2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/bio.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/crc7.h>
32 #include <linux/crc-itu-t.h>
33 #include <linux/scatterlist.h>
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
38 #include <linux/spi/spi.h>
39 #include <linux/spi/mmc_spi.h>
41 #include <asm/unaligned.h>
46 * - For now, we won't try to interoperate with a real mmc/sd/sdio
47 * controller, although some of them do have hardware support for
48 * SPI protocol. The main reason for such configs would be mmc-ish
49 * cards like DataFlash, which don't support that "native" protocol.
51 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52 * switch between driver stacks, and in any case if "native" mode
53 * is available, it will be faster and hence preferable.
55 * - MMC depends on a different chipselect management policy than the
56 * SPI interface currently supports for shared bus segments: it needs
57 * to issue multiple spi_message requests with the chipselect active,
58 * using the results of one message to decide the next one to issue.
60 * Pending updates to the programming interface, this driver expects
61 * that it not share the bus with other drivers (precluding conflicts).
63 * - We tell the controller to keep the chipselect active from the
64 * beginning of an mmc_host_ops.request until the end. So beware
65 * of SPI controller drivers that mis-handle the cs_change flag!
67 * However, many cards seem OK with chipselect flapping up/down
68 * during that time ... at least on unshared bus segments.
73 * Local protocol constants, internal to data block protocols.
76 /* Response tokens used to ack each block written: */
77 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
78 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
79 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
80 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
82 /* Read and write blocks start with these tokens and end with crc;
83 * on error, read tokens act like a subset of R2_SPI_* values.
85 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
86 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
87 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
89 #define MMC_SPI_BLOCKSIZE 512
92 /* These fixed timeouts come from the latest SD specs, which say to ignore
93 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95 * reads which takes nowhere near that long. Older cards may be able to use
96 * shorter timeouts ... but why bother?
98 #define r1b_timeout (HZ * 3)
101 /****************************************************************************/
104 * Local Data Structures
107 /* "scratch" is per-{command,block} data exchanged with the card */
114 struct mmc_spi_host {
115 struct mmc_host *mmc;
116 struct spi_device *spi;
118 unsigned char power_mode;
121 struct mmc_spi_platform_data *pdata;
123 /* for bulk data transfers */
124 struct spi_transfer token, t, crc, early_status;
125 struct spi_message m;
127 /* for status readback */
128 struct spi_transfer status;
129 struct spi_message readback;
131 /* underlying DMA-aware controller, or null */
132 struct device *dma_dev;
134 /* buffer used for commands and for message "overhead" */
135 struct scratch *data;
138 /* Specs say to write ones most of the time, even when the card
139 * has no need to read its input data; and many cards won't care.
140 * This is our source of those ones.
147 /****************************************************************************/
150 * MMC-over-SPI protocol glue, used by the MMC stack interface
153 static inline int mmc_cs_off(struct mmc_spi_host *host)
155 /* chipselect will always be inactive after setup() */
156 return spi_setup(host->spi);
160 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
164 if (len > sizeof(*host->data)) {
169 host->status.len = len;
172 dma_sync_single_for_device(host->dma_dev,
173 host->data_dma, sizeof(*host->data),
176 status = spi_sync(host->spi, &host->readback);
179 dma_sync_single_for_cpu(host->dma_dev,
180 host->data_dma, sizeof(*host->data),
186 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
189 u8 *cp = host->data->status;
190 unsigned long start = jiffies;
196 status = mmc_spi_readbytes(host, n);
200 for (i = 0; i < n; i++) {
205 if (time_is_before_jiffies(start + timeout))
208 /* If we need long timeouts, we may release the CPU.
209 * We use jiffies here because we want to have a relation
210 * between elapsed time and the blocking of the scheduler.
212 if (time_is_before_jiffies(start+1))
219 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
221 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
224 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
226 return mmc_spi_skip(host, timeout, 1, 0xff);
231 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
232 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
233 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
235 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
236 * newer cards R7 (IF_COND).
239 static char *maptype(struct mmc_command *cmd)
241 switch (mmc_spi_resp_type(cmd)) {
242 case MMC_RSP_SPI_R1: return "R1";
243 case MMC_RSP_SPI_R1B: return "R1B";
244 case MMC_RSP_SPI_R2: return "R2/R5";
245 case MMC_RSP_SPI_R3: return "R3/R4/R7";
250 /* return zero, else negative errno after setting cmd->error */
251 static int mmc_spi_response_get(struct mmc_spi_host *host,
252 struct mmc_command *cmd, int cs_on)
254 u8 *cp = host->data->status;
255 u8 *end = cp + host->t.len;
259 unsigned short rotator;
263 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
264 cmd->opcode, maptype(cmd));
266 /* Except for data block reads, the whole response will already
267 * be stored in the scratch buffer. It's somewhere after the
268 * command and the first byte we read after it. We ignore that
269 * first byte. After STOP_TRANSMISSION command it may include
270 * two data bits, but otherwise it's all ones.
