perf_counter: Generic per counter interrupt throttle
[linux-2.6] / arch / sh / kernel / timers / timer-tmu.c
1 /*
2  * arch/sh/kernel/timers/timer-tmu.c - TMU Timer Support
3  *
4  *  Copyright (C) 2005 - 2007  Paul Mundt
5  *
6  * TMU handling code hacked out of arch/sh/kernel/time.c
7  *
8  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
9  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
10  *  Copyright (C) 2002, 2003, 2004  Paul Mundt
11  *  Copyright (C) 2002  M. R. Brown  <mrbrown@linux-sh.org>
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License.  See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/seqlock.h>
21 #include <linux/clockchips.h>
22 #include <asm/timer.h>
23 #include <asm/rtc.h>
24 #include <asm/io.h>
25 #include <asm/irq.h>
26 #include <asm/clock.h>
27
28 #define TMU_TOCR_INIT   0x00
29 #define TMU_TCR_INIT    0x0020
30
31 #define TMU0            (0)
32 #define TMU1            (1)
33
34 static inline void _tmu_start(int tmu_num)
35 {
36         ctrl_outb(ctrl_inb(TMU_012_TSTR) | (0x1<<tmu_num), TMU_012_TSTR);
37 }
38
39 static inline void _tmu_set_irq(int tmu_num, int enabled)
40 {
41         register unsigned long tmu_tcr = TMU0_TCR + (0xc*tmu_num);
42         ctrl_outw( (enabled ? ctrl_inw(tmu_tcr) | (1<<5) : ctrl_inw(tmu_tcr) & ~(1<<5)), tmu_tcr);
43 }
44
45 static inline void _tmu_stop(int tmu_num)
46 {
47         ctrl_outb(ctrl_inb(TMU_012_TSTR) & ~(0x1<<tmu_num), TMU_012_TSTR);
48 }
49
50 static inline void _tmu_clear_status(int tmu_num)
51 {
52         register unsigned long tmu_tcr = TMU0_TCR + (0xc*tmu_num);
53         /* Clear UNF bit */
54         ctrl_outw(ctrl_inw(tmu_tcr) & ~0x100, tmu_tcr);
55 }
56
57 static inline unsigned long _tmu_read(int tmu_num)
58 {
59         return ctrl_inl(TMU0_TCNT+0xC*tmu_num);
60 }
61
62 static int tmu_timer_start(void)
63 {
64         _tmu_start(TMU0);
65         _tmu_start(TMU1);
66         _tmu_set_irq(TMU0,1);
67         return 0;
68 }
69
70 static int tmu_timer_stop(void)
71 {
72         _tmu_stop(TMU0);
73         _tmu_stop(TMU1);
74         _tmu_clear_status(TMU0);
75         return 0;
76 }
77
78 /*
79  * also when the module_clk is scaled the TMU1
80  * will show the same frequency
81  */
82 static int tmus_are_scaled;
83
84 static cycle_t tmu_timer_read(struct clocksource *cs)
85 {
86         return ((cycle_t)(~_tmu_read(TMU1)))<<tmus_are_scaled;
87 }
88
89
90 static unsigned long tmu_latest_interval[3];
91 static void tmu_timer_set_interval(int tmu_num, unsigned long interval, unsigned int reload)
92 {
93         unsigned long tmu_tcnt = TMU0_TCNT + tmu_num*0xC;
94         unsigned long tmu_tcor = TMU0_TCOR + tmu_num*0xC;
95
96         _tmu_stop(tmu_num);
97
98         ctrl_outl(interval, tmu_tcnt);
99         tmu_latest_interval[tmu_num] = interval;
100
101         /*
102          * TCNT reloads from TCOR on underflow, clear it if we don't
103          * intend to auto-reload
104          */
105         ctrl_outl( reload ? interval : 0 , tmu_tcor);
106
107         _tmu_start(tmu_num);
108 }
109
110 static int tmu_set_next_event(unsigned long cycles,
111                               struct clock_event_device *evt)
112 {
113         tmu_timer_set_interval(TMU0,cycles, evt->mode == CLOCK_EVT_MODE_PERIODIC);
114         _tmu_set_irq(TMU0,1);
115         return 0;
116 }
117
118 static void tmu_set_mode(enum clock_event_mode mode,
119                          struct clock_event_device *evt)
120 {
121         switch (mode) {
122         case CLOCK_EVT_MODE_PERIODIC:
123                 ctrl_outl(tmu_latest_interval[TMU0], TMU0_TCOR);
124                 break;
125         case CLOCK_EVT_MODE_ONESHOT:
126                 ctrl_outl(0, TMU0_TCOR);
127                 break;
128         case CLOCK_EVT_MODE_UNUSED:
129         case CLOCK_EVT_MODE_SHUTDOWN:
130         case CLOCK_EVT_MODE_RESUME:
131                 break;
132         }
133 }
134
135 static struct clock_event_device tmu0_clockevent = {
136         .name           = "tmu0",
137         .shift          = 32,
138         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
139         .set_mode       = tmu_set_mode,
140         .set_next_event = tmu_set_next_event,
141 };
142
143 static irqreturn_t tmu_timer_interrupt(int irq, void *dummy)
144 {
145         struct clock_event_device *evt = &tmu0_clockevent;
146         _tmu_clear_status(TMU0);
147         _tmu_set_irq(TMU0,tmu0_clockevent.mode != CLOCK_EVT_MODE_ONESHOT);
148
149         switch (tmu0_clockevent.mode) {
150         case CLOCK_EVT_MODE_ONESHOT:
151         case CLOCK_EVT_MODE_PERIODIC:
152                 evt->event_handler(evt);
153                 break;
154         default:
155                 break;
156         }
157
158         return IRQ_HANDLED;
