Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through platform_device.  Structures which
29  *  define the configuration needed by the board are defined in a
30  *  board structure in arch/ppc/platforms (though I do not
31  *  discount the possibility that other architectures could one
32  *  day be supported.
33  *
34  *  The Gianfar Ethernet Controller uses a ring of buffer
35  *  descriptors.  The beginning is indicated by a register
36  *  pointing to the physical address of the start of the ring.
37  *  The end is determined by a "wrap" bit being set in the
38  *  last descriptor of the ring.
39  *
40  *  When a packet is received, the RXF bit in the
41  *  IEVENT register is set, triggering an interrupt when the
42  *  corresponding bit in the IMASK register is also set (if
43  *  interrupt coalescing is active, then the interrupt may not
44  *  happen immediately, but will wait until either a set number
45  *  of frames or amount of time have passed).  In NAPI, the
46  *  interrupt handler will signal there is work to be done, and
47  *  exit. This method will start at the last known empty
48  *  descriptor, and process every subsequent descriptor until there
49  *  are none left with data (NAPI will stop after a set number of
50  *  packets to give time to other tasks, but will eventually
51  *  process all the packets).  The data arrives inside a
52  *  pre-allocated skb, and so after the skb is passed up to the
53  *  stack, a new skb must be allocated, and the address field in
54  *  the buffer descriptor must be updated to indicate this new
55  *  skb.
56  *
57  *  When the kernel requests that a packet be transmitted, the
58  *  driver starts where it left off last time, and points the
59  *  descriptor at the buffer which was passed in.  The driver
60  *  then informs the DMA engine that there are packets ready to
61  *  be transmitted.  Once the controller is finished transmitting
62  *  the packet, an interrupt may be triggered (under the same
63  *  conditions as for reception, but depending on the TXF bit).
64  *  The driver then cleans up the buffer.
65  */
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/platform_device.h>
82 #include <linux/ip.h>
83 #include <linux/tcp.h>
84 #include <linux/udp.h>
85 #include <linux/in.h>
86
87 #include <asm/io.h>
88 #include <asm/irq.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95
96 #include "gianfar.h"
97 #include "gianfar_mii.h"
98
99 #define TX_TIMEOUT      (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113                 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct platform_device *pdev);
123 static int gfar_remove(struct platform_device *pdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
135 static void gfar_vlan_rx_register(struct net_device *netdev,
136                                 struct vlan_group *grp);
137 void gfar_halt(struct net_device *dev);
138 static void gfar_halt_nodisable(struct net_device *dev);
139 void gfar_start(struct net_device *dev);
140 static void gfar_clear_exact_match(struct net_device *dev);
141 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
142
143 extern const struct ethtool_ops gfar_ethtool_ops;
144
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
148
149 /* Returns 1 if incoming frames use an FCB */
150 static inline int gfar_uses_fcb(struct gfar_private *priv)
151 {
152         return (priv->vlan_enable || priv->rx_csum_enable);
153 }
154
155 /* Set up the ethernet device structure, private data,
156  * and anything else we need before we start */
157 static int gfar_probe(struct platform_device *pdev)
158 {
159         u32 tempval;
160         struct net_device *dev = NULL;
161         struct gfar_private *priv = NULL;
162         struct gianfar_platform_data *einfo;
163         struct resource *r;
164         int err = 0, irq;
165         DECLARE_MAC_BUF(mac);
166
167         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
168
169         if (NULL == einfo) {
170                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
171                        pdev->id);
172
173                 return -ENODEV;
174         }
175
176         /* Create an ethernet device instance */
177         dev = alloc_etherdev(sizeof (*priv));
178
179         if (NULL == dev)
180                 return -ENOMEM;
181
182         priv = netdev_priv(dev);
183         priv->dev = dev;
184
185         /* Set the info in the priv to the current info */
186         priv->einfo = einfo;
187
188         /* fill out IRQ fields */
189         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
190                 irq = platform_get_irq_byname(pdev, "tx");
191                 if (irq < 0)
192                         goto regs_fail;
193                 priv->interruptTransmit = irq;
194
195                 irq = platform_get_irq_byname(pdev, "rx");
196                 if (irq < 0)
197                         goto regs_fail;
198                 priv->interruptReceive = irq;
199
200                 irq = platform_get_irq_byname(pdev, "error");
201                 if (irq < 0)
202                         goto regs_fail;
203                 priv->interruptError = irq;
204         } else {
205                 irq = platform_get_irq(pdev, 0);
206                 if (irq < 0)
207                         goto regs_fail;
208                 priv->interruptTransmit = irq;
209         }
210
211         /* get a pointer to the register memory */
212         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
213         priv->regs = ioremap(r->start, sizeof (struct gfar));
214
215         if (NULL == priv->regs) {
216                 err = -ENOMEM;
217                 goto regs_fail;
218         }
219
220         spin_lock_init(&priv->txlock);
221         spin_lock_init(&priv->rxlock);
222         spin_lock_init(&priv->bflock);
223         INIT_WORK(&priv->reset_task, gfar_reset_task);
224
225         platform_set_drvdata(pdev, dev);
226
227         /* Stop the DMA engine now, in case it was running before */
228         /* (The firmware could have used it, and left it running). */
229         /* To do this, we write Graceful Receive Stop and Graceful */
230         /* Transmit Stop, and then wait until the corresponding bits */
231         /* in IEVENT indicate the stops have completed. */
232         tempval = gfar_read(&priv->regs->dmactrl);
233         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
234         gfar_write(&priv->regs->dmactrl, tempval);
235
236         tempval = gfar_read(&priv->regs->dmactrl);
237         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
238         gfar_write(&priv->regs->dmactrl, tempval);
239
240         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
241                 cpu_relax();
242
243         /* Reset MAC layer */
244         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
245
246         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
247         gfar_write(&priv->regs->maccfg1, tempval);
248
249         /* Initialize MACCFG2. */
250         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
251
252         /* Initialize ECNTRL */
253         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
254
255         /* Copy the station address into the dev structure, */
256         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
257
258         /* Set the dev->base_addr to the gfar reg region */
259         dev->base_addr = (unsigned long) (priv->regs);
260
261         SET_NETDEV_DEV(dev, &pdev->dev);
262
263         /* Fill in the dev structure */
264         dev->open = gfar_enet_open;
265         dev->hard_start_xmit = gfar_start_xmit;
266         dev->tx_timeout = gfar_timeout;
267         dev->watchdog_timeo = TX_TIMEOUT;
268         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
269 #ifdef CONFIG_NET_POLL_CONTROLLER
270         dev->poll_controller = gfar_netpoll;
271 #endif
272         dev->stop = gfar_close;
273         dev->change_mtu = gfar_change_mtu;
274         dev->mtu = 1500;
275         dev->set_multicast_list = gfar_set_multi;
276
277         dev->ethtool_ops = &gfar_ethtool_ops;
278
279         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
280                 priv->rx_csum_enable = 1;
281                 dev->features |= NETIF_F_IP_CSUM;
282         } else
283                 priv->rx_csum_enable = 0;
284
285         priv->vlgrp = NULL;
286
287         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
288                 dev->vlan_rx_register = gfar_vlan_rx_register;
289
290                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
291
292                 priv->vlan_enable = 1;
293         }
294
295         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
296                 priv->extended_hash = 1;
297                 priv->hash_width = 9;
298
299                 priv->hash_regs[0] = &priv->regs->igaddr0;
300                 priv->hash_regs[1] = &priv->regs->igaddr1;
301                 priv->hash_regs[2] = &priv->regs->igaddr2;
302                 priv->hash_regs[3] = &priv->regs->igaddr3;
303                 priv->hash_regs[4] = &priv->regs->igaddr4;
304                 priv->hash_regs[5] = &priv->regs->igaddr5;
305                 priv->hash_regs[6] = &priv->regs->igaddr6;
306                 priv->hash_regs[7] = &priv->regs->igaddr7;
307                 priv->hash_regs[8] = &priv->regs->gaddr0;
308                 priv->hash_regs[9] = &priv->regs->gaddr1;
309                 priv->hash_regs[10] = &priv->regs->gaddr2;
310                 priv->hash_regs[11] = &priv->regs->gaddr3;
311                 priv->hash_regs[12] = &priv->regs->gaddr4;
312                 priv->hash_regs[13] = &priv->regs->gaddr5;
313                 priv->hash_regs[14] = &priv->regs->gaddr6;
314                 priv->hash_regs[15] = &priv->regs->gaddr7;
315
316         } else {
317                 priv->extended_hash = 0;
318                 priv->hash_width = 8;
319
320                 priv->hash_regs[0] = &priv->regs->gaddr0;