273 while (cp < end && *cp == 0xff)
276 /* Data block reads (R1 response types) may need more data... */
278 cp = host->data->status;
281 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
282 * status byte ... and we already scanned 2 bytes.
284 * REVISIT block read paths use nasty byte-at-a-time I/O
285 * so it can always DMA directly into the target buffer.
286 * It'd probably be better to memcpy() the first chunk and
287 * avoid extra i/o calls...
289 * Note we check for more than 8 bytes, because in practice,
290 * some SD cards are slow...
292 for (i = 2; i < 16; i++) {
293 value = mmc_spi_readbytes(host, 1);
306 /* Houston, we have an ugly card with a bit-shifted response */
307 rotator = *cp++ << 8;
308 /* read the next byte */
310 value = mmc_spi_readbytes(host, 1);
313 cp = host->data->status;
317 while (rotator & 0x8000) {
321 cmd->resp[0] = rotator >> 8;
324 cmd->resp[0] = *cp++;
328 /* Status byte: the entire seven-bit R1 response. */
329 if (cmd->resp[0] != 0) {
330 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS
331 | R1_SPI_ILLEGAL_COMMAND)
334 else if (R1_SPI_COM_CRC & cmd->resp[0])
336 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
339 /* else R1_SPI_IDLE, "it's resetting" */
342 switch (mmc_spi_resp_type(cmd)) {
344 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
345 * and less-common stuff like various erase operations.
347 case MMC_RSP_SPI_R1B:
348 /* maybe we read all the busy tokens already */
349 while (cp < end && *cp == 0)
352 mmc_spi_wait_unbusy(host, r1b_timeout);
355 /* SPI R2 == R1 + second status byte; SEND_STATUS
356 * SPI R5 == R1 + data byte; IO_RW_DIRECT
359 /* read the next byte */
361 value = mmc_spi_readbytes(host, 1);
364 cp = host->data->status;
368 rotator = leftover << 8;
369 rotator |= *cp << bitshift;
370 cmd->resp[0] |= (rotator & 0xFF00);
372 cmd->resp[0] |= *cp << 8;
376 /* SPI R3, R4, or R7 == R1 + 4 bytes */
378 rotator = leftover << 8;
380 for (i = 0; i < 4; i++) {
382 /* read the next byte */
384 value = mmc_spi_readbytes(host, 1);
387 cp = host->data->status;
391 rotator |= *cp++ << bitshift;
392 cmd->resp[1] |= (rotator >> 8);
395 cmd->resp[1] |= *cp++;
400 /* SPI R1 == just one status byte */
405 dev_dbg(&host->spi->dev, "bad response type %04x\n",
406 mmc_spi_resp_type(cmd));
413 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
414 tag, cmd->resp[0], cmd->resp[1]);
416 /* disable chipselect on errors and some success cases */
417 if (value >= 0 && cs_on)
426 /* Issue command and read its response.
427 * Returns zero on success, negative for error.
429 * On error, caller must cope with mmc core retry mechanism. That
430 * means immediate low-level resubmit, which affects the bus lock...
433 mmc_spi_command_send(struct mmc_spi_host *host,
434 struct mmc_request *mrq,
435 struct mmc_command *cmd, int cs_on)
437 struct scratch *data = host->data;
438 u8 *cp = data->status;
441 struct spi_transfer *t;
443 /* We can handle most commands (except block reads) in one full
444 * duplex I/O operation before either starting the next transfer
445 * (data block or command) or else deselecting the card.
447 * First, write 7 bytes:
448 * - an all-ones byte to ensure the card is ready
449 * - opcode byte (plus start and transmission bits)
450 * - four bytes of big-endian argument
451 * - crc7 (plus end bit) ... always computed, it's cheap
453 * We init the whole buffer to all-ones, which is what we need
454 * to write while we're reading (later) response data.
