2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/uaccess.h>
20 #include <asm/pgalloc.h>
21 #include <asm/proto.h>
25 * The current flushing context - we pass it instead of 5 arguments:
34 unsigned force_split : 1;
39 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
40 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
41 * entries change the page attribute in parallel to some other cpu
42 * splitting a large page entry along with changing the attribute.
44 static DEFINE_SPINLOCK(cpa_lock);
46 #define CPA_FLUSHTLB 1
50 static unsigned long direct_pages_count[PG_LEVEL_NUM];
52 void update_page_count(int level, unsigned long pages)
56 /* Protect against CPA */
57 spin_lock_irqsave(&pgd_lock, flags);
58 direct_pages_count[level] += pages;
59 spin_unlock_irqrestore(&pgd_lock, flags);
62 static void split_page_count(int level)
64 direct_pages_count[level]--;
65 direct_pages_count[level - 1] += PTRS_PER_PTE;
68 void arch_report_meminfo(struct seq_file *m)
70 seq_printf(m, "DirectMap4k: %8lu kB\n",
71 direct_pages_count[PG_LEVEL_4K] << 2);
72 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
73 seq_printf(m, "DirectMap2M: %8lu kB\n",
74 direct_pages_count[PG_LEVEL_2M] << 11);
76 seq_printf(m, "DirectMap4M: %8lu kB\n",
77 direct_pages_count[PG_LEVEL_2M] << 12);
81 seq_printf(m, "DirectMap1G: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_1G] << 20);
86 static inline void split_page_count(int level) { }
91 static inline unsigned long highmap_start_pfn(void)
93 return __pa(_text) >> PAGE_SHIFT;
96 static inline unsigned long highmap_end_pfn(void)
98 return __pa(roundup((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
103 #ifdef CONFIG_DEBUG_PAGEALLOC
104 # define debug_pagealloc 1
106 # define debug_pagealloc 0
110 within(unsigned long addr, unsigned long start, unsigned long end)
112 return addr >= start && addr < end;
120 * clflush_cache_range - flush a cache range with clflush
121 * @addr: virtual start address
122 * @size: number of bytes to flush
124 * clflush is an unordered instruction which needs fencing with mfence
125 * to avoid ordering issues.
127 void clflush_cache_range(void *vaddr, unsigned int size)
129 void *vend = vaddr + size - 1;
133 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
136 * Flush any possible final partial cacheline:
143 static void __cpa_flush_all(void *arg)
145 unsigned long cache = (unsigned long)arg;
148 * Flush all to work around Errata in early athlons regarding
149 * large page flushing.
153 if (cache && boot_cpu_data.x86_model >= 4)
157 static void cpa_flush_all(unsigned long cache)
159 BUG_ON(irqs_disabled());
161 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
164 static void __cpa_flush_range(void *arg)
167 * We could optimize that further and do individual per page
168 * tlb invalidates for a low number of pages. Caveat: we must
169 * flush the high aliases on 64bit as well.
174 static void cpa_flush_range(unsigned long start, int numpages, int cache)
176 unsigned int i, level;
179 BUG_ON(irqs_disabled());
180 WARN_ON(PAGE_ALIGN(start) != start);
182 on_each_cpu(__cpa_flush_range, NULL, 1);
188 * We only need to flush on one CPU,
189 * clflush is a MESI-coherent instruction that
190 * will cause all other CPUs to flush the same
193 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
194 pte_t *pte = lookup_address(addr, &level);
197 * Only flush present addresses:
199 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
200 clflush_cache_range((void *) addr, PAGE_SIZE);
204 static void cpa_flush_array(unsigned long *start, int numpages, int cache)
206 unsigned int i, level;
209 BUG_ON(irqs_disabled());
211 on_each_cpu(__cpa_flush_range, NULL, 1);
217 if (numpages >= 1024) {
218 if (boot_cpu_data.x86_model >= 4)
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
228 for (i = 0, addr = start; i < numpages; i++, addr++) {
229 pte_t *pte = lookup_address(*addr, &level);
232 * Only flush present addresses:
234 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
235 clflush_cache_range((void *) *addr, PAGE_SIZE);
240 * Certain areas of memory on x86 require very specific protection flags,
241 * for example the BIOS area or kernel text. Callers don't always get this
242 * right (again, ioremap() on BIOS memory is not uncommon) so this function
243 * checks and fixes these known static required protection bits.
