Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch   GUID cleanups
26  *
27  * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *                      error flag, set SAL default return values, changed
29  *                      error record structure to linked list, added init call
30  *                      to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  *
52  * 2005-08-12 Keith Owens <kaos@sgi.com>
53  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54  *
55  * 2005-10-07 Keith Owens <kaos@sgi.com>
56  *            Add notify_die() hooks.
57  *
58  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59  *            Add printing support for MCA/INIT.
60  */
61 #include <linux/types.h>
62 #include <linux/init.h>
63 #include <linux/sched.h>
64 #include <linux/interrupt.h>
65 #include <linux/irq.h>
66 #include <linux/smp_lock.h>
67 #include <linux/bootmem.h>
68 #include <linux/acpi.h>
69 #include <linux/timer.h>
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/smp.h>
73 #include <linux/workqueue.h>
74 #include <linux/cpumask.h>
75
76 #include <asm/delay.h>
77 #include <asm/kdebug.h>
78 #include <asm/machvec.h>
79 #include <asm/meminit.h>
80 #include <asm/page.h>
81 #include <asm/ptrace.h>
82 #include <asm/system.h>
83 #include <asm/sal.h>
84 #include <asm/mca.h>
85
86 #include <asm/irq.h>
87 #include <asm/hw_irq.h>
88
89 #include "mca_drv.h"
90 #include "entry.h"
91
92 #if defined(IA64_MCA_DEBUG_INFO)
93 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
94 #else
95 # define IA64_MCA_DEBUG(fmt...)
96 #endif
97
98 /* Used by mca_asm.S */
99 u32                             ia64_mca_serialize;
100 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
101 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
102 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
103 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
104
105 unsigned long __per_cpu_mca[NR_CPUS];
106
107 /* In mca_asm.S */
108 extern void                     ia64_os_init_dispatch_monarch (void);
109 extern void                     ia64_os_init_dispatch_slave (void);
110
111 static int monarch_cpu = -1;
112
113 static ia64_mc_info_t           ia64_mc_info;
114
115 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
116 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
117 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
118 #define CPE_HISTORY_LENGTH    5
119 #define CMC_HISTORY_LENGTH    5
120
121 static struct timer_list cpe_poll_timer;
122 static struct timer_list cmc_poll_timer;
123 /*
124  * This variable tells whether we are currently in polling mode.
125  * Start with this in the wrong state so we won't play w/ timers
126  * before the system is ready.
127  */
128 static int cmc_polling_enabled = 1;
129
130 /*
131  * Clearing this variable prevents CPE polling from getting activated
132  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
133  * but encounters problems retrieving CPE logs.  This should only be
134  * necessary for debugging.
135  */
136 static int cpe_poll_enabled = 1;
137
138 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
139
140 static int mca_init __initdata;
141
142 /*
143  * limited & delayed printing support for MCA/INIT handler
144  */
145
146 #define mprintk(fmt...) ia64_mca_printk(fmt)
147
148 #define MLOGBUF_SIZE (512+256*NR_CPUS)
149 #define MLOGBUF_MSGMAX 256
150 static char mlogbuf[MLOGBUF_SIZE];
151 static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
152 static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
153 static unsigned long mlogbuf_start;
154 static unsigned long mlogbuf_end;
155 static unsigned int mlogbuf_finished = 0;
156 static unsigned long mlogbuf_timestamp = 0;
157
158 static int loglevel_save = -1;
159 #define BREAK_LOGLEVEL(__console_loglevel)              \
160         oops_in_progress = 1;                           \
161         if (loglevel_save < 0)                          \
162                 loglevel_save = __console_loglevel;     \
163         __console_loglevel = 15;
164
165 #define RESTORE_LOGLEVEL(__console_loglevel)            \
166         if (loglevel_save >= 0) {                       \
167                 __console_loglevel = loglevel_save;     \
168                 loglevel_save = -1;                     \
169         }                                               \
170         mlogbuf_finished = 0;                           \
171         oops_in_progress = 0;
172
173 /*
174  * Push messages into buffer, print them later if not urgent.
175  */
176 void ia64_mca_printk(const char *fmt, ...)
177 {
178         va_list args;
179         int printed_len;
180         char temp_buf[MLOGBUF_MSGMAX];
181         char *p;
182
183         va_start(args, fmt);
184         printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
185         va_end(args);
186
187         /* Copy the output into mlogbuf */
188         if (oops_in_progress) {
189                 /* mlogbuf was abandoned, use printk directly instead. */
190                 printk(temp_buf);
191         } else {
192                 spin_lock(&mlogbuf_wlock);
193                 for (p = temp_buf; *p; p++) {
194                         unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
195                         if (next != mlogbuf_start) {
196                                 mlogbuf[mlogbuf_end] = *p;
197                                 mlogbuf_end = next;
198                         } else {
199                                 /* buffer full */
200                                 break;
201                         }
202                 }
203                 mlogbuf[mlogbuf_end] = '\0';
204                 spin_unlock(&mlogbuf_wlock);
205         }
206 }
207 EXPORT_SYMBOL(ia64_mca_printk);
208
209 /*
210  * Print buffered messages.
211  *  NOTE: call this after returning normal context. (ex. from salinfod)
212  */
213 void ia64_mlogbuf_dump(void)
214 {
215         char temp_buf[MLOGBUF_MSGMAX];
216         char *p;
217         unsigned long index;
218         unsigned long flags;
219         unsigned int printed_len;
220
221         /* Get output from mlogbuf */
222         while (mlogbuf_start != mlogbuf_end) {
223                 temp_buf[0] = '\0';
224                 p = temp_buf;
225                 printed_len = 0;
226
227                 spin_lock_irqsave(&mlogbuf_rlock, flags);
228
229                 index = mlogbuf_start;
230                 while (index != mlogbuf_end) {
231                         *p = mlogbuf[index];
232                         index = (index + 1) % MLOGBUF_SIZE;
233                         if (!*p)
234                                 break;
235                         p++;
236                         if (++printed_len >= MLOGBUF_MSGMAX - 1)
237                                 break;
238                 }
239                 *p = '\0';
240                 if (temp_buf[0])
241                         printk(temp_buf);
242                 mlogbuf_start = index;
243
244                 mlogbuf_timestamp = 0;
245                 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
246         }
247 }
248 EXPORT_SYMBOL(ia64_mlogbuf_dump);
249
250 /*
251  * Call this if system is going to down or if immediate flushing messages to
252  * console is required. (ex. recovery was failed, crash dump is going to be
253  * invoked, long-wait rendezvous etc.)
254  *  NOTE: this should be called from monarch.
255  */
256 static void ia64_mlogbuf_finish(int wait)
257 {
258         BREAK_LOGLEVEL(console_loglevel);
259
260         spin_lock_init(&mlogbuf_rlock);
261         ia64_mlogbuf_dump();
262         printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
263                 "MCA/INIT might be dodgy or fail.\n");
264
265         if (!wait)
266                 return;
267
268         /* wait for console */
269         printk("Delaying for 5 seconds...\n");
270         udelay(5*1000000);
271
272         mlogbuf_finished = 1;
273 }
274 EXPORT_SYMBOL(ia64_mlogbuf_finish);
275
276 /*
277  * Print buffered messages from INIT context.
