2 * linux/arch/x86-64/kernel/time.c
4 * "High Precision Event Timer" based timekeeping.
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002,2006 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/time.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/sysdev.h>
26 #include <linux/bcd.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/kallsyms.h>
30 #include <linux/acpi.h>
32 #include <acpi/achware.h> /* for PM timer frequency */
33 #include <acpi/acpi_bus.h>
35 #include <asm/8253pit.h>
36 #include <asm/pgtable.h>
37 #include <asm/vsyscall.h>
38 #include <asm/timex.h>
39 #include <asm/proto.h>
41 #include <asm/sections.h>
42 #include <linux/cpufreq.h>
43 #include <linux/hpet.h>
46 #ifdef CONFIG_CPU_FREQ
47 static void cpufreq_delayed_get(void);
49 extern void i8254_timer_resume(void);
50 extern int using_apic_timer;
52 static char *timename = NULL;
54 DEFINE_SPINLOCK(rtc_lock);
55 EXPORT_SYMBOL(rtc_lock);
56 DEFINE_SPINLOCK(i8253_lock);
58 int nohpet __initdata = 0;
59 static int notsc __initdata = 0;
61 #define USEC_PER_TICK (USEC_PER_SEC / HZ)
62 #define NSEC_PER_TICK (NSEC_PER_SEC / HZ)
63 #define FSEC_PER_TICK (FSEC_PER_SEC / HZ)
65 #define NS_SCALE 10 /* 2^10, carefully chosen */
66 #define US_SCALE 32 /* 2^32, arbitralrily chosen */
68 unsigned int cpu_khz; /* TSC clocks / usec, not used here */
69 EXPORT_SYMBOL(cpu_khz);
70 static unsigned long hpet_period; /* fsecs / HPET clock */
71 unsigned long hpet_tick; /* HPET clocks / interrupt */
72 int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
73 unsigned long vxtime_hz = PIT_TICK_RATE;
74 int report_lost_ticks; /* command line option */
75 unsigned long long monotonic_base;
77 struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
79 volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
80 unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
81 struct timespec __xtime __section_xtime;
82 struct timezone __sys_tz __section_sys_tz;
85 * do_gettimeoffset() returns microseconds since last timer interrupt was
86 * triggered by hardware. A memory read of HPET is slower than a register read
87 * of TSC, but much more reliable. It's also synchronized to the timer
88 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
89 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
90 * This is not a problem, because jiffies hasn't updated either. They are bound
91 * together by xtime_lock.
94 static inline unsigned int do_gettimeoffset_tsc(void)
98 t = get_cycles_sync();
99 if (t < vxtime.last_tsc)
100 t = vxtime.last_tsc; /* hack */
101 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE;
105 static inline unsigned int do_gettimeoffset_hpet(void)
107 /* cap counter read to one tick to avoid inconsistencies */
108 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
109 return (min(counter,hpet_tick) * vxtime.quot) >> US_SCALE;
112 unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
115 * This version of gettimeofday() has microsecond resolution and better than
116 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
120 void do_gettimeofday(struct timeval *tv)
122 unsigned long seq, t;
123 unsigned int sec, usec;
126 seq = read_seqbegin(&xtime_lock);
129 usec = xtime.tv_nsec / NSEC_PER_USEC;
131 /* i386 does some correction here to keep the clock
132 monotonous even when ntpd is fixing drift.
133 But they didn't work for me, there is a non monotonic
134 clock anyways with ntp.
