2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
30 * Allocates a generic ring segment from the ring pool, sets the dma address,
31 * initializes the segment to zero, and sets the private next pointer to NULL.
34 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 struct xhci_segment *seg;
41 seg = kzalloc(sizeof *seg, flags);
44 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
52 seg->trbs, (unsigned long long)dma);
54 memset(seg->trbs, 0, SEGMENT_SIZE);
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
66 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
67 seg->trbs, (unsigned long long)seg->dma);
68 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
71 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
76 * Make the prev segment point to the next segment.
78 * Change the last TRB in the prev segment to be a Link TRB which points to the
79 * DMA address of the next segment. The caller needs to set any Link TRB
80 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
83 struct xhci_segment *next, bool link_trbs)
91 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr[0] = next->dma;
93 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
95 val &= ~TRB_TYPE_BITMASK;
96 val |= TRB_TYPE(TRB_LINK);
97 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
99 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
100 (unsigned long long)prev->dma,
101 (unsigned long long)next->dma);
104 /* XXX: Do we need the hcd structure in all these functions? */
105 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
107 struct xhci_segment *seg;
108 struct xhci_segment *first_seg;
110 if (!ring || !ring->first_seg)
112 first_seg = ring->first_seg;
113 seg = first_seg->next;
114 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
115 while (seg != first_seg) {
116 struct xhci_segment *next = seg->next;
117 xhci_segment_free(xhci, seg);
120 xhci_segment_free(xhci, first_seg);
121 ring->first_seg = NULL;
126 * Create a new ring with zero or more segments.
128 * Link each segment together into a ring.
129 * Set the end flag and the cycle toggle bit on the last segment.
130 * See section 4.9.1 and figures 15 and 16.
132 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
133 unsigned int num_segs, bool link_trbs, gfp_t flags)
135 struct xhci_ring *ring;
136 struct xhci_segment *prev;
138 ring = kzalloc(sizeof *(ring), flags);
139 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
143 INIT_LIST_HEAD(&ring->td_list);
144 INIT_LIST_HEAD(&ring->cancelled_td_list);
148 ring->first_seg = xhci_segment_alloc(xhci, flags);
149 if (!ring->first_seg)
153 prev = ring->first_seg;
154 while (num_segs > 0) {
155 struct xhci_segment *next;
157 next = xhci_segment_alloc(xhci, flags);
160 xhci_link_segments(xhci, prev, next, link_trbs);
165 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
168 /* See section 4.9.2.1 and 6.4.4.1 */
169 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
170 xhci_dbg(xhci, "Wrote link toggle flag to"
171 " segment %p (virtual), 0x%llx (DMA)\n",
172 prev, (unsigned long long)prev->dma);
174 /* The ring is empty, so the enqueue pointer == dequeue pointer */
175 ring->enqueue = ring->first_seg->trbs;
176 ring->enq_seg = ring->first_seg;
177 ring->dequeue = ring->enqueue;
178 ring->deq_seg = ring->first_seg;
179 /* The ring is initialized to 0. The producer must write 1 to the cycle
180 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
181 * compare CCS to the cycle bit to check ownership, so CCS = 1.
183 ring->cycle_state = 1;
188 xhci_ring_free(xhci, ring);
192 /* All the xhci_tds in the ring's TD list should be freed at this point */
193 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
195 struct xhci_virt_device *dev;
198 /* Slot ID 0 is reserved */
199 if (slot_id == 0 || !xhci->devs[slot_id])
202 dev = xhci->devs[slot_id];
203 xhci->dcbaa->dev_context_ptrs[2*slot_id] = 0;
204 xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
208 for (i = 0; i < 31; ++i)
209 if (dev->ep_rings[i])
210 xhci_ring_free(xhci, dev->ep_rings[i]);
213 dma_pool_free(xhci->device_pool,
214 dev->in_ctx, dev->in_ctx_dma);
216 dma_pool_free(xhci->device_pool,
217 dev->out_ctx, dev->out_ctx_dma);
218 kfree(xhci->devs[slot_id]);
219 xhci->devs[slot_id] = 0;
222 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
223 struct usb_device *udev, gfp_t flags)
226 struct xhci_virt_device *dev;
228 /* Slot ID 0 is reserved */
229 if (slot_id == 0 || xhci->devs[slot_id]) {
230 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
234 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
235 if (!xhci->devs[slot_id])
237 dev = xhci->devs[slot_id];
239 /* Allocate the (output) device context that will be used in the HC */
240 dev->out_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