321                 priv->hash_regs[1] = &priv->regs->gaddr1;
322                 priv->hash_regs[2] = &priv->regs->gaddr2;
323                 priv->hash_regs[3] = &priv->regs->gaddr3;
324                 priv->hash_regs[4] = &priv->regs->gaddr4;
325                 priv->hash_regs[5] = &priv->regs->gaddr5;
326                 priv->hash_regs[6] = &priv->regs->gaddr6;
327                 priv->hash_regs[7] = &priv->regs->gaddr7;
328         }
329
330         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
331                 priv->padding = DEFAULT_PADDING;
332         else
333                 priv->padding = 0;
334
335         if (dev->features & NETIF_F_IP_CSUM)
336                 dev->hard_header_len += GMAC_FCB_LEN;
337
338         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
339         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
340         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
341
342         priv->txcoalescing = DEFAULT_TX_COALESCE;
343         priv->txcount = DEFAULT_TXCOUNT;
344         priv->txtime = DEFAULT_TXTIME;
345         priv->rxcoalescing = DEFAULT_RX_COALESCE;
346         priv->rxcount = DEFAULT_RXCOUNT;
347         priv->rxtime = DEFAULT_RXTIME;
348
349         /* Enable most messages by default */
350         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
351
352         /* Carrier starts down, phylib will bring it up */
353         netif_carrier_off(dev);
354
355         err = register_netdev(dev);
356
357         if (err) {
358                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
359                                 dev->name);
360                 goto register_fail;
361         }
362
363         /* Create all the sysfs files */
364         gfar_init_sysfs(dev);
365
366         /* Print out the device info */
367         printk(KERN_INFO DEVICE_NAME "%s\n",
368                dev->name, print_mac(mac, dev->dev_addr));
369
370         /* Even more device info helps when determining which kernel */
371         /* provided which set of benchmarks. */
372         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
373         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
374                dev->name, priv->rx_ring_size, priv->tx_ring_size);
375
376         return 0;
377
378 register_fail:
379         iounmap(priv->regs);
380 regs_fail:
381         free_netdev(dev);
382         return err;
383 }
384
385 static int gfar_remove(struct platform_device *pdev)
386 {
387         struct net_device *dev = platform_get_drvdata(pdev);
388         struct gfar_private *priv = netdev_priv(dev);
389
390         platform_set_drvdata(pdev, NULL);
391
392         iounmap(priv->regs);
393         free_netdev(dev);
394
395         return 0;
396 }
397
398 #ifdef CONFIG_PM
399 static int gfar_suspend(struct platform_device *pdev, pm_message_t state)
400 {
401         struct net_device *dev = platform_get_drvdata(pdev);
402         struct gfar_private *priv = netdev_priv(dev);
403         unsigned long flags;
404         u32 tempval;
405
406         int magic_packet = priv->wol_en &&
407                 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
408
409         netif_device_detach(dev);
410
411         if (netif_running(dev)) {
412                 spin_lock_irqsave(&priv->txlock, flags);
413                 spin_lock(&priv->rxlock);
414
415                 gfar_halt_nodisable(dev);
416
417                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
418                 tempval = gfar_read(&priv->regs->maccfg1);
419
420                 tempval &= ~MACCFG1_TX_EN;
421
422                 if (!magic_packet)
423                         tempval &= ~MACCFG1_RX_EN;
424
425                 gfar_write(&priv->regs->maccfg1, tempval);
426
427                 spin_unlock(&priv->rxlock);
428                 spin_unlock_irqrestore(&priv->txlock, flags);
429
430                 napi_disable(&priv->napi);
431
432                 if (magic_packet) {
433                         /* Enable interrupt on Magic Packet */
434                         gfar_write(&priv->regs->imask, IMASK_MAG);
435
436                         /* Enable Magic Packet mode */
437                         tempval = gfar_read(&priv->regs->maccfg2);
438                         tempval |= MACCFG2_MPEN;
439                         gfar_write(&priv->regs->maccfg2, tempval);
440                 } else {
441                         phy_stop(priv->phydev);
442                 }
443         }
444
445         return 0;
446 }
447
448 static int gfar_resume(struct platform_device *pdev)
449 {
450         struct net_device *dev = platform_get_drvdata(pdev);
451         struct gfar_private *priv = netdev_priv(dev);
452         unsigned long flags;
453         u32 tempval;
454         int magic_packet = priv->wol_en &&
455                 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
456
457         if (!netif_running(dev)) {
458                 netif_device_attach(dev);
459                 return 0;
460         }
461
462         if (!magic_packet && priv->phydev)
463                 phy_start(priv->phydev);
464
465         /* Disable Magic Packet mode, in case something
466          * else woke us up.
467          */
468
469         spin_lock_irqsave(&priv->txlock, flags);
470         spin_lock(&priv->rxlock);
471
472         tempval = gfar_read(&priv->regs->maccfg2);
473         tempval &= ~MACCFG2_MPEN;
474         gfar_write(&priv->regs->maccfg2, tempval);
475
476         gfar_start(dev);
477
478         spin_unlock(&priv->rxlock);
479         spin_unlock_irqrestore(&priv->txlock, flags);
480
481         netif_device_attach(dev);
482
483         napi_enable(&priv->napi);
484
485         return 0;
486 }
487 #else
488 #define gfar_suspend NULL
489 #define gfar_resume NULL
490 #endif
491
492 /* Reads the controller's registers to determine what interface
493  * connects it to the PHY.
494  */
495 static phy_interface_t gfar_get_interface(struct net_device *dev)
496 {
497         struct gfar_private *priv = netdev_priv(dev);
498         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
499
500         if (ecntrl & ECNTRL_SGMII_MODE)
501                 return PHY_INTERFACE_MODE_SGMII;
502
503         if (ecntrl & ECNTRL_TBI_MODE) {
504                 if (ecntrl & ECNTRL_REDUCED_MODE)
505                         return PHY_INTERFACE_MODE_RTBI;
506                 else
507                         return PHY_INTERFACE_MODE_TBI;
508         }
509
510         if (ecntrl & ECNTRL_REDUCED_MODE) {
511                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
512                         return PHY_INTERFACE_MODE_RMII;
513                 else {
514                         phy_interface_t interface = priv->einfo->interface;
515
516                         /*
517                          * This isn't autodetected right now, so it must
518                          * be set by the device tree or platform code.
519                          */
520                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
521                                 return PHY_INTERFACE_MODE_RGMII_ID;
522
523                         return PHY_INTERFACE_MODE_RGMII;
524                 }
525         }
526
527         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
528                 return PHY_INTERFACE_MODE_GMII;
529
530         return PHY_INTERFACE_MODE_MII;
531 }
532
533
534 /* Initializes driver's PHY state, and attaches to the PHY.
535  * Returns 0 on success.
536  */
537 static int init_phy(struct net_device *dev)
538 {
539         struct gfar_private *priv = netdev_priv(dev);
540         uint gigabit_support =
541                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
542                 SUPPORTED_1000baseT_Full : 0;
543         struct phy_device *phydev;
544         char phy_id[BUS_ID_SIZE];
545         phy_interface_t interface;
546
547         priv->oldlink = 0;
548         priv->oldspeed = 0;
549         priv->oldduplex = -1;
550
551         snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
552
553         interface = gfar_get_interface(dev);
554
555         phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
556
557         if (interface == PHY_INTERFACE_MODE_SGMII)
558                 gfar_configure_serdes(dev);
559
560         if (IS_ERR(phydev)) {
561                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
562                 return PTR_ERR(phydev);
563         }
564
565         /* Remove any features not supported by the controller */
566         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
567         phydev->advertising = phydev->supported;
568
569         priv->phydev = phydev;
570
571         return 0;
572 }
573
574 /*
575  * Initialize TBI PHY interface for communicating with the
576  * SERDES lynx PHY on the chip.  We communicate with this PHY
577  * through the MDIO bus on each controller, treating it as a
578  * "normal" PHY at the address found in the TBIPA register.  We assume
579  * that the TBIPA register is valid.  Either the MDIO bus code will set
580  * it to a value that doesn't conflict with other PHYs on the bus, or the
581  * value doesn't matter, as there are no other PHYs on the bus.
582  */
583 static void gfar_configure_serdes(struct net_device *dev)
584 {
585         struct gfar_private *priv = netdev_priv(dev);
586         struct gfar_mii __iomem *regs =
587                         (void __iomem *)&priv->regs->gfar_mii_regs;
588         int tbipa = gfar_read(&priv->regs->tbipa);
589         struct mii_bus *bus = gfar_get_miibus(priv);
590
591         if (bus)
592                 mutex_lock(&bus->mdio_lock);
593
594         /* If the link is already up, we must already be ok, and don't need to
595          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
596          * everything for us?  Resetting it takes the link down and requires
597          * several seconds for it to come back.