278  */
279 static void ia64_mlogbuf_dump_from_init(void)
280 {
281         if (mlogbuf_finished)
282                 return;
283
284         if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
285                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
286                         " and the system seems to be messed up.\n");
287                 ia64_mlogbuf_finish(0);
288                 return;
289         }
290
291         if (!spin_trylock(&mlogbuf_rlock)) {
292                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
293                         "Generated messages other than stack dump will be "
294                         "buffered to mlogbuf and will be printed later.\n");
295                 printk(KERN_ERR "INIT: If messages would not printed after "
296                         "this INIT, wait 30sec and assert INIT again.\n");
297                 if (!mlogbuf_timestamp)
298                         mlogbuf_timestamp = jiffies;
299                 return;
300         }
301         spin_unlock(&mlogbuf_rlock);
302         ia64_mlogbuf_dump();
303 }
304
305 static void inline
306 ia64_mca_spin(const char *func)
307 {
308         if (monarch_cpu == smp_processor_id())
309                 ia64_mlogbuf_finish(0);
310         mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
311         while (1)
312                 cpu_relax();
313 }
314 /*
315  * IA64_MCA log support
316  */
317 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
318 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
319
320 typedef struct ia64_state_log_s
321 {
322         spinlock_t      isl_lock;
323         int             isl_index;
324         unsigned long   isl_count;
325         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
326 } ia64_state_log_t;
327
328 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
329
330 #define IA64_LOG_ALLOCATE(it, size) \
331         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
332                 (ia64_err_rec_t *)alloc_bootmem(size); \
333         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
334                 (ia64_err_rec_t *)alloc_bootmem(size);}
335 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
336 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
337 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
338 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
339 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
340 #define IA64_LOG_INDEX_INC(it) \
341     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
342     ia64_state_log[it].isl_count++;}
343 #define IA64_LOG_INDEX_DEC(it) \
344     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
345 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
346 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
347 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
348
349 /*
350  * ia64_log_init
351  *      Reset the OS ia64 log buffer
352  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
353  * Outputs      :       None
354  */
355 static void __init
356 ia64_log_init(int sal_info_type)
357 {
358         u64     max_size = 0;
359
360         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
361         IA64_LOG_LOCK_INIT(sal_info_type);
362
363         // SAL will tell us the maximum size of any error record of this type
364         max_size = ia64_sal_get_state_info_size(sal_info_type);
365         if (!max_size)
366                 /* alloc_bootmem() doesn't like zero-sized allocations! */
367                 return;
368
369         // set up OS data structures to hold error info
370         IA64_LOG_ALLOCATE(sal_info_type, max_size);
371         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
372         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
373 }
374
375 /*
376  * ia64_log_get
377  *
378  *      Get the current MCA log from SAL and copy it into the OS log buffer.
379  *
380  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
381  *              irq_safe    whether you can use printk at this point
382  *  Outputs :   size        (total record length)
383  *              *buffer     (ptr to error record)
384  *
385  */
386 static u64
387 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
388 {
389         sal_log_record_header_t     *log_buffer;
390         u64                         total_len = 0;
391         int                         s;
392
393         IA64_LOG_LOCK(sal_info_type);
394
395         /* Get the process state information */
396         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
397
398         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
399
400         if (total_len) {
401                 IA64_LOG_INDEX_INC(sal_info_type);
402                 IA64_LOG_UNLOCK(sal_info_type);
403                 if (irq_safe) {
404                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
405                                        "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
406                 }
407                 *buffer = (u8 *) log_buffer;
408                 return total_len;
409         } else {
410                 IA64_LOG_UNLOCK(sal_info_type);
411                 return 0;
412         }
413 }
414
415 /*
416  *  ia64_mca_log_sal_error_record
417  *
418  *  This function retrieves a specified error record type from SAL
419  *  and wakes up any processes waiting for error records.
420  *
421  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
422  *              FIXME: remove MCA and irq_safe.
423  */
424 static void
425 ia64_mca_log_sal_error_record(int sal_info_type)
426 {
427         u8 *buffer;
428         sal_log_record_header_t *rh;
429         u64 size;
430         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
431 #ifdef IA64_MCA_DEBUG_INFO
432         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
433 #endif
434
435         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
436         if (!size)
437                 return;
438
439         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
440
441         if (irq_safe)
442                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
443                         smp_processor_id(),
444                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
445
446         /* Clear logs from corrected errors in case there's no user-level logger */
447         rh = (sal_log_record_header_t *)buffer;
448         if (rh->severity == sal_log_severity_corrected)
449                 ia64_sal_clear_state_info(sal_info_type);
450 }
451
452 /*
453  * search_mca_table
454  *  See if the MCA surfaced in an instruction range
455  *  that has been tagged as recoverable.
456  *
457  *  Inputs
458  *      first   First address range to check
459  *      last    Last address range to check
460  *      ip      Instruction pointer, address we are looking for
461  *
462  * Return value:
463  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
464  */
465 int
466 search_mca_table (const struct mca_table_entry *first,
467                 const struct mca_table_entry *last,
468                 unsigned long ip)
469 {
470         const struct mca_table_entry *curr;
471         u64 curr_start, curr_end;
472
473         curr = first;
474         while (curr <= last) {
475                 curr_start = (u64) &curr->start_addr + curr->start_addr;
476                 curr_end = (u64) &curr->end_addr + curr->end_addr;
477
478                 if ((ip >= curr_start) && (ip <= curr_end)) {
479                         return 1;
480                 }
481                 curr++;
482         }
483         return 0;
484 }
485
486 /* Given an address, look for it in the mca tables. */
487 int mca_recover_range(unsigned long addr)
488 {
489         extern struct mca_table_entry __start___mca_table[];
490         extern struct mca_table_entry __stop___mca_table[];
491
492         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
493 }
494 EXPORT_SYMBOL_GPL(mca_recover_range);
495
496 #ifdef CONFIG_ACPI
497
498 int cpe_vector = -1;
499 int ia64_cpe_irq = -1;
500
501 static irqreturn_t
502 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
503 {
504         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
505         static int              index;
506         static DEFINE_SPINLOCK(cpe_history_lock);
507
508         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
509                        __FUNCTION__, cpe_irq, smp_processor_id());
510
511         /* SAL spec states this should run w/ interrupts enabled */
512         local_irq_enable();
513
514         spin_lock(&cpe_history_lock);
515         if (!cpe_poll_enabled && cpe_vector >= 0) {
516
517                 int i, count = 1; /* we know 1 happened now */
518                 unsigned long now = jiffies;
519
520                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
521                         if (now - cpe_history[i] <= HZ)
522                                 count++;
523                 }
524
525                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
526                 if (count >= CPE_HISTORY_LENGTH) {
527
528                         cpe_poll_enabled = 1;
529                         spin_unlock(&cpe_history_lock);
530                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
531
532                         /*
533                          * Corrected errors will still be corrected, but
534                          * make sure there's a log somewhere that indicates
535                          * something is generating more than we can handle.
536                          */
537                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
538
539                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
540
541                         /* lock already released, get out now */
542                         goto out;
543                 } else {
544                         cpe_history[index++] = now;
545                         if (index == CPE_HISTORY_LENGTH)
546                                 index = 0;
547                 }
548         }
549         spin_unlock(&cpe_history_lock);
550 out:
551         /* Get the CPE error record and log it */
552         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
553
554         return IRQ_HANDLED;
555 }
556
557 #endif /* CONFIG_ACPI */
558
559 #ifdef CONFIG_ACPI
560 /*
561  * ia64_mca_register_cpev
562  *
563  *  Register the corrected platform error vector with SAL.
