ocfs2: Don't check for NULL before brelse()
[linux-2.6] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46
47 #include "buffer_head_io.h"
48
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50                                    struct buffer_head *bh_result, int create)
51 {
52         int err = -EIO;
53         int status;
54         struct ocfs2_dinode *fe = NULL;
55         struct buffer_head *bh = NULL;
56         struct buffer_head *buffer_cache_bh = NULL;
57         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58         void *kaddr;
59
60         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61                    (unsigned long long)iblock, bh_result, create);
62
63         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67                      (unsigned long long)iblock);
68                 goto bail;
69         }
70
71         status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
72                                   OCFS2_I(inode)->ip_blkno,
73                                   &bh, OCFS2_BH_CACHED, inode);
74         if (status < 0) {
75                 mlog_errno(status);
76                 goto bail;
77         }
78         fe = (struct ocfs2_dinode *) bh->b_data;
79
80         if (!OCFS2_IS_VALID_DINODE(fe)) {
81                 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
82                      (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
83                      fe->i_signature);
84                 goto bail;
85         }
86
87         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
88                                                     le32_to_cpu(fe->i_clusters))) {
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102                         goto bail;
103                 }
104
105                 /* we haven't locked out transactions, so a commit
106                  * could've happened. Since we've got a reference on
107                  * the bh, even if it commits while we're doing the
108                  * copy, the data is still good. */
109                 if (buffer_jbd(buffer_cache_bh)
110                     && ocfs2_inode_is_new(inode)) {
111                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112                         if (!kaddr) {
113                                 mlog(ML_ERROR, "couldn't kmap!\n");
114                                 goto bail;
115                         }
116                         memcpy(kaddr + (bh_result->b_size * iblock),
117                                buffer_cache_bh->b_data,
118                                bh_result->b_size);
119                         kunmap_atomic(kaddr, KM_USER0);
120                         set_buffer_uptodate(bh_result);
121                 }
122                 brelse(buffer_cache_bh);
123         }
124
125         map_bh(bh_result, inode->i_sb,
126                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128         err = 0;
129
130 bail:
131         brelse(bh);
132
133         mlog_exit(err);
134         return err;
135 }
136
137 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                            struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
147                    (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows block_prepare_write() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                 }
205
206                 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
207                 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
208                      (unsigned long long)past_eof);
209
210                 if (create && (iblock >= past_eof))
211                         set_buffer_new(bh_result);
212         }
213
214 bail:
215         if (err < 0)
216                 err = -EIO;
217
218         mlog_exit(err);
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data(inode->i_sb)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page, KM_USER0);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr, KM_USER0);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
264
265         BUG_ON(!PageLocked(page));
266         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
267
268         ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
269                                OCFS2_BH_CACHED, inode);
270         if (ret) {
271                 mlog_errno(ret);
272                 goto out;
273         }
274
275         ret = ocfs2_read_inline_data(inode, page, di_bh);
276 out:
277         unlock_page(page);
278
279         brelse(di_bh);
280         return ret;
281 }
282
283 static int ocfs2_readpage(struct file *file, struct page *page)
284 {
285         struct inode *inode = page->mapping->host;
286         struct ocfs2_inode_info *oi = OCFS2_I(inode);
287         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
288         int ret, unlock = 1;
289
290         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
291
292         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
293         if (ret != 0) {
294                 if (ret == AOP_TRUNCATED_PAGE)
295                         unlock = 0;
296                 mlog_errno(ret);
297                 goto out;
298         }
299
300         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
301                 ret = AOP_TRUNCATED_PAGE;
302                 goto out_inode_unlock;
303         }
304
305         /*
306          * i_size might have just been updated as we grabed the meta lock.  We
307          * might now be discovering a truncate that hit on another node.
308          * block_read_full_page->get_block freaks out if it is asked to read
309          * beyond the end of a file, so we check here.  Callers
310          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311          * and notice that the page they just read isn't needed.
312          *
313          * XXX sys_readahead() seems to get that wrong?
314          */
315         if (start >= i_size_read(inode)) {
316                 zero_user(page, 0, PAGE_SIZE);
317                 SetPageUptodate(page);
318                 ret = 0;
319                 goto out_alloc;
320         }
321
322         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323                 ret = ocfs2_readpage_inline(inode, page);
324         else
325                 ret = block_read_full_page(page, ocfs2_get_block);
326         unlock = 0;
327
328 out_alloc:
329         up_read(&OCFS2_I(inode)->ip_alloc_sem);
330 out_inode_unlock:
331         ocfs2_inode_unlock(inode, 0);
332 out:
333         if (unlock)
334                 unlock_page(page);
335         mlog_exit(ret);
336         return ret;
337 }
338
339 /*
340  * This is used only for read-ahead. Failures or difficult to handle
341  * situations are safe to ignore.
342  *
343  * Right now, we don't bother with BH_Boundary - in-inode extent lists
344  * are quite large (243 extents on 4k blocks), so most inodes don't
345  * grow out to a tree. If need be, detecting boundary extents could
346  * trivially be added in a future version of ocfs2_get_block().