598          */
599         if (gfar_local_mdio_read(regs, tbipa, MII_BMSR) & BMSR_LSTATUS)
600                 goto done;
601
602         /* Single clk mode, mii mode off(for serdes communication) */
603         gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
604
605         gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
606                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
607                         ADVERTISE_1000XPSE_ASYM);
608
609         gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
610                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
611
612         done:
613         if (bus)
614                 mutex_unlock(&bus->mdio_lock);
615 }
616
617 static void init_registers(struct net_device *dev)
618 {
619         struct gfar_private *priv = netdev_priv(dev);
620
621         /* Clear IEVENT */
622         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
623
624         /* Initialize IMASK */
625         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
626
627         /* Init hash registers to zero */
628         gfar_write(&priv->regs->igaddr0, 0);
629         gfar_write(&priv->regs->igaddr1, 0);
630         gfar_write(&priv->regs->igaddr2, 0);
631         gfar_write(&priv->regs->igaddr3, 0);
632         gfar_write(&priv->regs->igaddr4, 0);
633         gfar_write(&priv->regs->igaddr5, 0);
634         gfar_write(&priv->regs->igaddr6, 0);
635         gfar_write(&priv->regs->igaddr7, 0);
636
637         gfar_write(&priv->regs->gaddr0, 0);
638         gfar_write(&priv->regs->gaddr1, 0);
639         gfar_write(&priv->regs->gaddr2, 0);
640         gfar_write(&priv->regs->gaddr3, 0);
641         gfar_write(&priv->regs->gaddr4, 0);
642         gfar_write(&priv->regs->gaddr5, 0);
643         gfar_write(&priv->regs->gaddr6, 0);
644         gfar_write(&priv->regs->gaddr7, 0);
645
646         /* Zero out the rmon mib registers if it has them */
647         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
648                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
649
650                 /* Mask off the CAM interrupts */
651                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
652                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
653         }
654
655         /* Initialize the max receive buffer length */
656         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
657
658         /* Initialize the Minimum Frame Length Register */
659         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
660 }
661
662
663 /* Halt the receive and transmit queues */
664 static void gfar_halt_nodisable(struct net_device *dev)
665 {
666         struct gfar_private *priv = netdev_priv(dev);
667         struct gfar __iomem *regs = priv->regs;
668         u32 tempval;
669
670         /* Mask all interrupts */
671         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
672
673         /* Clear all interrupts */
674         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
675
676         /* Stop the DMA, and wait for it to stop */
677         tempval = gfar_read(&priv->regs->dmactrl);
678         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
679             != (DMACTRL_GRS | DMACTRL_GTS)) {
680                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
681                 gfar_write(&priv->regs->dmactrl, tempval);
682
683                 while (!(gfar_read(&priv->regs->ievent) &
684                          (IEVENT_GRSC | IEVENT_GTSC)))
685                         cpu_relax();
686         }
687 }
688
689 /* Halt the receive and transmit queues */
690 void gfar_halt(struct net_device *dev)
691 {
692         struct gfar_private *priv = netdev_priv(dev);
693         struct gfar __iomem *regs = priv->regs;
694         u32 tempval;
695
696         gfar_halt_nodisable(dev);
697
698         /* Disable Rx and Tx */
699         tempval = gfar_read(&regs->maccfg1);
700         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
701         gfar_write(&regs->maccfg1, tempval);
702 }
703
704 void stop_gfar(struct net_device *dev)
705 {
706         struct gfar_private *priv = netdev_priv(dev);
707         struct gfar __iomem *regs = priv->regs;
708         unsigned long flags;
709
710         phy_stop(priv->phydev);
711
712         /* Lock it down */
713         spin_lock_irqsave(&priv->txlock, flags);
714         spin_lock(&priv->rxlock);
715
716         gfar_halt(dev);
717
718         spin_unlock(&priv->rxlock);
719         spin_unlock_irqrestore(&priv->txlock, flags);
720
721         /* Free the IRQs */
722         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
723                 free_irq(priv->interruptError, dev);
724                 free_irq(priv->interruptTransmit, dev);
725                 free_irq(priv->interruptReceive, dev);
726         } else {
727                 free_irq(priv->interruptTransmit, dev);
728         }
729
730         free_skb_resources(priv);
731
732         dma_free_coherent(&dev->dev,
733                         sizeof(struct txbd8)*priv->tx_ring_size
734                         + sizeof(struct rxbd8)*priv->rx_ring_size,
735                         priv->tx_bd_base,
736                         gfar_read(&regs->tbase0));
737 }
738
739 /* If there are any tx skbs or rx skbs still around, free them.
740  * Then free tx_skbuff and rx_skbuff */
741 static void free_skb_resources(struct gfar_private *priv)
742 {
743         struct rxbd8 *rxbdp;
744         struct txbd8 *txbdp;
745         int i;
746
747         /* Go through all the buffer descriptors and free their data buffers */
748         txbdp = priv->tx_bd_base;
749
750         for (i = 0; i < priv->tx_ring_size; i++) {
751
752                 if (priv->tx_skbuff[i]) {
753                         dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
754                                         txbdp->length,
755                                         DMA_TO_DEVICE);
756                         dev_kfree_skb_any(priv->tx_skbuff[i]);
757                         priv->tx_skbuff[i] = NULL;
758                 }
759
760                 txbdp++;
761         }
762
763         kfree(priv->tx_skbuff);
764
765         rxbdp = priv->rx_bd_base;
766
767         /* rx_skbuff is not guaranteed to be allocated, so only
768          * free it and its contents if it is allocated */
769         if(priv->rx_skbuff != NULL) {
770                 for (i = 0; i < priv->rx_ring_size; i++) {
771                         if (priv->rx_skbuff[i]) {
772                                 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
773                                                 priv->rx_buffer_size,
774                                                 DMA_FROM_DEVICE);
775
776                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
777                                 priv->rx_skbuff[i] = NULL;
778                         }
779
780                         rxbdp->status = 0;
781                         rxbdp->length = 0;
782                         rxbdp->bufPtr = 0;
783
784                         rxbdp++;
785                 }
786
787                 kfree(priv->rx_skbuff);
788         }
789 }
790
791 void gfar_start(struct net_device *dev)
792 {
793         struct gfar_private *priv = netdev_priv(dev);
794         struct gfar __iomem *regs = priv->regs;
795         u32 tempval;
796
797         /* Enable Rx and Tx in MACCFG1 */
798         tempval = gfar_read(&regs->maccfg1);
799         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
800         gfar_write(&regs->maccfg1, tempval);
801
802         /* Initialize DMACTRL to have WWR and WOP */
803         tempval = gfar_read(&priv->regs->dmactrl);
804         tempval |= DMACTRL_INIT_SETTINGS;
805         gfar_write(&priv->regs->dmactrl, tempval);
806
807         /* Make sure we aren't stopped */
808         tempval = gfar_read(&priv->regs->dmactrl);
809         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
810         gfar_write(&priv->regs->dmactrl, tempval);
811
812         /* Clear THLT/RHLT, so that the DMA starts polling now */
813         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
814         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
815
816         /* Unmask the interrupts we look for */
817         gfar_write(&regs->imask, IMASK_DEFAULT);
818 }
819
820 /* Bring the controller up and running */
821 int startup_gfar(struct net_device *dev)
822 {
823         struct txbd8 *txbdp;
824         struct rxbd8 *rxbdp;
825         dma_addr_t addr = 0;
826         unsigned long vaddr;
827         int i;
828         struct gfar_private *priv = netdev_priv(dev);
829         struct gfar __iomem *regs = priv->regs;
830         int err = 0;
831         u32 rctrl = 0;
832         u32 attrs = 0;
833
834         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
835
836         /* Allocate memory for the buffer descriptors */
837         vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
838                         sizeof (struct txbd8) * priv->tx_ring_size +
839                         sizeof (struct rxbd8) * priv->rx_ring_size,
840                         &addr, GFP_KERNEL);
841
842         if (vaddr == 0) {
843                 if (netif_msg_ifup(priv))
844                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
845                                         dev->name);
846                 return -ENOMEM;
847         }
848
849         priv->tx_bd_base = (struct txbd8 *) vaddr;
850
851         /* enet DMA only understands physical addresses */
852         gfar_write(&regs->tbase0, addr);
853
854         /* Start the rx descriptor ring where the tx ring leaves off */