456 memset(cp++, 0xff, sizeof(data->status));
458 *cp++ = 0x40 | cmd->opcode;
459 *cp++ = (u8)(arg >> 24);
460 *cp++ = (u8)(arg >> 16);
461 *cp++ = (u8)(arg >> 8);
463 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
465 /* Then, read up to 13 bytes (while writing all-ones):
466 * - N(CR) (== 1..8) bytes of all-ones
467 * - status byte (for all response types)
468 * - the rest of the response, either:
469 * + nothing, for R1 or R1B responses
470 * + second status byte, for R2 responses
471 * + four data bytes, for R3 and R7 responses
473 * Finally, read some more bytes ... in the nice cases we know in
474 * advance how many, and reading 1 more is always OK:
475 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
476 * - N(RC) (== 1..N) bytes of all-ones, before next command
477 * - N(WR) (== 1..N) bytes of all-ones, before data write
479 * So in those cases one full duplex I/O of at most 21 bytes will
480 * handle the whole command, leaving the card ready to receive a
481 * data block or new command. We do that whenever we can, shaving
482 * CPU and IRQ costs (especially when using DMA or FIFOs).
484 * There are two other cases, where it's not generally practical
485 * to rely on a single I/O:
487 * - R1B responses need at least N(EC) bytes of all-zeroes.
489 * In this case we can *try* to fit it into one I/O, then
490 * maybe read more data later.
492 * - Data block reads are more troublesome, since a variable
493 * number of padding bytes precede the token and data.
494 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
495 * + N(AC) (== 1..many) bytes of all-ones
497 * In this case we currently only have minimal speedups here:
498 * when N(CR) == 1 we can avoid I/O in response_get().
500 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
501 cp += 2; /* min(N(CR)) + status */
504 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
505 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
507 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
509 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
510 cp = data->status + sizeof(data->status);
511 /* else: R1 (most commands) */
514 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
515 cmd->opcode, maptype(cmd));
517 /* send command, leaving chipselect active */
518 spi_message_init(&host->m);
521 memset(t, 0, sizeof(*t));
522 t->tx_buf = t->rx_buf = data->status;
523 t->tx_dma = t->rx_dma = host->data_dma;
524 t->len = cp - data->status;
526 spi_message_add_tail(t, &host->m);
529 host->m.is_dma_mapped = 1;
530 dma_sync_single_for_device(host->dma_dev,
531 host->data_dma, sizeof(*host->data),
534 status = spi_sync(host->spi, &host->m);
537 dma_sync_single_for_cpu(host->dma_dev,
538 host->data_dma, sizeof(*host->data),
541 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
546 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
547 return mmc_spi_response_get(host, cmd, cs_on);
550 /* Build data message with up to four separate transfers. For TX, we
551 * start by writing the data token. And in most cases, we finish with
554 * We always provide TX data for data and CRC. The MMC/SD protocol
555 * requires us to write ones; but Linux defaults to writing zeroes;
556 * so we explicitly initialize it to all ones on RX paths.
558 * We also handle DMA mapping, so the underlying SPI controller does
559 * not need to (re)do it for each message.
562 mmc_spi_setup_data_message(
563 struct mmc_spi_host *host,
565 enum dma_data_direction direction)
567 struct spi_transfer *t;
568 struct scratch *scratch = host->data;
569 dma_addr_t dma = host->data_dma;
571 spi_message_init(&host->m);
573 host->m.is_dma_mapped = 1;
575 /* for reads, readblock() skips 0xff bytes before finding
576 * the token; for writes, this transfer issues that token.
578 if (direction == DMA_TO_DEVICE) {
580 memset(t, 0, sizeof(*t));
583 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
585 scratch->data_token = SPI_TOKEN_SINGLE;
586 t->tx_buf = &scratch->data_token;
588 t->tx_dma = dma + offsetof(struct scratch, data_token);
589 spi_message_add_tail(t, &host->m);
592 /* Body of transfer is buffer, then CRC ...
593 * either TX-only, or RX with TX-ones.
596 memset(t, 0, sizeof(*t));
597 t->tx_buf = host->ones;
598 t->tx_dma = host->ones_dma;
599 /* length and actual buffer info are written later */
600 spi_message_add_tail(t, &host->m);
603 memset(t, 0, sizeof(*t));
605 if (direction == DMA_TO_DEVICE) {
606 /* the actual CRC may get written later */
607 t->tx_buf = &scratch->crc_val;
609 t->tx_dma = dma + offsetof(struct scratch, crc_val);
611 t->tx_buf = host->ones;
612 t->tx_dma = host->ones_dma;
613 t->rx_buf = &scratch->crc_val;
615 t->rx_dma = dma + offsetof(struct scratch, crc_val);
617 spi_message_add_tail(t, &host->m);
620 * A single block read is followed by N(EC) [0+] all-ones bytes
621 * before deselect ... don't bother.