564  *
565  *  Inputs
566  *      cpev        Corrected Platform Error Vector number
567  *
568  *  Outputs
569  *      None
570  */
571 static void __init
572 ia64_mca_register_cpev (int cpev)
573 {
574         /* Register the CPE interrupt vector with SAL */
575         struct ia64_sal_retval isrv;
576
577         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
578         if (isrv.status) {
579                 printk(KERN_ERR "Failed to register Corrected Platform "
580                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
581                 return;
582         }
583
584         IA64_MCA_DEBUG("%s: corrected platform error "
585                        "vector %#x registered\n", __FUNCTION__, cpev);
586 }
587 #endif /* CONFIG_ACPI */
588
589 /*
590  * ia64_mca_cmc_vector_setup
591  *
592  *  Setup the corrected machine check vector register in the processor.
593  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
594  *  This function is invoked on a per-processor basis.
595  *
596  * Inputs
597  *      None
598  *
599  * Outputs
600  *      None
601  */
602 void __cpuinit
603 ia64_mca_cmc_vector_setup (void)
604 {
605         cmcv_reg_t      cmcv;
606
607         cmcv.cmcv_regval        = 0;
608         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
609         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
610         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
611
612         IA64_MCA_DEBUG("%s: CPU %d corrected "
613                        "machine check vector %#x registered.\n",
614                        __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
615
616         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
617                        __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
618 }
619
620 /*
621  * ia64_mca_cmc_vector_disable
622  *
623  *  Mask the corrected machine check vector register in the processor.
624  *  This function is invoked on a per-processor basis.
625  *
626  * Inputs
627  *      dummy(unused)
628  *
629  * Outputs
630  *      None
631  */
632 static void
633 ia64_mca_cmc_vector_disable (void *dummy)
634 {
635         cmcv_reg_t      cmcv;
636
637         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
638
639         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
640         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
641
642         IA64_MCA_DEBUG("%s: CPU %d corrected "
643                        "machine check vector %#x disabled.\n",
644                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
645 }
646
647 /*
648  * ia64_mca_cmc_vector_enable
649  *
650  *  Unmask the corrected machine check vector register in the processor.
651  *  This function is invoked on a per-processor basis.
652  *
653  * Inputs
654  *      dummy(unused)
655  *
656  * Outputs
657  *      None
658  */
659 static void
660 ia64_mca_cmc_vector_enable (void *dummy)
661 {
662         cmcv_reg_t      cmcv;
663
664         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
665
666         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
667         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
668
669         IA64_MCA_DEBUG("%s: CPU %d corrected "
670                        "machine check vector %#x enabled.\n",
671                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
672 }
673
674 /*
675  * ia64_mca_cmc_vector_disable_keventd
676  *
677  * Called via keventd (smp_call_function() is not safe in interrupt context) to
678  * disable the cmc interrupt vector.
679  */
680 static void
681 ia64_mca_cmc_vector_disable_keventd(void *unused)
682 {
683         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
684 }
685
686 /*
687  * ia64_mca_cmc_vector_enable_keventd
688  *
689  * Called via keventd (smp_call_function() is not safe in interrupt context) to
690  * enable the cmc interrupt vector.
691  */
692 static void
693 ia64_mca_cmc_vector_enable_keventd(void *unused)
694 {
695         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
696 }
697
698 /*
699  * ia64_mca_wakeup
700  *
701  *      Send an inter-cpu interrupt to wake-up a particular cpu
702  *      and mark that cpu to be out of rendez.
703  *
704  *  Inputs  :   cpuid
705  *  Outputs :   None
706  */
707 static void
708 ia64_mca_wakeup(int cpu)
709 {
710         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
711         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
712
713 }
714
715 /*
716  * ia64_mca_wakeup_all
717  *
718  *      Wakeup all the cpus which have rendez'ed previously.
719  *
720  *  Inputs  :   None
721  *  Outputs :   None
722  */
723 static void
724 ia64_mca_wakeup_all(void)
725 {
726         int cpu;
727
728         /* Clear the Rendez checkin flag for all cpus */
729         for_each_online_cpu(cpu) {
730                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
731                         ia64_mca_wakeup(cpu);
732         }
733
734 }
735
736 /*
737  * ia64_mca_rendez_interrupt_handler
738  *
739  *      This is handler used to put slave processors into spinloop
740  *      while the monarch processor does the mca handling and later
741  *      wake each slave up once the monarch is done.
742  *
743  *  Inputs  :   None
744  *  Outputs :   None
745  */
746 static irqreturn_t
747 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
748 {
749         unsigned long flags;
750         int cpu = smp_processor_id();
751         struct ia64_mca_notify_die nd =
752                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
753
754         /* Mask all interrupts */
755         local_irq_save(flags);
756         if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, (long)&nd, 0, 0)
757                         == NOTIFY_STOP)
758                 ia64_mca_spin(__FUNCTION__);
759
760         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
761         /* Register with the SAL monarch that the slave has
762          * reached SAL
763          */
764         ia64_sal_mc_rendez();
765
766         if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, (long)&nd, 0, 0)
767                         == NOTIFY_STOP)
768                 ia64_mca_spin(__FUNCTION__);
769
770         /* Wait for the monarch cpu to exit. */
771         while (monarch_cpu != -1)
772                cpu_relax();     /* spin until monarch leaves */
773
774         if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, (long)&nd, 0, 0)
775                         == NOTIFY_STOP)
776                 ia64_mca_spin(__FUNCTION__);
777
778         /* Enable all interrupts */
779         local_irq_restore(flags);
780         return IRQ_HANDLED;
781 }
782
783 /*
784  * ia64_mca_wakeup_int_handler
785  *
786  *      The interrupt handler for processing the inter-cpu interrupt to the
787  *      slave cpu which was spinning in the rendez loop.
788  *      Since this spinning is done by turning off the interrupts and
789  *      polling on the wakeup-interrupt bit in the IRR, there is
790  *      nothing useful to be done in the handler.
791  *
792  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
793  *      arg             (Interrupt handler specific argument)
794  *      ptregs          (Exception frame at the time of the interrupt)
795  *  Outputs :   None
796  *
797  */
798 static irqreturn_t
799 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
800 {
801         return IRQ_HANDLED;
802 }
803
804 /* Function pointer for extra MCA recovery */
805 int (*ia64_mca_ucmc_extension)
806         (void*,struct ia64_sal_os_state*)
807         = NULL;
808
809 int
810 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
811 {
812         if (ia64_mca_ucmc_extension)
813                 return 1;
814
815         ia64_mca_ucmc_extension = fn;
816         return 0;
817 }
818
819 void
820 ia64_unreg_MCA_extension(void)
821 {
822         if (ia64_mca_ucmc_extension)
823                 ia64_mca_ucmc_extension = NULL;
824 }
825
826 EXPORT_SYMBOL(ia64_reg_MCA_extension);
827 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
828
829
830 static inline void
831 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
832 {
833         u64 fslot, tslot, nat;
834         *tr = *fr;
835         fslot = ((unsigned long)fr >> 3) & 63;
836         tslot = ((unsigned long)tr >> 3) & 63;
837         *tnat &= ~(1UL << tslot);
838         nat = (fnat >> fslot) & 1;
839         *tnat |= (nat << tslot);
840 }
841
842 /* Change the comm field on the MCA/INT task to include the pid that
843  * was interrupted, it makes for easier debugging.  If that pid was 0
844  * (swapper or nested MCA/INIT) then use the start of the previous comm
845  * field suffixed with its cpu.