855         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
856         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
857         priv->rx_bd_base = (struct rxbd8 *) vaddr;
858         gfar_write(&regs->rbase0, addr);
859
860         /* Setup the skbuff rings */
861         priv->tx_skbuff =
862             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
863                                         priv->tx_ring_size, GFP_KERNEL);
864
865         if (NULL == priv->tx_skbuff) {
866                 if (netif_msg_ifup(priv))
867                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
868                                         dev->name);
869                 err = -ENOMEM;
870                 goto tx_skb_fail;
871         }
872
873         for (i = 0; i < priv->tx_ring_size; i++)
874                 priv->tx_skbuff[i] = NULL;
875
876         priv->rx_skbuff =
877             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
878                                         priv->rx_ring_size, GFP_KERNEL);
879
880         if (NULL == priv->rx_skbuff) {
881                 if (netif_msg_ifup(priv))
882                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
883                                         dev->name);
884                 err = -ENOMEM;
885                 goto rx_skb_fail;
886         }
887
888         for (i = 0; i < priv->rx_ring_size; i++)
889                 priv->rx_skbuff[i] = NULL;
890
891         /* Initialize some variables in our dev structure */
892         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
893         priv->cur_rx = priv->rx_bd_base;
894         priv->skb_curtx = priv->skb_dirtytx = 0;
895         priv->skb_currx = 0;
896
897         /* Initialize Transmit Descriptor Ring */
898         txbdp = priv->tx_bd_base;
899         for (i = 0; i < priv->tx_ring_size; i++) {
900                 txbdp->status = 0;
901                 txbdp->length = 0;
902                 txbdp->bufPtr = 0;
903                 txbdp++;
904         }
905
906         /* Set the last descriptor in the ring to indicate wrap */
907         txbdp--;
908         txbdp->status |= TXBD_WRAP;
909
910         rxbdp = priv->rx_bd_base;
911         for (i = 0; i < priv->rx_ring_size; i++) {
912                 struct sk_buff *skb;
913
914                 skb = gfar_new_skb(dev);
915
916                 if (!skb) {
917                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
918                                         dev->name);
919
920                         goto err_rxalloc_fail;
921                 }
922
923                 priv->rx_skbuff[i] = skb;
924
925                 gfar_new_rxbdp(dev, rxbdp, skb);
926
927                 rxbdp++;
928         }
929
930         /* Set the last descriptor in the ring to wrap */
931         rxbdp--;
932         rxbdp->status |= RXBD_WRAP;
933
934         /* If the device has multiple interrupts, register for
935          * them.  Otherwise, only register for the one */
936         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
937                 /* Install our interrupt handlers for Error,
938                  * Transmit, and Receive */
939                 if (request_irq(priv->interruptError, gfar_error,
940                                 0, "enet_error", dev) < 0) {
941                         if (netif_msg_intr(priv))
942                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
943                                         dev->name, priv->interruptError);
944
945                         err = -1;
946                         goto err_irq_fail;
947                 }
948
949                 if (request_irq(priv->interruptTransmit, gfar_transmit,
950                                 0, "enet_tx", dev) < 0) {
951                         if (netif_msg_intr(priv))
952                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
953                                         dev->name, priv->interruptTransmit);
954
955                         err = -1;
956
957                         goto tx_irq_fail;
958                 }
959
960                 if (request_irq(priv->interruptReceive, gfar_receive,
961                                 0, "enet_rx", dev) < 0) {
962                         if (netif_msg_intr(priv))
963                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
964                                                 dev->name, priv->interruptReceive);
965
966                         err = -1;
967                         goto rx_irq_fail;
968                 }
969         } else {
970                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
971                                 0, "gfar_interrupt", dev) < 0) {
972                         if (netif_msg_intr(priv))
973                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
974                                         dev->name, priv->interruptError);
975
976                         err = -1;
977                         goto err_irq_fail;
978                 }
979         }
980
981         phy_start(priv->phydev);
982
983         /* Configure the coalescing support */
984         if (priv->txcoalescing)
985                 gfar_write(&regs->txic,
986                            mk_ic_value(priv->txcount, priv->txtime));
987         else
988                 gfar_write(&regs->txic, 0);
989
990         if (priv->rxcoalescing)
991                 gfar_write(&regs->rxic,
992                            mk_ic_value(priv->rxcount, priv->rxtime));
993         else
994                 gfar_write(&regs->rxic, 0);
995
996         if (priv->rx_csum_enable)
997                 rctrl |= RCTRL_CHECKSUMMING;
998
999         if (priv->extended_hash) {
1000                 rctrl |= RCTRL_EXTHASH;
1001
1002                 gfar_clear_exact_match(dev);
1003                 rctrl |= RCTRL_EMEN;
1004         }
1005
1006         if (priv->vlan_enable)
1007                 rctrl |= RCTRL_VLAN;
1008
1009         if (priv->padding) {
1010                 rctrl &= ~RCTRL_PAL_MASK;
1011                 rctrl |= RCTRL_PADDING(priv->padding);
1012         }
1013
1014         /* Init rctrl based on our settings */
1015         gfar_write(&priv->regs->rctrl, rctrl);
1016
1017         if (dev->features & NETIF_F_IP_CSUM)
1018                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1019
1020         /* Set the extraction length and index */
1021         attrs = ATTRELI_EL(priv->rx_stash_size) |
1022                 ATTRELI_EI(priv->rx_stash_index);
1023
1024         gfar_write(&priv->regs->attreli, attrs);
1025
1026         /* Start with defaults, and add stashing or locking
1027          * depending on the approprate variables */
1028         attrs = ATTR_INIT_SETTINGS;
1029
1030         if (priv->bd_stash_en)
1031                 attrs |= ATTR_BDSTASH;
1032
1033         if (priv->rx_stash_size != 0)
1034                 attrs |= ATTR_BUFSTASH;
1035
1036         gfar_write(&priv->regs->attr, attrs);
1037
1038         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1039         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1040         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1041
1042         /* Start the controller */
1043         gfar_start(dev);
1044
1045         return 0;
1046
1047 rx_irq_fail:
1048         free_irq(priv->interruptTransmit, dev);
1049 tx_irq_fail:
1050         free_irq(priv->interruptError, dev);
1051 err_irq_fail:
1052 err_rxalloc_fail:
1053 rx_skb_fail:
1054         free_skb_resources(priv);
1055 tx_skb_fail:
1056         dma_free_coherent(&dev->dev,
1057                         sizeof(struct txbd8)*priv->tx_ring_size
1058                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1059                         priv->tx_bd_base,
1060                         gfar_read(&regs->tbase0));
1061
1062         return err;
1063 }
1064
1065 /* Called when something needs to use the ethernet device */
1066 /* Returns 0 for success. */
1067 static int gfar_enet_open(struct net_device *dev)
1068 {
1069         struct gfar_private *priv = netdev_priv(dev);
1070         int err;
1071
1072         napi_enable(&priv->napi);
1073
1074         /* Initialize a bunch of registers */
1075         init_registers(dev);
1076
1077         gfar_set_mac_address(dev);
1078
1079         err = init_phy(dev);
1080
1081         if(err) {
1082                 napi_disable(&priv->napi);
1083                 return err;
1084         }
1085
1086         err = startup_gfar(dev);
1087         if (err) {
1088                 napi_disable(&priv->napi);
1089                 return err;
1090         }
1091
1092         netif_start_queue(dev);
1093
1094         return err;
1095 }
1096
1097 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
1098 {
1099         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1100
1101         memset(fcb, 0, GMAC_FCB_LEN);
1102
1103         return fcb;
1104 }
1105
1106 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1107 {
1108         u8 flags = 0;
1109
1110         /* If we're here, it's a IP packet with a TCP or UDP
1111          * payload.  We set it to checksum, using a pseudo-header
1112          * we provide
1113          */
1114         flags = TXFCB_DEFAULT;
1115
1116         /* Tell the controller what the protocol is */
1117         /* And provide the already calculated phcs */
1118         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1119                 flags |= TXFCB_UDP;
1120                 fcb->phcs = udp_hdr(skb)->check;
1121         } else
1122                 fcb->phcs = tcp_hdr(skb)->check;
1123
1124         /* l3os is the distance between the start of the
1125          * frame (skb->data) and the start of the IP hdr.