243 dev->out_ctx_dma = dma;
244 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
245 (unsigned long long)dma);
246 memset(dev->out_ctx, 0, sizeof(*dev->out_ctx));
248 /* Allocate the (input) device context for address device command */
249 dev->in_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
252 dev->in_ctx_dma = dma;
253 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
254 (unsigned long long)dma);
255 memset(dev->in_ctx, 0, sizeof(*dev->in_ctx));
257 /* Allocate endpoint 0 ring */
258 dev->ep_rings[0] = xhci_ring_alloc(xhci, 1, true, flags);
259 if (!dev->ep_rings[0])
262 init_completion(&dev->cmd_completion);
265 * Point to output device context in dcbaa; skip the output control
266 * context, which is eight 32 bit fields (or 32 bytes long)
268 xhci->dcbaa->dev_context_ptrs[2*slot_id] =
269 (u32) dev->out_ctx_dma + (32);
270 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
272 &xhci->dcbaa->dev_context_ptrs[2*slot_id],
273 (unsigned long long)dev->out_ctx_dma);
274 xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
278 xhci_free_virt_device(xhci, slot_id);
282 /* Setup an xHCI virtual device for a Set Address command */
283 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
285 struct xhci_virt_device *dev;
286 struct xhci_ep_ctx *ep0_ctx;
287 struct usb_device *top_dev;
289 dev = xhci->devs[udev->slot_id];
290 /* Slot ID 0 is reserved */
291 if (udev->slot_id == 0 || !dev) {
292 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
296 ep0_ctx = &dev->in_ctx->ep[0];
298 /* 2) New slot context and endpoint 0 context are valid*/
299 dev->in_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
301 /* 3) Only the control endpoint is valid - one endpoint context */
302 dev->in_ctx->slot.dev_info |= LAST_CTX(1);
304 switch (udev->speed) {
305 case USB_SPEED_SUPER:
306 dev->in_ctx->slot.dev_info |= (u32) udev->route;
307 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_SS;
310 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_HS;
313 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_FS;
316 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_LS;
318 case USB_SPEED_VARIABLE:
319 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
323 /* Speed was set earlier, this shouldn't happen. */
326 /* Find the root hub port this device is under */
327 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
328 top_dev = top_dev->parent)
329 /* Found device below root hub */;
330 dev->in_ctx->slot.dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
331 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
333 /* Is this a LS/FS device under a HS hub? */
335 * FIXME: I don't think this is right, where does the TT info for the
336 * roothub or parent hub come from?
338 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
340 dev->in_ctx->slot.tt_info = udev->tt->hub->slot_id;
341 dev->in_ctx->slot.tt_info |= udev->ttport << 8;
343 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
344 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
346 /* Step 4 - ring already allocated */
348 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
350 * See section 4.3 bullet 6:
351 * The default Max Packet size for ep0 is "8 bytes for a USB2
352 * LS/FS/HS device or 512 bytes for a USB3 SS device"
353 * XXX: Not sure about wireless USB devices.
355 if (udev->speed == USB_SPEED_SUPER)
356 ep0_ctx->ep_info2 |= MAX_PACKET(512);
358 ep0_ctx->ep_info2 |= MAX_PACKET(8);
359 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
360 ep0_ctx->ep_info2 |= MAX_BURST(0);
361 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
364 dev->ep_rings[0]->first_seg->dma;
365 ep0_ctx->deq[0] |= dev->ep_rings[0]->cycle_state;
368 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
373 /* Return the polling or NAK interval.
375 * The polling interval is expressed in "microframes". If xHCI's Interval field
376 * is set to N, it will service the endpoint every 2^(Interval)*125us.
378 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
381 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
382 struct usb_host_endpoint *ep)
384 unsigned int interval = 0;
386 switch (udev->speed) {
389 if (usb_endpoint_xfer_control(&ep->desc) ||
390 usb_endpoint_xfer_bulk(&ep->desc))
391 interval = ep->desc.bInterval;
392 /* Fall through - SS and HS isoc/int have same decoding */
393 case USB_SPEED_SUPER:
394 if (usb_endpoint_xfer_int(&ep->desc) ||
395 usb_endpoint_xfer_isoc(&ep->desc)) {
396 if (ep->desc.bInterval == 0)
399 interval = ep->desc.bInterval - 1;
402 if (interval != ep->desc.bInterval + 1)
403 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
404 ep->desc.bEndpointAddress, 1 << interval);
407 /* Convert bInterval (in 1-255 frames) to microframes and round down to
408 * nearest power of 2.