347  */
348 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
349                            struct list_head *pages, unsigned nr_pages)
350 {
351         int ret, err = -EIO;
352         struct inode *inode = mapping->host;
353         struct ocfs2_inode_info *oi = OCFS2_I(inode);
354         loff_t start;
355         struct page *last;
356
357         /*
358          * Use the nonblocking flag for the dlm code to avoid page
359          * lock inversion, but don't bother with retrying.
360          */
361         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
362         if (ret)
363                 return err;
364
365         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
366                 ocfs2_inode_unlock(inode, 0);
367                 return err;
368         }
369
370         /*
371          * Don't bother with inline-data. There isn't anything
372          * to read-ahead in that case anyway...
373          */
374         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
375                 goto out_unlock;
376
377         /*
378          * Check whether a remote node truncated this file - we just
379          * drop out in that case as it's not worth handling here.
380          */
381         last = list_entry(pages->prev, struct page, lru);
382         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
383         if (start >= i_size_read(inode))
384                 goto out_unlock;
385
386         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
387
388 out_unlock:
389         up_read(&oi->ip_alloc_sem);
390         ocfs2_inode_unlock(inode, 0);
391
392         return err;
393 }
394
395 /* Note: Because we don't support holes, our allocation has
396  * already happened (allocation writes zeros to the file data)
397  * so we don't have to worry about ordered writes in
398  * ocfs2_writepage.
399  *
400  * ->writepage is called during the process of invalidating the page cache
401  * during blocked lock processing.  It can't block on any cluster locks
402  * to during block mapping.  It's relying on the fact that the block
403  * mapping can't have disappeared under the dirty pages that it is
404  * being asked to write back.
405  */
406 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
407 {
408         int ret;
409
410         mlog_entry("(0x%p)\n", page);
411
412         ret = block_write_full_page(page, ocfs2_get_block, wbc);
413
414         mlog_exit(ret);
415
416         return ret;
417 }
418
419 /*
420  * This is called from ocfs2_write_zero_page() which has handled it's
421  * own cluster locking and has ensured allocation exists for those
422  * blocks to be written.
423  */
424 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
425                                unsigned from, unsigned to)
426 {
427         int ret;
428
429         ret = block_prepare_write(page, from, to, ocfs2_get_block);
430
431         return ret;
432 }
433
434 /* Taken from ext3. We don't necessarily need the full blown
435  * functionality yet, but IMHO it's better to cut and paste the whole
436  * thing so we can avoid introducing our own bugs (and easily pick up
437  * their fixes when they happen) --Mark */
438 int walk_page_buffers(  handle_t *handle,
439                         struct buffer_head *head,
440                         unsigned from,
441                         unsigned to,
442                         int *partial,
443                         int (*fn)(      handle_t *handle,
444                                         struct buffer_head *bh))
445 {
446         struct buffer_head *bh;
447         unsigned block_start, block_end;
448         unsigned blocksize = head->b_size;
449         int err, ret = 0;
450         struct buffer_head *next;
451
452         for (   bh = head, block_start = 0;
453                 ret == 0 && (bh != head || !block_start);
454                 block_start = block_end, bh = next)
455         {
456                 next = bh->b_this_page;
457                 block_end = block_start + blocksize;
458                 if (block_end <= from || block_start >= to) {
459                         if (partial && !buffer_uptodate(bh))
460                                 *partial = 1;
461                         continue;
462                 }
463                 err = (*fn)(handle, bh);
464                 if (!ret)
465                         ret = err;
466         }
467         return ret;
468 }
469
470 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
471                                                          struct page *page,
472                                                          unsigned from,
473                                                          unsigned to)
474 {
475         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
476         handle_t *handle;
477         int ret = 0;
478
479         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
480         if (IS_ERR(handle)) {
481                 ret = -ENOMEM;
482                 mlog_errno(ret);
483                 goto out;
484         }
485
486         if (ocfs2_should_order_data(inode)) {
487                 ret = ocfs2_jbd2_file_inode(handle, inode);
488 #ifdef CONFIG_OCFS2_COMPAT_JBD
489                 ret = walk_page_buffers(handle,
490                                         page_buffers(page),
491                                         from, to, NULL,
492                                         ocfs2_journal_dirty_data);
493 #endif
494                 if (ret < 0)
495                         mlog_errno(ret);
496         }
497 out:
498         if (ret) {
499                 if (!IS_ERR(handle))
500                         ocfs2_commit_trans(osb, handle);
501                 handle = ERR_PTR(ret);
502         }
503         return handle;
504 }
505
506 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
507 {
508         sector_t status;
509         u64 p_blkno = 0;
510         int err = 0;
511         struct inode *inode = mapping->host;
512
513         mlog_entry("(block = %llu)\n", (unsigned long long)block);
514
515         /* We don't need to lock journal system files, since they aren't
516          * accessed concurrently from multiple nodes.