1126          * l4os is the distance between the start of the
1127          * l3 hdr and the l4 hdr */
1128         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1129         fcb->l4os = skb_network_header_len(skb);
1130
1131         fcb->flags = flags;
1132 }
1133
1134 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1135 {
1136         fcb->flags |= TXFCB_VLN;
1137         fcb->vlctl = vlan_tx_tag_get(skb);
1138 }
1139
1140 /* This is called by the kernel when a frame is ready for transmission. */
1141 /* It is pointed to by the dev->hard_start_xmit function pointer */
1142 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1143 {
1144         struct gfar_private *priv = netdev_priv(dev);
1145         struct txfcb *fcb = NULL;
1146         struct txbd8 *txbdp;
1147         u16 status;
1148         unsigned long flags;
1149
1150         /* Update transmit stats */
1151         dev->stats.tx_bytes += skb->len;
1152
1153         /* Lock priv now */
1154         spin_lock_irqsave(&priv->txlock, flags);
1155
1156         /* Point at the first free tx descriptor */
1157         txbdp = priv->cur_tx;
1158
1159         /* Clear all but the WRAP status flags */
1160         status = txbdp->status & TXBD_WRAP;
1161
1162         /* Set up checksumming */
1163         if (likely((dev->features & NETIF_F_IP_CSUM)
1164                         && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1165                 fcb = gfar_add_fcb(skb, txbdp);
1166                 status |= TXBD_TOE;
1167                 gfar_tx_checksum(skb, fcb);
1168         }
1169
1170         if (priv->vlan_enable &&
1171                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1172                 if (unlikely(NULL == fcb)) {
1173                         fcb = gfar_add_fcb(skb, txbdp);
1174                         status |= TXBD_TOE;
1175                 }
1176
1177                 gfar_tx_vlan(skb, fcb);
1178         }
1179
1180         /* Set buffer length and pointer */
1181         txbdp->length = skb->len;
1182         txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1183                         skb->len, DMA_TO_DEVICE);
1184
1185         /* Save the skb pointer so we can free it later */
1186         priv->tx_skbuff[priv->skb_curtx] = skb;
1187
1188         /* Update the current skb pointer (wrapping if this was the last) */
1189         priv->skb_curtx =
1190             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1191
1192         /* Flag the BD as interrupt-causing */
1193         status |= TXBD_INTERRUPT;
1194
1195         /* Flag the BD as ready to go, last in frame, and  */
1196         /* in need of CRC */
1197         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1198
1199         dev->trans_start = jiffies;
1200
1201         /* The powerpc-specific eieio() is used, as wmb() has too strong
1202          * semantics (it requires synchronization between cacheable and
1203          * uncacheable mappings, which eieio doesn't provide and which we
1204          * don't need), thus requiring a more expensive sync instruction.  At
1205          * some point, the set of architecture-independent barrier functions
1206          * should be expanded to include weaker barriers.
1207          */
1208
1209         eieio();
1210         txbdp->status = status;
1211
1212         /* If this was the last BD in the ring, the next one */
1213         /* is at the beginning of the ring */
1214         if (txbdp->status & TXBD_WRAP)
1215                 txbdp = priv->tx_bd_base;
1216         else
1217                 txbdp++;
1218
1219         /* If the next BD still needs to be cleaned up, then the bds
1220            are full.  We need to tell the kernel to stop sending us stuff. */
1221         if (txbdp == priv->dirty_tx) {
1222                 netif_stop_queue(dev);
1223
1224                 dev->stats.tx_fifo_errors++;
1225         }
1226
1227         /* Update the current txbd to the next one */
1228         priv->cur_tx = txbdp;
1229
1230         /* Tell the DMA to go go go */
1231         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1232
1233         /* Unlock priv */
1234         spin_unlock_irqrestore(&priv->txlock, flags);
1235
1236         return 0;
1237 }
1238
1239 /* Stops the kernel queue, and halts the controller */
1240 static int gfar_close(struct net_device *dev)
1241 {
1242         struct gfar_private *priv = netdev_priv(dev);
1243
1244         napi_disable(&priv->napi);
1245
1246         cancel_work_sync(&priv->reset_task);
1247         stop_gfar(dev);
1248
1249         /* Disconnect from the PHY */
1250         phy_disconnect(priv->phydev);
1251         priv->phydev = NULL;
1252
1253         netif_stop_queue(dev);
1254
1255         return 0;
1256 }
1257
1258 /* Changes the mac address if the controller is not running. */
1259 static int gfar_set_mac_address(struct net_device *dev)
1260 {
1261         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1262
1263         return 0;
1264 }
1265
1266
1267 /* Enables and disables VLAN insertion/extraction */
1268 static void gfar_vlan_rx_register(struct net_device *dev,
1269                 struct vlan_group *grp)
1270 {
1271         struct gfar_private *priv = netdev_priv(dev);
1272         unsigned long flags;
1273         u32 tempval;
1274
1275         spin_lock_irqsave(&priv->rxlock, flags);
1276
1277         priv->vlgrp = grp;
1278
1279         if (grp) {
1280                 /* Enable VLAN tag insertion */
1281                 tempval = gfar_read(&priv->regs->tctrl);
1282                 tempval |= TCTRL_VLINS;
1283
1284                 gfar_write(&priv->regs->tctrl, tempval);
1285
1286                 /* Enable VLAN tag extraction */
1287                 tempval = gfar_read(&priv->regs->rctrl);
1288                 tempval |= RCTRL_VLEX;
1289                 gfar_write(&priv->regs->rctrl, tempval);
1290         } else {
1291                 /* Disable VLAN tag insertion */
1292                 tempval = gfar_read(&priv->regs->tctrl);
1293                 tempval &= ~TCTRL_VLINS;
1294                 gfar_write(&priv->regs->tctrl, tempval);
1295
1296                 /* Disable VLAN tag extraction */
1297                 tempval = gfar_read(&priv->regs->rctrl);
1298                 tempval &= ~RCTRL_VLEX;
1299                 gfar_write(&priv->regs->rctrl, tempval);
1300         }
1301
1302         spin_unlock_irqrestore(&priv->rxlock, flags);
1303 }
1304
1305 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1306 {
1307         int tempsize, tempval;
1308         struct gfar_private *priv = netdev_priv(dev);
1309         int oldsize = priv->rx_buffer_size;
1310         int frame_size = new_mtu + ETH_HLEN;
1311
1312         if (priv->vlan_enable)
1313                 frame_size += VLAN_HLEN;
1314
1315         if (gfar_uses_fcb(priv))
1316                 frame_size += GMAC_FCB_LEN;
1317
1318         frame_size += priv->padding;
1319
1320         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1321                 if (netif_msg_drv(priv))
1322                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1323                                         dev->name);
1324                 return -EINVAL;
1325         }
1326
1327         tempsize =
1328             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1329             INCREMENTAL_BUFFER_SIZE;
1330
1331         /* Only stop and start the controller if it isn't already
1332          * stopped, and we changed something */
1333         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1334                 stop_gfar(dev);
1335
1336         priv->rx_buffer_size = tempsize;
1337
1338         dev->mtu = new_mtu;
1339
1340         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1341         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1342
1343         /* If the mtu is larger than the max size for standard
1344          * ethernet frames (ie, a jumbo frame), then set maccfg2
1345          * to allow huge frames, and to check the length */
1346         tempval = gfar_read(&priv->regs->maccfg2);
1347
1348         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1349                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1350         else
1351                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1352
1353         gfar_write(&priv->regs->maccfg2, tempval);
1354
1355         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1356                 startup_gfar(dev);
1357
1358         return 0;
1359 }
1360
1361 /* gfar_reset_task gets scheduled when a packet has not been
1362  * transmitted after a set amount of time.
1363  * For now, assume that clearing out all the structures, and
1364  * starting over will fix the problem.