245 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
248 pgprot_t forbidden = __pgprot(0);
251 * The BIOS area between 640k and 1Mb needs to be executable for
252 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
254 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
255 pgprot_val(forbidden) |= _PAGE_NX;
258 * The kernel text needs to be executable for obvious reasons
259 * Does not cover __inittext since that is gone later on. On
260 * 64bit we do not enforce !NX on the low mapping
262 if (within(address, (unsigned long)_text, (unsigned long)_etext))
263 pgprot_val(forbidden) |= _PAGE_NX;
266 * The .rodata section needs to be read-only. Using the pfn
267 * catches all aliases.
269 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
270 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
271 pgprot_val(forbidden) |= _PAGE_RW;
273 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
279 * Lookup the page table entry for a virtual address. Return a pointer
280 * to the entry and the level of the mapping.
282 * Note: We return pud and pmd either when the entry is marked large
283 * or when the present bit is not set. Otherwise we would return a
284 * pointer to a nonexisting mapping.
286 pte_t *lookup_address(unsigned long address, unsigned int *level)
288 pgd_t *pgd = pgd_offset_k(address);
292 *level = PG_LEVEL_NONE;
297 pud = pud_offset(pgd, address);
301 *level = PG_LEVEL_1G;
302 if (pud_large(*pud) || !pud_present(*pud))
305 pmd = pmd_offset(pud, address);
309 *level = PG_LEVEL_2M;
310 if (pmd_large(*pmd) || !pmd_present(*pmd))
313 *level = PG_LEVEL_4K;
315 return pte_offset_kernel(pmd, address);
317 EXPORT_SYMBOL_GPL(lookup_address);
320 * Set the new pmd in all the pgds we know about:
322 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
325 set_pte_atomic(kpte, pte);
327 if (!SHARED_KERNEL_PMD) {
330 list_for_each_entry(page, &pgd_list, lru) {
335 pgd = (pgd_t *)page_address(page) + pgd_index(address);
336 pud = pud_offset(pgd, address);
337 pmd = pmd_offset(pud, address);
338 set_pte_atomic((pte_t *)pmd, pte);
345 try_preserve_large_page(pte_t *kpte, unsigned long address,
346 struct cpa_data *cpa)
348 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
349 pte_t new_pte, old_pte, *tmp;
350 pgprot_t old_prot, new_prot;
354 if (cpa->force_split)
357 spin_lock_irqsave(&pgd_lock, flags);
359 * Check for races, another CPU might have split this page
362 tmp = lookup_address(address, &level);
368 psize = PMD_PAGE_SIZE;
369 pmask = PMD_PAGE_MASK;
373 psize = PUD_PAGE_SIZE;
374 pmask = PUD_PAGE_MASK;
383 * Calculate the number of pages, which fit into this large
384 * page starting at address:
386 nextpage_addr = (address + psize) & pmask;
387 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
388 if (numpages < cpa->numpages)
389 cpa->numpages = numpages;
392 * We are safe now. Check whether the new pgprot is the same:
395 old_prot = new_prot = pte_pgprot(old_pte);
397 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
398 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
401 * old_pte points to the large page base address. So we need
402 * to add the offset of the virtual address:
404 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
407 new_prot = static_protections(new_prot, address, pfn);
410 * We need to check the full range, whether
411 * static_protection() requires a different pgprot for one of
412 * the pages in the range we try to preserve:
414 addr = address + PAGE_SIZE;
416 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
417 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
419 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
424 * If there are no changes, return. maxpages has been updated
427 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
433 * We need to change the attributes. Check, whether we can
434 * change the large page in one go. We request a split, when
435 * the address is not aligned and the number of pages is
436 * smaller than the number of pages in the large page. Note
437 * that we limited the number of possible pages already to
438 * the number of pages in the large page.
