317                 }
318
319                 rv = SI_SM_CALL_WITHOUT_DELAY;
320         }
321         out:
322         spin_unlock(&(smi_info->msg_lock));
323
324         return rv;
325 }
326
327 static void start_enable_irq(struct smi_info *smi_info)
328 {
329         unsigned char msg[2];
330
331         /* If we are enabling interrupts, we have to tell the
332            BMC to use them. */
333         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
334         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
335
336         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
337         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
338 }
339
340 static void start_clear_flags(struct smi_info *smi_info)
341 {
342         unsigned char msg[3];
343
344         /* Make sure the watchdog pre-timeout flag is not set at startup. */
345         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
346         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
347         msg[2] = WDT_PRE_TIMEOUT_INT;
348
349         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
350         smi_info->si_state = SI_CLEARING_FLAGS;
351 }
352
353 /* When we have a situtaion where we run out of memory and cannot
354    allocate messages, we just leave them in the BMC and run the system
355    polled until we can allocate some memory.  Once we have some
356    memory, we will re-enable the interrupt. */
357 static inline void disable_si_irq(struct smi_info *smi_info)
358 {
359         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
360                 disable_irq_nosync(smi_info->irq);
361                 smi_info->interrupt_disabled = 1;
362         }
363 }
364
365 static inline void enable_si_irq(struct smi_info *smi_info)
366 {
367         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
368                 enable_irq(smi_info->irq);
369                 smi_info->interrupt_disabled = 0;
370         }
371 }
372
373 static void handle_flags(struct smi_info *smi_info)
374 {
375  retry:
376         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
377                 /* Watchdog pre-timeout */
378                 spin_lock(&smi_info->count_lock);
379                 smi_info->watchdog_pretimeouts++;
380                 spin_unlock(&smi_info->count_lock);
381
382                 start_clear_flags(smi_info);
383                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
384                 spin_unlock(&(smi_info->si_lock));
385                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
386                 spin_lock(&(smi_info->si_lock));
387         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
388                 /* Messages available. */
389                 smi_info->curr_msg = ipmi_alloc_smi_msg();
390                 if (!smi_info->curr_msg) {
391                         disable_si_irq(smi_info);
392                         smi_info->si_state = SI_NORMAL;
393                         return;
394                 }
395                 enable_si_irq(smi_info);
396
397                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
398                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
399                 smi_info->curr_msg->data_size = 2;
400
401                 smi_info->handlers->start_transaction(
402                         smi_info->si_sm,
403                         smi_info->curr_msg->data,
404                         smi_info->curr_msg->data_size);
405                 smi_info->si_state = SI_GETTING_MESSAGES;
406         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
407                 /* Events available. */
408                 smi_info->curr_msg = ipmi_alloc_smi_msg();
409                 if (!smi_info->curr_msg) {
410                         disable_si_irq(smi_info);
411                         smi_info->si_state = SI_NORMAL;
412                         return;
413                 }
414                 enable_si_irq(smi_info);
415
416                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
417                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
418                 smi_info->curr_msg->data_size = 2;
419
420                 smi_info->handlers->start_transaction(
421                         smi_info->si_sm,
422                         smi_info->curr_msg->data,
423                         smi_info->curr_msg->data_size);
424                 smi_info->si_state = SI_GETTING_EVENTS;
425         } else if (smi_info->msg_flags & OEM_DATA_AVAIL) {
426                 if (smi_info->oem_data_avail_handler)
427                         if (smi_info->oem_data_avail_handler(smi_info))
428                                 goto retry;
429         } else {
430                 smi_info->si_state = SI_NORMAL;
431         }
432 }
433
434 static void handle_transaction_done(struct smi_info *smi_info)
435 {
436         struct ipmi_smi_msg *msg;
437 #ifdef DEBUG_TIMING
438         struct timeval t;
439
440         do_gettimeofday(&t);
441         printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
442 #endif
443         switch (smi_info->si_state) {
444         case SI_NORMAL:
445                 if (!smi_info->curr_msg)
446                         break;
447
448                 smi_info->curr_msg->rsp_size
449                         = smi_info->handlers->get_result(
450                                 smi_info->si_sm,
451                                 smi_info->curr_msg->rsp,
452                                 IPMI_MAX_MSG_LENGTH);
453
454                 /* Do this here becase deliver_recv_msg() releases the
455                    lock, and a new message can be put in during the
456                    time the lock is released. */
457                 msg = smi_info->curr_msg;
458                 smi_info->curr_msg = NULL;
459                 deliver_recv_msg(smi_info, msg);
460                 break;
461
462         case SI_GETTING_FLAGS:
463         {
464                 unsigned char msg[4];
465                 unsigned int  len;
466
467                 /* We got the flags from the SMI, now handle them. */
468                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
469                 if (msg[2] != 0) {
470                         /* Error fetching flags, just give up for
471                            now. */
472                         smi_info->si_state = SI_NORMAL;
473                 } else if (len < 4) {
474                         /* Hmm, no flags.  That's technically illegal, but
475                            don't use uninitialized data. */
476                         smi_info->si_state = SI_NORMAL;
477                 } else {
478                         smi_info->msg_flags = msg[3];
479                         handle_flags(smi_info);
480                 }
481                 break;
482         }
483
484         case SI_CLEARING_FLAGS:
485         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
486         {
487                 unsigned char msg[3];
488
489                 /* We cleared the flags. */
490                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
491                 if (msg[2] != 0) {
492                         /* Error clearing flags */
493                         printk(KERN_WARNING
494                                "ipmi_si: Error clearing flags: %2.2x\n",
495                                msg[2]);
496                 }
497                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
498                         start_enable_irq(smi_info);
499                 else
500                         smi_info->si_state = SI_NORMAL;
501                 break;
502         }
503
504         case SI_GETTING_EVENTS:
505         {
506                 smi_info->curr_msg->rsp_size
507                         = smi_info->handlers->get_result(
508                                 smi_info->si_sm,
509                                 smi_info->curr_msg->rsp,
510                                 IPMI_MAX_MSG_LENGTH);
511
512                 /* Do this here becase deliver_recv_msg() releases the
513                    lock, and a new message can be put in during the
514                    time the lock is released. */
515                 msg = smi_info->curr_msg;
516                 smi_info->curr_msg = NULL;
517                 if (msg->rsp[2] != 0) {
518                         /* Error getting event, probably done. */
519                         msg->done(msg);
520
521                         /* Take off the event flag. */
522                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
523                         handle_flags(smi_info);
524                 } else {
525                         spin_lock(&smi_info->count_lock);
526                         smi_info->events++;
527                         spin_unlock(&smi_info->count_lock);
528
529                         /* Do this before we deliver the message
530                            because delivering the message releases the
531                            lock and something else can mess with the
532                            state. */
533                         handle_flags(smi_info);
534
535                         deliver_recv_msg(smi_info, msg);
536                 }
537                 break;
538         }
539
540         case SI_GETTING_MESSAGES:
541         {
542                 smi_info->curr_msg->rsp_size
543                         = smi_info->handlers->get_result(
544                                 smi_info->si_sm,
545                                 smi_info->curr_msg->rsp,
546                                 IPMI_MAX_MSG_LENGTH);
547
548                 /* Do this here becase deliver_recv_msg() releases the
549                    lock, and a new message can be put in during the
550                    time the lock is released. */
551                 msg = smi_info->curr_msg;
552                 smi_info->curr_msg = NULL;
553                 if (msg->rsp[2] != 0) {
554                         /* Error getting event, probably done. */
555                         msg->done(msg);
556
557                         /* Take off the msg flag. */
558                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
559                         handle_flags(smi_info);
560                 } else {
561                         spin_lock(&smi_info->count_lock);
562                         smi_info->incoming_messages++;
563                         spin_unlock(&smi_info->count_lock);
564
565                         /* Do this before we deliver the message
566                            because delivering the message releases the
567                            lock and something else can mess with the
568                            state. */
569                         handle_flags(smi_info);
570
571                         deliver_recv_msg(smi_info, msg);
572                 }
573                 break;
574         }
575
576         case SI_ENABLE_INTERRUPTS1:
577         {
578                 unsigned char msg[4];
579
580                 /* We got the flags from the SMI, now handle them. */
581                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
582                 if (msg[2] != 0) {
583                         printk(KERN_WARNING
584                                "ipmi_si: Could not enable interrupts"