135 I dropped all corrections now until a real solution can
136 be found. Note when you fix it here you need to do the same
137 in arch/x86_64/kernel/vsyscall.c and export all needed
138 variables in vmlinux.lds. -AK */
140 t = (jiffies - wall_jiffies) * USEC_PER_TICK +
144 } while (read_seqretry(&xtime_lock, seq));
146 tv->tv_sec = sec + usec / USEC_PER_SEC;
147 tv->tv_usec = usec % USEC_PER_SEC;
150 EXPORT_SYMBOL(do_gettimeofday);
153 * settimeofday() first undoes the correction that gettimeofday would do
154 * on the time, and then saves it. This is ugly, but has been like this for
158 int do_settimeofday(struct timespec *tv)
160 time_t wtm_sec, sec = tv->tv_sec;
161 long wtm_nsec, nsec = tv->tv_nsec;
163 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
166 write_seqlock_irq(&xtime_lock);
168 nsec -= do_gettimeoffset() * NSEC_PER_USEC +
169 (jiffies - wall_jiffies) * NSEC_PER_TICK;
171 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
172 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
174 set_normalized_timespec(&xtime, sec, nsec);
175 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
179 write_sequnlock_irq(&xtime_lock);
184 EXPORT_SYMBOL(do_settimeofday);
186 unsigned long profile_pc(struct pt_regs *regs)
188 unsigned long pc = instruction_pointer(regs);
190 /* Assume the lock function has either no stack frame or a copy
192 Eflags always has bits 22 and up cleared unlike kernel addresses. */
193 if (!user_mode(regs) && in_lock_functions(pc)) {
194 unsigned long *sp = (unsigned long *)regs->rsp;
202 EXPORT_SYMBOL(profile_pc);
205 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
206 * ms after the second nowtime has started, because when nowtime is written
207 * into the registers of the CMOS clock, it will jump to the next second
208 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
212 static void set_rtc_mmss(unsigned long nowtime)
214 int real_seconds, real_minutes, cmos_minutes;
215 unsigned char control, freq_select;
218 * IRQs are disabled when we're called from the timer interrupt,
219 * no need for spin_lock_irqsave()
222 spin_lock(&rtc_lock);
225 * Tell the clock it's being set and stop it.
228 control = CMOS_READ(RTC_CONTROL);
229 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
231 freq_select = CMOS_READ(RTC_FREQ_SELECT);
232 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
234 cmos_minutes = CMOS_READ(RTC_MINUTES);
235 BCD_TO_BIN(cmos_minutes);
238 * since we're only adjusting minutes and seconds, don't interfere with hour
239 * overflow. This avoids messing with unknown time zones but requires your RTC
240 * not to be off by more than 15 minutes. Since we're calling it only when
241 * our clock is externally synchronized using NTP, this shouldn't be a problem.
244 real_seconds = nowtime % 60;
245 real_minutes = nowtime / 60;
246 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
247 real_minutes += 30; /* correct for half hour time zone */
250 if (abs(real_minutes - cmos_minutes) >= 30) {
251 printk(KERN_WARNING "time.c: can't update CMOS clock "
252 "from %d to %d\n", cmos_minutes, real_minutes);
254 BIN_TO_BCD(real_seconds);
255 BIN_TO_BCD(real_minutes);
256 CMOS_WRITE(real_seconds, RTC_SECONDS);
257 CMOS_WRITE(real_minutes, RTC_MINUTES);
261 * The following flags have to be released exactly in this order, otherwise the
262 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
263 * not reset the oscillator and will not update precisely 500 ms later. You
264 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
265 * believes data sheets anyway ... -- Markus Kuhn
268 CMOS_WRITE(control, RTC_CONTROL);
269 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
271 spin_unlock(&rtc_lock);
275 /* monotonic_clock(): returns # of nanoseconds passed since time_init()
276 * Note: This function is required to return accurate
277 * time even in the absence of multiple timer ticks.