623 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
624 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
625 * collect that single byte, so readblock() doesn't need to.
627 * For a write, the one-byte data response follows immediately, then
628 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
629 * Then single block reads may deselect, and multiblock ones issue
630 * the next token (next data block, or STOP_TRAN). We can try to
631 * minimize I/O ops by using a single read to collect end-of-busy.
633 if (multiple || direction == DMA_TO_DEVICE) {
634 t = &host->early_status;
635 memset(t, 0, sizeof(*t));
636 t->len = (direction == DMA_TO_DEVICE)
637 ? sizeof(scratch->status)
639 t->tx_buf = host->ones;
640 t->tx_dma = host->ones_dma;
641 t->rx_buf = scratch->status;
643 t->rx_dma = dma + offsetof(struct scratch, status);
645 spi_message_add_tail(t, &host->m);
651 * - caller handled preceding N(WR) [1+] all-ones bytes
656 * - an all-ones byte ... card writes a data-response byte
657 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
659 * Return negative errno, else success.
662 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
663 unsigned long timeout)
665 struct spi_device *spi = host->spi;
667 struct scratch *scratch = host->data;
670 if (host->mmc->use_spi_crc)
671 scratch->crc_val = cpu_to_be16(
672 crc_itu_t(0, t->tx_buf, t->len));
674 dma_sync_single_for_device(host->dma_dev,
675 host->data_dma, sizeof(*scratch),
678 status = spi_sync(spi, &host->m);
681 dev_dbg(&spi->dev, "write error (%d)\n", status);
686 dma_sync_single_for_cpu(host->dma_dev,
687 host->data_dma, sizeof(*scratch),
691 * Get the transmission data-response reply. It must follow
692 * immediately after the data block we transferred. This reply
693 * doesn't necessarily tell whether the write operation succeeded;
694 * it just says if the transmission was ok and whether *earlier*
695 * writes succeeded; see the standard.
697 * In practice, there are (even modern SDHC-)cards which are late
698 * in sending the response, and miss the time frame by a few bits,
699 * so we have to cope with this situation and check the response
700 * bit-by-bit. Arggh!!!
702 pattern = scratch->status[0] << 24;
703 pattern |= scratch->status[1] << 16;
704 pattern |= scratch->status[2] << 8;
705 pattern |= scratch->status[3];
707 /* First 3 bit of pattern are undefined */
708 pattern |= 0xE0000000;
710 /* left-adjust to leading 0 bit */
711 while (pattern & 0x80000000)
713 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
717 case SPI_RESPONSE_ACCEPTED:
720 case SPI_RESPONSE_CRC_ERR:
721 /* host shall then issue MMC_STOP_TRANSMISSION */
724 case SPI_RESPONSE_WRITE_ERR:
725 /* host shall then issue MMC_STOP_TRANSMISSION,
726 * and should MMC_SEND_STATUS to sort it out
735 dev_dbg(&spi->dev, "write error %02x (%d)\n",
736 scratch->status[0], status);
744 /* Return when not busy. If we didn't collect that status yet,
745 * we'll need some more I/O.
747 for (i = 4; i < sizeof(scratch->status); i++) {
748 /* card is non-busy if the most recent bit is 1 */
749 if (scratch->status[i] & 0x01)
752 return mmc_spi_wait_unbusy(host, timeout);
757 * - skip leading all-ones bytes ... either
758 * + N(AC) [1..f(clock,CSD)] usually, else
759 * + N(CX) [0..8] when reading CSD or CID
761 * + token ... if error token, no data or crc
765 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
766 * before dropping chipselect.
768 * For multiblock reads, caller either reads the next block or issues a
769 * STOP_TRANSMISSION command.
772 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
773 unsigned long timeout)
775 struct spi_device *spi = host->spi;
777 struct scratch *scratch = host->data;
778 unsigned int bitshift;
781 /* At least one SD card sends an all-zeroes byte when N(CX)
782 * applies, before the all-ones bytes ... just cope with that.
784 status = mmc_spi_readbytes(host, 1);
787 status = scratch->status[0];
788 if (status == 0xff || status == 0)
789 status = mmc_spi_readtoken(host, timeout);
792 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
796 /* The token may be bit-shifted...
797 * the first 0-bit precedes the data stream.