585                                ", failed get, using polled mode.\n");
586                         smi_info->si_state = SI_NORMAL;
587                 } else {
588                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
589                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
590                         msg[2] = msg[3] | 1; /* enable msg queue int */
591                         smi_info->handlers->start_transaction(
592                                 smi_info->si_sm, msg, 3);
593                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
594                 }
595                 break;
596         }
597
598         case SI_ENABLE_INTERRUPTS2:
599         {
600                 unsigned char msg[4];
601
602                 /* We got the flags from the SMI, now handle them. */
603                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
604                 if (msg[2] != 0) {
605                         printk(KERN_WARNING
606                                "ipmi_si: Could not enable interrupts"
607                                ", failed set, using polled mode.\n");
608                 }
609                 smi_info->si_state = SI_NORMAL;
610                 break;
611         }
612         }
613 }
614
615 /* Called on timeouts and events.  Timeouts should pass the elapsed
616    time, interrupts should pass in zero. */
617 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
618                                            int time)
619 {
620         enum si_sm_result si_sm_result;
621
622  restart:
623         /* There used to be a loop here that waited a little while
624            (around 25us) before giving up.  That turned out to be
625            pointless, the minimum delays I was seeing were in the 300us
626            range, which is far too long to wait in an interrupt.  So
627            we just run until the state machine tells us something
628            happened or it needs a delay. */
629         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
630         time = 0;
631         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
632         {
633                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
634         }
635
636         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
637         {
638                 spin_lock(&smi_info->count_lock);
639                 smi_info->complete_transactions++;
640                 spin_unlock(&smi_info->count_lock);
641
642                 handle_transaction_done(smi_info);
643                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
644         }
645         else if (si_sm_result == SI_SM_HOSED)
646         {
647                 spin_lock(&smi_info->count_lock);
648                 smi_info->hosed_count++;
649                 spin_unlock(&smi_info->count_lock);
650
651                 /* Do the before return_hosed_msg, because that
652                    releases the lock. */
653                 smi_info->si_state = SI_NORMAL;
654                 if (smi_info->curr_msg != NULL) {
655                         /* If we were handling a user message, format
656                            a response to send to the upper layer to
657                            tell it about the error. */
658                         return_hosed_msg(smi_info);
659                 }
660                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
661         }
662
663         /* We prefer handling attn over new messages. */
664         if (si_sm_result == SI_SM_ATTN)
665         {
666                 unsigned char msg[2];
667
668                 spin_lock(&smi_info->count_lock);
669                 smi_info->attentions++;
670                 spin_unlock(&smi_info->count_lock);
671
672                 /* Got a attn, send down a get message flags to see
673                    what's causing it.  It would be better to handle
674                    this in the upper layer, but due to the way
675                    interrupts work with the SMI, that's not really
676                    possible. */
677                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
678                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
679
680                 smi_info->handlers->start_transaction(
681                         smi_info->si_sm, msg, 2);
682                 smi_info->si_state = SI_GETTING_FLAGS;
683                 goto restart;
684         }
685
686         /* If we are currently idle, try to start the next message. */
687         if (si_sm_result == SI_SM_IDLE) {
688                 spin_lock(&smi_info->count_lock);
689                 smi_info->idles++;
690                 spin_unlock(&smi_info->count_lock);
691
692                 si_sm_result = start_next_msg(smi_info);
693                 if (si_sm_result != SI_SM_IDLE)
694                         goto restart;
695         }
696
697         if ((si_sm_result == SI_SM_IDLE)
698             && (atomic_read(&smi_info->req_events)))
699         {
700                 /* We are idle and the upper layer requested that I fetch
701                    events, so do so. */
702                 unsigned char msg[2];
703
704                 spin_lock(&smi_info->count_lock);
705                 smi_info->flag_fetches++;
706                 spin_unlock(&smi_info->count_lock);
707
708                 atomic_set(&smi_info->req_events, 0);
709                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
710                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
711
712                 smi_info->handlers->start_transaction(
713                         smi_info->si_sm, msg, 2);
714                 smi_info->si_state = SI_GETTING_FLAGS;
715                 goto restart;
716         }
717
718         return si_sm_result;
719 }
720
721 static void sender(void                *send_info,
722                    struct ipmi_smi_msg *msg,
723                    int                 priority)
724 {
725         struct smi_info   *smi_info = send_info;
726         enum si_sm_result result;
727         unsigned long     flags;
728 #ifdef DEBUG_TIMING
729         struct timeval    t;
730 #endif
731
732         spin_lock_irqsave(&(smi_info->msg_lock), flags);
733 #ifdef DEBUG_TIMING
734         do_gettimeofday(&t);
735         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
736 #endif
737
738         if (smi_info->run_to_completion) {
739                 /* If we are running to completion, then throw it in
740                    the list and run transactions until everything is
741                    clear.  Priority doesn't matter here. */
742                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
743
744                 /* We have to release the msg lock and claim the smi
745                    lock in this case, because of race conditions. */
746                 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
747
748                 spin_lock_irqsave(&(smi_info->si_lock), flags);
749                 result = smi_event_handler(smi_info, 0);
750                 while (result != SI_SM_IDLE) {
751                         udelay(SI_SHORT_TIMEOUT_USEC);
752                         result = smi_event_handler(smi_info,
753                                                    SI_SHORT_TIMEOUT_USEC);
754                 }
755                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
756                 return;
757         } else {
758                 if (priority > 0) {
759                         list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
760                 } else {
761                         list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
762                 }
763         }
764         spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
765
766         spin_lock_irqsave(&(smi_info->si_lock), flags);
767         if ((smi_info->si_state == SI_NORMAL)
768             && (smi_info->curr_msg == NULL))
769         {
770                 start_next_msg(smi_info);
771                 si_restart_short_timer(smi_info);
772         }
773         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
774 }
775
776 static void set_run_to_completion(void *send_info, int i_run_to_completion)
777 {
778         struct smi_info   *smi_info = send_info;
779         enum si_sm_result result;
780         unsigned long     flags;
781
782         spin_lock_irqsave(&(smi_info->si_lock), flags);
783
784         smi_info->run_to_completion = i_run_to_completion;
785         if (i_run_to_completion) {
786                 result = smi_event_handler(smi_info, 0);
787                 while (result != SI_SM_IDLE) {
788                         udelay(SI_SHORT_TIMEOUT_USEC);
789                         result = smi_event_handler(smi_info,
790                                                    SI_SHORT_TIMEOUT_USEC);
791                 }
792         }
793
794         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
795 }
796
797 static int ipmi_thread(void *data)
798 {
799         struct smi_info *smi_info = data;
800         unsigned long flags;
801         enum si_sm_result smi_result;
802
803         set_user_nice(current, 19);
804         while (!kthread_should_stop()) {
805                 spin_lock_irqsave(&(smi_info->si_lock), flags);
806                 smi_result = smi_event_handler(smi_info, 0);
807                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
808                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
809                         /* do nothing */
810                 }
811                 else if (smi_result == SI_SM_CALL_WITH_DELAY)
812                         udelay(1);
813                 else
814                         schedule_timeout_interruptible(1);
815         }
816         return 0;
817 }
818
819
820 static void poll(void *send_info)
821 {
822         struct smi_info *smi_info = send_info;
823
824         smi_event_handler(smi_info, 0);
825 }
826
827 static void request_events(void *send_info)
828 {
829         struct smi_info *smi_info = send_info;
830
831         atomic_set(&smi_info->req_events, 1);
832 }
833
834 static int initialized = 0;
835
836 /* Must be called with interrupts off and with the si_lock held. */
837 static void si_restart_short_timer(struct smi_info *smi_info)
838 {
839 #if defined(CONFIG_HIGH_RES_TIMERS)
840         unsigned long flags;
841         unsigned long jiffies_now;
842         unsigned long seq;
843
844         if (del_timer(&(smi_info->si_timer))) {
845                 /* If we don't delete the timer, then it will go off
846                    immediately, anyway.  So we only process if we
847                    actually delete the timer. */
848
849                 do {
850                         seq = read_seqbegin_irqsave(&xtime_lock, flags);
851                         jiffies_now = jiffies;
852                         smi_info->si_timer.expires = jiffies_now;
853                         smi_info->si_timer.arch_cycle_expires
854                                 = get_arch_cycles(jiffies_now);
855                 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
856
857                 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
858
859                 add_timer(&(smi_info->si_timer));
860                 spin_lock_irqsave(&smi_info->count_lock, flags);