279 static inline unsigned long long cycles_2_ns(unsigned long long cyc);
280 unsigned long long monotonic_clock(void)
283 u32 last_offset, this_offset, offset;
284 unsigned long long base;
286 if (vxtime.mode == VXTIME_HPET) {
288 seq = read_seqbegin(&xtime_lock);
290 last_offset = vxtime.last;
291 base = monotonic_base;
292 this_offset = hpet_readl(HPET_COUNTER);
293 } while (read_seqretry(&xtime_lock, seq));
294 offset = (this_offset - last_offset);
295 offset *= NSEC_PER_TICK / hpet_tick;
298 seq = read_seqbegin(&xtime_lock);
300 last_offset = vxtime.last_tsc;
301 base = monotonic_base;
302 } while (read_seqretry(&xtime_lock, seq));
303 this_offset = get_cycles_sync();
304 offset = cycles_2_ns(this_offset - last_offset);
306 return base + offset;
308 EXPORT_SYMBOL(monotonic_clock);
310 static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
312 static long lost_count;
314 if (report_lost_ticks) {
315 printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
316 print_symbol("rip %s)\n", regs->rip);
319 if (lost_count == 1000 && !warned) {
320 printk(KERN_WARNING "warning: many lost ticks.\n"
321 KERN_WARNING "Your time source seems to be instable or "
322 "some driver is hogging interupts\n");
323 print_symbol("rip %s\n", regs->rip);
324 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
325 printk(KERN_WARNING "Falling back to HPET\n");
327 vxtime.last = hpet_readl(HPET_T0_CMP) -
330 vxtime.last = hpet_readl(HPET_COUNTER);
331 vxtime.mode = VXTIME_HPET;
332 do_gettimeoffset = do_gettimeoffset_hpet;
334 /* else should fall back to PIT, but code missing. */
339 #ifdef CONFIG_CPU_FREQ
340 /* In some cases the CPU can change frequency without us noticing
341 Give cpufreq a change to catch up. */
342 if ((lost_count+1) % 25 == 0)
343 cpufreq_delayed_get();
347 void main_timer_handler(struct pt_regs *regs)
349 static unsigned long rtc_update = 0;
351 int delay = 0, offset = 0, lost = 0;
354 * Here we are in the timer irq handler. We have irqs locally disabled (so we
355 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
356 * on the other CPU, so we need a lock. We also need to lock the vsyscall
357 * variables, because both do_timer() and us change them -arca+vojtech
360 write_seqlock(&xtime_lock);
362 if (vxtime.hpet_address)
363 offset = hpet_readl(HPET_COUNTER);
365 if (hpet_use_timer) {
366 /* if we're using the hpet timer functionality,
367 * we can more accurately know the counter value
368 * when the timer interrupt occured.
370 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
371 delay = hpet_readl(HPET_COUNTER) - offset;
372 } else if (!pmtmr_ioport) {
373 spin_lock(&i8253_lock);
376 delay |= inb(0x40) << 8;
377 spin_unlock(&i8253_lock);
378 delay = LATCH - 1 - delay;
381 tsc = get_cycles_sync();
383 if (vxtime.mode == VXTIME_HPET) {
384 if (offset - vxtime.last > hpet_tick) {
385 lost = (offset - vxtime.last) / hpet_tick - 1;
389 (offset - vxtime.last) * NSEC_PER_TICK / hpet_tick;
391 vxtime.last = offset;
392 #ifdef CONFIG_X86_PM_TIMER
393 } else if (vxtime.mode == VXTIME_PMTMR) {
394 lost = pmtimer_mark_offset();
397 offset = (((tsc - vxtime.last_tsc) *
398 vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK;
403 if (offset > USEC_PER_TICK) {
404 lost = offset / USEC_PER_TICK;
405 offset %= USEC_PER_TICK;
408 monotonic_base += cycles_2_ns(tsc - vxtime.last_tsc);
410 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
412 if ((((tsc - vxtime.last_tsc) *
413 vxtime.tsc_quot) >> US_SCALE) < offset)
414 vxtime.last_tsc = tsc -
415 (((long) offset << US_SCALE) / vxtime.tsc_quot) - 1;
419 handle_lost_ticks(lost, regs);
424 * Do the timer stuff.
429 update_process_times(user_mode(regs));
433 * In the SMP case we use the local APIC timer interrupt to do the profiling,
434 * except when we simulate SMP mode on a uniprocessor system, in that case we
435 * have to call the local interrupt handler.
438 if (!using_apic_timer)
439 smp_local_timer_interrupt(regs);
442 * If we have an externally synchronized Linux clock, then update CMOS clock
443 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
444 * closest to exactly 500 ms before the next second. If the update fails, we
445 * don't care, as it'll be updated on the next turn, and the problem (time way
446 * off) isn't likely to go away much sooner anyway.