846  */
847
848 static void
849 ia64_mca_modify_comm(const struct task_struct *previous_current)
850 {
851         char *p, comm[sizeof(current->comm)];
852         if (previous_current->pid)
853                 snprintf(comm, sizeof(comm), "%s %d",
854                         current->comm, previous_current->pid);
855         else {
856                 int l;
857                 if ((p = strchr(previous_current->comm, ' ')))
858                         l = p - previous_current->comm;
859                 else
860                         l = strlen(previous_current->comm);
861                 snprintf(comm, sizeof(comm), "%s %*s %d",
862                         current->comm, l, previous_current->comm,
863                         task_thread_info(previous_current)->cpu);
864         }
865         memcpy(current->comm, comm, sizeof(current->comm));
866 }
867
868 /* On entry to this routine, we are running on the per cpu stack, see
869  * mca_asm.h.  The original stack has not been touched by this event.  Some of
870  * the original stack's registers will be in the RBS on this stack.  This stack
871  * also contains a partial pt_regs and switch_stack, the rest of the data is in
872  * PAL minstate.
873  *
874  * The first thing to do is modify the original stack to look like a blocked
875  * task so we can run backtrace on the original task.  Also mark the per cpu
876  * stack as current to ensure that we use the correct task state, it also means
877  * that we can do backtrace on the MCA/INIT handler code itself.
878  */
879
880 static struct task_struct *
881 ia64_mca_modify_original_stack(struct pt_regs *regs,
882                 const struct switch_stack *sw,
883                 struct ia64_sal_os_state *sos,
884                 const char *type)
885 {
886         char *p;
887         ia64_va va;
888         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
889         const pal_min_state_area_t *ms = sos->pal_min_state;
890         struct task_struct *previous_current;
891         struct pt_regs *old_regs;
892         struct switch_stack *old_sw;
893         unsigned size = sizeof(struct pt_regs) +
894                         sizeof(struct switch_stack) + 16;
895         u64 *old_bspstore, *old_bsp;
896         u64 *new_bspstore, *new_bsp;
897         u64 old_unat, old_rnat, new_rnat, nat;
898         u64 slots, loadrs = regs->loadrs;
899         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
900         u64 ar_bspstore = regs->ar_bspstore;
901         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
902         const u64 *bank;
903         const char *msg;
904         int cpu = smp_processor_id();
905
906         previous_current = curr_task(cpu);
907         set_curr_task(cpu, current);
908         if ((p = strchr(current->comm, ' ')))
909                 *p = '\0';
910
911         /* Best effort attempt to cope with MCA/INIT delivered while in
912          * physical mode.
913          */
914         regs->cr_ipsr = ms->pmsa_ipsr;
915         if (ia64_psr(regs)->dt == 0) {
916                 va.l = r12;
917                 if (va.f.reg == 0) {
918                         va.f.reg = 7;
919                         r12 = va.l;
920                 }
921                 va.l = r13;
922                 if (va.f.reg == 0) {
923                         va.f.reg = 7;
924                         r13 = va.l;
925                 }
926         }
927         if (ia64_psr(regs)->rt == 0) {
928                 va.l = ar_bspstore;
929                 if (va.f.reg == 0) {
930                         va.f.reg = 7;
931                         ar_bspstore = va.l;
932                 }
933                 va.l = ar_bsp;
934                 if (va.f.reg == 0) {
935                         va.f.reg = 7;
936                         ar_bsp = va.l;
937                 }
938         }
939
940         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
941          * have been copied to the old stack, the old stack may fail the
942          * validation tests below.  So ia64_old_stack() must restore the dirty
943          * registers from the new stack.  The old and new bspstore probably
944          * have different alignments, so loadrs calculated on the old bsp
945          * cannot be used to restore from the new bsp.  Calculate a suitable
946          * loadrs for the new stack and save it in the new pt_regs, where
947          * ia64_old_stack() can get it.
948          */
949         old_bspstore = (u64 *)ar_bspstore;
950         old_bsp = (u64 *)ar_bsp;
951         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
952         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
953         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
954         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
955
956         /* Verify the previous stack state before we change it */
957         if (user_mode(regs)) {
958                 msg = "occurred in user space";
959                 /* previous_current is guaranteed to be valid when the task was
960                  * in user space, so ...
961                  */
962                 ia64_mca_modify_comm(previous_current);
963                 goto no_mod;
964         }
965
966         if (!mca_recover_range(ms->pmsa_iip)) {
967                 if (r13 != sos->prev_IA64_KR_CURRENT) {
968                         msg = "inconsistent previous current and r13";
969                         goto no_mod;
970                 }
971                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
972                         msg = "inconsistent r12 and r13";
973                         goto no_mod;
974                 }
975                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
976                         msg = "inconsistent ar.bspstore and r13";
977                         goto no_mod;
978                 }
979                 va.p = old_bspstore;
980                 if (va.f.reg < 5) {
981                         msg = "old_bspstore is in the wrong region";
982                         goto no_mod;
983                 }
984                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
985                         msg = "inconsistent ar.bsp and r13";
986                         goto no_mod;
987                 }
988                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
989                 if (ar_bspstore + size > r12) {
990                         msg = "no room for blocked state";
991                         goto no_mod;
992                 }
993         }
994
995         ia64_mca_modify_comm(previous_current);
996
997         /* Make the original task look blocked.  First stack a struct pt_regs,
998          * describing the state at the time of interrupt.  mca_asm.S built a
999          * partial pt_regs, copy it and fill in the blanks using minstate.
1000          */
1001         p = (char *)r12 - sizeof(*regs);
1002         old_regs = (struct pt_regs *)p;
1003         memcpy(old_regs, regs, sizeof(*regs));
1004         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1005          * pmsa_{xip,xpsr,xfs}
1006          */
1007         if (ia64_psr(regs)->ic) {
1008                 old_regs->cr_iip = ms->pmsa_iip;
1009                 old_regs->cr_ipsr = ms->pmsa_ipsr;
1010                 old_regs->cr_ifs = ms->pmsa_ifs;
1011         } else {
1012                 old_regs->cr_iip = ms->pmsa_xip;
1013                 old_regs->cr_ipsr = ms->pmsa_xpsr;
1014                 old_regs->cr_ifs = ms->pmsa_xfs;
1015         }
1016         old_regs->pr = ms->pmsa_pr;
1017         old_regs->b0 = ms->pmsa_br0;
1018         old_regs->loadrs = loadrs;
1019         old_regs->ar_rsc = ms->pmsa_rsc;
1020         old_unat = old_regs->ar_unat;
1021         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1022         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1023         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1024         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1025         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1026         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1027         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1028         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1029         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1030         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1031         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1032         if (ia64_psr(old_regs)->bn)
1033                 bank = ms->pmsa_bank1_gr;
1034         else
1035                 bank = ms->pmsa_bank0_gr;
1036         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1037         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1038         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1039         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1040         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1041         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1042         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1043         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1044         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1045         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1046         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1047         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1048         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1049         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1050         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1051         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1052
1053         /* Next stack a struct switch_stack.  mca_asm.S built a partial
1054          * switch_stack, copy it and fill in the blanks using pt_regs and
1055          * minstate.