440 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
442 * The address is aligned and the number of pages
443 * covers the full page.
445 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
446 __set_pmd_pte(kpte, address, new_pte);
447 cpa->flags |= CPA_FLUSHTLB;
452 spin_unlock_irqrestore(&pgd_lock, flags);
457 static int split_large_page(pte_t *kpte, unsigned long address)
459 unsigned long flags, pfn, pfninc = 1;
460 unsigned int i, level;
465 if (!debug_pagealloc)
466 spin_unlock(&cpa_lock);
467 base = alloc_pages(GFP_KERNEL, 0);
468 if (!debug_pagealloc)
469 spin_lock(&cpa_lock);
473 spin_lock_irqsave(&pgd_lock, flags);
475 * Check for races, another CPU might have split this page
478 tmp = lookup_address(address, &level);
482 pbase = (pte_t *)page_address(base);
483 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
484 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
487 if (level == PG_LEVEL_1G) {
488 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
489 pgprot_val(ref_prot) |= _PAGE_PSE;
494 * Get the target pfn from the original entry:
496 pfn = pte_pfn(*kpte);
497 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
498 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
500 if (address >= (unsigned long)__va(0) &&
501 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
502 split_page_count(level);
505 if (address >= (unsigned long)__va(1UL<<32) &&
506 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
507 split_page_count(level);
511 * Install the new, split up pagetable. Important details here:
513 * On Intel the NX bit of all levels must be cleared to make a
514 * page executable. See section 4.13.2 of Intel 64 and IA-32
515 * Architectures Software Developer's Manual).
517 * Mark the entry present. The current mapping might be
518 * set to not present, which we preserved above.
520 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
521 pgprot_val(ref_prot) |= _PAGE_PRESENT;
522 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
527 * If we dropped out via the lookup_address check under
528 * pgd_lock then stick the page back into the pool:
532 spin_unlock_irqrestore(&pgd_lock, flags);
537 static int __change_page_attr(struct cpa_data *cpa, int primary)
539 unsigned long address;
542 pte_t *kpte, old_pte;
544 if (cpa->flags & CPA_ARRAY)
545 address = cpa->vaddr[cpa->curpage];
547 address = *cpa->vaddr;
550 kpte = lookup_address(address, &level);
555 if (!pte_val(old_pte)) {
558 WARN(1, KERN_WARNING "CPA: called for zero pte. "
559 "vaddr = %lx cpa->vaddr = %lx\n", address,
564 if (level == PG_LEVEL_4K) {
566 pgprot_t new_prot = pte_pgprot(old_pte);
567 unsigned long pfn = pte_pfn(old_pte);
569 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
570 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
572 new_prot = static_protections(new_prot, address, pfn);
575 * We need to keep the pfn from the existing PTE,
576 * after all we're only going to change it's attributes
577 * not the memory it points to
579 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
582 * Do we really change anything ?
584 if (pte_val(old_pte) != pte_val(new_pte)) {
585 set_pte_atomic(kpte, new_pte);
586 cpa->flags |= CPA_FLUSHTLB;
593 * Check, whether we can keep the large page intact
594 * and just change the pte:
596 do_split = try_preserve_large_page(kpte, address, cpa);
598 * When the range fits into the existing large page,
599 * return. cp->numpages and cpa->tlbflush have been updated in
606 * We have to split the large page:
608 err = split_large_page(kpte, address);
611 * Do a global flush tlb after splitting the large page
612 * and before we do the actual change page attribute in the PTE.