800 while (status & 0x80) {
804 leftover = status << 1;
807 dma_sync_single_for_device(host->dma_dev,
808 host->data_dma, sizeof(*scratch),
810 dma_sync_single_for_device(host->dma_dev,
815 status = spi_sync(spi, &host->m);
818 dma_sync_single_for_cpu(host->dma_dev,
819 host->data_dma, sizeof(*scratch),
821 dma_sync_single_for_cpu(host->dma_dev,
827 /* Walk through the data and the crc and do
828 * all the magic to get byte-aligned data.
832 unsigned int bitright = 8 - bitshift;
834 for (len = t->len; len; len--) {
836 *cp++ = leftover | (temp >> bitshift);
837 leftover = temp << bitright;
839 cp = (u8 *) &scratch->crc_val;
841 *cp++ = leftover | (temp >> bitshift);
842 leftover = temp << bitright;
844 *cp = leftover | (temp >> bitshift);
847 if (host->mmc->use_spi_crc) {
848 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
850 be16_to_cpus(&scratch->crc_val);
851 if (scratch->crc_val != crc) {
852 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
853 "computed=0x%04x len=%d\n",
854 scratch->crc_val, crc, t->len);
867 * An MMC/SD data stage includes one or more blocks, optional CRCs,
868 * and inline handshaking. That handhaking makes it unlike most
869 * other SPI protocol stacks.
872 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
873 struct mmc_data *data, u32 blk_size)
875 struct spi_device *spi = host->spi;
876 struct device *dma_dev = host->dma_dev;
877 struct spi_transfer *t;
878 enum dma_data_direction direction;
879 struct scatterlist *sg;
881 int multiple = (data->blocks > 1);
883 unsigned long timeout;
885 if (data->flags & MMC_DATA_READ)
886 direction = DMA_FROM_DEVICE;
888 direction = DMA_TO_DEVICE;
889 mmc_spi_setup_data_message(host, multiple, direction);
893 clock_rate = t->speed_hz;
895 clock_rate = spi->max_speed_hz;
897 timeout = data->timeout_ns +
898 data->timeout_clks * 1000000 / clock_rate;
899 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
901 /* Handle scatterlist segments one at a time, with synch for
902 * each 512-byte block
904 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
906 dma_addr_t dma_addr = 0;
908 unsigned length = sg->length;
909 enum dma_data_direction dir = direction;
911 /* set up dma mapping for controller drivers that might
912 * use DMA ... though they may fall back to PIO
915 /* never invalidate whole *shared* pages ... */
916 if ((sg->offset != 0 || length != PAGE_SIZE)
917 && dir == DMA_FROM_DEVICE)
918 dir = DMA_BIDIRECTIONAL;
920 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
922 if (direction == DMA_TO_DEVICE)
923 t->tx_dma = dma_addr + sg->offset;
925 t->rx_dma = dma_addr + sg->offset;
928 /* allow pio too; we don't allow highmem */
929 kmap_addr = kmap(sg_page(sg));
930 if (direction == DMA_TO_DEVICE)
931 t->tx_buf = kmap_addr + sg->offset;
933 t->rx_buf = kmap_addr + sg->offset;
935 /* transfer each block, and update request status */
937 t->len = min(length, blk_size);
939 dev_dbg(&host->spi->dev,
940 " mmc_spi: %s block, %d bytes\n",
941 (direction == DMA_TO_DEVICE)
946 if (direction == DMA_TO_DEVICE)
947 status = mmc_spi_writeblock(host, t, timeout);
949 status = mmc_spi_readblock(host, t, timeout);
953 data->bytes_xfered += t->len;
960 /* discard mappings */
961 if (direction == DMA_FROM_DEVICE)
962 flush_kernel_dcache_page(sg_page(sg));
965 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
968 data->error = status;
969 dev_dbg(&spi->dev, "%s status %d\n",
970 (direction == DMA_TO_DEVICE)
977 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
978 * can be issued before multiblock writes. Unlike its more widely
979 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
980 * that can affect the STOP_TRAN logic. Complete (and current)
981 * MMC specs should sort that out before Linux starts using CMD23.
983 if (direction == DMA_TO_DEVICE && multiple) {
984 struct scratch *scratch = host->data;
986 const unsigned statlen = sizeof(scratch->status);
988 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
990 /* Tweak the per-block message we set up earlier by morphing
991 * it to hold single buffer with the token followed by some
992 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
993 * "not busy any longer" status, and leave chip selected.