861                 smi_info->timeout_restarts++;
862                 spin_unlock_irqrestore(&smi_info->count_lock, flags);
863         }
864 #endif
865 }
866
867 static void smi_timeout(unsigned long data)
868 {
869         struct smi_info   *smi_info = (struct smi_info *) data;
870         enum si_sm_result smi_result;
871         unsigned long     flags;
872         unsigned long     jiffies_now;
873         long              time_diff;
874 #ifdef DEBUG_TIMING
875         struct timeval    t;
876 #endif
877
878         if (atomic_read(&smi_info->stop_operation))
879                 return;
880
881         spin_lock_irqsave(&(smi_info->si_lock), flags);
882 #ifdef DEBUG_TIMING
883         do_gettimeofday(&t);
884         printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
885 #endif
886         jiffies_now = jiffies;
887         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
888                      * SI_USEC_PER_JIFFY);
889         smi_result = smi_event_handler(smi_info, time_diff);
890
891         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
892
893         smi_info->last_timeout_jiffies = jiffies_now;
894
895         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
896                 /* Running with interrupts, only do long timeouts. */
897                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
898                 spin_lock_irqsave(&smi_info->count_lock, flags);
899                 smi_info->long_timeouts++;
900                 spin_unlock_irqrestore(&smi_info->count_lock, flags);
901                 goto do_add_timer;
902         }
903
904         /* If the state machine asks for a short delay, then shorten
905            the timer timeout. */
906         if (smi_result == SI_SM_CALL_WITH_DELAY) {
907 #if defined(CONFIG_HIGH_RES_TIMERS)
908                 unsigned long seq;
909 #endif
910                 spin_lock_irqsave(&smi_info->count_lock, flags);
911                 smi_info->short_timeouts++;
912                 spin_unlock_irqrestore(&smi_info->count_lock, flags);
913 #if defined(CONFIG_HIGH_RES_TIMERS)
914                 do {
915                         seq = read_seqbegin_irqsave(&xtime_lock, flags);
916                         smi_info->si_timer.expires = jiffies;
917                         smi_info->si_timer.arch_cycle_expires
918                                 = get_arch_cycles(smi_info->si_timer.expires);
919                 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
920                 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
921 #else
922                 smi_info->si_timer.expires = jiffies + 1;
923 #endif
924         } else {
925                 spin_lock_irqsave(&smi_info->count_lock, flags);
926                 smi_info->long_timeouts++;
927                 spin_unlock_irqrestore(&smi_info->count_lock, flags);
928                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
929 #if defined(CONFIG_HIGH_RES_TIMERS)
930                 smi_info->si_timer.arch_cycle_expires = 0;
931 #endif
932         }
933
934  do_add_timer:
935         add_timer(&(smi_info->si_timer));
936 }
937
938 static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
939 {
940         struct smi_info *smi_info = data;
941         unsigned long   flags;
942 #ifdef DEBUG_TIMING
943         struct timeval  t;
944 #endif
945
946         spin_lock_irqsave(&(smi_info->si_lock), flags);
947
948         spin_lock(&smi_info->count_lock);
949         smi_info->interrupts++;
950         spin_unlock(&smi_info->count_lock);
951
952         if (atomic_read(&smi_info->stop_operation))
953                 goto out;
954
955 #ifdef DEBUG_TIMING
956         do_gettimeofday(&t);
957         printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
958 #endif
959         smi_event_handler(smi_info, 0);
960  out:
961         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
962         return IRQ_HANDLED;
963 }
964
965 static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
966 {
967         struct smi_info *smi_info = data;
968         /* We need to clear the IRQ flag for the BT interface. */
969         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
970                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
971                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
972         return si_irq_handler(irq, data, regs);
973 }
974
975 static int smi_start_processing(void       *send_info,
976                                 ipmi_smi_t intf)
977 {
978         struct smi_info *new_smi = send_info;
979
980         new_smi->intf = intf;
981
982         /* Set up the timer that drives the interface. */
983         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
984         new_smi->last_timeout_jiffies = jiffies;
985         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
986
987         if (new_smi->si_type != SI_BT) {
988                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
989                                               "kipmi%d", new_smi->intf_num);
990                 if (IS_ERR(new_smi->thread)) {
991                         printk(KERN_NOTICE "ipmi_si_intf: Could not start"
992                                " kernel thread due to error %ld, only using"
993                                " timers to drive the interface\n",
994                                PTR_ERR(new_smi->thread));
995                         new_smi->thread = NULL;
996                 }
997         }
998
999         return 0;
1000 }
1001
1002 static struct ipmi_smi_handlers handlers =
1003 {
1004         .owner                  = THIS_MODULE,
1005         .start_processing       = smi_start_processing,
1006         .sender                 = sender,
1007         .request_events         = request_events,
1008         .set_run_to_completion  = set_run_to_completion,
1009         .poll                   = poll,
1010 };
1011
1012 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1013    a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS */
1014
1015 #define SI_MAX_PARMS 4
1016 static LIST_HEAD(smi_infos);
1017 static DEFINE_MUTEX(smi_infos_lock);
1018 static int smi_num; /* Used to sequence the SMIs */
1019
1020 #define DEFAULT_REGSPACING      1
1021
1022 static int           si_trydefaults = 1;
1023 static char          *si_type[SI_MAX_PARMS];
1024 #define MAX_SI_TYPE_STR 30
1025 static char          si_type_str[MAX_SI_TYPE_STR];
1026 static unsigned long addrs[SI_MAX_PARMS];
1027 static int num_addrs;
1028 static unsigned int  ports[SI_MAX_PARMS];
1029 static int num_ports;
1030 static int           irqs[SI_MAX_PARMS];
1031 static int num_irqs;
1032 static int           regspacings[SI_MAX_PARMS];
1033 static int num_regspacings = 0;
1034 static int           regsizes[SI_MAX_PARMS];
1035 static int num_regsizes = 0;
1036 static int           regshifts[SI_MAX_PARMS];
1037 static int num_regshifts = 0;
1038 static int slave_addrs[SI_MAX_PARMS];
1039 static int num_slave_addrs = 0;
1040
1041
1042 module_param_named(trydefaults, si_trydefaults, bool, 0);
1043 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1044                  " default scan of the KCS and SMIC interface at the standard"
1045                  " address");
1046 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1047 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1048                  " interface separated by commas.  The types are 'kcs',"
1049                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1050                  " the first interface to kcs and the second to bt");
1051 module_param_array(addrs, long, &num_addrs, 0);
1052 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1053                  " addresses separated by commas.  Only use if an interface"
1054                  " is in memory.  Otherwise, set it to zero or leave"
1055                  " it blank.");
1056 module_param_array(ports, int, &num_ports, 0);
1057 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1058                  " addresses separated by commas.  Only use if an interface"
1059                  " is a port.  Otherwise, set it to zero or leave"
1060                  " it blank.");
1061 module_param_array(irqs, int, &num_irqs, 0);
1062 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1063                  " addresses separated by commas.  Only use if an interface"
1064                  " has an interrupt.  Otherwise, set it to zero or leave"
1065                  " it blank.");
1066 module_param_array(regspacings, int, &num_regspacings, 0);
1067 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1068                  " and each successive register used by the interface.  For"
1069                  " instance, if the start address is 0xca2 and the spacing"
1070                  " is 2, then the second address is at 0xca4.  Defaults"
1071                  " to 1.");
1072 module_param_array(regsizes, int, &num_regsizes, 0);
1073 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1074                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1075                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1076                  " the 8-bit IPMI register has to be read from a larger"
1077                  " register.");
1078 module_param_array(regshifts, int, &num_regshifts, 0);
1079 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1080                  " IPMI register, in bits.  For instance, if the data"
1081                  " is read from a 32-bit word and the IPMI data is in"
1082                  " bit 8-15, then the shift would be 8");
1083 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1084 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1085                  " the controller.  Normally this is 0x20, but can be"
1086                  " overridden by this parm.  This is an array indexed"
1087                  " by interface number.");
1088
1089
1090 #define IPMI_IO_ADDR_SPACE  0
1091 #define IPMI_MEM_ADDR_SPACE 1
1092 static char *addr_space_to_str[] = { "I/O", "memory" };
1093
1094 static void std_irq_cleanup(struct smi_info *info)
1095 {
1096         if (info->si_type == SI_BT)
1097                 /* Disable the interrupt in the BT interface. */
1098                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1099         free_irq(info->irq, info);
1100 }
1101
1102 static int std_irq_setup(struct smi_info *info)
1103 {
1104         int rv;
1105
1106         if (!info->irq)
1107                 return 0;
1108
1109         if (info->si_type == SI_BT) {
1110                 rv = request_irq(info->irq,
1111                                  si_bt_irq_handler,
1112                                  SA_INTERRUPT,
1113                                  DEVICE_NAME,
1114                                  info);
1115                 if (!rv)
1116                         /* Enable the interrupt in the BT interface. */
1117                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1118                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1119         } else
1120                 rv = request_irq(info->irq,
1121                                  si_irq_handler,
1122                                  SA_INTERRUPT,
1123                                  DEVICE_NAME,
1124                                  info);
1125         if (rv) {