449 if (ntp_synced() && xtime.tv_sec > rtc_update &&
450 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
451 set_rtc_mmss(xtime.tv_sec);
452 rtc_update = xtime.tv_sec + 660;
455 write_sequnlock(&xtime_lock);
458 static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
460 if (apic_runs_main_timer > 1)
462 main_timer_handler(regs);
463 if (using_apic_timer)
464 smp_send_timer_broadcast_ipi();
468 static unsigned int cyc2ns_scale __read_mostly;
470 static inline void set_cyc2ns_scale(unsigned long cpu_khz)
472 cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / cpu_khz;
475 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
477 return (cyc * cyc2ns_scale) >> NS_SCALE;
480 unsigned long long sched_clock(void)
485 /* Don't do a HPET read here. Using TSC always is much faster
486 and HPET may not be mapped yet when the scheduler first runs.
487 Disadvantage is a small drift between CPUs in some configurations,
488 but that should be tolerable. */
489 if (__vxtime.mode == VXTIME_HPET)
490 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> US_SCALE;
493 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
494 which means it is not completely exact and may not be monotonous between
495 CPUs. But the errors should be too small to matter for scheduling
499 return cycles_2_ns(a);
502 static unsigned long get_cmos_time(void)
504 unsigned int year, mon, day, hour, min, sec;
506 unsigned extyear = 0;
508 spin_lock_irqsave(&rtc_lock, flags);
511 sec = CMOS_READ(RTC_SECONDS);
512 min = CMOS_READ(RTC_MINUTES);
513 hour = CMOS_READ(RTC_HOURS);
514 day = CMOS_READ(RTC_DAY_OF_MONTH);
515 mon = CMOS_READ(RTC_MONTH);
516 year = CMOS_READ(RTC_YEAR);
518 if (acpi_fadt.revision >= FADT2_REVISION_ID &&
520 extyear = CMOS_READ(acpi_fadt.century);
522 } while (sec != CMOS_READ(RTC_SECONDS));
524 spin_unlock_irqrestore(&rtc_lock, flags);
527 * We know that x86-64 always uses BCD format, no need to check the
541 printk(KERN_INFO "Extended CMOS year: %d\n", extyear);
544 * x86-64 systems only exists since 2002.
545 * This will work up to Dec 31, 2100
550 return mktime(year, mon, day, hour, min, sec);
553 #ifdef CONFIG_CPU_FREQ
555 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
558 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
559 not that important because current Opteron setups do not support
560 scaling on SMP anyroads.
562 Should fix up last_tsc too. Currently gettimeofday in the
563 first tick after the change will be slightly wrong. */
565 #include <linux/workqueue.h>
567 static unsigned int cpufreq_delayed_issched = 0;
568 static unsigned int cpufreq_init = 0;
569 static struct work_struct cpufreq_delayed_get_work;
571 static void handle_cpufreq_delayed_get(void *v)
574 for_each_online_cpu(cpu) {
577 cpufreq_delayed_issched = 0;
580 /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
581 * to verify the CPU frequency the timing core thinks the CPU is running
582 * at is still correct.
584 static void cpufreq_delayed_get(void)
587 if (cpufreq_init && !cpufreq_delayed_issched) {
588 cpufreq_delayed_issched = 1;
592 "Losing some ticks... checking if CPU frequency changed.\n");
594 schedule_work(&cpufreq_delayed_get_work);
598 static unsigned int ref_freq = 0;
599 static unsigned long loops_per_jiffy_ref = 0;
601 static unsigned long cpu_khz_ref = 0;
603 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
606 struct cpufreq_freqs *freq = data;
607 unsigned long *lpj, dummy;
609 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
613 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
615 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
617 lpj = &boot_cpu_data.loops_per_jiffy;
621 ref_freq = freq->old;
622 loops_per_jiffy_ref = *lpj;
623 cpu_khz_ref = cpu_khz;
625 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
626 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
627 (val == CPUFREQ_RESUMECHANGE)) {
629 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
631 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
632 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
633 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
636 set_cyc2ns_scale(cpu_khz_ref);
641 static struct notifier_block time_cpufreq_notifier_block = {
642 .notifier_call = time_cpufreq_notifier
645 static int __init cpufreq_tsc(void)
647 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
648 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
649 CPUFREQ_TRANSITION_NOTIFIER))
654 core_initcall(cpufreq_tsc);
659 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
660 * it to the HPET timer of known frequency.