1365  */
1366 static void gfar_reset_task(struct work_struct *work)
1367 {
1368         struct gfar_private *priv = container_of(work, struct gfar_private,
1369                         reset_task);
1370         struct net_device *dev = priv->dev;
1371
1372         if (dev->flags & IFF_UP) {
1373                 stop_gfar(dev);
1374                 startup_gfar(dev);
1375         }
1376
1377         netif_tx_schedule_all(dev);
1378 }
1379
1380 static void gfar_timeout(struct net_device *dev)
1381 {
1382         struct gfar_private *priv = netdev_priv(dev);
1383
1384         dev->stats.tx_errors++;
1385         schedule_work(&priv->reset_task);
1386 }
1387
1388 /* Interrupt Handler for Transmit complete */
1389 static int gfar_clean_tx_ring(struct net_device *dev)
1390 {
1391         struct txbd8 *bdp;
1392         struct gfar_private *priv = netdev_priv(dev);
1393         int howmany = 0;
1394
1395         bdp = priv->dirty_tx;
1396         while ((bdp->status & TXBD_READY) == 0) {
1397                 /* If dirty_tx and cur_tx are the same, then either the */
1398                 /* ring is empty or full now (it could only be full in the beginning, */
1399                 /* obviously).  If it is empty, we are done. */
1400                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1401                         break;
1402
1403                 howmany++;
1404
1405                 /* Deferred means some collisions occurred during transmit, */
1406                 /* but we eventually sent the packet. */
1407                 if (bdp->status & TXBD_DEF)
1408                         dev->stats.collisions++;
1409
1410                 /* Free the sk buffer associated with this TxBD */
1411                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1412
1413                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1414                 priv->skb_dirtytx =
1415                     (priv->skb_dirtytx +
1416                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1417
1418                 /* Clean BD length for empty detection */
1419                 bdp->length = 0;
1420
1421                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1422                 if (bdp->status & TXBD_WRAP)
1423                         bdp = priv->tx_bd_base;
1424                 else
1425                         bdp++;
1426
1427                 /* Move dirty_tx to be the next bd */
1428                 priv->dirty_tx = bdp;
1429
1430                 /* We freed a buffer, so now we can restart transmission */
1431                 if (netif_queue_stopped(dev))
1432                         netif_wake_queue(dev);
1433         } /* while ((bdp->status & TXBD_READY) == 0) */
1434
1435         dev->stats.tx_packets += howmany;
1436
1437         return howmany;
1438 }
1439
1440 /* Interrupt Handler for Transmit complete */
1441 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1442 {
1443         struct net_device *dev = (struct net_device *) dev_id;
1444         struct gfar_private *priv = netdev_priv(dev);
1445
1446         /* Clear IEVENT */
1447         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1448
1449         /* Lock priv */
1450         spin_lock(&priv->txlock);
1451
1452         gfar_clean_tx_ring(dev);
1453
1454         /* If we are coalescing the interrupts, reset the timer */
1455         /* Otherwise, clear it */
1456         if (likely(priv->txcoalescing)) {
1457                 gfar_write(&priv->regs->txic, 0);
1458                 gfar_write(&priv->regs->txic,
1459                            mk_ic_value(priv->txcount, priv->txtime));
1460         }
1461
1462         spin_unlock(&priv->txlock);
1463
1464         return IRQ_HANDLED;
1465 }
1466
1467 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1468                 struct sk_buff *skb)
1469 {
1470         struct gfar_private *priv = netdev_priv(dev);
1471         u32 * status_len = (u32 *)bdp;
1472         u16 flags;
1473
1474         bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1475                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1476
1477         flags = RXBD_EMPTY | RXBD_INTERRUPT;
1478
1479         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1480                 flags |= RXBD_WRAP;
1481
1482         eieio();
1483
1484         *status_len = (u32)flags << 16;
1485 }
1486
1487
1488 struct sk_buff * gfar_new_skb(struct net_device *dev)
1489 {
1490         unsigned int alignamount;
1491         struct gfar_private *priv = netdev_priv(dev);
1492         struct sk_buff *skb = NULL;
1493
1494         /* We have to allocate the skb, so keep trying till we succeed */
1495         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1496
1497         if (!skb)
1498                 return NULL;
1499
1500         alignamount = RXBUF_ALIGNMENT -
1501                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1502
1503         /* We need the data buffer to be aligned properly.  We will reserve
1504          * as many bytes as needed to align the data properly
1505          */
1506         skb_reserve(skb, alignamount);
1507
1508         return skb;
1509 }
1510
1511 static inline void count_errors(unsigned short status, struct net_device *dev)
1512 {
1513         struct gfar_private *priv = netdev_priv(dev);
1514         struct net_device_stats *stats = &dev->stats;
1515         struct gfar_extra_stats *estats = &priv->extra_stats;
1516
1517         /* If the packet was truncated, none of the other errors
1518          * matter */
1519         if (status & RXBD_TRUNCATED) {
1520                 stats->rx_length_errors++;
1521
1522                 estats->rx_trunc++;
1523
1524                 return;
1525         }
1526         /* Count the errors, if there were any */
1527         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1528                 stats->rx_length_errors++;
1529
1530                 if (status & RXBD_LARGE)
1531                         estats->rx_large++;
1532                 else
1533                         estats->rx_short++;
1534         }
1535         if (status & RXBD_NONOCTET) {
1536                 stats->rx_frame_errors++;
1537                 estats->rx_nonoctet++;
1538         }
1539         if (status & RXBD_CRCERR) {
1540                 estats->rx_crcerr++;
1541                 stats->rx_crc_errors++;
1542         }
1543         if (status & RXBD_OVERRUN) {
1544                 estats->rx_overrun++;
1545                 stats->rx_crc_errors++;
1546         }
1547 }
1548
1549 irqreturn_t gfar_receive(int irq, void *dev_id)
1550 {
1551         struct net_device *dev = (struct net_device *) dev_id;
1552         struct gfar_private *priv = netdev_priv(dev);
1553         u32 tempval;
1554
1555         /* support NAPI */
1556         /* Clear IEVENT, so interrupts aren't called again
1557          * because of the packets that have already arrived */
1558         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1559
1560         if (netif_rx_schedule_prep(dev, &priv->napi)) {
1561                 tempval = gfar_read(&priv->regs->imask);
1562                 tempval &= IMASK_RTX_DISABLED;
1563                 gfar_write(&priv->regs->imask, tempval);
1564
1565                 __netif_rx_schedule(dev, &priv->napi);
1566         } else {
1567                 if (netif_msg_rx_err(priv))
1568                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1569                                 dev->name, gfar_read(&priv->regs->ievent),
1570                                 gfar_read(&priv->regs->imask));
1571         }
1572
1573         return IRQ_HANDLED;
1574 }
1575
1576 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1577 {
1578         /* If valid headers were found, and valid sums
1579          * were verified, then we tell the kernel that no
1580          * checksumming is necessary.  Otherwise, it is */
1581         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1582                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1583         else
1584                 skb->ip_summed = CHECKSUM_NONE;
1585 }
1586
1587
1588 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1589 {
1590         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1591
1592         /* Remove the FCB from the skb */
1593         skb_pull(skb, GMAC_FCB_LEN);
1594
1595         return fcb;
1596 }
1597
1598 /* gfar_process_frame() -- handle one incoming packet if skb
1599  * isn't NULL.  */
1600 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1601                 int length)
1602 {
1603         struct gfar_private *priv = netdev_priv(dev);
1604         struct rxfcb *fcb = NULL;
1605
1606         if (NULL == skb) {
1607                 if (netif_msg_rx_err(priv))
1608                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1609                 dev->stats.rx_dropped++;
1610                 priv->extra_stats.rx_skbmissing++;
1611         } else {
1612                 int ret;
1613
1614                 /* Prep the skb for the packet */
1615                 skb_put(skb, length);
1616
1617                 /* Grab the FCB if there is one */
1618                 if (gfar_uses_fcb(priv))
1619                         fcb = gfar_get_fcb(skb);
1620
1621                 /* Remove the padded bytes, if there are any */
1622                 if (priv->padding)
1623                         skb_pull(skb, priv->padding);
1624
1625                 if (priv->rx_csum_enable)
1626                         gfar_rx_checksum(skb, fcb);
1627
1628                 /* Tell the skb what kind of packet this is */
1629                 skb->protocol = eth_type_trans(skb, dev);
1630
1631                 /* Send the packet up the stack */
1632                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) {
1633                         ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1634                                                        fcb->vlctl);
1635                 } else
1636                         ret = netif_receive_skb(skb);
1637
1638                 if (NET_RX_DROP == ret)
1639                         priv->extra_stats.kernel_dropped++;
1640         }
1641
1642         return 0;
1643 }
1644
1645 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1646  *   until the budget/quota has been reached. Returns the number
1647  *   of frames handled
1648  */