614 * With out this, we violate the TLB application note, that says
615 * "The TLBs may contain both ordinary and large-page
616 * translations for a 4-KByte range of linear addresses. This
617 * may occur if software modifies the paging structures so that
618 * the page size used for the address range changes. If the two
619 * translations differ with respect to page frame or attributes
620 * (e.g., permissions), processor behavior is undefined and may
621 * be implementation-specific."
623 * We do this global tlb flush inside the cpa_lock, so that we
624 * don't allow any other cpu, with stale tlb entries change the
625 * page attribute in parallel, that also falls into the
626 * just split large page entry.
635 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
637 static int cpa_process_alias(struct cpa_data *cpa)
639 struct cpa_data alias_cpa;
641 unsigned long temp_cpa_vaddr, vaddr;
643 if (cpa->pfn >= max_pfn_mapped)
647 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
651 * No need to redo, when the primary call touched the direct
654 if (cpa->flags & CPA_ARRAY)
655 vaddr = cpa->vaddr[cpa->curpage];
659 if (!(within(vaddr, PAGE_OFFSET,
660 PAGE_OFFSET + (max_low_pfn_mapped << PAGE_SHIFT))
662 || within(vaddr, PAGE_OFFSET + (1UL<<32),
663 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))
668 temp_cpa_vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
669 alias_cpa.vaddr = &temp_cpa_vaddr;
670 alias_cpa.flags &= ~CPA_ARRAY;
673 ret = __change_page_attr_set_clr(&alias_cpa, 0);
680 * No need to redo, when the primary call touched the high
683 if (within(vaddr, (unsigned long) _text, (unsigned long) _end))
687 * If the physical address is inside the kernel map, we need
688 * to touch the high mapped kernel as well:
690 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
694 temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
695 alias_cpa.vaddr = &temp_cpa_vaddr;
696 alias_cpa.flags &= ~CPA_ARRAY;
699 * The high mapping range is imprecise, so ignore the return value.
701 __change_page_attr_set_clr(&alias_cpa, 0);
706 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
708 int ret, numpages = cpa->numpages;
712 * Store the remaining nr of pages for the large page
713 * preservation check.
715 cpa->numpages = numpages;
716 /* for array changes, we can't use large page */
717 if (cpa->flags & CPA_ARRAY)
720 if (!debug_pagealloc)
721 spin_lock(&cpa_lock);
722 ret = __change_page_attr(cpa, checkalias);
723 if (!debug_pagealloc)
724 spin_unlock(&cpa_lock);
729 ret = cpa_process_alias(cpa);
735 * Adjust the number of pages with the result of the
736 * CPA operation. Either a large page has been
737 * preserved or a single page update happened.
739 BUG_ON(cpa->numpages > numpages);
740 numpages -= cpa->numpages;
741 if (cpa->flags & CPA_ARRAY)
744 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
750 static inline int cache_attr(pgprot_t attr)
752 return pgprot_val(attr) &
753 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
756 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
757 pgprot_t mask_set, pgprot_t mask_clr,
758 int force_split, int array)
761 int ret, cache, checkalias;
764 * Check, if we are requested to change a not supported
767 mask_set = canon_pgprot(mask_set);
768 mask_clr = canon_pgprot(mask_clr);
769 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
772 /* Ensure we are PAGE_SIZE aligned */
774 if (*addr & ~PAGE_MASK) {
777 * People should not be passing in unaligned addresses:
783 for (i = 0; i < numpages; i++) {
784 if (addr[i] & ~PAGE_MASK) {
785 addr[i] &= PAGE_MASK;
791 /* Must avoid aliasing mappings in the highmem code */
797 cpa.numpages = numpages;
798 cpa.mask_set = mask_set;
799 cpa.mask_clr = mask_clr;
802 cpa.force_split = force_split;
805 cpa.flags |= CPA_ARRAY;
807 /* No alias checking for _NX bit modifications */