1056          *
1057          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1058          * ar.pfs is set to 0.
1059          *
1060          * unwind.c::unw_unwind() does special processing for interrupt frames.
1061          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1062          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1063          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1064          * switch_stack on the original stack so it will unwind correctly when
1065          * unwind.c reads pt_regs.
1066          *
1067          * thread.ksp is updated to point to the synthesized switch_stack.
1068          */
1069         p -= sizeof(struct switch_stack);
1070         old_sw = (struct switch_stack *)p;
1071         memcpy(old_sw, sw, sizeof(*sw));
1072         old_sw->caller_unat = old_unat;
1073         old_sw->ar_fpsr = old_regs->ar_fpsr;
1074         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1075         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1076         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1077         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1078         old_sw->b0 = (u64)ia64_leave_kernel;
1079         old_sw->b1 = ms->pmsa_br1;
1080         old_sw->ar_pfs = 0;
1081         old_sw->ar_unat = old_unat;
1082         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1083         previous_current->thread.ksp = (u64)p - 16;
1084
1085         /* Finally copy the original stack's registers back to its RBS.
1086          * Registers from ar.bspstore through ar.bsp at the time of the event
1087          * are in the current RBS, copy them back to the original stack.  The
1088          * copy must be done register by register because the original bspstore
1089          * and the current one have different alignments, so the saved RNAT
1090          * data occurs at different places.
1091          *
1092          * mca_asm does cover, so the old_bsp already includes all registers at
1093          * the time of MCA/INIT.  It also does flushrs, so all registers before
1094          * this function have been written to backing store on the MCA/INIT
1095          * stack.
1096          */
1097         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1098         old_rnat = regs->ar_rnat;
1099         while (slots--) {
1100                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1101                         new_rnat = ia64_get_rnat(new_bspstore++);
1102                 }
1103                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1104                         *old_bspstore++ = old_rnat;
1105                         old_rnat = 0;
1106                 }
1107                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1108                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1109                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1110                 *old_bspstore++ = *new_bspstore++;
1111         }
1112         old_sw->ar_bspstore = (unsigned long)old_bspstore;
1113         old_sw->ar_rnat = old_rnat;
1114
1115         sos->prev_task = previous_current;
1116         return previous_current;
1117
1118 no_mod:
1119         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1120                         smp_processor_id(), type, msg);
1121         return previous_current;
1122 }
1123
1124 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1125  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1126  * not entered rendezvous yet then wait a bit.  The assumption is that any
1127  * slave that has not rendezvoused after a reasonable time is never going to do
1128  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1129  * interrupt, as well as cpus that receive the INIT slave event.
1130  */
1131
1132 static void
1133 ia64_wait_for_slaves(int monarch, const char *type)
1134 {
1135         int c, wait = 0, missing = 0;
1136         for_each_online_cpu(c) {
1137                 if (c == monarch)
1138                         continue;
1139                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1140                         udelay(1000);           /* short wait first */
1141                         wait = 1;
1142                         break;
1143                 }
1144         }
1145         if (!wait)
1146                 goto all_in;
1147         for_each_online_cpu(c) {
1148                 if (c == monarch)
1149                         continue;
1150                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1151                         udelay(5*1000000);      /* wait 5 seconds for slaves (arbitrary) */
1152                         if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1153                                 missing = 1;
1154                         break;
1155                 }
1156         }
1157         if (!missing)
1158                 goto all_in;
1159         /*
1160          * Maybe slave(s) dead. Print buffered messages immediately.
1161          */
1162         ia64_mlogbuf_finish(0);
1163         mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1164         for_each_online_cpu(c) {
1165                 if (c == monarch)
1166                         continue;
1167                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1168                         mprintk(" %d", c);
1169         }
1170         mprintk("\n");
1171         return;
1172
1173 all_in:
1174         mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1175         return;
1176 }
1177
1178 /*
1179  * ia64_mca_handler
1180  *
1181  *      This is uncorrectable machine check handler called from OS_MCA
1182  *      dispatch code which is in turn called from SAL_CHECK().
1183  *      This is the place where the core of OS MCA handling is done.
1184  *      Right now the logs are extracted and displayed in a well-defined
1185  *      format. This handler code is supposed to be run only on the
1186  *      monarch processor. Once the monarch is done with MCA handling
1187  *      further MCA logging is enabled by clearing logs.
1188  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1189  *      slave processors out of rendezvous spinloop.
1190  */
1191 void
1192 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1193                  struct ia64_sal_os_state *sos)
1194 {
1195         pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
1196                 &sos->proc_state_param;
1197         int recover, cpu = smp_processor_id();
1198         struct task_struct *previous_current;
1199         struct ia64_mca_notify_die nd =
1200                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1201
1202         mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1203                 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1204
1205         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1206         monarch_cpu = cpu;
1207         if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1208                         == NOTIFY_STOP)
1209                 ia64_mca_spin(__FUNCTION__);
1210         ia64_wait_for_slaves(cpu, "MCA");
1211
1212         /* Wakeup all the processors which are spinning in the rendezvous loop.
1213          * They will leave SAL, then spin in the OS with interrupts disabled
1214          * until this monarch cpu leaves the MCA handler.  That gets control
1215          * back to the OS so we can backtrace the other cpus, backtrace when
1216          * spinning in SAL does not work.
1217          */
1218         ia64_mca_wakeup_all();
1219         if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1220                         == NOTIFY_STOP)
1221                 ia64_mca_spin(__FUNCTION__);
1222
1223         /* Get the MCA error record and log it */
1224         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1225
1226         /* TLB error is only exist in this SAL error record */
1227         recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1228         /* other error recovery */
1229            || (ia64_mca_ucmc_extension
1230                 && ia64_mca_ucmc_extension(
1231                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1232                         sos));
1233
1234         if (recover) {
1235                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1236                 rh->severity = sal_log_severity_corrected;
1237                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1238                 sos->os_status = IA64_MCA_CORRECTED;
1239         } else {
1240                 /* Dump buffered message to console */
1241                 ia64_mlogbuf_finish(1);
1242         }
1243         if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1244                         == NOTIFY_STOP)
1245                 ia64_mca_spin(__FUNCTION__);
1246
1247         set_curr_task(cpu, previous_current);
1248         monarch_cpu = -1;
1249 }
1250
1251 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1252 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1253
1254 /*
1255  * ia64_mca_cmc_int_handler
1256  *
1257  *  This is corrected machine check interrupt handler.
1258  *      Right now the logs are extracted and displayed in a well-defined
1259  *      format.