517          */
518         if (!INODE_JOURNAL(inode)) {
519                 err = ocfs2_inode_lock(inode, NULL, 0);
520                 if (err) {
521                         if (err != -ENOENT)
522                                 mlog_errno(err);
523                         goto bail;
524                 }
525                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
526         }
527
528         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
529                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
530                                                   NULL);
531
532         if (!INODE_JOURNAL(inode)) {
533                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
534                 ocfs2_inode_unlock(inode, 0);
535         }
536
537         if (err) {
538                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
539                      (unsigned long long)block);
540                 mlog_errno(err);
541                 goto bail;
542         }
543
544 bail:
545         status = err ? 0 : p_blkno;
546
547         mlog_exit((int)status);
548
549         return status;
550 }
551
552 /*
553  * TODO: Make this into a generic get_blocks function.
554  *
555  * From do_direct_io in direct-io.c:
556  *  "So what we do is to permit the ->get_blocks function to populate
557  *   bh.b_size with the size of IO which is permitted at this offset and
558  *   this i_blkbits."
559  *
560  * This function is called directly from get_more_blocks in direct-io.c.
561  *
562  * called like this: dio->get_blocks(dio->inode, fs_startblk,
563  *                                      fs_count, map_bh, dio->rw == WRITE);
564  */
565 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
566                                      struct buffer_head *bh_result, int create)
567 {
568         int ret;
569         u64 p_blkno, inode_blocks, contig_blocks;
570         unsigned int ext_flags;
571         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
572         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
573
574         /* This function won't even be called if the request isn't all
575          * nicely aligned and of the right size, so there's no need
576          * for us to check any of that. */
577
578         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
579
580         /*
581          * Any write past EOF is not allowed because we'd be extending.
582          */
583         if (create && (iblock + max_blocks) > inode_blocks) {
584                 ret = -EIO;
585                 goto bail;
586         }
587
588         /* This figures out the size of the next contiguous block, and
589          * our logical offset */
590         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
591                                           &contig_blocks, &ext_flags);
592         if (ret) {
593                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
594                      (unsigned long long)iblock);
595                 ret = -EIO;
596                 goto bail;
597         }
598
599         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
600                 ocfs2_error(inode->i_sb,
601                             "Inode %llu has a hole at block %llu\n",
602                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
603                             (unsigned long long)iblock);
604                 ret = -EROFS;
605                 goto bail;
606         }
607
608         /*
609          * get_more_blocks() expects us to describe a hole by clearing
610          * the mapped bit on bh_result().
611          *
612          * Consider an unwritten extent as a hole.
613          */
614         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
615                 map_bh(bh_result, inode->i_sb, p_blkno);
616         else {
617                 /*
618                  * ocfs2_prepare_inode_for_write() should have caught
619                  * the case where we'd be filling a hole and triggered
620                  * a buffered write instead.
621                  */
622                 if (create) {
623                         ret = -EIO;
624                         mlog_errno(ret);
625                         goto bail;
626                 }
627
628                 clear_buffer_mapped(bh_result);
629         }
630
631         /* make sure we don't map more than max_blocks blocks here as
632            that's all the kernel will handle at this point. */
633         if (max_blocks < contig_blocks)
634                 contig_blocks = max_blocks;
635         bh_result->b_size = contig_blocks << blocksize_bits;
636 bail:
637         return ret;
638 }
639
640 /* 
641  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
642  * particularly interested in the aio/dio case.  Like the core uses
643  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
644  * truncation on another.
645  */
646 static void ocfs2_dio_end_io(struct kiocb *iocb,
647                              loff_t offset,
648                              ssize_t bytes,
649                              void *private)
650 {
651         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
652         int level;
653
654         /* this io's submitter should not have unlocked this before we could */
655         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
656
657         ocfs2_iocb_clear_rw_locked(iocb);
658
659         level = ocfs2_iocb_rw_locked_level(iocb);
660         if (!level)
661                 up_read(&inode->i_alloc_sem);
662         ocfs2_rw_unlock(inode, level);
663 }
664
665 /*
666  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
667  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
668  * do journalled data.
669  */
670 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
671 {
672         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
673
674         jbd2_journal_invalidatepage(journal, page, offset);
675 }
676
677 static int ocfs2_releasepage(struct page *page, gfp_t wait)
678 {
679         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
680
681         if (!page_has_buffers(page))
682                 return 0;
683         return jbd2_journal_try_to_free_buffers(journal, page, wait);
684 }
685
686 static ssize_t ocfs2_direct_IO(int rw,
687                                struct kiocb *iocb,
688                                const struct iovec *iov,
689                                loff_t offset,
690                                unsigned long nr_segs)
691 {
692         struct file *file = iocb->ki_filp;
693         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
694         int ret;
695
696         mlog_entry_void();
697
698         /*
699          * Fallback to buffered I/O if we see an inode without
700          * extents.