663 #define TICK_COUNT 100000000
665 static unsigned int __init hpet_calibrate_tsc(void)
667 int tsc_start, hpet_start;
668 int tsc_now, hpet_now;
671 local_irq_save(flags);
674 hpet_start = hpet_readl(HPET_COUNTER);
679 hpet_now = hpet_readl(HPET_COUNTER);
680 tsc_now = get_cycles_sync();
681 local_irq_restore(flags);
682 } while ((tsc_now - tsc_start) < TICK_COUNT &&
683 (hpet_now - hpet_start) < TICK_COUNT);
685 return (tsc_now - tsc_start) * 1000000000L
686 / ((hpet_now - hpet_start) * hpet_period / 1000);
691 * pit_calibrate_tsc() uses the speaker output (channel 2) of
692 * the PIT. This is better than using the timer interrupt output,
693 * because we can read the value of the speaker with just one inb(),
694 * where we need three i/o operations for the interrupt channel.
695 * We count how many ticks the TSC does in 50 ms.
698 static unsigned int __init pit_calibrate_tsc(void)
700 unsigned long start, end;
703 spin_lock_irqsave(&i8253_lock, flags);
705 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
708 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
709 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
710 start = get_cycles_sync();
711 while ((inb(0x61) & 0x20) == 0);
712 end = get_cycles_sync();
714 spin_unlock_irqrestore(&i8253_lock, flags);
716 return (end - start) / 50;
720 static __init int late_hpet_init(void)
725 if (!vxtime.hpet_address)
728 memset(&hd, 0, sizeof (hd));
730 ntimer = hpet_readl(HPET_ID);
731 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
735 * Register with driver.
736 * Timer0 and Timer1 is used by platform.
738 hd.hd_phys_address = vxtime.hpet_address;
739 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
740 hd.hd_nirqs = ntimer;
741 hd.hd_flags = HPET_DATA_PLATFORM;
742 hpet_reserve_timer(&hd, 0);
743 #ifdef CONFIG_HPET_EMULATE_RTC
744 hpet_reserve_timer(&hd, 1);
746 hd.hd_irq[0] = HPET_LEGACY_8254;
747 hd.hd_irq[1] = HPET_LEGACY_RTC;
750 struct hpet_timer *timer;
753 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
754 timer = &hpet->hpet_timers[2];
755 for (i = 2; i < ntimer; timer++, i++)
756 hd.hd_irq[i] = (timer->hpet_config &
757 Tn_INT_ROUTE_CNF_MASK) >>
758 Tn_INT_ROUTE_CNF_SHIFT;
765 fs_initcall(late_hpet_init);
768 static int hpet_timer_stop_set_go(unsigned long tick)
773 * Stop the timers and reset the main counter.
776 cfg = hpet_readl(HPET_CFG);
777 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
778 hpet_writel(cfg, HPET_CFG);
779 hpet_writel(0, HPET_COUNTER);
780 hpet_writel(0, HPET_COUNTER + 4);
783 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
784 * and period also hpet_tick.
786 if (hpet_use_timer) {
787 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
788 HPET_TN_32BIT, HPET_T0_CFG);
789 hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
790 hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
791 cfg |= HPET_CFG_LEGACY;
797 cfg |= HPET_CFG_ENABLE;
798 hpet_writel(cfg, HPET_CFG);
803 static int hpet_init(void)
807 if (!vxtime.hpet_address)
809 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
810 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
813 * Read the period, compute tick and quotient.