1260  *
1261  * Inputs
1262  *      interrupt number
1263  *      client data arg ptr
1264  *      saved registers ptr
1265  *
1266  * Outputs
1267  *      None
1268  */
1269 static irqreturn_t
1270 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1271 {
1272         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1273         static int              index;
1274         static DEFINE_SPINLOCK(cmc_history_lock);
1275
1276         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1277                        __FUNCTION__, cmc_irq, smp_processor_id());
1278
1279         /* SAL spec states this should run w/ interrupts enabled */
1280         local_irq_enable();
1281
1282         spin_lock(&cmc_history_lock);
1283         if (!cmc_polling_enabled) {
1284                 int i, count = 1; /* we know 1 happened now */
1285                 unsigned long now = jiffies;
1286
1287                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1288                         if (now - cmc_history[i] <= HZ)
1289                                 count++;
1290                 }
1291
1292                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1293                 if (count >= CMC_HISTORY_LENGTH) {
1294
1295                         cmc_polling_enabled = 1;
1296                         spin_unlock(&cmc_history_lock);
1297                         /* If we're being hit with CMC interrupts, we won't
1298                          * ever execute the schedule_work() below.  Need to
1299                          * disable CMC interrupts on this processor now.
1300                          */
1301                         ia64_mca_cmc_vector_disable(NULL);
1302                         schedule_work(&cmc_disable_work);
1303
1304                         /*
1305                          * Corrected errors will still be corrected, but
1306                          * make sure there's a log somewhere that indicates
1307                          * something is generating more than we can handle.
1308                          */
1309                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1310
1311                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1312
1313                         /* lock already released, get out now */
1314                         goto out;
1315                 } else {
1316                         cmc_history[index++] = now;
1317                         if (index == CMC_HISTORY_LENGTH)
1318                                 index = 0;
1319                 }
1320         }
1321         spin_unlock(&cmc_history_lock);
1322 out:
1323         /* Get the CMC error record and log it */
1324         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1325
1326         return IRQ_HANDLED;
1327 }
1328
1329 /*
1330  *  ia64_mca_cmc_int_caller
1331  *
1332  *      Triggered by sw interrupt from CMC polling routine.  Calls
1333  *      real interrupt handler and either triggers a sw interrupt
1334  *      on the next cpu or does cleanup at the end.
1335  *
1336  * Inputs
1337  *      interrupt number
1338  *      client data arg ptr
1339  *      saved registers ptr
1340  * Outputs
1341  *      handled
1342  */
1343 static irqreturn_t
1344 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1345 {
1346         static int start_count = -1;
1347         unsigned int cpuid;
1348
1349         cpuid = smp_processor_id();
1350
1351         /* If first cpu, update count */
1352         if (start_count == -1)
1353                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1354
1355         ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1356
1357         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1358
1359         if (cpuid < NR_CPUS) {
1360                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1361         } else {
1362                 /* If no log record, switch out of polling mode */
1363                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1364
1365                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1366                         schedule_work(&cmc_enable_work);
1367                         cmc_polling_enabled = 0;
1368
1369                 } else {
1370
1371                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1372                 }
1373
1374                 start_count = -1;
1375         }
1376
1377         return IRQ_HANDLED;
1378 }
1379
1380 /*
1381  *  ia64_mca_cmc_poll
1382  *
1383  *      Poll for Corrected Machine Checks (CMCs)
1384  *
1385  * Inputs   :   dummy(unused)
1386  * Outputs  :   None
1387  *
1388  */
1389 static void
1390 ia64_mca_cmc_poll (unsigned long dummy)
1391 {
1392         /* Trigger a CMC interrupt cascade  */
1393         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1394 }
1395
1396 /*
1397  *  ia64_mca_cpe_int_caller
1398  *
1399  *      Triggered by sw interrupt from CPE polling routine.  Calls
1400  *      real interrupt handler and either triggers a sw interrupt
1401  *      on the next cpu or does cleanup at the end.
1402  *
1403  * Inputs
1404  *      interrupt number
1405  *      client data arg ptr
1406  *      saved registers ptr
1407  * Outputs
1408  *      handled
1409  */
1410 #ifdef CONFIG_ACPI
1411
1412 static irqreturn_t
1413 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1414 {
1415         static int start_count = -1;
1416         static int poll_time = MIN_CPE_POLL_INTERVAL;
1417         unsigned int cpuid;
1418
1419         cpuid = smp_processor_id();
1420
1421         /* If first cpu, update count */
1422         if (start_count == -1)
1423                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1424
1425         ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1426
1427         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1428
1429         if (cpuid < NR_CPUS) {
1430                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1431         } else {
1432                 /*
1433                  * If a log was recorded, increase our polling frequency,
1434                  * otherwise, backoff or return to interrupt mode.
1435                  */
1436                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1437                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1438                 } else if (cpe_vector < 0) {
1439                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1440                 } else {
1441                         poll_time = MIN_CPE_POLL_INTERVAL;
1442
1443                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1444                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1445                         cpe_poll_enabled = 0;
1446                 }
1447
1448                 if (cpe_poll_enabled)
1449                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1450                 start_count = -1;
1451         }
1452
1453         return IRQ_HANDLED;
1454 }
1455
1456 /*
1457  *  ia64_mca_cpe_poll
1458  *
1459  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1460  *      on first cpu, from there it will trickle through all the cpus.
1461  *
1462  * Inputs   :   dummy(unused)
1463  * Outputs  :   None
1464  *
1465  */
1466 static void
1467 ia64_mca_cpe_poll (unsigned long dummy)
1468 {
1469         /* Trigger a CPE interrupt cascade  */
1470         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1471 }
1472
1473 #endif /* CONFIG_ACPI */
1474
1475 static int
1476 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1477 {
1478         int c;
1479         struct task_struct *g, *t;
1480         if (val != DIE_INIT_MONARCH_PROCESS)
1481                 return NOTIFY_DONE;
1482
1483         /*
1484          * FIXME: mlogbuf will brim over with INIT stack dumps.
1485          * To enable show_stack from INIT, we use oops_in_progress which should
1486          * be used in real oops. This would cause something wrong after INIT.
1487          */
1488         BREAK_LOGLEVEL(console_loglevel);
1489         ia64_mlogbuf_dump_from_init();
1490
1491         printk(KERN_ERR "Processes interrupted by INIT -");
1492         for_each_online_cpu(c) {
1493                 struct ia64_sal_os_state *s;
1494                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1495                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1496                 g = s->prev_task;
1497                 if (g) {
1498                         if (g->pid)
1499                                 printk(" %d", g->pid);
1500                         else
1501                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1502                 }
1503         }
1504         printk("\n\n");
1505         if (read_trylock(&tasklist_lock)) {
1506                 do_each_thread (g, t) {
1507                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1508                         show_stack(t, NULL);
1509                 } while_each_thread (g, t);
1510                 read_unlock(&tasklist_lock);
1511         }
1512         /* FIXME: This will not restore zapped printk locks. */
1513         RESTORE_LOGLEVEL(console_loglevel);
1514         return NOTIFY_DONE;
1515 }
1516
1517 /*
1518  * C portion of the OS INIT handler
1519  *
1520  * Called from ia64_os_init_dispatch
1521  *
1522  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1523  * this event.  This code is used for both monarch and slave INIT events, see
1524  * sos->monarch.
1525  *
1526  * All INIT events switch to the INIT stack and change the previous process to
1527  * blocked status.  If one of the INIT events is the monarch then we are
1528  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1529  * the processes.  The slave INIT events all spin until the monarch cpu
1530  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1531  * process is the monarch.