1126                 printk(KERN_WARNING
1127                        "ipmi_si: %s unable to claim interrupt %d,"
1128                        " running polled\n",
1129                        DEVICE_NAME, info->irq);
1130                 info->irq = 0;
1131         } else {
1132                 info->irq_cleanup = std_irq_cleanup;
1133                 printk("  Using irq %d\n", info->irq);
1134         }
1135
1136         return rv;
1137 }
1138
1139 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1140 {
1141         unsigned int addr = io->addr_data;
1142
1143         return inb(addr + (offset * io->regspacing));
1144 }
1145
1146 static void port_outb(struct si_sm_io *io, unsigned int offset,
1147                       unsigned char b)
1148 {
1149         unsigned int addr = io->addr_data;
1150
1151         outb(b, addr + (offset * io->regspacing));
1152 }
1153
1154 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1155 {
1156         unsigned int addr = io->addr_data;
1157
1158         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1159 }
1160
1161 static void port_outw(struct si_sm_io *io, unsigned int offset,
1162                       unsigned char b)
1163 {
1164         unsigned int addr = io->addr_data;
1165
1166         outw(b << io->regshift, addr + (offset * io->regspacing));
1167 }
1168
1169 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1170 {
1171         unsigned int addr = io->addr_data;
1172
1173         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1174 }
1175
1176 static void port_outl(struct si_sm_io *io, unsigned int offset,
1177                       unsigned char b)
1178 {
1179         unsigned int addr = io->addr_data;
1180
1181         outl(b << io->regshift, addr+(offset * io->regspacing));
1182 }
1183
1184 static void port_cleanup(struct smi_info *info)
1185 {
1186         unsigned int addr = info->io.addr_data;
1187         int          mapsize;
1188
1189         if (addr) {
1190                 mapsize = ((info->io_size * info->io.regspacing)
1191                            - (info->io.regspacing - info->io.regsize));
1192
1193                 release_region (addr, mapsize);
1194         }
1195 }
1196
1197 static int port_setup(struct smi_info *info)
1198 {
1199         unsigned int addr = info->io.addr_data;
1200         int          mapsize;
1201
1202         if (!addr)
1203                 return -ENODEV;
1204
1205         info->io_cleanup = port_cleanup;
1206
1207         /* Figure out the actual inb/inw/inl/etc routine to use based
1208            upon the register size. */
1209         switch (info->io.regsize) {
1210         case 1:
1211                 info->io.inputb = port_inb;
1212                 info->io.outputb = port_outb;
1213                 break;
1214         case 2:
1215                 info->io.inputb = port_inw;
1216                 info->io.outputb = port_outw;
1217                 break;
1218         case 4:
1219                 info->io.inputb = port_inl;
1220                 info->io.outputb = port_outl;
1221                 break;
1222         default:
1223                 printk("ipmi_si: Invalid register size: %d\n",
1224                        info->io.regsize);
1225                 return -EINVAL;
1226         }
1227
1228         /* Calculate the total amount of memory to claim.  This is an
1229          * unusual looking calculation, but it avoids claiming any
1230          * more memory than it has to.  It will claim everything
1231          * between the first address to the end of the last full
1232          * register. */
1233         mapsize = ((info->io_size * info->io.regspacing)
1234                    - (info->io.regspacing - info->io.regsize));
1235
1236         if (request_region(addr, mapsize, DEVICE_NAME) == NULL)
1237                 return -EIO;
1238         return 0;
1239 }
1240
1241 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1242 {
1243         return readb((io->addr)+(offset * io->regspacing));
1244 }
1245
1246 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1247                      unsigned char b)
1248 {
1249         writeb(b, (io->addr)+(offset * io->regspacing));
1250 }
1251
1252 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1253 {
1254         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1255                 && 0xff;
1256 }
1257
1258 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1259                      unsigned char b)
1260 {
1261         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1262 }
1263
1264 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1265 {
1266         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1267                 && 0xff;
1268 }
1269
1270 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1271                      unsigned char b)
1272 {
1273         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1274 }
1275
1276 #ifdef readq
1277 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1278 {
1279         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1280                 && 0xff;
1281 }
1282
1283 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1284                      unsigned char b)
1285 {
1286         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1287 }
1288 #endif
1289
1290 static void mem_cleanup(struct smi_info *info)
1291 {
1292         unsigned long addr = info->io.addr_data;
1293         int           mapsize;
1294
1295         if (info->io.addr) {
1296                 iounmap(info->io.addr);
1297
1298                 mapsize = ((info->io_size * info->io.regspacing)
1299                            - (info->io.regspacing - info->io.regsize));
1300
1301                 release_mem_region(addr, mapsize);
1302         }
1303 }
1304
1305 static int mem_setup(struct smi_info *info)
1306 {
1307         unsigned long addr = info->io.addr_data;
1308         int           mapsize;
1309
1310         if (!addr)
1311                 return -ENODEV;
1312
1313         info->io_cleanup = mem_cleanup;
1314
1315         /* Figure out the actual readb/readw/readl/etc routine to use based
1316            upon the register size. */
1317         switch (info->io.regsize) {
1318         case 1:
1319                 info->io.inputb = intf_mem_inb;
1320                 info->io.outputb = intf_mem_outb;
1321                 break;
1322         case 2:
1323                 info->io.inputb = intf_mem_inw;
1324                 info->io.outputb = intf_mem_outw;
1325                 break;
1326         case 4:
1327                 info->io.inputb = intf_mem_inl;
1328                 info->io.outputb = intf_mem_outl;
1329                 break;
1330 #ifdef readq
1331         case 8:
1332                 info->io.inputb = mem_inq;
1333                 info->io.outputb = mem_outq;
1334                 break;
1335 #endif
1336         default:
1337                 printk("ipmi_si: Invalid register size: %d\n",
1338                        info->io.regsize);
1339                 return -EINVAL;
1340         }
1341
1342         /* Calculate the total amount of memory to claim.  This is an
1343          * unusual looking calculation, but it avoids claiming any
1344          * more memory than it has to.  It will claim everything
1345          * between the first address to the end of the last full
1346          * register. */
1347         mapsize = ((info->io_size * info->io.regspacing)
1348                    - (info->io.regspacing - info->io.regsize));
1349
1350         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1351                 return -EIO;
1352
1353         info->io.addr = ioremap(addr, mapsize);
1354         if (info->io.addr == NULL) {
1355                 release_mem_region(addr, mapsize);
1356                 return -EIO;
1357         }
1358         return 0;
1359 }
1360
1361
1362 static __devinit void hardcode_find_bmc(void)
1363 {
1364         int             i;
1365         struct smi_info *info;
1366
1367         for (i = 0; i < SI_MAX_PARMS; i++) {
1368                 if (!ports[i] && !addrs[i])
1369                         continue;
1370
1371                 info = kzalloc(sizeof(*info), GFP_KERNEL);
1372                 if (!info)
1373                         return;
1374
1375                 info->addr_source = "hardcoded";
1376
1377                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1378                         info->si_type = SI_KCS;
1379                 } else if (strcmp(si_type[i], "smic") == 0) {
1380                         info->si_type = SI_SMIC;
1381                 } else if (strcmp(si_type[i], "bt") == 0) {
1382                         info->si_type = SI_BT;
1383                 } else {
1384                         printk(KERN_WARNING
1385                                "ipmi_si: Interface type specified "
1386                                "for interface %d, was invalid: %s\n",
1387                                i, si_type[i]);
1388                         kfree(info);
1389                         continue;
1390                 }
1391
1392                 if (ports[i]) {
1393                         /* An I/O port */
1394                         info->io_setup = port_setup;
1395                         info->io.addr_data = ports[i];
1396                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1397                 } else if (addrs[i]) {
1398                         /* A memory port */
1399                         info->io_setup = mem_setup;
1400                         info->io.addr_data = addrs[i];
1401                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1402                 } else {
1403                         printk(KERN_WARNING
1404                                "ipmi_si: Interface type specified "
1405                                "for interface %d, "
1406                                "but port and address were not set or "
1407                                "set to zero.\n", i);
1408                         kfree(info);
1409                         continue;
1410                 }
1411
1412                 info->io.addr = NULL;
1413                 info->io.regspacing = regspacings[i];
1414                 if (!info->io.regspacing)
1415                         info->io.regspacing = DEFAULT_REGSPACING;
1416                 info->io.regsize = regsizes[i];
1417                 if (!info->io.regsize)
1418                         info->io.regsize = DEFAULT_REGSPACING;
1419                 info->io.regshift = regshifts[i];
1420                 info->irq = irqs[i];
1421                 if (info->irq)
1422                         info->irq_setup = std_irq_setup;
1423
1424                 try_smi_init(info);
1425         }
1426 }
1427
1428 #ifdef CONFIG_ACPI
1429
1430 #include <linux/acpi.h>
1431
1432 /* Once we get an ACPI failure, we don't try any more, because we go
1433    through the tables sequentially.  Once we don't find a table, there
1434    are no more. */
1435 static int acpi_failure = 0;
1436
1437 /* For GPE-type interrupts. */
1438 static u32 ipmi_acpi_gpe(void *context)
1439 {
1440         struct smi_info *smi_info = context;
1441         unsigned long   flags;
1442 #ifdef DEBUG_TIMING
1443         struct timeval t;
1444 #endif
1445
1446         spin_lock_irqsave(&(smi_info->si_lock), flags);
1447
1448         spin_lock(&smi_info->count_lock);
1449         smi_info->interrupts++;