701          */
702         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
703                 return 0;
704
705         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
706                                             inode->i_sb->s_bdev, iov, offset,
707                                             nr_segs, 
708                                             ocfs2_direct_IO_get_blocks,
709                                             ocfs2_dio_end_io);
710
711         mlog_exit(ret);
712         return ret;
713 }
714
715 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
716                                             u32 cpos,
717                                             unsigned int *start,
718                                             unsigned int *end)
719 {
720         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
721
722         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
723                 unsigned int cpp;
724
725                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
726
727                 cluster_start = cpos % cpp;
728                 cluster_start = cluster_start << osb->s_clustersize_bits;
729
730                 cluster_end = cluster_start + osb->s_clustersize;
731         }
732
733         BUG_ON(cluster_start > PAGE_SIZE);
734         BUG_ON(cluster_end > PAGE_SIZE);
735
736         if (start)
737                 *start = cluster_start;
738         if (end)
739                 *end = cluster_end;
740 }
741
742 /*
743  * 'from' and 'to' are the region in the page to avoid zeroing.
744  *
745  * If pagesize > clustersize, this function will avoid zeroing outside
746  * of the cluster boundary.
747  *
748  * from == to == 0 is code for "zero the entire cluster region"
749  */
750 static void ocfs2_clear_page_regions(struct page *page,
751                                      struct ocfs2_super *osb, u32 cpos,
752                                      unsigned from, unsigned to)
753 {
754         void *kaddr;
755         unsigned int cluster_start, cluster_end;
756
757         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
758
759         kaddr = kmap_atomic(page, KM_USER0);
760
761         if (from || to) {
762                 if (from > cluster_start)
763                         memset(kaddr + cluster_start, 0, from - cluster_start);
764                 if (to < cluster_end)
765                         memset(kaddr + to, 0, cluster_end - to);
766         } else {
767                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
768         }
769
770         kunmap_atomic(kaddr, KM_USER0);
771 }
772
773 /*
774  * Nonsparse file systems fully allocate before we get to the write
775  * code. This prevents ocfs2_write() from tagging the write as an
776  * allocating one, which means ocfs2_map_page_blocks() might try to
777  * read-in the blocks at the tail of our file. Avoid reading them by
778  * testing i_size against each block offset.
779  */
780 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
781                                  unsigned int block_start)
782 {
783         u64 offset = page_offset(page) + block_start;
784
785         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
786                 return 1;
787
788         if (i_size_read(inode) > offset)
789                 return 1;
790
791         return 0;
792 }
793
794 /*
795  * Some of this taken from block_prepare_write(). We already have our
796  * mapping by now though, and the entire write will be allocating or
797  * it won't, so not much need to use BH_New.
798  *
799  * This will also skip zeroing, which is handled externally.
800  */
801 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
802                           struct inode *inode, unsigned int from,
803                           unsigned int to, int new)
804 {
805         int ret = 0;
806         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
807         unsigned int block_end, block_start;
808         unsigned int bsize = 1 << inode->i_blkbits;
809
810         if (!page_has_buffers(page))
811                 create_empty_buffers(page, bsize, 0);
812
813         head = page_buffers(page);
814         for (bh = head, block_start = 0; bh != head || !block_start;
815              bh = bh->b_this_page, block_start += bsize) {
816                 block_end = block_start + bsize;
817
818                 clear_buffer_new(bh);
819
820                 /*
821                  * Ignore blocks outside of our i/o range -
822                  * they may belong to unallocated clusters.
823                  */
824                 if (block_start >= to || block_end <= from) {
825                         if (PageUptodate(page))
826                                 set_buffer_uptodate(bh);
827                         continue;
828                 }
829
830                 /*
831                  * For an allocating write with cluster size >= page
832                  * size, we always write the entire page.
833                  */
834                 if (new)
835                         set_buffer_new(bh);
836
837                 if (!buffer_mapped(bh)) {
838                         map_bh(bh, inode->i_sb, *p_blkno);
839                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
840                 }
841
842                 if (PageUptodate(page)) {
843                         if (!buffer_uptodate(bh))
844                                 set_buffer_uptodate(bh);
845                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
846                            !buffer_new(bh) &&
847                            ocfs2_should_read_blk(inode, page, block_start) &&
848                            (block_start < from || block_end > to)) {
849                         ll_rw_block(READ, 1, &bh);
850                         *wait_bh++=bh;
851                 }
852
853                 *p_blkno = *p_blkno + 1;
854         }
855
856         /*
857          * If we issued read requests - let them complete.
858          */
859         while(wait_bh > wait) {
860                 wait_on_buffer(*--wait_bh);
861                 if (!buffer_uptodate(*wait_bh))
862                         ret = -EIO;
863         }
864
865         if (ret == 0 || !new)
866                 return ret;
867
868         /*
869          * If we get -EIO above, zero out any newly allocated blocks
870          * to avoid exposing stale data.
871          */
872         bh = head;
873         block_start = 0;
874         do {
875                 block_end = block_start + bsize;
876                 if (block_end <= from)
877                         goto next_bh;
878                 if (block_start >= to)
879                         break;
880
881                 zero_user(page, block_start, bh->b_size);
882                 set_buffer_uptodate(bh);
883                 mark_buffer_dirty(bh);
884
885 next_bh:
886                 block_start = block_end;
887                 bh = bh->b_this_page;
888         } while (bh != head);
889
890         return ret;
891 }
892
893 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
894 #define OCFS2_MAX_CTXT_PAGES    1
895 #else
896 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
897 #endif
898
899 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
900
901 /*
902  * Describe the state of a single cluster to be written to.