1532  */
1533
1534 void
1535 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1536                   struct ia64_sal_os_state *sos)
1537 {
1538         static atomic_t slaves;
1539         static atomic_t monarchs;
1540         struct task_struct *previous_current;
1541         int cpu = smp_processor_id();
1542         struct ia64_mca_notify_die nd =
1543                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1544
1545         (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1546
1547         mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1548                 sos->proc_state_param, cpu, sos->monarch);
1549         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1550
1551         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1552         sos->os_status = IA64_INIT_RESUME;
1553
1554         /* FIXME: Workaround for broken proms that drive all INIT events as
1555          * slaves.  The last slave that enters is promoted to be a monarch.
1556          * Remove this code in September 2006, that gives platforms a year to
1557          * fix their proms and get their customers updated.
1558          */
1559         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1560                 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1561                        __FUNCTION__, cpu);
1562                 atomic_dec(&slaves);
1563                 sos->monarch = 1;
1564         }
1565
1566         /* FIXME: Workaround for broken proms that drive all INIT events as
1567          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1568          * Remove this code in September 2006, that gives platforms a year to
1569          * fix their proms and get their customers updated.
1570          */
1571         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1572                 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1573                                __FUNCTION__, cpu);
1574                 atomic_dec(&monarchs);
1575                 sos->monarch = 0;
1576         }
1577
1578         if (!sos->monarch) {
1579                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1580                 while (monarch_cpu == -1)
1581                        cpu_relax();     /* spin until monarch enters */
1582                 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1583                                 == NOTIFY_STOP)
1584                         ia64_mca_spin(__FUNCTION__);
1585                 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1586                                 == NOTIFY_STOP)
1587                         ia64_mca_spin(__FUNCTION__);
1588                 while (monarch_cpu != -1)
1589                        cpu_relax();     /* spin until monarch leaves */
1590                 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1591                                 == NOTIFY_STOP)
1592                         ia64_mca_spin(__FUNCTION__);
1593                 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1594                 set_curr_task(cpu, previous_current);
1595                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1596                 atomic_dec(&slaves);
1597                 return;
1598         }
1599
1600         monarch_cpu = cpu;
1601         if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1602                         == NOTIFY_STOP)
1603                 ia64_mca_spin(__FUNCTION__);
1604
1605         /*
1606          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1607          * generated via the BMC's command-line interface, but since the console is on the
1608          * same serial line, the user will need some time to switch out of the BMC before
1609          * the dump begins.
1610          */
1611         mprintk("Delaying for 5 seconds...\n");
1612         udelay(5*1000000);
1613         ia64_wait_for_slaves(cpu, "INIT");
1614         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1615          * to default_monarch_init_process() above and just print all the
1616          * tasks.
1617          */
1618         if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1619                         == NOTIFY_STOP)
1620                 ia64_mca_spin(__FUNCTION__);
1621         if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1622                         == NOTIFY_STOP)
1623                 ia64_mca_spin(__FUNCTION__);
1624         mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1625         atomic_dec(&monarchs);
1626         set_curr_task(cpu, previous_current);
1627         monarch_cpu = -1;
1628         return;
1629 }
1630
1631 static int __init
1632 ia64_mca_disable_cpe_polling(char *str)
1633 {
1634         cpe_poll_enabled = 0;
1635         return 1;
1636 }
1637
1638 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1639
1640 static struct irqaction cmci_irqaction = {
1641         .handler =      ia64_mca_cmc_int_handler,
1642         .flags =        IRQF_DISABLED,
1643         .name =         "cmc_hndlr"
1644 };
1645
1646 static struct irqaction cmcp_irqaction = {
1647         .handler =      ia64_mca_cmc_int_caller,
1648         .flags =        IRQF_DISABLED,
1649         .name =         "cmc_poll"
1650 };
1651
1652 static struct irqaction mca_rdzv_irqaction = {
1653         .handler =      ia64_mca_rendez_int_handler,
1654         .flags =        IRQF_DISABLED,
1655         .name =         "mca_rdzv"
1656 };
1657
1658 static struct irqaction mca_wkup_irqaction = {
1659         .handler =      ia64_mca_wakeup_int_handler,
1660         .flags =        IRQF_DISABLED,
1661         .name =         "mca_wkup"
1662 };
1663
1664 #ifdef CONFIG_ACPI
1665 static struct irqaction mca_cpe_irqaction = {
1666         .handler =      ia64_mca_cpe_int_handler,
1667         .flags =        IRQF_DISABLED,
1668         .name =         "cpe_hndlr"
1669 };
1670
1671 static struct irqaction mca_cpep_irqaction = {
1672         .handler =      ia64_mca_cpe_int_caller,
1673         .flags =        IRQF_DISABLED,
1674         .name =         "cpe_poll"
1675 };
1676 #endif /* CONFIG_ACPI */
1677
1678 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1679  * these stacks can never sleep, they cannot return from the kernel to user
1680  * space, they do not appear in a normal ps listing.  So there is no need to
1681  * format most of the fields.
1682  */
1683
1684 static void __cpuinit
1685 format_mca_init_stack(void *mca_data, unsigned long offset,
1686                 const char *type, int cpu)
1687 {
1688         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1689         struct thread_info *ti;
1690         memset(p, 0, KERNEL_STACK_SIZE);
1691         ti = task_thread_info(p);
1692         ti->flags = _TIF_MCA_INIT;
1693         ti->preempt_count = 1;
1694         ti->task = p;
1695         ti->cpu = cpu;
1696         p->thread_info = ti;
1697         p->state = TASK_UNINTERRUPTIBLE;
1698         cpu_set(cpu, p->cpus_allowed);
1699         INIT_LIST_HEAD(&p->tasks);
1700         p->parent = p->real_parent = p->group_leader = p;
1701         INIT_LIST_HEAD(&p->children);
1702         INIT_LIST_HEAD(&p->sibling);
1703         strncpy(p->comm, type, sizeof(p->comm)-1);
1704 }
1705
1706 /* Do per-CPU MCA-related initialization.  */
1707
1708 void __cpuinit
1709 ia64_mca_cpu_init(void *cpu_data)
1710 {
1711         void *pal_vaddr;
1712         static int first_time = 1;
1713
1714         if (first_time) {
1715                 void *mca_data;
1716                 int cpu;
1717
1718                 first_time = 0;
1719                 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1720                                          * NR_CPUS + KERNEL_STACK_SIZE);
1721                 mca_data = (void *)(((unsigned long)mca_data +
1722                                         KERNEL_STACK_SIZE - 1) &
1723                                 (-KERNEL_STACK_SIZE));
1724                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1725                         format_mca_init_stack(mca_data,
1726                                         offsetof(struct ia64_mca_cpu, mca_stack),
1727                                         "MCA", cpu);
1728                         format_mca_init_stack(mca_data,
1729                                         offsetof(struct ia64_mca_cpu, init_stack),
1730                                         "INIT", cpu);
1731                         __per_cpu_mca[cpu] = __pa(mca_data);
1732                         mca_data += sizeof(struct ia64_mca_cpu);
1733                 }
1734         }
1735
1736         /*
1737          * The MCA info structure was allocated earlier and its
1738          * physical address saved in __per_cpu_mca[cpu].  Copy that
1739          * address * to ia64_mca_data so we can access it as a per-CPU
1740          * variable.
1741          */
1742         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1743
1744         /*
1745          * Stash away a copy of the PTE needed to map the per-CPU page.
1746          * We may need it during MCA recovery.