808 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
810 ret = __change_page_attr_set_clr(&cpa, checkalias);
813 * Check whether we really changed something:
815 if (!(cpa.flags & CPA_FLUSHTLB))
819 * No need to flush, when we did not set any of the caching
822 cache = cache_attr(mask_set);
825 * On success we use clflush, when the CPU supports it to
826 * avoid the wbindv. If the CPU does not support it and in the
827 * error case we fall back to cpa_flush_all (which uses
830 if (!ret && cpu_has_clflush) {
831 if (cpa.flags & CPA_ARRAY)
832 cpa_flush_array(addr, numpages, cache);
834 cpa_flush_range(*addr, numpages, cache);
836 cpa_flush_all(cache);
842 static inline int change_page_attr_set(unsigned long *addr, int numpages,
843 pgprot_t mask, int array)
845 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
849 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
850 pgprot_t mask, int array)
852 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
856 int _set_memory_uc(unsigned long addr, int numpages)
859 * for now UC MINUS. see comments in ioremap_nocache()
861 return change_page_attr_set(&addr, numpages,
862 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
865 int set_memory_uc(unsigned long addr, int numpages)
868 * for now UC MINUS. see comments in ioremap_nocache()
870 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
871 _PAGE_CACHE_UC_MINUS, NULL))
874 return _set_memory_uc(addr, numpages);
876 EXPORT_SYMBOL(set_memory_uc);
878 int set_memory_array_uc(unsigned long *addr, int addrinarray)
884 * for now UC MINUS. see comments in ioremap_nocache()
886 for (i = 0; i < addrinarray; i++) {
887 start = __pa(addr[i]);
888 for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
889 if (end != __pa(addr[i + 1]))
893 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
897 return change_page_attr_set(addr, addrinarray,
898 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
900 for (i = 0; i < addrinarray; i++) {
901 unsigned long tmp = __pa(addr[i]);
905 for (end = tmp + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
906 if (end != __pa(addr[i + 1]))
910 free_memtype(tmp, end);
914 EXPORT_SYMBOL(set_memory_array_uc);
916 int _set_memory_wc(unsigned long addr, int numpages)
918 return change_page_attr_set(&addr, numpages,
919 __pgprot(_PAGE_CACHE_WC), 0);
922 int set_memory_wc(unsigned long addr, int numpages)
925 return set_memory_uc(addr, numpages);
927 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
928 _PAGE_CACHE_WC, NULL))
931 return _set_memory_wc(addr, numpages);
933 EXPORT_SYMBOL(set_memory_wc);
935 int _set_memory_wb(unsigned long addr, int numpages)
937 return change_page_attr_clear(&addr, numpages,
938 __pgprot(_PAGE_CACHE_MASK), 0);
941 int set_memory_wb(unsigned long addr, int numpages)
943 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
945 return _set_memory_wb(addr, numpages);
947 EXPORT_SYMBOL(set_memory_wb);
949 int set_memory_array_wb(unsigned long *addr, int addrinarray)
953 for (i = 0; i < addrinarray; i++) {
954 unsigned long start = __pa(addr[i]);
957 for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
958 if (end != __pa(addr[i + 1]))
962 free_memtype(start, end);
964 return change_page_attr_clear(addr, addrinarray,
965 __pgprot(_PAGE_CACHE_MASK), 1);
967 EXPORT_SYMBOL(set_memory_array_wb);
969 int set_memory_x(unsigned long addr, int numpages)
971 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
973 EXPORT_SYMBOL(set_memory_x);
975 int set_memory_nx(unsigned long addr, int numpages)
977 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
979 EXPORT_SYMBOL(set_memory_nx);
981 int set_memory_ro(unsigned long addr, int numpages)
983 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
985 EXPORT_SYMBOL_GPL(set_memory_ro);
987 int set_memory_rw(unsigned long addr, int numpages)