1450         spin_unlock(&smi_info->count_lock);
1451
1452         if (atomic_read(&smi_info->stop_operation))
1453                 goto out;
1454
1455 #ifdef DEBUG_TIMING
1456         do_gettimeofday(&t);
1457         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1458 #endif
1459         smi_event_handler(smi_info, 0);
1460  out:
1461         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1462
1463         return ACPI_INTERRUPT_HANDLED;
1464 }
1465
1466 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1467 {
1468         if (!info->irq)
1469                 return;
1470
1471         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1472 }
1473
1474 static int acpi_gpe_irq_setup(struct smi_info *info)
1475 {
1476         acpi_status status;
1477
1478         if (!info->irq)
1479                 return 0;
1480
1481         /* FIXME - is level triggered right? */
1482         status = acpi_install_gpe_handler(NULL,
1483                                           info->irq,
1484                                           ACPI_GPE_LEVEL_TRIGGERED,
1485                                           &ipmi_acpi_gpe,
1486                                           info);
1487         if (status != AE_OK) {
1488                 printk(KERN_WARNING
1489                        "ipmi_si: %s unable to claim ACPI GPE %d,"
1490                        " running polled\n",
1491                        DEVICE_NAME, info->irq);
1492                 info->irq = 0;
1493                 return -EINVAL;
1494         } else {
1495                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1496                 printk("  Using ACPI GPE %d\n", info->irq);
1497                 return 0;
1498         }
1499 }
1500
1501 /*
1502  * Defined at
1503  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1504  */
1505 struct SPMITable {
1506         s8      Signature[4];
1507         u32     Length;
1508         u8      Revision;
1509         u8      Checksum;
1510         s8      OEMID[6];
1511         s8      OEMTableID[8];
1512         s8      OEMRevision[4];
1513         s8      CreatorID[4];
1514         s8      CreatorRevision[4];
1515         u8      InterfaceType;
1516         u8      IPMIlegacy;
1517         s16     SpecificationRevision;
1518
1519         /*
1520          * Bit 0 - SCI interrupt supported
1521          * Bit 1 - I/O APIC/SAPIC
1522          */
1523         u8      InterruptType;
1524
1525         /* If bit 0 of InterruptType is set, then this is the SCI
1526            interrupt in the GPEx_STS register. */
1527         u8      GPE;
1528
1529         s16     Reserved;
1530
1531         /* If bit 1 of InterruptType is set, then this is the I/O
1532            APIC/SAPIC interrupt. */
1533         u32     GlobalSystemInterrupt;
1534
1535         /* The actual register address. */
1536         struct acpi_generic_address addr;
1537
1538         u8      UID[4];
1539
1540         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1541 };
1542
1543 static __devinit int try_init_acpi(struct SPMITable *spmi)
1544 {
1545         struct smi_info  *info;
1546         char             *io_type;
1547         u8               addr_space;
1548
1549         if (spmi->IPMIlegacy != 1) {
1550             printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1551             return -ENODEV;
1552         }
1553
1554         if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1555                 addr_space = IPMI_MEM_ADDR_SPACE;
1556         else
1557                 addr_space = IPMI_IO_ADDR_SPACE;
1558
1559         info = kzalloc(sizeof(*info), GFP_KERNEL);
1560         if (!info) {
1561                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1562                 return -ENOMEM;
1563         }
1564
1565         info->addr_source = "ACPI";
1566
1567         /* Figure out the interface type. */
1568         switch (spmi->InterfaceType)
1569         {
1570         case 1: /* KCS */
1571                 info->si_type = SI_KCS;
1572                 break;
1573         case 2: /* SMIC */
1574                 info->si_type = SI_SMIC;
1575                 break;
1576         case 3: /* BT */
1577                 info->si_type = SI_BT;
1578                 break;
1579         default:
1580                 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1581                         spmi->InterfaceType);
1582                 kfree(info);
1583                 return -EIO;
1584         }
1585
1586         if (spmi->InterruptType & 1) {
1587                 /* We've got a GPE interrupt. */
1588                 info->irq = spmi->GPE;
1589                 info->irq_setup = acpi_gpe_irq_setup;
1590         } else if (spmi->InterruptType & 2) {
1591                 /* We've got an APIC/SAPIC interrupt. */
1592                 info->irq = spmi->GlobalSystemInterrupt;
1593                 info->irq_setup = std_irq_setup;
1594         } else {
1595                 /* Use the default interrupt setting. */
1596                 info->irq = 0;
1597                 info->irq_setup = NULL;
1598         }
1599
1600         if (spmi->addr.register_bit_width) {
1601                 /* A (hopefully) properly formed register bit width. */
1602                 info->io.regspacing = spmi->addr.register_bit_width / 8;
1603         } else {
1604                 info->io.regspacing = DEFAULT_REGSPACING;
1605         }
1606         info->io.regsize = info->io.regspacing;
1607         info->io.regshift = spmi->addr.register_bit_offset;
1608
1609         if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1610                 io_type = "memory";
1611                 info->io_setup = mem_setup;
1612                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1613         } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1614                 io_type = "I/O";
1615                 info->io_setup = port_setup;
1616                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1617         } else {
1618                 kfree(info);
1619                 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1620                 return -EIO;
1621         }
1622         info->io.addr_data = spmi->addr.address;
1623
1624         try_smi_init(info);
1625
1626         return 0;
1627 }
1628
1629 static __devinit void acpi_find_bmc(void)
1630 {
1631         acpi_status      status;
1632         struct SPMITable *spmi;
1633         int              i;
1634
1635         if (acpi_disabled)
1636                 return;
1637
1638         if (acpi_failure)
1639                 return;
1640
1641         for (i = 0; ; i++) {
1642                 status = acpi_get_firmware_table("SPMI", i+1,
1643                                                  ACPI_LOGICAL_ADDRESSING,
1644                                                  (struct acpi_table_header **)
1645                                                  &spmi);
1646                 if (status != AE_OK)
1647                         return;
1648
1649                 try_init_acpi(spmi);
1650         }
1651 }
1652 #endif
1653
1654 #ifdef CONFIG_DMI
1655 struct dmi_ipmi_data
1656 {
1657         u8              type;
1658         u8              addr_space;
1659         unsigned long   base_addr;
1660         u8              irq;
1661         u8              offset;
1662         u8              slave_addr;
1663 };
1664
1665 static int __devinit decode_dmi(struct dmi_header *dm,
1666                                 struct dmi_ipmi_data *dmi)
1667 {
1668         u8              *data = (u8 *)dm;
1669         unsigned long   base_addr;
1670         u8              reg_spacing;
1671         u8              len = dm->length;
1672
1673         dmi->type = data[4];
1674
1675         memcpy(&base_addr, data+8, sizeof(unsigned long));
1676         if (len >= 0x11) {
1677                 if (base_addr & 1) {
1678                         /* I/O */
1679                         base_addr &= 0xFFFE;
1680                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
1681                 }
1682                 else {
1683                         /* Memory */
1684                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1685                 }
1686                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1687                    is odd. */
1688                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1689
1690                 dmi->irq = data[0x11];
1691
1692                 /* The top two bits of byte 0x10 hold the register spacing. */
1693                 reg_spacing = (data[0x10] & 0xC0) >> 6;
1694                 switch(reg_spacing){
1695                 case 0x00: /* Byte boundaries */
1696                     dmi->offset = 1;
1697                     break;
1698                 case 0x01: /* 32-bit boundaries */
1699                     dmi->offset = 4;
1700                     break;
1701                 case 0x02: /* 16-byte boundaries */
1702                     dmi->offset = 16;
1703                     break;
1704                 default:
1705                     /* Some other interface, just ignore it. */
1706                     return -EIO;
1707                 }
1708         } else {
1709                 /* Old DMI spec. */
1710                 /* Note that technically, the lower bit of the base
1711                  * address should be 1 if the address is I/O and 0 if
1712                  * the address is in memory.  So many systems get that
1713                  * wrong (and all that I have seen are I/O) so we just
1714                  * ignore that bit and assume I/O.  Systems that use
1715                  * memory should use the newer spec, anyway. */
1716                 dmi->base_addr = base_addr & 0xfffe;
1717                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1718                 dmi->offset = 1;
1719         }
1720
1721         dmi->slave_addr = data[6];
1722
1723         return 0;
1724 }
1725
1726 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1727 {
1728         struct smi_info *info;
1729
1730         info = kzalloc(sizeof(*info), GFP_KERNEL);
1731         if (!info) {
1732                 printk(KERN_ERR
1733                        "ipmi_si: Could not allocate SI data\n");
1734                 return;
1735         }
1736
1737         info->addr_source = "SMBIOS";
1738
1739         switch (ipmi_data->type) {
1740         case 0x01: /* KCS */
1741                 info->si_type = SI_KCS;
1742                 break;
1743         case 0x02: /* SMIC */
1744                 info->si_type = SI_SMIC;
1745                 break;
1746         case 0x03: /* BT */
1747                 info->si_type = SI_BT;
1748                 break;
1749         default:
1750                 return;
1751         }
1752
1753         switch (ipmi_data->addr_space) {
1754         case IPMI_MEM_ADDR_SPACE:
1755                 info->io_setup = mem_setup;
1756                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1757                 break;
1758
1759         case IPMI_IO_ADDR_SPACE:
1760                 info->io_setup = port_setup;
1761                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1762                 break;
1763
1764         default:
1765                 kfree(info);
1766                 printk(KERN_WARNING
1767                        "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