903  */
904 struct ocfs2_write_cluster_desc {
905         u32             c_cpos;
906         u32             c_phys;
907         /*
908          * Give this a unique field because c_phys eventually gets
909          * filled.
910          */
911         unsigned        c_new;
912         unsigned        c_unwritten;
913 };
914
915 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
916 {
917         return d->c_new || d->c_unwritten;
918 }
919
920 struct ocfs2_write_ctxt {
921         /* Logical cluster position / len of write */
922         u32                             w_cpos;
923         u32                             w_clen;
924
925         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
926
927         /*
928          * This is true if page_size > cluster_size.
929          *
930          * It triggers a set of special cases during write which might
931          * have to deal with allocating writes to partial pages.
932          */
933         unsigned int                    w_large_pages;
934
935         /*
936          * Pages involved in this write.
937          *
938          * w_target_page is the page being written to by the user.
939          *
940          * w_pages is an array of pages which always contains
941          * w_target_page, and in the case of an allocating write with
942          * page_size < cluster size, it will contain zero'd and mapped
943          * pages adjacent to w_target_page which need to be written
944          * out in so that future reads from that region will get
945          * zero's.
946          */
947         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
948         unsigned int                    w_num_pages;
949         struct page                     *w_target_page;
950
951         /*
952          * ocfs2_write_end() uses this to know what the real range to
953          * write in the target should be.
954          */
955         unsigned int                    w_target_from;
956         unsigned int                    w_target_to;
957
958         /*
959          * We could use journal_current_handle() but this is cleaner,
960          * IMHO -Mark
961          */
962         handle_t                        *w_handle;
963
964         struct buffer_head              *w_di_bh;
965
966         struct ocfs2_cached_dealloc_ctxt w_dealloc;
967 };
968
969 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
970 {
971         int i;
972
973         for(i = 0; i < num_pages; i++) {
974                 if (pages[i]) {
975                         unlock_page(pages[i]);
976                         mark_page_accessed(pages[i]);
977                         page_cache_release(pages[i]);
978                 }
979         }
980 }
981
982 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
983 {
984         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
985
986         brelse(wc->w_di_bh);
987         kfree(wc);
988 }
989
990 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
991                                   struct ocfs2_super *osb, loff_t pos,
992                                   unsigned len, struct buffer_head *di_bh)
993 {
994         u32 cend;
995         struct ocfs2_write_ctxt *wc;
996
997         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
998         if (!wc)
999                 return -ENOMEM;
1000
1001         wc->w_cpos = pos >> osb->s_clustersize_bits;
1002         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1003         wc->w_clen = cend - wc->w_cpos + 1;
1004         get_bh(di_bh);
1005         wc->w_di_bh = di_bh;
1006
1007         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1008                 wc->w_large_pages = 1;
1009         else
1010                 wc->w_large_pages = 0;
1011
1012         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1013
1014         *wcp = wc;
1015
1016         return 0;
1017 }
1018
1019 /*
1020  * If a page has any new buffers, zero them out here, and mark them uptodate
1021  * and dirty so they'll be written out (in order to prevent uninitialised
1022  * block data from leaking). And clear the new bit.
1023  */
1024 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1025 {
1026         unsigned int block_start, block_end;
1027         struct buffer_head *head, *bh;
1028
1029         BUG_ON(!PageLocked(page));
1030         if (!page_has_buffers(page))
1031                 return;
1032
1033         bh = head = page_buffers(page);
1034         block_start = 0;
1035         do {
1036                 block_end = block_start + bh->b_size;
1037
1038                 if (buffer_new(bh)) {
1039                         if (block_end > from && block_start < to) {
1040                                 if (!PageUptodate(page)) {
1041                                         unsigned start, end;
1042
1043                                         start = max(from, block_start);
1044                                         end = min(to, block_end);
1045
1046                                         zero_user_segment(page, start, end);
1047                                         set_buffer_uptodate(bh);
1048                                 }
1049
1050                                 clear_buffer_new(bh);
1051                                 mark_buffer_dirty(bh);
1052                         }
1053                 }
1054
1055                 block_start = block_end;
1056                 bh = bh->b_this_page;
1057         } while (bh != head);
1058 }
1059
1060 /*
1061  * Only called when we have a failure during allocating write to write
1062  * zero's to the newly allocated region.