412 if (usb_endpoint_xfer_int(&ep->desc) ||
413 usb_endpoint_xfer_isoc(&ep->desc)) {
414 interval = fls(8*ep->desc.bInterval) - 1;
419 if ((1 << interval) != 8*ep->desc.bInterval)
420 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
421 ep->desc.bEndpointAddress, 1 << interval);
427 return EP_INTERVAL(interval);
430 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
431 struct usb_host_endpoint *ep)
436 in = usb_endpoint_dir_in(&ep->desc);
437 if (usb_endpoint_xfer_control(&ep->desc)) {
438 type = EP_TYPE(CTRL_EP);
439 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
441 type = EP_TYPE(BULK_IN_EP);
443 type = EP_TYPE(BULK_OUT_EP);
444 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
446 type = EP_TYPE(ISOC_IN_EP);
448 type = EP_TYPE(ISOC_OUT_EP);
449 } else if (usb_endpoint_xfer_int(&ep->desc)) {
451 type = EP_TYPE(INT_IN_EP);
453 type = EP_TYPE(INT_OUT_EP);
460 int xhci_endpoint_init(struct xhci_hcd *xhci,
461 struct xhci_virt_device *virt_dev,
462 struct usb_device *udev,
463 struct usb_host_endpoint *ep,
466 unsigned int ep_index;
467 struct xhci_ep_ctx *ep_ctx;
468 struct xhci_ring *ep_ring;
469 unsigned int max_packet;
470 unsigned int max_burst;
472 ep_index = xhci_get_endpoint_index(&ep->desc);
473 ep_ctx = &virt_dev->in_ctx->ep[ep_index];
475 /* Set up the endpoint ring */
476 virt_dev->new_ep_rings[ep_index] = xhci_ring_alloc(xhci, 1, true, mem_flags);
477 if (!virt_dev->new_ep_rings[ep_index])
479 ep_ring = virt_dev->new_ep_rings[ep_index];
480 ep_ctx->deq[0] = ep_ring->first_seg->dma | ep_ring->cycle_state;
483 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
485 /* FIXME dig Mult and streams info out of ep companion desc */
487 /* Allow 3 retries for everything but isoc */
488 if (!usb_endpoint_xfer_isoc(&ep->desc))
489 ep_ctx->ep_info2 = ERROR_COUNT(3);
491 ep_ctx->ep_info2 = ERROR_COUNT(0);
493 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
495 /* Set the max packet size and max burst */
496 switch (udev->speed) {
497 case USB_SPEED_SUPER:
498 max_packet = ep->desc.wMaxPacketSize;
499 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
500 /* dig out max burst from ep companion desc */
501 max_packet = ep->ss_ep_comp->desc.bMaxBurst;
502 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
505 /* bits 11:12 specify the number of additional transaction
506 * opportunities per microframe (USB 2.0, section 9.6.6)
508 if (usb_endpoint_xfer_isoc(&ep->desc) ||
509 usb_endpoint_xfer_int(&ep->desc)) {
510 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
511 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
516 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
517 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
522 /* FIXME Debug endpoint context */
526 void xhci_endpoint_zero(struct xhci_hcd *xhci,
527 struct xhci_virt_device *virt_dev,
528 struct usb_host_endpoint *ep)
530 unsigned int ep_index;
531 struct xhci_ep_ctx *ep_ctx;
533 ep_index = xhci_get_endpoint_index(&ep->desc);
534 ep_ctx = &virt_dev->in_ctx->ep[ep_index];
537 ep_ctx->ep_info2 = 0;
541 /* Don't free the endpoint ring until the set interface or configuration
546 void xhci_mem_cleanup(struct xhci_hcd *xhci)
548 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
552 /* Free the Event Ring Segment Table and the actual Event Ring */
553 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
554 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[0]);
555 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
556 xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[0]);
557 xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[1]);
558 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
559 if (xhci->erst.entries)
560 pci_free_consistent(pdev, size,
561 xhci->erst.entries, xhci->erst.erst_dma_addr);
562 xhci->erst.entries = NULL;
563 xhci_dbg(xhci, "Freed ERST\n");
564 if (xhci->event_ring)
565 xhci_ring_free(xhci, xhci->event_ring);
566 xhci->event_ring = NULL;
567 xhci_dbg(xhci, "Freed event ring\n");
569 xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[0]);
570 xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[1]);
572 xhci_ring_free(xhci, xhci->cmd_ring);
573 xhci->cmd_ring = NULL;
574 xhci_dbg(xhci, "Freed command ring\n");
576 for (i = 1; i < MAX_HC_SLOTS; ++i)
577 xhci_free_virt_device(xhci, i);
579 if (xhci->segment_pool)
580 dma_pool_destroy(xhci->segment_pool);
581 xhci->segment_pool = NULL;
582 xhci_dbg(xhci, "Freed segment pool\n");
584 if (xhci->device_pool)
585 dma_pool_destroy(xhci->device_pool);
586 xhci->device_pool = NULL;
587 xhci_dbg(xhci, "Freed device context pool\n");
589 xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[0]);
590 xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[1]);
592 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
593 xhci->dcbaa, xhci->dcbaa->dma);
597 xhci->page_shift = 0;
600 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
603 struct device *dev = xhci_to_hcd(xhci)->self.controller;
604 unsigned int val, val2;
605 struct xhci_segment *seg;
609 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
610 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
611 for (i = 0; i < 16; i++) {
612 if ((0x1 & page_size) != 0)
614 page_size = page_size >> 1;
617 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
619 xhci_warn(xhci, "WARN: no supported page size\n");
620 /* Use 4K pages, since that's common and the minimum the HC supports */
621 xhci->page_shift = 12;
622 xhci->page_size = 1 << xhci->page_shift;
623 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
626 * Program the Number of Device Slots Enabled field in the CONFIG
627 * register with the max value of slots the HC can handle.