1649 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1650 {
1651         struct rxbd8 *bdp;
1652         struct sk_buff *skb;
1653         u16 pkt_len;
1654         int howmany = 0;
1655         struct gfar_private *priv = netdev_priv(dev);
1656
1657         /* Get the first full descriptor */
1658         bdp = priv->cur_rx;
1659
1660         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1661                 struct sk_buff *newskb;
1662                 rmb();
1663
1664                 /* Add another skb for the future */
1665                 newskb = gfar_new_skb(dev);
1666
1667                 skb = priv->rx_skbuff[priv->skb_currx];
1668
1669                 /* We drop the frame if we failed to allocate a new buffer */
1670                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1671                                  bdp->status & RXBD_ERR)) {
1672                         count_errors(bdp->status, dev);
1673
1674                         if (unlikely(!newskb))
1675                                 newskb = skb;
1676
1677                         if (skb) {
1678                                 dma_unmap_single(&priv->dev->dev,
1679                                                 bdp->bufPtr,
1680                                                 priv->rx_buffer_size,
1681                                                 DMA_FROM_DEVICE);
1682
1683                                 dev_kfree_skb_any(skb);
1684                         }
1685                 } else {
1686                         /* Increment the number of packets */
1687                         dev->stats.rx_packets++;
1688                         howmany++;
1689
1690                         /* Remove the FCS from the packet length */
1691                         pkt_len = bdp->length - 4;
1692
1693                         gfar_process_frame(dev, skb, pkt_len);
1694
1695                         dev->stats.rx_bytes += pkt_len;
1696                 }
1697
1698                 dev->last_rx = jiffies;
1699
1700                 priv->rx_skbuff[priv->skb_currx] = newskb;
1701
1702                 /* Setup the new bdp */
1703                 gfar_new_rxbdp(dev, bdp, newskb);
1704
1705                 /* Update to the next pointer */
1706                 if (bdp->status & RXBD_WRAP)
1707                         bdp = priv->rx_bd_base;
1708                 else
1709                         bdp++;
1710
1711                 /* update to point at the next skb */
1712                 priv->skb_currx =
1713                     (priv->skb_currx + 1) &
1714                     RX_RING_MOD_MASK(priv->rx_ring_size);
1715         }
1716
1717         /* Update the current rxbd pointer to be the next one */
1718         priv->cur_rx = bdp;
1719
1720         return howmany;
1721 }
1722
1723 static int gfar_poll(struct napi_struct *napi, int budget)
1724 {
1725         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1726         struct net_device *dev = priv->dev;
1727         int howmany;
1728         unsigned long flags;
1729
1730         /* If we fail to get the lock, don't bother with the TX BDs */
1731         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1732                 gfar_clean_tx_ring(dev);
1733                 spin_unlock_irqrestore(&priv->txlock, flags);
1734         }
1735
1736         howmany = gfar_clean_rx_ring(dev, budget);
1737
1738         if (howmany < budget) {
1739                 netif_rx_complete(dev, napi);
1740
1741                 /* Clear the halt bit in RSTAT */
1742                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1743
1744                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1745
1746                 /* If we are coalescing interrupts, update the timer */
1747                 /* Otherwise, clear it */
1748                 if (likely(priv->rxcoalescing)) {
1749                         gfar_write(&priv->regs->rxic, 0);
1750                         gfar_write(&priv->regs->rxic,
1751                                    mk_ic_value(priv->rxcount, priv->rxtime));
1752                 }
1753         }
1754
1755         return howmany;
1756 }
1757
1758 #ifdef CONFIG_NET_POLL_CONTROLLER
1759 /*
1760  * Polling 'interrupt' - used by things like netconsole to send skbs
1761  * without having to re-enable interrupts. It's not called while
1762  * the interrupt routine is executing.
1763  */
1764 static void gfar_netpoll(struct net_device *dev)
1765 {
1766         struct gfar_private *priv = netdev_priv(dev);
1767
1768         /* If the device has multiple interrupts, run tx/rx */
1769         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1770                 disable_irq(priv->interruptTransmit);
1771                 disable_irq(priv->interruptReceive);
1772                 disable_irq(priv->interruptError);
1773                 gfar_interrupt(priv->interruptTransmit, dev);
1774                 enable_irq(priv->interruptError);
1775                 enable_irq(priv->interruptReceive);
1776                 enable_irq(priv->interruptTransmit);
1777         } else {
1778                 disable_irq(priv->interruptTransmit);
1779                 gfar_interrupt(priv->interruptTransmit, dev);
1780                 enable_irq(priv->interruptTransmit);
1781         }
1782 }
1783 #endif
1784
1785 /* The interrupt handler for devices with one interrupt */
1786 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1787 {
1788         struct net_device *dev = dev_id;
1789         struct gfar_private *priv = netdev_priv(dev);
1790
1791         /* Save ievent for future reference */
1792         u32 events = gfar_read(&priv->regs->ievent);
1793
1794         /* Check for reception */
1795         if (events & IEVENT_RX_MASK)
1796                 gfar_receive(irq, dev_id);
1797
1798         /* Check for transmit completion */
1799         if (events & IEVENT_TX_MASK)
1800                 gfar_transmit(irq, dev_id);
1801
1802         /* Check for errors */
1803         if (events & IEVENT_ERR_MASK)
1804                 gfar_error(irq, dev_id);
1805
1806         return IRQ_HANDLED;
1807 }
1808
1809 /* Called every time the controller might need to be made
1810  * aware of new link state.  The PHY code conveys this
1811  * information through variables in the phydev structure, and this
1812  * function converts those variables into the appropriate
1813  * register values, and can bring down the device if needed.
1814  */
1815 static void adjust_link(struct net_device *dev)
1816 {
1817         struct gfar_private *priv = netdev_priv(dev);
1818         struct gfar __iomem *regs = priv->regs;
1819         unsigned long flags;
1820         struct phy_device *phydev = priv->phydev;
1821         int new_state = 0;
1822
1823         spin_lock_irqsave(&priv->txlock, flags);
1824         if (phydev->link) {
1825                 u32 tempval = gfar_read(&regs->maccfg2);
1826                 u32 ecntrl = gfar_read(&regs->ecntrl);
1827
1828                 /* Now we make sure that we can be in full duplex mode.
1829                  * If not, we operate in half-duplex mode. */
1830                 if (phydev->duplex != priv->oldduplex) {
1831                         new_state = 1;
1832                         if (!(phydev->duplex))
1833                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1834                         else
1835                                 tempval |= MACCFG2_FULL_DUPLEX;
1836
1837                         priv->oldduplex = phydev->duplex;
1838                 }
1839
1840                 if (phydev->speed != priv->oldspeed) {
1841                         new_state = 1;
1842                         switch (phydev->speed) {
1843                         case 1000:
1844                                 tempval =
1845                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1846                                 break;
1847                         case 100:
1848                         case 10:
1849                                 tempval =
1850                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1851
1852                                 /* Reduced mode distinguishes
1853                                  * between 10 and 100 */
1854                                 if (phydev->speed == SPEED_100)
1855                                         ecntrl |= ECNTRL_R100;
1856                                 else
1857                                         ecntrl &= ~(ECNTRL_R100);
1858                                 break;
1859                         default:
1860                                 if (netif_msg_link(priv))
1861                                         printk(KERN_WARNING
1862                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1863                                                 dev->name, phydev->speed);
1864                                 break;
1865                         }
1866
1867                         priv->oldspeed = phydev->speed;
1868                 }
1869
1870                 gfar_write(&regs->maccfg2, tempval);
1871                 gfar_write(&regs->ecntrl, ecntrl);
1872
1873                 if (!priv->oldlink) {
1874                         new_state = 1;
1875                         priv->oldlink = 1;
1876                 }
1877         } else if (priv->oldlink) {
1878                 new_state = 1;
1879                 priv->oldlink = 0;
1880                 priv->oldspeed = 0;
1881                 priv->oldduplex = -1;
1882         }
1883
1884         if (new_state && netif_msg_link(priv))
1885                 phy_print_status(phydev);
1886
1887         spin_unlock_irqrestore(&priv->txlock, flags);
1888 }
1889
1890 /* Update the hash table based on the current list of multicast
1891  * addresses we subscribe to.  Also, change the promiscuity of
1892  * the device based on the flags (this function is called
1893  * whenever dev->flags is changed */
1894 static void gfar_set_multi(struct net_device *dev)
1895 {
1896         struct dev_mc_list *mc_ptr;
1897         struct gfar_private *priv = netdev_priv(dev);
1898         struct gfar __iomem *regs = priv->regs;
1899         u32 tempval;
1900
1901         if(dev->flags & IFF_PROMISC) {
1902                 /* Set RCTRL to PROM */
1903                 tempval = gfar_read(&regs->rctrl);
1904                 tempval |= RCTRL_PROM;
1905                 gfar_write(&regs->rctrl, tempval);