1768                        ipmi_data->addr_space);
1769                 return;
1770         }
1771         info->io.addr_data = ipmi_data->base_addr;
1772
1773         info->io.regspacing = ipmi_data->offset;
1774         if (!info->io.regspacing)
1775                 info->io.regspacing = DEFAULT_REGSPACING;
1776         info->io.regsize = DEFAULT_REGSPACING;
1777         info->io.regshift = 0;
1778
1779         info->slave_addr = ipmi_data->slave_addr;
1780
1781         info->irq = ipmi_data->irq;
1782         if (info->irq)
1783                 info->irq_setup = std_irq_setup;
1784
1785         try_smi_init(info);
1786 }
1787
1788 static void __devinit dmi_find_bmc(void)
1789 {
1790         struct dmi_device    *dev = NULL;
1791         struct dmi_ipmi_data data;
1792         int                  rv;
1793
1794         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1795                 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
1796                 if (!rv)
1797                         try_init_dmi(&data);
1798         }
1799 }
1800 #endif /* CONFIG_DMI */
1801
1802 #ifdef CONFIG_PCI
1803
1804 #define PCI_ERMC_CLASSCODE              0x0C0700
1805 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
1806 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
1807 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
1808 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
1809 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
1810
1811 #define PCI_HP_VENDOR_ID    0x103C
1812 #define PCI_MMC_DEVICE_ID   0x121A
1813 #define PCI_MMC_ADDR_CW     0x10
1814
1815 static void ipmi_pci_cleanup(struct smi_info *info)
1816 {
1817         struct pci_dev *pdev = info->addr_source_data;
1818
1819         pci_disable_device(pdev);
1820 }
1821
1822 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
1823                                     const struct pci_device_id *ent)
1824 {
1825         int rv;
1826         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
1827         struct smi_info *info;
1828         int first_reg_offset = 0;
1829
1830         info = kzalloc(sizeof(*info), GFP_KERNEL);
1831         if (!info)
1832                 return ENOMEM;
1833
1834         info->addr_source = "PCI";
1835
1836         switch (class_type) {
1837         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
1838                 info->si_type = SI_SMIC;
1839                 break;
1840
1841         case PCI_ERMC_CLASSCODE_TYPE_KCS:
1842                 info->si_type = SI_KCS;
1843                 break;
1844
1845         case PCI_ERMC_CLASSCODE_TYPE_BT:
1846                 info->si_type = SI_BT;
1847                 break;
1848
1849         default:
1850                 kfree(info);
1851                 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
1852                        pci_name(pdev), class_type);
1853                 return ENOMEM;
1854         }
1855
1856         rv = pci_enable_device(pdev);
1857         if (rv) {
1858                 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
1859                        pci_name(pdev));
1860                 kfree(info);
1861                 return rv;
1862         }
1863
1864         info->addr_source_cleanup = ipmi_pci_cleanup;
1865         info->addr_source_data = pdev;
1866
1867         if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
1868                 first_reg_offset = 1;
1869
1870         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
1871                 info->io_setup = port_setup;
1872                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1873         } else {
1874                 info->io_setup = mem_setup;
1875                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1876         }
1877         info->io.addr_data = pci_resource_start(pdev, 0);
1878
1879         info->io.regspacing = DEFAULT_REGSPACING;
1880         info->io.regsize = DEFAULT_REGSPACING;
1881         info->io.regshift = 0;
1882
1883         info->irq = pdev->irq;
1884         if (info->irq)
1885                 info->irq_setup = std_irq_setup;
1886
1887         info->dev = &pdev->dev;
1888
1889         return try_smi_init(info);
1890 }
1891
1892 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
1893 {
1894 }
1895
1896 #ifdef CONFIG_PM
1897 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
1898 {
1899         return 0;
1900 }
1901
1902 static int ipmi_pci_resume(struct pci_dev *pdev)
1903 {
1904         return 0;
1905 }
1906 #endif
1907
1908 static struct pci_device_id ipmi_pci_devices[] = {
1909         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
1910         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE) }
1911 };
1912 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
1913
1914 static struct pci_driver ipmi_pci_driver = {
1915         .name =         DEVICE_NAME,
1916         .id_table =     ipmi_pci_devices,
1917         .probe =        ipmi_pci_probe,
1918         .remove =       __devexit_p(ipmi_pci_remove),
1919 #ifdef CONFIG_PM
1920         .suspend =      ipmi_pci_suspend,
1921         .resume =       ipmi_pci_resume,
1922 #endif
1923 };
1924 #endif /* CONFIG_PCI */
1925
1926
1927 static int try_get_dev_id(struct smi_info *smi_info)
1928 {
1929         unsigned char         msg[2];
1930         unsigned char         *resp;
1931         unsigned long         resp_len;
1932         enum si_sm_result     smi_result;
1933         int                   rv = 0;
1934
1935         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1936         if (!resp)
1937                 return -ENOMEM;
1938
1939         /* Do a Get Device ID command, since it comes back with some
1940            useful info. */
1941         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1942         msg[1] = IPMI_GET_DEVICE_ID_CMD;
1943         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1944
1945         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1946         for (;;)
1947         {
1948                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1949                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1950                         schedule_timeout_uninterruptible(1);
1951                         smi_result = smi_info->handlers->event(
1952                                 smi_info->si_sm, 100);
1953                 }
1954                 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1955                 {
1956                         smi_result = smi_info->handlers->event(
1957                                 smi_info->si_sm, 0);
1958                 }
1959                 else
1960                         break;
1961         }
1962         if (smi_result == SI_SM_HOSED) {
1963                 /* We couldn't get the state machine to run, so whatever's at
1964                    the port is probably not an IPMI SMI interface. */
1965                 rv = -ENODEV;
1966                 goto out;
1967         }
1968
1969         /* Otherwise, we got some data. */
1970         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1971                                                   resp, IPMI_MAX_MSG_LENGTH);
1972         if (resp_len < 14) {
1973                 /* That's odd, it should be longer. */
1974                 rv = -EINVAL;
1975                 goto out;
1976         }
1977
1978         if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1979                 /* That's odd, it shouldn't be able to fail. */
1980                 rv = -EINVAL;
1981                 goto out;
1982         }
1983
1984         /* Record info from the get device id, in case we need it. */
1985         ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
1986
1987  out:
1988         kfree(resp);
1989         return rv;
1990 }
1991
1992 static int type_file_read_proc(char *page, char **start, off_t off,
1993                                int count, int *eof, void *data)
1994 {
1995         char            *out = (char *) page;
1996         struct smi_info *smi = data;
1997
1998         switch (smi->si_type) {
1999             case SI_KCS:
2000                 return sprintf(out, "kcs\n");
2001             case SI_SMIC:
2002                 return sprintf(out, "smic\n");
2003             case SI_BT:
2004                 return sprintf(out, "bt\n");
2005             default:
2006                 return 0;
2007         }
2008 }
2009
2010 static int stat_file_read_proc(char *page, char **start, off_t off,
2011                                int count, int *eof, void *data)
2012 {
2013         char            *out = (char *) page;
2014         struct smi_info *smi = data;
2015
2016         out += sprintf(out, "interrupts_enabled:    %d\n",
2017                        smi->irq && !smi->interrupt_disabled);
2018         out += sprintf(out, "short_timeouts:        %ld\n",
2019                        smi->short_timeouts);
2020         out += sprintf(out, "long_timeouts:         %ld\n",
2021                        smi->long_timeouts);
2022         out += sprintf(out, "timeout_restarts:      %ld\n",
2023                        smi->timeout_restarts);
2024         out += sprintf(out, "idles:                 %ld\n",
2025                        smi->idles);
2026         out += sprintf(out, "interrupts:            %ld\n",
2027                        smi->interrupts);
2028         out += sprintf(out, "attentions:            %ld\n",
2029                        smi->attentions);
2030         out += sprintf(out, "flag_fetches:          %ld\n",
2031                        smi->flag_fetches);
2032         out += sprintf(out, "hosed_count:           %ld\n",
2033                        smi->hosed_count);
2034         out += sprintf(out, "complete_transactions: %ld\n",
2035                        smi->complete_transactions);
2036         out += sprintf(out, "events:                %ld\n",
2037                        smi->events);
2038         out += sprintf(out, "watchdog_pretimeouts:  %ld\n",
2039                        smi->watchdog_pretimeouts);
2040         out += sprintf(out, "incoming_messages:     %ld\n",
2041                        smi->incoming_messages);
2042
2043         return (out - ((char *) page));
2044 }
2045
2046 /*
2047  * oem_data_avail_to_receive_msg_avail
2048  * @info - smi_info structure with msg_flags set
2049  *
2050  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2051  * Returns 1 indicating need to re-run handle_flags().
2052  */
2053 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2054 {
2055         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2056                                 RECEIVE_MSG_AVAIL);
2057         return 1;
2058 }
2059
2060 /*
2061  * setup_dell_poweredge_oem_data_handler
2062  * @info - smi_info.device_id must be populated
2063  *
2064  * Systems that match, but have firmware version < 1.40 may assert
2065  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2066  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2067  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2068  * as RECEIVE_MSG_AVAIL instead.
2069  *
2070  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2071  * assert the OEM[012] bits, and if it did, the driver would have to
2072  * change to handle that properly, we don't actually check for the
2073  * firmware version.