1063  */
1064 static void ocfs2_write_failure(struct inode *inode,
1065                                 struct ocfs2_write_ctxt *wc,
1066                                 loff_t user_pos, unsigned user_len)
1067 {
1068         int i;
1069         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1070                 to = user_pos + user_len;
1071         struct page *tmppage;
1072
1073         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1074
1075         for(i = 0; i < wc->w_num_pages; i++) {
1076                 tmppage = wc->w_pages[i];
1077
1078                 if (page_has_buffers(tmppage)) {
1079                         if (ocfs2_should_order_data(inode)) {
1080                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1081 #ifdef CONFIG_OCFS2_COMPAT_JBD
1082                                 walk_page_buffers(wc->w_handle,
1083                                                   page_buffers(tmppage),
1084                                                   from, to, NULL,
1085                                                   ocfs2_journal_dirty_data);
1086 #endif
1087                         }
1088
1089                         block_commit_write(tmppage, from, to);
1090                 }
1091         }
1092 }
1093
1094 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1095                                         struct ocfs2_write_ctxt *wc,
1096                                         struct page *page, u32 cpos,
1097                                         loff_t user_pos, unsigned user_len,
1098                                         int new)
1099 {
1100         int ret;
1101         unsigned int map_from = 0, map_to = 0;
1102         unsigned int cluster_start, cluster_end;
1103         unsigned int user_data_from = 0, user_data_to = 0;
1104
1105         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1106                                         &cluster_start, &cluster_end);
1107
1108         if (page == wc->w_target_page) {
1109                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1110                 map_to = map_from + user_len;
1111
1112                 if (new)
1113                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1114                                                     cluster_start, cluster_end,
1115                                                     new);
1116                 else
1117                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1118                                                     map_from, map_to, new);
1119                 if (ret) {
1120                         mlog_errno(ret);
1121                         goto out;
1122                 }
1123
1124                 user_data_from = map_from;
1125                 user_data_to = map_to;
1126                 if (new) {
1127                         map_from = cluster_start;
1128                         map_to = cluster_end;
1129                 }
1130         } else {
1131                 /*
1132                  * If we haven't allocated the new page yet, we
1133                  * shouldn't be writing it out without copying user
1134                  * data. This is likely a math error from the caller.
1135                  */
1136                 BUG_ON(!new);
1137
1138                 map_from = cluster_start;
1139                 map_to = cluster_end;
1140
1141                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1142                                             cluster_start, cluster_end, new);
1143                 if (ret) {
1144                         mlog_errno(ret);
1145                         goto out;
1146                 }
1147         }
1148
1149         /*
1150          * Parts of newly allocated pages need to be zero'd.
1151          *
1152          * Above, we have also rewritten 'to' and 'from' - as far as
1153          * the rest of the function is concerned, the entire cluster
1154          * range inside of a page needs to be written.
1155          *
1156          * We can skip this if the page is up to date - it's already
1157          * been zero'd from being read in as a hole.
1158          */
1159         if (new && !PageUptodate(page))
1160                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1161                                          cpos, user_data_from, user_data_to);
1162
1163         flush_dcache_page(page);
1164
1165 out:
1166         return ret;
1167 }
1168
1169 /*
1170  * This function will only grab one clusters worth of pages.
1171  */
1172 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1173                                       struct ocfs2_write_ctxt *wc,
1174                                       u32 cpos, loff_t user_pos, int new,
1175                                       struct page *mmap_page)
1176 {
1177         int ret = 0, i;
1178         unsigned long start, target_index, index;
1179         struct inode *inode = mapping->host;
1180
1181         target_index = user_pos >> PAGE_CACHE_SHIFT;
1182
1183         /*
1184          * Figure out how many pages we'll be manipulating here. For
1185          * non allocating write, we just change the one
1186          * page. Otherwise, we'll need a whole clusters worth.
1187          */
1188         if (new) {
1189                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1190                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1191         } else {
1192                 wc->w_num_pages = 1;
1193                 start = target_index;
1194         }
1195
1196         for(i = 0; i < wc->w_num_pages; i++) {
1197                 index = start + i;
1198
1199                 if (index == target_index && mmap_page) {
1200                         /*
1201                          * ocfs2_pagemkwrite() is a little different
1202                          * and wants us to directly use the page
1203                          * passed in.
1204                          */
1205                         lock_page(mmap_page);
1206
1207                         if (mmap_page->mapping != mapping) {
1208                                 unlock_page(mmap_page);
1209                                 /*
1210                                  * Sanity check - the locking in
1211                                  * ocfs2_pagemkwrite() should ensure
1212                                  * that this code doesn't trigger.
1213                                  */
1214                                 ret = -EINVAL;
1215                                 mlog_errno(ret);
1216                                 goto out;
1217                         }
1218
1219                         page_cache_get(mmap_page);
1220                         wc->w_pages[i] = mmap_page;
1221                 } else {
1222                         wc->w_pages[i] = find_or_create_page(mapping, index,
1223                                                              GFP_NOFS);
1224                         if (!wc->w_pages[i]) {
1225                                 ret = -ENOMEM;
1226                                 mlog_errno(ret);
1227                                 goto out;
1228                         }
1229                 }
1230
1231                 if (index == target_index)
1232                         wc->w_target_page = wc->w_pages[i];
1233         }
1234 out:
1235         return ret;
1236 }
1237
1238 /*
1239  * Prepare a single cluster for write one cluster into the file.