1747          */
1748         __get_cpu_var(ia64_mca_per_cpu_pte) =
1749                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1750
1751         /*
1752          * Also, stash away a copy of the PAL address and the PTE
1753          * needed to map it.
1754          */
1755         pal_vaddr = efi_get_pal_addr();
1756         if (!pal_vaddr)
1757                 return;
1758         __get_cpu_var(ia64_mca_pal_base) =
1759                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1760         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1761                                                               PAGE_KERNEL));
1762 }
1763
1764 /*
1765  * ia64_mca_init
1766  *
1767  *  Do all the system level mca specific initialization.
1768  *
1769  *      1. Register spinloop and wakeup request interrupt vectors
1770  *
1771  *      2. Register OS_MCA handler entry point
1772  *
1773  *      3. Register OS_INIT handler entry point
1774  *
1775  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1776  *
1777  *  Note that this initialization is done very early before some kernel
1778  *  services are available.
1779  *
1780  *  Inputs  :   None
1781  *
1782  *  Outputs :   None
1783  */
1784 void __init
1785 ia64_mca_init(void)
1786 {
1787         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1788         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1789         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1790         int i;
1791         s64 rc;
1792         struct ia64_sal_retval isrv;
1793         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1794         static struct notifier_block default_init_monarch_nb = {
1795                 .notifier_call = default_monarch_init_process,
1796                 .priority = 0/* we need to notified last */
1797         };
1798
1799         IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1800
1801         /* Clear the Rendez checkin flag for all cpus */
1802         for(i = 0 ; i < NR_CPUS; i++)
1803                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1804
1805         /*
1806          * Register the rendezvous spinloop and wakeup mechanism with SAL
1807          */
1808
1809         /* Register the rendezvous interrupt vector with SAL */
1810         while (1) {
1811                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1812                                               SAL_MC_PARAM_MECHANISM_INT,
1813                                               IA64_MCA_RENDEZ_VECTOR,
1814                                               timeout,
1815                                               SAL_MC_PARAM_RZ_ALWAYS);
1816                 rc = isrv.status;
1817                 if (rc == 0)
1818                         break;
1819                 if (rc == -2) {
1820                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1821                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1822                         timeout = isrv.v0;
1823                         (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1824                         continue;
1825                 }
1826                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1827                        "with SAL (status %ld)\n", rc);
1828                 return;
1829         }
1830
1831         /* Register the wakeup interrupt vector with SAL */
1832         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1833                                       SAL_MC_PARAM_MECHANISM_INT,
1834                                       IA64_MCA_WAKEUP_VECTOR,
1835                                       0, 0);
1836         rc = isrv.status;
1837         if (rc) {
1838                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1839                        "(status %ld)\n", rc);
1840                 return;
1841         }
1842
1843         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1844
1845         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1846         /*
1847          * XXX - disable SAL checksum by setting size to 0; should be
1848          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1849          */
1850         ia64_mc_info.imi_mca_handler_size       = 0;
1851
1852         /* Register the os mca handler with SAL */
1853         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1854                                        ia64_mc_info.imi_mca_handler,
1855                                        ia64_tpa(mca_hldlr_ptr->gp),
1856                                        ia64_mc_info.imi_mca_handler_size,
1857                                        0, 0, 0)))
1858         {
1859                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1860                        "(status %ld)\n", rc);
1861                 return;
1862         }
1863
1864         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1865                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1866
1867         /*
1868          * XXX - disable SAL checksum by setting size to 0, should be
1869          * size of the actual init handler in mca_asm.S.
1870          */
1871         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1872         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1873         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1874         ia64_mc_info.imi_slave_init_handler_size        = 0;
1875
1876         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1877                        ia64_mc_info.imi_monarch_init_handler);
1878
1879         /* Register the os init handler with SAL */
1880         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1881                                        ia64_mc_info.imi_monarch_init_handler,
1882                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1883                                        ia64_mc_info.imi_monarch_init_handler_size,
1884                                        ia64_mc_info.imi_slave_init_handler,
1885                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1886                                        ia64_mc_info.imi_slave_init_handler_size)))
1887         {
1888                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1889                        "(status %ld)\n", rc);
1890                 return;
1891         }
1892         if (register_die_notifier(&default_init_monarch_nb)) {
1893                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1894                 return;
1895         }
1896
1897         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1898
1899         /*
1900          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1901          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1902          */
1903         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1904         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1905         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1906
1907         /* Setup the MCA rendezvous interrupt vector */
1908         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1909
1910         /* Setup the MCA wakeup interrupt vector */
1911         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1912
1913 #ifdef CONFIG_ACPI
1914         /* Setup the CPEI/P handler */
1915         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1916 #endif
1917
1918         /* Initialize the areas set aside by the OS to buffer the
1919          * platform/processor error states for MCA/INIT/CMC
1920          * handling.
1921          */
1922         ia64_log_init(SAL_INFO_TYPE_MCA);
1923         ia64_log_init(SAL_INFO_TYPE_INIT);
1924         ia64_log_init(SAL_INFO_TYPE_CMC);
1925         ia64_log_init(SAL_INFO_TYPE_CPE);
1926
1927         mca_init = 1;
1928         printk(KERN_INFO "MCA related initialization done\n");
1929 }
1930
1931 /*
1932  * ia64_mca_late_init
1933  *
1934  *      Opportunity to setup things that require initialization later
1935  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
1936  *      platform doesn't support an interrupt driven mechanism.
1937  *
1938  *  Inputs  :   None
1939  *  Outputs :   Status
1940  */
1941 static int __init
1942 ia64_mca_late_init(void)
1943 {
1944         if (!mca_init)
1945                 return 0;
1946
1947         /* Setup the CMCI/P vector and handler */
1948         init_timer(&cmc_poll_timer);
1949         cmc_poll_timer.function = ia64_mca_cmc_poll;
1950
1951         /* Unmask/enable the vector */
1952         cmc_polling_enabled = 0;
1953         schedule_work(&cmc_enable_work);
1954
1955         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1956
1957 #ifdef CONFIG_ACPI
1958         /* Setup the CPEI/P vector and handler */
1959         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1960         init_timer(&cpe_poll_timer);
1961         cpe_poll_timer.function = ia64_mca_cpe_poll;
1962
1963         {
1964                 irq_desc_t *desc;
1965                 unsigned int irq;
1966
1967                 if (cpe_vector >= 0) {
1968                         /* If platform supports CPEI, enable the irq. */
1969                         cpe_poll_enabled = 0;
1970                         for (irq = 0; irq < NR_IRQS; ++irq)
1971                                 if (irq_to_vector(irq) == cpe_vector) {
1972                                         desc = irq_desc + irq;
1973                                         desc->status |= IRQ_PER_CPU;
1974                                         setup_irq(irq, &mca_cpe_irqaction);
1975                                         ia64_cpe_irq = irq;
1976                                 }
1977                         ia64_mca_register_cpev(cpe_vector);
1978                         IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1979                 } else {
1980                         /* If platform doesn't support CPEI, get the timer going. */
1981                         if (cpe_poll_enabled) {
1982                                 ia64_mca_cpe_poll(0UL);
1983                                 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1984                         }
1985                 }
1986         }
1987 #endif
1988
1989         return 0;
1990 }
1991
1992 device_initcall(ia64_mca_late_init);