2074  * Device ID = 0x20                BMC on PowerEdge 8G servers
2075  * Device Revision = 0x80
2076  * Firmware Revision1 = 0x01       BMC version 1.40
2077  * Firmware Revision2 = 0x40       BCD encoded
2078  * IPMI Version = 0x51             IPMI 1.5
2079  * Manufacturer ID = A2 02 00      Dell IANA
2080  *
2081  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2082  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2083  *
2084  */
2085 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2086 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2087 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2088 #define DELL_IANA_MFR_ID 0x0002a2
2089 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2090 {
2091         struct ipmi_device_id *id = &smi_info->device_id;
2092         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2093                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2094                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2095                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2096                         smi_info->oem_data_avail_handler =
2097                                 oem_data_avail_to_receive_msg_avail;
2098                 }
2099                 else if (ipmi_version_major(id) < 1 ||
2100                          (ipmi_version_major(id) == 1 &&
2101                           ipmi_version_minor(id) < 5)) {
2102                         smi_info->oem_data_avail_handler =
2103                                 oem_data_avail_to_receive_msg_avail;
2104                 }
2105         }
2106 }
2107
2108 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2109 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2110 {
2111         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2112
2113         /* Make it a reponse */
2114         msg->rsp[0] = msg->data[0] | 4;
2115         msg->rsp[1] = msg->data[1];
2116         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2117         msg->rsp_size = 3;
2118         smi_info->curr_msg = NULL;
2119         deliver_recv_msg(smi_info, msg);
2120 }
2121
2122 /*
2123  * dell_poweredge_bt_xaction_handler
2124  * @info - smi_info.device_id must be populated
2125  *
2126  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2127  * not respond to a Get SDR command if the length of the data
2128  * requested is exactly 0x3A, which leads to command timeouts and no
2129  * data returned.  This intercepts such commands, and causes userspace
2130  * callers to try again with a different-sized buffer, which succeeds.
2131  */
2132
2133 #define STORAGE_NETFN 0x0A
2134 #define STORAGE_CMD_GET_SDR 0x23
2135 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2136                                              unsigned long unused,
2137                                              void *in)
2138 {
2139         struct smi_info *smi_info = in;
2140         unsigned char *data = smi_info->curr_msg->data;
2141         unsigned int size   = smi_info->curr_msg->data_size;
2142         if (size >= 8 &&
2143             (data[0]>>2) == STORAGE_NETFN &&
2144             data[1] == STORAGE_CMD_GET_SDR &&
2145             data[7] == 0x3A) {
2146                 return_hosed_msg_badsize(smi_info);
2147                 return NOTIFY_STOP;
2148         }
2149         return NOTIFY_DONE;
2150 }
2151
2152 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2153         .notifier_call  = dell_poweredge_bt_xaction_handler,
2154 };
2155
2156 /*
2157  * setup_dell_poweredge_bt_xaction_handler
2158  * @info - smi_info.device_id must be filled in already
2159  *
2160  * Fills in smi_info.device_id.start_transaction_pre_hook
2161  * when we know what function to use there.
2162  */
2163 static void
2164 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2165 {
2166         struct ipmi_device_id *id = &smi_info->device_id;
2167         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2168             smi_info->si_type == SI_BT)
2169                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2170 }
2171
2172 /*
2173  * setup_oem_data_handler
2174  * @info - smi_info.device_id must be filled in already
2175  *
2176  * Fills in smi_info.device_id.oem_data_available_handler
2177  * when we know what function to use there.
2178  */
2179
2180 static void setup_oem_data_handler(struct smi_info *smi_info)
2181 {
2182         setup_dell_poweredge_oem_data_handler(smi_info);
2183 }
2184
2185 static void setup_xaction_handlers(struct smi_info *smi_info)
2186 {
2187         setup_dell_poweredge_bt_xaction_handler(smi_info);
2188 }
2189
2190 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2191 {
2192         if (smi_info->intf) {
2193                 /* The timer and thread are only running if the
2194                    interface has been started up and registered. */
2195                 if (smi_info->thread != NULL)
2196                         kthread_stop(smi_info->thread);
2197                 del_timer_sync(&smi_info->si_timer);
2198         }
2199 }
2200
2201 static __devinitdata struct ipmi_default_vals
2202 {
2203         int type;
2204         int port;
2205 } ipmi_defaults[] =
2206 {
2207         { .type = SI_KCS, .port = 0xca2 },
2208         { .type = SI_SMIC, .port = 0xca9 },
2209         { .type = SI_BT, .port = 0xe4 },
2210         { .port = 0 }
2211 };
2212
2213 static __devinit void default_find_bmc(void)
2214 {
2215         struct smi_info *info;
2216         int             i;
2217
2218         for (i = 0; ; i++) {
2219                 if (!ipmi_defaults[i].port)
2220                         break;
2221
2222                 info = kzalloc(sizeof(*info), GFP_KERNEL);
2223                 if (!info)
2224                         return;
2225
2226                 info->addr_source = NULL;
2227
2228                 info->si_type = ipmi_defaults[i].type;
2229                 info->io_setup = port_setup;
2230                 info->io.addr_data = ipmi_defaults[i].port;
2231                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2232
2233                 info->io.addr = NULL;
2234                 info->io.regspacing = DEFAULT_REGSPACING;
2235                 info->io.regsize = DEFAULT_REGSPACING;
2236                 info->io.regshift = 0;
2237
2238                 if (try_smi_init(info) == 0) {
2239                         /* Found one... */
2240                         printk(KERN_INFO "ipmi_si: Found default %s state"
2241                                " machine at %s address 0x%lx\n",
2242                                si_to_str[info->si_type],
2243                                addr_space_to_str[info->io.addr_type],
2244                                info->io.addr_data);
2245                         return;
2246                 }
2247         }
2248 }
2249
2250 static int is_new_interface(struct smi_info *info)
2251 {
2252         struct smi_info *e;
2253
2254         list_for_each_entry(e, &smi_infos, link) {
2255                 if (e->io.addr_type != info->io.addr_type)
2256                         continue;
2257                 if (e->io.addr_data == info->io.addr_data)
2258                         return 0;
2259         }
2260
2261         return 1;
2262 }
2263
2264 static int try_smi_init(struct smi_info *new_smi)
2265 {
2266         int rv;
2267
2268         if (new_smi->addr_source) {
2269                 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2270                        " machine at %s address 0x%lx, slave address 0x%x,"
2271                        " irq %d\n",
2272                        new_smi->addr_source,
2273                        si_to_str[new_smi->si_type],
2274                        addr_space_to_str[new_smi->io.addr_type],
2275                        new_smi->io.addr_data,
2276                        new_smi->slave_addr, new_smi->irq);
2277         }
2278
2279         mutex_lock(&smi_infos_lock);
2280         if (!is_new_interface(new_smi)) {
2281                 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2282                 rv = -EBUSY;
2283                 goto out_err;
2284         }
2285
2286         /* So we know not to free it unless we have allocated one. */
2287         new_smi->intf = NULL;
2288         new_smi->si_sm = NULL;
2289         new_smi->handlers = NULL;
2290
2291         switch (new_smi->si_type) {
2292         case SI_KCS:
2293                 new_smi->handlers = &kcs_smi_handlers;
2294                 break;
2295
2296         case SI_SMIC:
2297                 new_smi->handlers = &smic_smi_handlers;
2298                 break;
2299
2300         case SI_BT:
2301                 new_smi->handlers = &bt_smi_handlers;
2302                 break;
2303
2304         default:
2305                 /* No support for anything else yet. */
2306                 rv = -EIO;
2307                 goto out_err;
2308         }
2309
2310         /* Allocate the state machine's data and initialize it. */
2311         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2312         if (!new_smi->si_sm) {
2313                 printk(" Could not allocate state machine memory\n");
2314                 rv = -ENOMEM;
2315                 goto out_err;
2316         }
2317         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2318                                                         &new_smi->io);
2319
2320         /* Now that we know the I/O size, we can set up the I/O. */
2321         rv = new_smi->io_setup(new_smi);
2322         if (rv) {
2323                 printk(" Could not set up I/O space\n");
2324                 goto out_err;
2325         }
2326
2327         spin_lock_init(&(new_smi->si_lock));
2328         spin_lock_init(&(new_smi->msg_lock));
2329         spin_lock_init(&(new_smi->count_lock));
2330
2331         /* Do low-level detection first. */
2332         if (new_smi->handlers->detect(new_smi->si_sm)) {
2333                 if (new_smi->addr_source)
2334                         printk(KERN_INFO "ipmi_si: Interface detection"
2335                                " failed\n");
2336                 rv = -ENODEV;
2337                 goto out_err;
2338         }
2339
2340         /* Attempt a get device id command.  If it fails, we probably
2341            don't have a BMC here. */
2342         rv = try_get_dev_id(new_smi);
2343         if (rv) {
2344                 if (new_smi->addr_source)