995 INIT_LIST_HEAD(&host->m.transfers);
996 list_add(&host->early_status.transfer_list,
999 memset(scratch->status, 0xff, statlen);
1000 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1002 host->early_status.tx_buf = host->early_status.rx_buf;
1003 host->early_status.tx_dma = host->early_status.rx_dma;
1004 host->early_status.len = statlen;
1007 dma_sync_single_for_device(host->dma_dev,
1008 host->data_dma, sizeof(*scratch),
1011 tmp = spi_sync(spi, &host->m);
1014 dma_sync_single_for_cpu(host->dma_dev,
1015 host->data_dma, sizeof(*scratch),
1024 /* Ideally we collected "not busy" status with one I/O,
1025 * avoiding wasteful byte-at-a-time scanning... but more
1026 * I/O is often needed.
1028 for (tmp = 2; tmp < statlen; tmp++) {
1029 if (scratch->status[tmp] != 0)
1032 tmp = mmc_spi_wait_unbusy(host, timeout);
1033 if (tmp < 0 && !data->error)
1038 /****************************************************************************/
1041 * MMC driver implementation -- the interface to the MMC stack
1044 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1046 struct mmc_spi_host *host = mmc_priv(mmc);
1047 int status = -EINVAL;
1050 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1052 struct mmc_command *cmd;
1056 if (!mmc_spi_resp_type(cmd)) {
1057 dev_dbg(&host->spi->dev, "bogus command\n");
1058 cmd->error = -EINVAL;
1063 if (cmd && !mmc_spi_resp_type(cmd)) {
1064 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1065 cmd->error = -EINVAL;
1071 mmc_request_done(host->mmc, mrq);
1077 /* issue command; then optionally data and stop */
1078 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1079 if (status == 0 && mrq->data) {
1080 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1082 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1087 mmc_request_done(host->mmc, mrq);
1090 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1092 * NOTE that here we can't know that the card has just been powered up;
1093 * not all MMC/SD sockets support power switching.
1095 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1096 * this doesn't seem to do the right thing at all...
1098 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1100 /* Try to be very sure any previous command has completed;
1101 * wait till not-busy, skip debris from any old commands.
1103 mmc_spi_wait_unbusy(host, r1b_timeout);
1104 mmc_spi_readbytes(host, 10);
1107 * Do a burst with chipselect active-high. We need to do this to
1108 * meet the requirement of 74 clock cycles with both chipselect
1109 * and CMD (MOSI) high before CMD0 ... after the card has been
1110 * powered up to Vdd(min), and so is ready to take commands.
1112 * Some cards are particularly needy of this (e.g. Viking "SD256")
1113 * while most others don't seem to care.
1115 * Note that this is one of the places MMC/SD plays games with the
1116 * SPI protocol. Another is that when chipselect is released while
1117 * the card returns BUSY status, the clock must issue several cycles
1118 * with chipselect high before the card will stop driving its output.
1120 host->spi->mode |= SPI_CS_HIGH;
1121 if (spi_setup(host->spi) != 0) {
1122 /* Just warn; most cards work without it. */
1123 dev_warn(&host->spi->dev,
1124 "can't change chip-select polarity\n");
1125 host->spi->mode &= ~SPI_CS_HIGH;
1127 mmc_spi_readbytes(host, 18);
1129 host->spi->mode &= ~SPI_CS_HIGH;
1130 if (spi_setup(host->spi) != 0) {
1131 /* Wot, we can't get the same setup we had before? */
1132 dev_err(&host->spi->dev,
1133 "can't restore chip-select polarity\n");
1138 static char *mmc_powerstring(u8 power_mode)
1140 switch (power_mode) {
1141 case MMC_POWER_OFF: return "off";
1142 case MMC_POWER_UP: return "up";
1143 case MMC_POWER_ON: return "on";
1148 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1150 struct mmc_spi_host *host = mmc_priv(mmc);
1152 if (host->power_mode != ios->power_mode) {
1155 canpower = host->pdata && host->pdata->setpower;
1157 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1158 mmc_powerstring(ios->power_mode),
1160 canpower ? ", can switch" : "");
1162 /* switch power on/off if possible, accounting for
1163 * max 250msec powerup time if needed.
1166 switch (ios->power_mode) {
1169 host->pdata->setpower(&host->spi->dev,
1171 if (ios->power_mode == MMC_POWER_UP)
1172 msleep(host->powerup_msecs);
1176 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1177 if (ios->power_mode == MMC_POWER_ON)
1178 mmc_spi_initsequence(host);
1180 /* If powering down, ground all card inputs to avoid power
1181 * delivery from data lines! On a shared SPI bus, this
1182 * will probably be temporary; 6.4.2 of the simplified SD
1183 * spec says this must last at least 1msec.