159 }
160
161 static struct irqaction tmu0_irq = {
162         .name           = "periodic/oneshot timer",
163         .handler        = tmu_timer_interrupt,
164         .flags          = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
165 };
166
167 static void __init tmu_clk_init(struct clk *clk)
168 {
169         u8 divisor  = TMU_TCR_INIT & 0x7;
170         int tmu_num = clk->name[3]-'0';
171         ctrl_outw(TMU_TCR_INIT, TMU0_TCR+(tmu_num*0xC));
172         clk->rate = clk_get_rate(clk->parent) / (4 << (divisor << 1));
173 }
174
175 static void tmu_clk_recalc(struct clk *clk)
176 {
177         int tmu_num = clk->name[3]-'0';
178         unsigned long prev_rate = clk_get_rate(clk);
179         unsigned long flags;
180         u8 divisor = ctrl_inw(TMU0_TCR+tmu_num*0xC) & 0x7;
181         clk->rate  = clk_get_rate(clk->parent) / (4 << (divisor << 1));
182
183         if(prev_rate==clk_get_rate(clk))
184                 return;
185
186         if(tmu_num)
187                 return; /* No more work on TMU1 */
188
189         local_irq_save(flags);
190         tmus_are_scaled = (prev_rate > clk->rate);
191
192         _tmu_stop(TMU0);
193
194         tmu0_clockevent.mult = div_sc(clk->rate, NSEC_PER_SEC,
195                                 tmu0_clockevent.shift);
196         tmu0_clockevent.max_delta_ns =
197                         clockevent_delta2ns(-1, &tmu0_clockevent);
198         tmu0_clockevent.min_delta_ns =
199                         clockevent_delta2ns(1, &tmu0_clockevent);
200
201         if (tmus_are_scaled)
202                 tmu_latest_interval[TMU0] >>= 1;
203         else
204                 tmu_latest_interval[TMU0] <<= 1;
205
206         tmu_timer_set_interval(TMU0,
207                 tmu_latest_interval[TMU0],
208                 tmu0_clockevent.mode == CLOCK_EVT_MODE_PERIODIC);
209
210         _tmu_start(TMU0);
211
212         local_irq_restore(flags);
213 }
214
215 static struct clk_ops tmu_clk_ops = {
216         .init           = tmu_clk_init,
217         .recalc         = tmu_clk_recalc,
218 };
219
220 static struct clk tmu0_clk = {
221         .name           = "tmu0_clk",
222         .ops            = &tmu_clk_ops,
223 };
224
225 static struct clk tmu1_clk = {
226         .name           = "tmu1_clk",
227         .ops            = &tmu_clk_ops,
228 };
229
230 static int tmu_timer_init(void)
231 {
232         unsigned long interval;
233         unsigned long frequency;
234
235         setup_irq(CONFIG_SH_TIMER_IRQ, &tmu0_irq);
236
237         tmu0_clk.parent = clk_get(NULL, "module_clk");
238         tmu1_clk.parent = clk_get(NULL, "module_clk");
239
240         tmu_timer_stop();
241
242 #if !defined(CONFIG_CPU_SUBTYPE_SH7720) && \
243     !defined(CONFIG_CPU_SUBTYPE_SH7721) && \
244     !defined(CONFIG_CPU_SUBTYPE_SH7760) && \
245     !defined(CONFIG_CPU_SUBTYPE_SH7785) && \
246     !defined(CONFIG_CPU_SUBTYPE_SH7786) && \
247     !defined(CONFIG_CPU_SUBTYPE_SHX3)
248         ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
249 #endif
250
251         clk_register(&tmu0_clk);
252         clk_register(&tmu1_clk);
253         clk_enable(&tmu0_clk);
254         clk_enable(&tmu1_clk);
255
256         frequency = clk_get_rate(&tmu0_clk);
257         interval = (frequency + HZ / 2) / HZ;
258
259         tmu_timer_set_interval(TMU0,interval, 1);
260         tmu_timer_set_interval(TMU1,~0,1);
261
262         _tmu_start(TMU1);
263
264         clocksource_sh.rating = 200;
265         clocksource_sh.mask = CLOCKSOURCE_MASK(32);
266         clocksource_sh.read = tmu_timer_read;
267         clocksource_sh.shift = 10;
268         clocksource_sh.mult = clocksource_hz2mult(clk_get_rate(&tmu1_clk),
269                                                   clocksource_sh.shift);
270         clocksource_sh.flags = CLOCK_SOURCE_IS_CONTINUOUS;
271         clocksource_register(&clocksource_sh);
272
273         tmu0_clockevent.mult = div_sc(frequency, NSEC_PER_SEC,
274                                       tmu0_clockevent.shift);
275         tmu0_clockevent.max_delta_ns =
276                         clockevent_delta2ns(-1, &tmu0_clockevent);
277         tmu0_clockevent.min_delta_ns =
278                         clockevent_delta2ns(1, &tmu0_clockevent);
279
280         tmu0_clockevent.cpumask = cpumask_of(0);
281         tmu0_clockevent.rating = 100;
282
283         clockevents_register_device(&tmu0_clockevent);
284
285         return 0;
286 }
287
288 static struct sys_timer_ops tmu_timer_ops = {
289         .init           = tmu_timer_init,
290         .start          = tmu_timer_start,
291         .stop           = tmu_timer_stop,
292 };
293
294 struct sys_timer tmu_timer = {
295         .name   = "tmu",
296         .ops    = &tmu_timer_ops,
297 };