816 id = hpet_readl(HPET_ID);
818 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
821 hpet_period = hpet_readl(HPET_PERIOD);
822 if (hpet_period < 100000 || hpet_period > 100000000)
825 hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;
827 hpet_use_timer = (id & HPET_ID_LEGSUP);
829 return hpet_timer_stop_set_go(hpet_tick);
832 static int hpet_reenable(void)
834 return hpet_timer_stop_set_go(hpet_tick);
837 #define PIT_MODE 0x43
840 static void __init __pit_init(int val, u8 mode)
844 spin_lock_irqsave(&i8253_lock, flags);
845 outb_p(mode, PIT_MODE);
846 outb_p(val & 0xff, PIT_CH0); /* LSB */
847 outb_p(val >> 8, PIT_CH0); /* MSB */
848 spin_unlock_irqrestore(&i8253_lock, flags);
851 void __init pit_init(void)
853 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
856 void __init pit_stop_interrupt(void)
858 __pit_init(0, 0x30); /* mode 0 */
861 void __init stop_timer_interrupt(void)
864 if (vxtime.hpet_address) {
866 hpet_timer_stop_set_go(0);
869 pit_stop_interrupt();
871 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
874 int __init time_setup(char *str)
876 report_lost_ticks = 1;
880 static struct irqaction irq0 = {
881 timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL
885 time_cpu_notifier(struct notifier_block *nb, unsigned long action, void *hcpu)
887 unsigned cpu = (unsigned long) hcpu;
888 if (action == CPU_ONLINE)
889 vsyscall_set_cpu(cpu);
893 void __init time_init(void)
896 vxtime.hpet_address = 0;
898 xtime.tv_sec = get_cmos_time();
901 set_normalized_timespec(&wall_to_monotonic,
902 -xtime.tv_sec, -xtime.tv_nsec);
905 vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period;
907 vxtime.hpet_address = 0;
909 if (hpet_use_timer) {
910 /* set tick_nsec to use the proper rate for HPET */
911 tick_nsec = TICK_NSEC_HPET;
912 cpu_khz = hpet_calibrate_tsc();
914 #ifdef CONFIG_X86_PM_TIMER
915 } else if (pmtmr_ioport && !vxtime.hpet_address) {
916 vxtime_hz = PM_TIMER_FREQUENCY;
919 cpu_khz = pit_calibrate_tsc();
923 cpu_khz = pit_calibrate_tsc();
927 vxtime.mode = VXTIME_TSC;
928 vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
929 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
930 vxtime.last_tsc = get_cycles_sync();
931 set_cyc2ns_scale(cpu_khz);
933 hotcpu_notifier(time_cpu_notifier, 0);
934 time_cpu_notifier(NULL, CPU_ONLINE, (void *)(long)smp_processor_id());
942 * Make an educated guess if the TSC is trustworthy and synchronized
945 __cpuinit int unsynchronized_tsc(void)
948 if (apic_is_clustered_box())
951 /* Most intel systems have synchronized TSCs except for
952 multi node systems */
953 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
955 /* But TSC doesn't tick in C3 so don't use it there */
956 if (acpi_fadt.length > 0 && acpi_fadt.plvl3_lat < 100)
962 /* Assume multi socket systems are not synchronized */
963 return num_present_cpus() > 1;
967 * Decide what mode gettimeofday should use.
969 void time_init_gtod(void)
973 if (unsynchronized_tsc())
976 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
977 vgetcpu_mode = VGETCPU_RDTSCP;
979 vgetcpu_mode = VGETCPU_LSL;
981 if (vxtime.hpet_address && notsc) {
982 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
984 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
986 vxtime.last = hpet_readl(HPET_COUNTER);
987 vxtime.mode = VXTIME_HPET;
988 do_gettimeoffset = do_gettimeoffset_hpet;
989 #ifdef CONFIG_X86_PM_TIMER
990 /* Using PM for gettimeofday is quite slow, but we have no other
991 choice because the TSC is too unreliable on some systems. */
992 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
994 do_gettimeoffset = do_gettimeoffset_pm;
995 vxtime.mode = VXTIME_PMTMR;
997 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
1000 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
1001 vxtime.mode = VXTIME_TSC;
1004 printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
1005 vxtime_hz / 1000000, vxtime_hz % 1000000, timename, timetype);
1006 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
1007 cpu_khz / 1000, cpu_khz % 1000);
1008 vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
1009 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
1010 vxtime.last_tsc = get_cycles_sync();
1012 set_cyc2ns_scale(cpu_khz);
1015 __setup("report_lost_ticks", time_setup);
1017 static long clock_cmos_diff;
1018 static unsigned long sleep_start;
1021 * sysfs support for the timer.