629 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
630 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
632 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
633 val |= (val2 & ~HCS_SLOTS_MASK);
634 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
636 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
639 * Section 5.4.8 - doorbell array must be
640 * "physically contiguous and 64-byte (cache line) aligned".
642 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
643 sizeof(*xhci->dcbaa), &dma);
646 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
647 xhci->dcbaa->dma = dma;
648 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
649 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
650 xhci_writel(xhci, dma, &xhci->op_regs->dcbaa_ptr[0]);
651 xhci_writel(xhci, (u32) 0, &xhci->op_regs->dcbaa_ptr[1]);
654 * Initialize the ring segment pool. The ring must be a contiguous
655 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
656 * however, the command ring segment needs 64-byte aligned segments,
657 * so we pick the greater alignment need.
659 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
660 SEGMENT_SIZE, 64, xhci->page_size);
661 /* See Table 46 and Note on Figure 55 */
662 /* FIXME support 64-byte contexts */
663 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
664 sizeof(struct xhci_device_control),
665 64, xhci->page_size);
666 if (!xhci->segment_pool || !xhci->device_pool)
669 /* Set up the command ring to have one segments for now. */
670 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
673 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
674 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
675 (unsigned long long)xhci->cmd_ring->first_seg->dma);
677 /* Set the address in the Command Ring Control register */
678 val = xhci_readl(xhci, &xhci->op_regs->cmd_ring[0]);
679 val = (val & ~CMD_RING_ADDR_MASK) |
680 (xhci->cmd_ring->first_seg->dma & CMD_RING_ADDR_MASK) |
681 xhci->cmd_ring->cycle_state;
682 xhci_dbg(xhci, "// Setting command ring address low bits to 0x%x\n", val);
683 xhci_writel(xhci, val, &xhci->op_regs->cmd_ring[0]);
684 xhci_dbg(xhci, "// Setting command ring address high bits to 0x0\n");
685 xhci_writel(xhci, (u32) 0, &xhci->op_regs->cmd_ring[1]);
686 xhci_dbg_cmd_ptrs(xhci);
688 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
690 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
691 " from cap regs base addr\n", val);
692 xhci->dba = (void *) xhci->cap_regs + val;
694 xhci_print_run_regs(xhci);
695 /* Set ir_set to interrupt register set 0 */
696 xhci->ir_set = (void *) xhci->run_regs->ir_set;
699 * Event ring setup: Allocate a normal ring, but also setup
700 * the event ring segment table (ERST). Section 4.9.3.
702 xhci_dbg(xhci, "// Allocating event ring\n");
703 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
704 if (!xhci->event_ring)
707 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
708 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
709 if (!xhci->erst.entries)
711 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
712 (unsigned long long)dma);
714 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
715 xhci->erst.num_entries = ERST_NUM_SEGS;
716 xhci->erst.erst_dma_addr = dma;
717 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
718 xhci->erst.num_entries,
720 (unsigned long long)xhci->erst.erst_dma_addr);
722 /* set ring base address and size for each segment table entry */
723 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
724 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
725 entry->seg_addr[0] = seg->dma;
726 entry->seg_addr[1] = 0;
727 entry->seg_size = TRBS_PER_SEGMENT;
732 /* set ERST count with the number of entries in the segment table */
733 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
734 val &= ERST_SIZE_MASK;
735 val |= ERST_NUM_SEGS;
736 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
738 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
740 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
741 /* set the segment table base address */
742 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
743 (unsigned long long)xhci->erst.erst_dma_addr);
744 val = xhci_readl(xhci, &xhci->ir_set->erst_base[0]);
745 val &= ERST_PTR_MASK;
746 val |= (xhci->erst.erst_dma_addr & ~ERST_PTR_MASK);
747 xhci_writel(xhci, val, &xhci->ir_set->erst_base[0]);
748 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
750 /* Set the event ring dequeue address */
751 xhci_set_hc_event_deq(xhci);
752 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
753 xhci_print_ir_set(xhci, xhci->ir_set, 0);
756 * XXX: Might need to set the Interrupter Moderation Register to
757 * something other than the default (~1ms minimum between interrupts).
758 * See section 5.5.1.2.
760 init_completion(&xhci->addr_dev);
761 for (i = 0; i < MAX_HC_SLOTS; ++i)
766 xhci_warn(xhci, "Couldn't initialize memory\n");
767 xhci_mem_cleanup(xhci);