1185 * - Clock low means CPOL 0, e.g. mode 0
1186 * - MOSI low comes from writing zero
1187 * - Chipselect is usually active low...
1189 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1193 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1194 mres = spi_setup(host->spi);
1196 dev_dbg(&host->spi->dev,
1197 "switch to SPI mode 0 failed\n");
1199 if (spi_write(host->spi, &nullbyte, 1) < 0)
1200 dev_dbg(&host->spi->dev,
1201 "put spi signals to low failed\n");
1204 * Now clock should be low due to spi mode 0;
1205 * MOSI should be low because of written 0x00;
1206 * chipselect should be low (it is active low)
1207 * power supply is off, so now MMC is off too!
1209 * FIXME no, chipselect can be high since the
1210 * device is inactive and SPI_CS_HIGH is clear...
1214 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1215 mres = spi_setup(host->spi);
1217 dev_dbg(&host->spi->dev,
1218 "switch back to SPI mode 3"
1223 host->power_mode = ios->power_mode;
1226 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1229 host->spi->max_speed_hz = ios->clock;
1230 status = spi_setup(host->spi);
1231 dev_dbg(&host->spi->dev,
1232 "mmc_spi: clock to %d Hz, %d\n",
1233 host->spi->max_speed_hz, status);
1237 static int mmc_spi_get_ro(struct mmc_host *mmc)
1239 struct mmc_spi_host *host = mmc_priv(mmc);
1241 if (host->pdata && host->pdata->get_ro)
1242 return !!host->pdata->get_ro(mmc->parent);
1244 * Board doesn't support read only detection; let the mmc core
1245 * decide what to do.
1250 static int mmc_spi_get_cd(struct mmc_host *mmc)
1252 struct mmc_spi_host *host = mmc_priv(mmc);
1254 if (host->pdata && host->pdata->get_cd)
1255 return !!host->pdata->get_cd(mmc->parent);
1259 static const struct mmc_host_ops mmc_spi_ops = {
1260 .request = mmc_spi_request,
1261 .set_ios = mmc_spi_set_ios,
1262 .get_ro = mmc_spi_get_ro,
1263 .get_cd = mmc_spi_get_cd,
1267 /****************************************************************************/
1270 * SPI driver implementation
1274 mmc_spi_detect_irq(int irq, void *mmc)
1276 struct mmc_spi_host *host = mmc_priv(mmc);
1277 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1279 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1283 struct count_children {
1285 struct bus_type *bus;
1288 static int maybe_count_child(struct device *dev, void *c)
1290 struct count_children *ccp = c;
1292 if (dev->bus == ccp->bus) {
1300 static int mmc_spi_probe(struct spi_device *spi)
1303 struct mmc_host *mmc;
1304 struct mmc_spi_host *host;
1307 /* MMC and SD specs only seem to care that sampling is on the
1308 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1309 * should be legit. We'll use mode 0 since the steady state is 0,
1310 * which is appropriate for hotplugging, unless the platform data
1311 * specify mode 3 (if hardware is not compatible to mode 0).
1313 if (spi->mode != SPI_MODE_3)
1314 spi->mode = SPI_MODE_0;
1315 spi->bits_per_word = 8;
1317 status = spi_setup(spi);
1319 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1320 spi->mode, spi->max_speed_hz / 1000,
1325 /* We can use the bus safely iff nobody else will interfere with us.
1326 * Most commands consist of one SPI message to issue a command, then
1327 * several more to collect its response, then possibly more for data
1328 * transfer. Clocking access to other devices during that period will
1329 * corrupt the command execution.
1331 * Until we have software primitives which guarantee non-interference,
1332 * we'll aim for a hardware-level guarantee.
1334 * REVISIT we can't guarantee another device won't be added later...
1336 if (spi->master->num_chipselect > 1) {
1337 struct count_children cc;
1340 cc.bus = spi->dev.bus;
1341 status = device_for_each_child(spi->dev.parent, &cc,
1344 dev_err(&spi->dev, "can't share SPI bus\n");
1348 dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
1351 /* We need a supply of ones to transmit. This is the only time
1352 * the CPU touches these, so cache coherency isn't a concern.
1354 * NOTE if many systems use more than one MMC-over-SPI connector
1355 * it'd save some memory to share this. That's evidently rare.
1358 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1361 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1363 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1367 mmc->ops = &mmc_spi_ops;
1368 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1370 mmc->caps = MMC_CAP_SPI;
1372 /* SPI doesn't need the lowspeed device identification thing for
1373 * MMC or SD cards, since it never comes up in open drain mode.