1906         } else {
1907                 /* Set RCTRL to not PROM */
1908                 tempval = gfar_read(&regs->rctrl);
1909                 tempval &= ~(RCTRL_PROM);
1910                 gfar_write(&regs->rctrl, tempval);
1911         }
1912
1913         if(dev->flags & IFF_ALLMULTI) {
1914                 /* Set the hash to rx all multicast frames */
1915                 gfar_write(&regs->igaddr0, 0xffffffff);
1916                 gfar_write(&regs->igaddr1, 0xffffffff);
1917                 gfar_write(&regs->igaddr2, 0xffffffff);
1918                 gfar_write(&regs->igaddr3, 0xffffffff);
1919                 gfar_write(&regs->igaddr4, 0xffffffff);
1920                 gfar_write(&regs->igaddr5, 0xffffffff);
1921                 gfar_write(&regs->igaddr6, 0xffffffff);
1922                 gfar_write(&regs->igaddr7, 0xffffffff);
1923                 gfar_write(&regs->gaddr0, 0xffffffff);
1924                 gfar_write(&regs->gaddr1, 0xffffffff);
1925                 gfar_write(&regs->gaddr2, 0xffffffff);
1926                 gfar_write(&regs->gaddr3, 0xffffffff);
1927                 gfar_write(&regs->gaddr4, 0xffffffff);
1928                 gfar_write(&regs->gaddr5, 0xffffffff);
1929                 gfar_write(&regs->gaddr6, 0xffffffff);
1930                 gfar_write(&regs->gaddr7, 0xffffffff);
1931         } else {
1932                 int em_num;
1933                 int idx;
1934
1935                 /* zero out the hash */
1936                 gfar_write(&regs->igaddr0, 0x0);
1937                 gfar_write(&regs->igaddr1, 0x0);
1938                 gfar_write(&regs->igaddr2, 0x0);
1939                 gfar_write(&regs->igaddr3, 0x0);
1940                 gfar_write(&regs->igaddr4, 0x0);
1941                 gfar_write(&regs->igaddr5, 0x0);
1942                 gfar_write(&regs->igaddr6, 0x0);
1943                 gfar_write(&regs->igaddr7, 0x0);
1944                 gfar_write(&regs->gaddr0, 0x0);
1945                 gfar_write(&regs->gaddr1, 0x0);
1946                 gfar_write(&regs->gaddr2, 0x0);
1947                 gfar_write(&regs->gaddr3, 0x0);
1948                 gfar_write(&regs->gaddr4, 0x0);
1949                 gfar_write(&regs->gaddr5, 0x0);
1950                 gfar_write(&regs->gaddr6, 0x0);
1951                 gfar_write(&regs->gaddr7, 0x0);
1952
1953                 /* If we have extended hash tables, we need to
1954                  * clear the exact match registers to prepare for
1955                  * setting them */
1956                 if (priv->extended_hash) {
1957                         em_num = GFAR_EM_NUM + 1;
1958                         gfar_clear_exact_match(dev);
1959                         idx = 1;
1960                 } else {
1961                         idx = 0;
1962                         em_num = 0;
1963                 }
1964
1965                 if(dev->mc_count == 0)
1966                         return;
1967
1968                 /* Parse the list, and set the appropriate bits */
1969                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1970                         if (idx < em_num) {
1971                                 gfar_set_mac_for_addr(dev, idx,
1972                                                 mc_ptr->dmi_addr);
1973                                 idx++;
1974                         } else
1975                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1976                 }
1977         }
1978
1979         return;
1980 }
1981
1982
1983 /* Clears each of the exact match registers to zero, so they
1984  * don't interfere with normal reception */
1985 static void gfar_clear_exact_match(struct net_device *dev)
1986 {
1987         int idx;
1988         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1989
1990         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1991                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1992 }
1993
1994 /* Set the appropriate hash bit for the given addr */
1995 /* The algorithm works like so:
1996  * 1) Take the Destination Address (ie the multicast address), and
1997  * do a CRC on it (little endian), and reverse the bits of the
1998  * result.
1999  * 2) Use the 8 most significant bits as a hash into a 256-entry
2000  * table.  The table is controlled through 8 32-bit registers:
2001  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2002  * gaddr7.  This means that the 3 most significant bits in the
2003  * hash index which gaddr register to use, and the 5 other bits
2004  * indicate which bit (assuming an IBM numbering scheme, which
2005  * for PowerPC (tm) is usually the case) in the register holds
2006  * the entry. */
2007 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2008 {
2009         u32 tempval;
2010         struct gfar_private *priv = netdev_priv(dev);
2011         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2012         int width = priv->hash_width;
2013         u8 whichbit = (result >> (32 - width)) & 0x1f;
2014         u8 whichreg = result >> (32 - width + 5);
2015         u32 value = (1 << (31-whichbit));
2016
2017         tempval = gfar_read(priv->hash_regs[whichreg]);
2018         tempval |= value;
2019         gfar_write(priv->hash_regs[whichreg], tempval);
2020
2021         return;
2022 }
2023
2024
2025 /* There are multiple MAC Address register pairs on some controllers
2026  * This function sets the numth pair to a given address
2027  */
2028 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2029 {
2030         struct gfar_private *priv = netdev_priv(dev);
2031         int idx;
2032         char tmpbuf[MAC_ADDR_LEN];
2033         u32 tempval;
2034         u32 __iomem *macptr = &priv->regs->macstnaddr1;
2035
2036         macptr += num*2;
2037
2038         /* Now copy it into the mac registers backwards, cuz */
2039         /* little endian is silly */
2040         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2041                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2042
2043         gfar_write(macptr, *((u32 *) (tmpbuf)));
2044
2045         tempval = *((u32 *) (tmpbuf + 4));
2046
2047         gfar_write(macptr+1, tempval);
2048 }
2049
2050 /* GFAR error interrupt handler */
2051 static irqreturn_t gfar_error(int irq, void *dev_id)
2052 {
2053         struct net_device *dev = dev_id;
2054         struct gfar_private *priv = netdev_priv(dev);
2055
2056         /* Save ievent for future reference */
2057         u32 events = gfar_read(&priv->regs->ievent);
2058
2059         /* Clear IEVENT */
2060         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2061
2062         /* Magic Packet is not an error. */
2063         if ((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2064             (events & IEVENT_MAG))
2065                 events &= ~IEVENT_MAG;
2066
2067         /* Hmm... */
2068         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2069                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2070                        dev->name, events, gfar_read(&priv->regs->imask));
2071
2072         /* Update the error counters */
2073         if (events & IEVENT_TXE) {
2074                 dev->stats.tx_errors++;
2075
2076                 if (events & IEVENT_LC)
2077                         dev->stats.tx_window_errors++;
2078                 if (events & IEVENT_CRL)
2079                         dev->stats.tx_aborted_errors++;
2080                 if (events & IEVENT_XFUN) {
2081                         if (netif_msg_tx_err(priv))
2082                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2083                                        "packet dropped.\n", dev->name);
2084                         dev->stats.tx_dropped++;
2085                         priv->extra_stats.tx_underrun++;
2086
2087                         /* Reactivate the Tx Queues */
2088                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2089                 }
2090                 if (netif_msg_tx_err(priv))
2091                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2092         }
2093         if (events & IEVENT_BSY) {
2094                 dev->stats.rx_errors++;
2095                 priv->extra_stats.rx_bsy++;
2096
2097                 gfar_receive(irq, dev_id);
2098
2099                 if (netif_msg_rx_err(priv))
2100                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2101                                dev->name, gfar_read(&priv->regs->rstat));
2102         }
2103         if (events & IEVENT_BABR) {
2104                 dev->stats.rx_errors++;
2105                 priv->extra_stats.rx_babr++;
2106
2107                 if (netif_msg_rx_err(priv))
2108                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2109         }
2110         if (events & IEVENT_EBERR) {
2111                 priv->extra_stats.eberr++;
2112                 if (netif_msg_rx_err(priv))
2113                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2114         }
2115         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2116                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2117
2118         if (events & IEVENT_BABT) {
2119                 priv->extra_stats.tx_babt++;
2120                 if (netif_msg_tx_err(priv))
2121                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2122         }
2123         return IRQ_HANDLED;
2124 }
2125
2126 /* work with hotplug and coldplug */
2127 MODULE_ALIAS("platform:fsl-gianfar");
2128
2129 /* Structure for a device driver */
2130 static struct platform_driver gfar_driver = {
2131         .probe = gfar_probe,
2132         .remove = gfar_remove,
2133         .suspend = gfar_suspend,
2134         .resume = gfar_resume,
2135         .driver = {
2136                 .name = "fsl-gianfar",
2137                 .owner = THIS_MODULE,
2138         },
2139 };
2140
2141 static int __init gfar_init(void)
2142 {
2143         int err = gfar_mdio_init();
2144
2145         if (err)
2146                 return err;
2147
2148         err = platform_driver_register(&gfar_driver);
2149
2150         if (err)
2151                 gfar_mdio_exit();
2152
2153         return err;
2154 }
2155
2156 static void __exit gfar_exit(void)
2157 {
2158         platform_driver_unregister(&gfar_driver);
2159         gfar_mdio_exit();
2160 }
2161
2162 module_init(gfar_init);
2163 module_exit(gfar_exit);
2164