1024 static int timer_suspend(struct sys_device *dev, pm_message_t state)
1027 * Estimate time zone so that set_time can update the clock
1029 long cmos_time = get_cmos_time();
1031 clock_cmos_diff = -cmos_time;
1032 clock_cmos_diff += get_seconds();
1033 sleep_start = cmos_time;
1037 static int timer_resume(struct sys_device *dev)
1039 unsigned long flags;
1041 unsigned long ctime = get_cmos_time();
1042 long sleep_length = (ctime - sleep_start) * HZ;
1044 if (sleep_length < 0) {
1045 printk(KERN_WARNING "Time skew detected in timer resume!\n");
1046 /* The time after the resume must not be earlier than the time
1047 * before the suspend or some nasty things will happen
1050 ctime = sleep_start;
1052 if (vxtime.hpet_address)
1055 i8254_timer_resume();
1057 sec = ctime + clock_cmos_diff;
1058 write_seqlock_irqsave(&xtime_lock,flags);
1061 if (vxtime.mode == VXTIME_HPET) {
1063 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1065 vxtime.last = hpet_readl(HPET_COUNTER);
1066 #ifdef CONFIG_X86_PM_TIMER
1067 } else if (vxtime.mode == VXTIME_PMTMR) {
1071 vxtime.last_tsc = get_cycles_sync();
1072 write_sequnlock_irqrestore(&xtime_lock,flags);
1073 jiffies += sleep_length;
1074 wall_jiffies += sleep_length;
1075 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
1076 touch_softlockup_watchdog();
1080 static struct sysdev_class timer_sysclass = {
1081 .resume = timer_resume,
1082 .suspend = timer_suspend,
1083 set_kset_name("timer"),
1086 /* XXX this driverfs stuff should probably go elsewhere later -john */
1087 static struct sys_device device_timer = {
1089 .cls = &timer_sysclass,
1092 static int time_init_device(void)
1094 int error = sysdev_class_register(&timer_sysclass);
1096 error = sysdev_register(&device_timer);
1100 device_initcall(time_init_device);
1102 #ifdef CONFIG_HPET_EMULATE_RTC
1103 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1104 * is enabled, we support RTC interrupt functionality in software.
1105 * RTC has 3 kinds of interrupts:
1106 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1108 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1109 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1110 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1111 * (1) and (2) above are implemented using polling at a frequency of
1112 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1113 * overhead. (DEFAULT_RTC_INT_FREQ)
1114 * For (3), we use interrupts at 64Hz or user specified periodic
1115 * frequency, whichever is higher.
1117 #include <linux/rtc.h>
1119 #define DEFAULT_RTC_INT_FREQ 64
1120 #define RTC_NUM_INTS 1
1122 static unsigned long UIE_on;
1123 static unsigned long prev_update_sec;
1125 static unsigned long AIE_on;
1126 static struct rtc_time alarm_time;
1128 static unsigned long PIE_on;
1129 static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1130 static unsigned long PIE_count;
1132 static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
1133 static unsigned int hpet_t1_cmp; /* cached comparator register */
1135 int is_hpet_enabled(void)
1137 return vxtime.hpet_address != 0;
1141 * Timer 1 for RTC, we do not use periodic interrupt feature,
1142 * even if HPET supports periodic interrupts on Timer 1.
1143 * The reason being, to set up a periodic interrupt in HPET, we need to
1144 * stop the main counter. And if we do that everytime someone diables/enables
1145 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1146 * So, for the time being, simulate the periodic interrupt in software.
1148 * hpet_rtc_timer_init() is called for the first time and during subsequent
1149 * interuppts reinit happens through hpet_rtc_timer_reinit().
1151 int hpet_rtc_timer_init(void)
1153 unsigned int cfg, cnt;
1154 unsigned long flags;
1156 if (!is_hpet_enabled())
1159 * Set the counter 1 and enable the interrupts.