1374 * That's good; some SPI masters can't handle very low speeds!
1376 * However, low speed SDIO cards need not handle over 400 KHz;
1377 * that's the only reason not to use a few MHz for f_min (until
1378 * the upper layer reads the target frequency from the CSD).
1380 mmc->f_min = 400000;
1381 mmc->f_max = spi->max_speed_hz;
1383 host = mmc_priv(mmc);
1389 /* Platform data is used to hook up things like card sensing
1390 * and power switching gpios.
1392 host->pdata = mmc_spi_get_pdata(spi);
1394 mmc->ocr_avail = host->pdata->ocr_mask;
1395 if (!mmc->ocr_avail) {
1396 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1397 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1399 if (host->pdata && host->pdata->setpower) {
1400 host->powerup_msecs = host->pdata->powerup_msecs;
1401 if (!host->powerup_msecs || host->powerup_msecs > 250)
1402 host->powerup_msecs = 250;
1405 dev_set_drvdata(&spi->dev, mmc);
1407 /* preallocate dma buffers */
1408 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1412 if (spi->master->dev.parent->dma_mask) {
1413 struct device *dev = spi->master->dev.parent;
1415 host->dma_dev = dev;
1416 host->ones_dma = dma_map_single(dev, ones,
1417 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1418 host->data_dma = dma_map_single(dev, host->data,
1419 sizeof(*host->data), DMA_BIDIRECTIONAL);
1421 /* REVISIT in theory those map operations can fail... */
1423 dma_sync_single_for_cpu(host->dma_dev,
1424 host->data_dma, sizeof(*host->data),
1428 /* setup message for status/busy readback */
1429 spi_message_init(&host->readback);
1430 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1432 spi_message_add_tail(&host->status, &host->readback);
1433 host->status.tx_buf = host->ones;
1434 host->status.tx_dma = host->ones_dma;
1435 host->status.rx_buf = &host->data->status;
1436 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1437 host->status.cs_change = 1;
1439 /* register card detect irq */
1440 if (host->pdata && host->pdata->init) {
1441 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1443 goto fail_glue_init;
1446 /* pass platform capabilities, if any */
1448 mmc->caps |= host->pdata->caps;
1450 status = mmc_add_host(mmc);
1454 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1455 dev_name(&mmc->class_dev),
1456 host->dma_dev ? "" : ", no DMA",
1457 (host->pdata && host->pdata->get_ro)
1459 (host->pdata && host->pdata->setpower)
1460 ? "" : ", no poweroff",
1461 (mmc->caps & MMC_CAP_NEEDS_POLL)
1462 ? ", cd polling" : "");
1466 mmc_remove_host (mmc);
1469 dma_unmap_single(host->dma_dev, host->data_dma,
1470 sizeof(*host->data), DMA_BIDIRECTIONAL);
1475 mmc_spi_put_pdata(spi);
1476 dev_set_drvdata(&spi->dev, NULL);
1484 static int __devexit mmc_spi_remove(struct spi_device *spi)
1486 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1487 struct mmc_spi_host *host;
1490 host = mmc_priv(mmc);
1492 /* prevent new mmc_detect_change() calls */
1493 if (host->pdata && host->pdata->exit)
1494 host->pdata->exit(&spi->dev, mmc);
1496 mmc_remove_host(mmc);
1498 if (host->dma_dev) {
1499 dma_unmap_single(host->dma_dev, host->ones_dma,
1500 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1501 dma_unmap_single(host->dma_dev, host->data_dma,
1502 sizeof(*host->data), DMA_BIDIRECTIONAL);
1508 spi->max_speed_hz = mmc->f_max;
1510 mmc_spi_put_pdata(spi);
1511 dev_set_drvdata(&spi->dev, NULL);
1517 static struct spi_driver mmc_spi_driver = {
1520 .bus = &spi_bus_type,
1521 .owner = THIS_MODULE,
1523 .probe = mmc_spi_probe,
1524 .remove = __devexit_p(mmc_spi_remove),
1528 static int __init mmc_spi_init(void)
1530 return spi_register_driver(&mmc_spi_driver);
1532 module_init(mmc_spi_init);
1535 static void __exit mmc_spi_exit(void)
1537 spi_unregister_driver(&mmc_spi_driver);
1539 module_exit(mmc_spi_exit);
1542 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1543 "Hans-Peter Nilsson, Jan Nikitenko");
1544 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1545 MODULE_LICENSE("GPL");