1240  */
1241 static int ocfs2_write_cluster(struct address_space *mapping,
1242                                u32 phys, unsigned int unwritten,
1243                                struct ocfs2_alloc_context *data_ac,
1244                                struct ocfs2_alloc_context *meta_ac,
1245                                struct ocfs2_write_ctxt *wc, u32 cpos,
1246                                loff_t user_pos, unsigned user_len)
1247 {
1248         int ret, i, new, should_zero = 0;
1249         u64 v_blkno, p_blkno;
1250         struct inode *inode = mapping->host;
1251         struct ocfs2_extent_tree et;
1252
1253         new = phys == 0 ? 1 : 0;
1254         if (new || unwritten)
1255                 should_zero = 1;
1256
1257         if (new) {
1258                 u32 tmp_pos;
1259
1260                 /*
1261                  * This is safe to call with the page locks - it won't take
1262                  * any additional semaphores or cluster locks.
1263                  */
1264                 tmp_pos = cpos;
1265                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1266                                            &tmp_pos, 1, 0, wc->w_di_bh,
1267                                            wc->w_handle, data_ac,
1268                                            meta_ac, NULL);
1269                 /*
1270                  * This shouldn't happen because we must have already
1271                  * calculated the correct meta data allocation required. The
1272                  * internal tree allocation code should know how to increase
1273                  * transaction credits itself.
1274                  *
1275                  * If need be, we could handle -EAGAIN for a
1276                  * RESTART_TRANS here.
1277                  */
1278                 mlog_bug_on_msg(ret == -EAGAIN,
1279                                 "Inode %llu: EAGAIN return during allocation.\n",
1280                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1281                 if (ret < 0) {
1282                         mlog_errno(ret);
1283                         goto out;
1284                 }
1285         } else if (unwritten) {
1286                 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1287                 ret = ocfs2_mark_extent_written(inode, &et,
1288                                                 wc->w_handle, cpos, 1, phys,
1289                                                 meta_ac, &wc->w_dealloc);
1290                 if (ret < 0) {
1291                         mlog_errno(ret);
1292                         goto out;
1293                 }
1294         }
1295
1296         if (should_zero)
1297                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1298         else
1299                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1300
1301         /*
1302          * The only reason this should fail is due to an inability to
1303          * find the extent added.
1304          */
1305         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1306                                           NULL);
1307         if (ret < 0) {
1308                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1309                             "at logical block %llu",
1310                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1311                             (unsigned long long)v_blkno);
1312                 goto out;
1313         }
1314
1315         BUG_ON(p_blkno == 0);
1316
1317         for(i = 0; i < wc->w_num_pages; i++) {
1318                 int tmpret;
1319
1320                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1321                                                       wc->w_pages[i], cpos,
1322                                                       user_pos, user_len,
1323                                                       should_zero);
1324                 if (tmpret) {
1325                         mlog_errno(tmpret);
1326                         if (ret == 0)
1327                                 tmpret = ret;
1328                 }
1329         }
1330
1331         /*
1332          * We only have cleanup to do in case of allocating write.
1333          */
1334         if (ret && new)
1335                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1336
1337 out:
1338
1339         return ret;
1340 }
1341
1342 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1343                                        struct ocfs2_alloc_context *data_ac,
1344                                        struct ocfs2_alloc_context *meta_ac,
1345                                        struct ocfs2_write_ctxt *wc,
1346                                        loff_t pos, unsigned len)
1347 {
1348         int ret, i;
1349         loff_t cluster_off;
1350         unsigned int local_len = len;
1351         struct ocfs2_write_cluster_desc *desc;
1352         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1353
1354         for (i = 0; i < wc->w_clen; i++) {
1355                 desc = &wc->w_desc[i];
1356
1357                 /*
1358                  * We have to make sure that the total write passed in
1359                  * doesn't extend past a single cluster.
1360                  */
1361                 local_len = len;
1362                 cluster_off = pos & (osb->s_clustersize - 1);
1363                 if ((cluster_off + local_len) > osb->s_clustersize)
1364                         local_len = osb->s_clustersize - cluster_off;
1365
1366                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1367                                           desc->c_unwritten, data_ac, meta_ac,
1368                                           wc, desc->c_cpos, pos, local_len);
1369                 if (ret) {
1370                         mlog_errno(ret);
1371                         goto out;
1372                 }
1373
1374                 len -= local_len;
1375                 pos += local_len;
1376         }
1377
1378         ret = 0;
1379 out:
1380         return ret;
1381 }
1382
1383 /*
1384  * ocfs2_write_end() wants to know which parts of the target page it
1385  * should complete the write on. It's easiest to compute them ahead of
1386  * time when a more complete view of the write is available.
1387  */
1388 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1389                                         struct ocfs2_write_ctxt *wc,
1390                                         loff_t pos, unsigned len, int alloc)
1391 {
1392         struct ocfs2_write_cluster_desc *desc;
1393
1394         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1395         wc->w_target_to = wc->w_target_from + len;
1396
1397         if (alloc == 0)
1398                 return;
1399
1400         /*
1401          * Allocating write - we may have different boundaries based
1402          * on page size and cluster size.
1403          *
1404          * NOTE: We can no longer compute one value from the other as
1405          * the actual write length and user provided length may be
1406          * different.