1161 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1162 hpet_rtc_int_freq = PIE_freq;
1164 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1166 local_irq_save(flags);
1168 cnt = hpet_readl(HPET_COUNTER);
1169 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1170 hpet_writel(cnt, HPET_T1_CMP);
1173 cfg = hpet_readl(HPET_T1_CFG);
1174 cfg &= ~HPET_TN_PERIODIC;
1175 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1176 hpet_writel(cfg, HPET_T1_CFG);
1178 local_irq_restore(flags);
1183 static void hpet_rtc_timer_reinit(void)
1185 unsigned int cfg, cnt, ticks_per_int, lost_ints;
1187 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1188 cfg = hpet_readl(HPET_T1_CFG);
1189 cfg &= ~HPET_TN_ENABLE;
1190 hpet_writel(cfg, HPET_T1_CFG);
1194 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1195 hpet_rtc_int_freq = PIE_freq;
1197 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1199 /* It is more accurate to use the comparator value than current count.*/
1200 ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
1201 hpet_t1_cmp += ticks_per_int;
1202 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1205 * If the interrupt handler was delayed too long, the write above tries
1206 * to schedule the next interrupt in the past and the hardware would
1207 * not interrupt until the counter had wrapped around.
1208 * So we have to check that the comparator wasn't set to a past time.
1210 cnt = hpet_readl(HPET_COUNTER);
1211 if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
1212 lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
1213 /* Make sure that, even with the time needed to execute
1214 * this code, the next scheduled interrupt has been moved
1215 * back to the future: */
1218 hpet_t1_cmp += lost_ints * ticks_per_int;
1219 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1222 PIE_count += lost_ints;
1224 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1230 * The functions below are called from rtc driver.
1231 * Return 0 if HPET is not being used.
1232 * Otherwise do the necessary changes and return 1.
1234 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1236 if (!is_hpet_enabled())
1239 if (bit_mask & RTC_UIE)
1241 if (bit_mask & RTC_PIE)
1243 if (bit_mask & RTC_AIE)
1249 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1251 int timer_init_reqd = 0;
1253 if (!is_hpet_enabled())
1256 if (!(PIE_on | AIE_on | UIE_on))
1257 timer_init_reqd = 1;
1259 if (bit_mask & RTC_UIE) {
1262 if (bit_mask & RTC_PIE) {
1266 if (bit_mask & RTC_AIE) {
1270 if (timer_init_reqd)
1271 hpet_rtc_timer_init();
1276 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1278 if (!is_hpet_enabled())
1281 alarm_time.tm_hour = hrs;
1282 alarm_time.tm_min = min;
1283 alarm_time.tm_sec = sec;
1288 int hpet_set_periodic_freq(unsigned long freq)
1290 if (!is_hpet_enabled())
1299 int hpet_rtc_dropped_irq(void)
1301 if (!is_hpet_enabled())
1307 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1309 struct rtc_time curr_time;
1310 unsigned long rtc_int_flag = 0;
1311 int call_rtc_interrupt = 0;
1313 hpet_rtc_timer_reinit();
1315 if (UIE_on | AIE_on) {
1316 rtc_get_rtc_time(&curr_time);
1319 if (curr_time.tm_sec != prev_update_sec) {
1320 /* Set update int info, call real rtc int routine */
1321 call_rtc_interrupt = 1;
1322 rtc_int_flag = RTC_UF;
1323 prev_update_sec = curr_time.tm_sec;
1328 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1329 /* Set periodic int info, call real rtc int routine */
1330 call_rtc_interrupt = 1;
1331 rtc_int_flag |= RTC_PF;
1336 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1337 (curr_time.tm_min == alarm_time.tm_min) &&
1338 (curr_time.tm_hour == alarm_time.tm_hour)) {
1339 /* Set alarm int info, call real rtc int routine */
1340 call_rtc_interrupt = 1;
1341 rtc_int_flag |= RTC_AF;
1344 if (call_rtc_interrupt) {
1345 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1346 rtc_interrupt(rtc_int_flag, dev_id, regs);
1352 static int __init nohpet_setup(char *s)
1358 __setup("nohpet", nohpet_setup);
1360 int __init notsc_setup(char *s)
1366 __setup("notsc", notsc_setup);