989 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
991 EXPORT_SYMBOL_GPL(set_memory_rw);
993 int set_memory_np(unsigned long addr, int numpages)
995 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
998 int set_memory_4k(unsigned long addr, int numpages)
1000 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1004 int set_pages_uc(struct page *page, int numpages)
1006 unsigned long addr = (unsigned long)page_address(page);
1008 return set_memory_uc(addr, numpages);
1010 EXPORT_SYMBOL(set_pages_uc);
1012 int set_pages_wb(struct page *page, int numpages)
1014 unsigned long addr = (unsigned long)page_address(page);
1016 return set_memory_wb(addr, numpages);
1018 EXPORT_SYMBOL(set_pages_wb);
1020 int set_pages_x(struct page *page, int numpages)
1022 unsigned long addr = (unsigned long)page_address(page);
1024 return set_memory_x(addr, numpages);
1026 EXPORT_SYMBOL(set_pages_x);
1028 int set_pages_nx(struct page *page, int numpages)
1030 unsigned long addr = (unsigned long)page_address(page);
1032 return set_memory_nx(addr, numpages);
1034 EXPORT_SYMBOL(set_pages_nx);
1036 int set_pages_ro(struct page *page, int numpages)
1038 unsigned long addr = (unsigned long)page_address(page);
1040 return set_memory_ro(addr, numpages);
1043 int set_pages_rw(struct page *page, int numpages)
1045 unsigned long addr = (unsigned long)page_address(page);
1047 return set_memory_rw(addr, numpages);
1050 #ifdef CONFIG_DEBUG_PAGEALLOC
1052 static int __set_pages_p(struct page *page, int numpages)
1054 unsigned long tempaddr = (unsigned long) page_address(page);
1055 struct cpa_data cpa = { .vaddr = &tempaddr,
1056 .numpages = numpages,
1057 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1058 .mask_clr = __pgprot(0),
1062 * No alias checking needed for setting present flag. otherwise,
1063 * we may need to break large pages for 64-bit kernel text
1064 * mappings (this adds to complexity if we want to do this from
1065 * atomic context especially). Let's keep it simple!
1067 return __change_page_attr_set_clr(&cpa, 0);
1070 static int __set_pages_np(struct page *page, int numpages)
1072 unsigned long tempaddr = (unsigned long) page_address(page);
1073 struct cpa_data cpa = { .vaddr = &tempaddr,
1074 .numpages = numpages,
1075 .mask_set = __pgprot(0),
1076 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1080 * No alias checking needed for setting not present flag. otherwise,
1081 * we may need to break large pages for 64-bit kernel text
1082 * mappings (this adds to complexity if we want to do this from
1083 * atomic context especially). Let's keep it simple!
1085 return __change_page_attr_set_clr(&cpa, 0);
1088 void kernel_map_pages(struct page *page, int numpages, int enable)
1090 if (PageHighMem(page))
1093 debug_check_no_locks_freed(page_address(page),
1094 numpages * PAGE_SIZE);
1098 * If page allocator is not up yet then do not call c_p_a():
1100 if (!debug_pagealloc_enabled)
1104 * The return value is ignored as the calls cannot fail.
1105 * Large pages for identity mappings are not used at boot time
1106 * and hence no memory allocations during large page split.
1109 __set_pages_p(page, numpages);
1111 __set_pages_np(page, numpages);
1114 * We should perform an IPI and flush all tlbs,
1115 * but that can deadlock->flush only current cpu:
1120 #ifdef CONFIG_HIBERNATION
1122 bool kernel_page_present(struct page *page)
1127 if (PageHighMem(page))
1130 pte = lookup_address((unsigned long)page_address(page), &level);
1131 return (pte_val(*pte) & _PAGE_PRESENT);
1134 #endif /* CONFIG_HIBERNATION */
1136 #endif /* CONFIG_DEBUG_PAGEALLOC */
1139 * The testcases use internal knowledge of the implementation that shouldn't
1140 * be exposed to the rest of the kernel. Include these directly here.
1142 #ifdef CONFIG_CPA_DEBUG
1143 #include "pageattr-test.c"