2345                         printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2346                                " at this location\n");
2347                 goto out_err;
2348         }
2349
2350         setup_oem_data_handler(new_smi);
2351         setup_xaction_handlers(new_smi);
2352
2353         /* Try to claim any interrupts. */
2354         if (new_smi->irq_setup)
2355                 new_smi->irq_setup(new_smi);
2356
2357         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2358         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2359         new_smi->curr_msg = NULL;
2360         atomic_set(&new_smi->req_events, 0);
2361         new_smi->run_to_completion = 0;
2362
2363         new_smi->interrupt_disabled = 0;
2364         atomic_set(&new_smi->stop_operation, 0);
2365         new_smi->intf_num = smi_num;
2366         smi_num++;
2367
2368         /* Start clearing the flags before we enable interrupts or the
2369            timer to avoid racing with the timer. */
2370         start_clear_flags(new_smi);
2371         /* IRQ is defined to be set when non-zero. */
2372         if (new_smi->irq)
2373                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2374
2375         if (!new_smi->dev) {
2376                 /* If we don't already have a device from something
2377                  * else (like PCI), then register a new one. */
2378                 new_smi->pdev = platform_device_alloc("ipmi_si",
2379                                                       new_smi->intf_num);
2380                 if (rv) {
2381                         printk(KERN_ERR
2382                                "ipmi_si_intf:"
2383                                " Unable to allocate platform device\n");
2384                         goto out_err;
2385                 }
2386                 new_smi->dev = &new_smi->pdev->dev;
2387                 new_smi->dev->driver = &ipmi_driver;
2388
2389                 rv = platform_device_register(new_smi->pdev);
2390                 if (rv) {
2391                         printk(KERN_ERR
2392                                "ipmi_si_intf:"
2393                                " Unable to register system interface device:"
2394                                " %d\n",
2395                                rv);
2396                         goto out_err;
2397                 }
2398                 new_smi->dev_registered = 1;
2399         }
2400
2401         rv = ipmi_register_smi(&handlers,
2402                                new_smi,
2403                                &new_smi->device_id,
2404                                new_smi->dev,
2405                                new_smi->slave_addr);
2406         if (rv) {
2407                 printk(KERN_ERR
2408                        "ipmi_si: Unable to register device: error %d\n",
2409                        rv);
2410                 goto out_err_stop_timer;
2411         }
2412
2413         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2414                                      type_file_read_proc, NULL,
2415                                      new_smi, THIS_MODULE);
2416         if (rv) {
2417                 printk(KERN_ERR
2418                        "ipmi_si: Unable to create proc entry: %d\n",
2419                        rv);
2420                 goto out_err_stop_timer;
2421         }
2422
2423         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2424                                      stat_file_read_proc, NULL,
2425                                      new_smi, THIS_MODULE);
2426         if (rv) {
2427                 printk(KERN_ERR
2428                        "ipmi_si: Unable to create proc entry: %d\n",
2429                        rv);
2430                 goto out_err_stop_timer;
2431         }
2432
2433         list_add_tail(&new_smi->link, &smi_infos);
2434
2435         mutex_unlock(&smi_infos_lock);
2436
2437         printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
2438
2439         return 0;
2440
2441  out_err_stop_timer:
2442         atomic_inc(&new_smi->stop_operation);
2443         wait_for_timer_and_thread(new_smi);
2444
2445  out_err:
2446         if (new_smi->intf)
2447                 ipmi_unregister_smi(new_smi->intf);
2448
2449         if (new_smi->irq_cleanup)
2450                 new_smi->irq_cleanup(new_smi);
2451
2452         /* Wait until we know that we are out of any interrupt
2453            handlers might have been running before we freed the
2454            interrupt. */
2455         synchronize_sched();
2456
2457         if (new_smi->si_sm) {
2458                 if (new_smi->handlers)
2459                         new_smi->handlers->cleanup(new_smi->si_sm);
2460                 kfree(new_smi->si_sm);
2461         }
2462         if (new_smi->addr_source_cleanup)
2463                 new_smi->addr_source_cleanup(new_smi);
2464         if (new_smi->io_cleanup)
2465                 new_smi->io_cleanup(new_smi);
2466
2467         if (new_smi->dev_registered)
2468                 platform_device_unregister(new_smi->pdev);
2469
2470         kfree(new_smi);
2471
2472         mutex_unlock(&smi_infos_lock);
2473
2474         return rv;
2475 }
2476
2477 static __devinit int init_ipmi_si(void)
2478 {
2479         int  i;
2480         char *str;
2481         int  rv;
2482
2483         if (initialized)
2484                 return 0;
2485         initialized = 1;
2486
2487         /* Register the device drivers. */
2488         rv = driver_register(&ipmi_driver);
2489         if (rv) {
2490                 printk(KERN_ERR
2491                        "init_ipmi_si: Unable to register driver: %d\n",
2492                        rv);
2493                 return rv;
2494         }
2495
2496
2497         /* Parse out the si_type string into its components. */
2498         str = si_type_str;
2499         if (*str != '\0') {
2500                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
2501                         si_type[i] = str;
2502                         str = strchr(str, ',');
2503                         if (str) {
2504                                 *str = '\0';
2505                                 str++;
2506                         } else {
2507                                 break;
2508                         }
2509                 }
2510         }
2511
2512         printk(KERN_INFO "IPMI System Interface driver.\n");
2513
2514         hardcode_find_bmc();
2515
2516 #ifdef CONFIG_DMI
2517         dmi_find_bmc();
2518 #endif
2519
2520 #ifdef CONFIG_ACPI
2521         if (si_trydefaults)
2522                 acpi_find_bmc();
2523 #endif
2524
2525 #ifdef CONFIG_PCI
2526         pci_module_init(&ipmi_pci_driver);
2527 #endif
2528
2529         if (si_trydefaults) {
2530                 mutex_lock(&smi_infos_lock);
2531                 if (list_empty(&smi_infos)) {
2532                         /* No BMC was found, try defaults. */
2533                         mutex_unlock(&smi_infos_lock);
2534                         default_find_bmc();
2535                 } else {
2536                         mutex_unlock(&smi_infos_lock);
2537                 }
2538         }
2539
2540         mutex_lock(&smi_infos_lock);
2541         if (list_empty(&smi_infos)) {
2542                 mutex_unlock(&smi_infos_lock);
2543 #ifdef CONFIG_PCI
2544                 pci_unregister_driver(&ipmi_pci_driver);
2545 #endif
2546                 printk("ipmi_si: Unable to find any System Interface(s)\n");
2547                 return -ENODEV;
2548         } else {
2549                 mutex_unlock(&smi_infos_lock);
2550                 return 0;
2551         }
2552 }
2553 module_init(init_ipmi_si);
2554
2555 static void __devexit cleanup_one_si(struct smi_info *to_clean)
2556 {
2557         int           rv;
2558         unsigned long flags;
2559
2560         if (!to_clean)
2561                 return;
2562
2563         list_del(&to_clean->link);
2564
2565         /* Tell the timer and interrupt handlers that we are shutting
2566            down. */
2567         spin_lock_irqsave(&(to_clean->si_lock), flags);
2568         spin_lock(&(to_clean->msg_lock));
2569
2570         atomic_inc(&to_clean->stop_operation);
2571
2572         if (to_clean->irq_cleanup)
2573                 to_clean->irq_cleanup(to_clean);
2574
2575         spin_unlock(&(to_clean->msg_lock));
2576         spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2577
2578         /* Wait until we know that we are out of any interrupt
2579            handlers might have been running before we freed the
2580            interrupt. */
2581         synchronize_sched();
2582
2583         wait_for_timer_and_thread(to_clean);
2584
2585         /* Interrupts and timeouts are stopped, now make sure the
2586            interface is in a clean state. */
2587         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
2588                 poll(to_clean);
2589                 schedule_timeout_uninterruptible(1);
2590         }
2591
2592         rv = ipmi_unregister_smi(to_clean->intf);
2593         if (rv) {
2594                 printk(KERN_ERR
2595                        "ipmi_si: Unable to unregister device: errno=%d\n",
2596                        rv);
2597         }
2598
2599         to_clean->handlers->cleanup(to_clean->si_sm);
2600
2601         kfree(to_clean->si_sm);
2602
2603         if (to_clean->addr_source_cleanup)
2604                 to_clean->addr_source_cleanup(to_clean);
2605         if (to_clean->io_cleanup)
2606                 to_clean->io_cleanup(to_clean);
2607
2608         if (to_clean->dev_registered)
2609                 platform_device_unregister(to_clean->pdev);
2610
2611         kfree(to_clean);
2612 }
2613
2614 static __exit void cleanup_ipmi_si(void)
2615 {
2616         struct smi_info *e, *tmp_e;
2617
2618         if (!initialized)
2619                 return;
2620
2621 #ifdef CONFIG_PCI
2622         pci_unregister_driver(&ipmi_pci_driver);
2623 #endif
2624
2625         mutex_lock(&smi_infos_lock);
2626         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2627                 cleanup_one_si(e);
2628         mutex_unlock(&smi_infos_lock);
2629
2630         driver_unregister(&ipmi_driver);
2631 }
2632 module_exit(cleanup_ipmi_si);
2633
2634 MODULE_LICENSE("GPL");
2635 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2636 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");