1407          */
1408
1409         if (wc->w_large_pages) {
1410                 /*
1411                  * We only care about the 1st and last cluster within
1412                  * our range and whether they should be zero'd or not. Either
1413                  * value may be extended out to the start/end of a
1414                  * newly allocated cluster.
1415                  */
1416                 desc = &wc->w_desc[0];
1417                 if (ocfs2_should_zero_cluster(desc))
1418                         ocfs2_figure_cluster_boundaries(osb,
1419                                                         desc->c_cpos,
1420                                                         &wc->w_target_from,
1421                                                         NULL);
1422
1423                 desc = &wc->w_desc[wc->w_clen - 1];
1424                 if (ocfs2_should_zero_cluster(desc))
1425                         ocfs2_figure_cluster_boundaries(osb,
1426                                                         desc->c_cpos,
1427                                                         NULL,
1428                                                         &wc->w_target_to);
1429         } else {
1430                 wc->w_target_from = 0;
1431                 wc->w_target_to = PAGE_CACHE_SIZE;
1432         }
1433 }
1434
1435 /*
1436  * Populate each single-cluster write descriptor in the write context
1437  * with information about the i/o to be done.
1438  *
1439  * Returns the number of clusters that will have to be allocated, as
1440  * well as a worst case estimate of the number of extent records that
1441  * would have to be created during a write to an unwritten region.
1442  */
1443 static int ocfs2_populate_write_desc(struct inode *inode,
1444                                      struct ocfs2_write_ctxt *wc,
1445                                      unsigned int *clusters_to_alloc,
1446                                      unsigned int *extents_to_split)
1447 {
1448         int ret;
1449         struct ocfs2_write_cluster_desc *desc;
1450         unsigned int num_clusters = 0;
1451         unsigned int ext_flags = 0;
1452         u32 phys = 0;
1453         int i;
1454
1455         *clusters_to_alloc = 0;
1456         *extents_to_split = 0;
1457
1458         for (i = 0; i < wc->w_clen; i++) {
1459                 desc = &wc->w_desc[i];
1460                 desc->c_cpos = wc->w_cpos + i;
1461
1462                 if (num_clusters == 0) {
1463                         /*
1464                          * Need to look up the next extent record.
1465                          */
1466                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1467                                                  &num_clusters, &ext_flags);
1468                         if (ret) {
1469                                 mlog_errno(ret);
1470                                 goto out;
1471                         }
1472
1473                         /*
1474                          * Assume worst case - that we're writing in
1475                          * the middle of the extent.
1476                          *
1477                          * We can assume that the write proceeds from
1478                          * left to right, in which case the extent
1479                          * insert code is smart enough to coalesce the
1480                          * next splits into the previous records created.
1481                          */
1482                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1483                                 *extents_to_split = *extents_to_split + 2;
1484                 } else if (phys) {
1485                         /*
1486                          * Only increment phys if it doesn't describe
1487                          * a hole.
1488                          */
1489                         phys++;
1490                 }
1491
1492                 desc->c_phys = phys;
1493                 if (phys == 0) {
1494                         desc->c_new = 1;
1495                         *clusters_to_alloc = *clusters_to_alloc + 1;
1496                 }
1497                 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1498                         desc->c_unwritten = 1;
1499
1500                 num_clusters--;
1501         }
1502
1503         ret = 0;
1504 out:
1505         return ret;
1506 }
1507
1508 static int ocfs2_write_begin_inline(struct address_space *mapping,
1509                                     struct inode *inode,
1510                                     struct ocfs2_write_ctxt *wc)
1511 {
1512         int ret;
1513         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1514         struct page *page;
1515         handle_t *handle;
1516         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1517
1518         page = find_or_create_page(mapping, 0, GFP_NOFS);
1519         if (!page) {
1520                 ret = -ENOMEM;
1521                 mlog_errno(ret);
1522                 goto out;
1523         }
1524         /*
1525          * If we don't set w_num_pages then this page won't get unlocked
1526          * and freed on cleanup of the write context.
1527          */
1528         wc->w_pages[0] = wc->w_target_page = page;
1529         wc->w_num_pages = 1;
1530
1531         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1532         if (IS_ERR(handle)) {
1533                 ret = PTR_ERR(handle);
1534                 mlog_errno(ret);
1535                 goto out;
1536         }
1537
1538         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1539                                    OCFS2_JOURNAL_ACCESS_WRITE);
1540         if (ret) {
1541                 ocfs2_commit_trans(osb, handle);
1542
1543                 mlog_errno(ret);
1544                 goto out;
1545         }
1546
1547         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1548                 ocfs2_set_inode_data_inline(inode, di);
1549
1550         if (!PageUptodate(page)) {
1551                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1552                 if (ret) {
1553                         ocfs2_commit_trans(osb, handle);
1554
1555                         goto out;
1556                 }
1557         }
1558
1559         wc->w_handle = handle;
1560 out:
1561         return ret;
1562 }
1563
1564 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1565 {
1566         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1567
1568         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1569                 return 1;
1570         return 0;
1571 }
1572
1573 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1574                                           struct inode *inode, loff_t pos,
1575                                           unsigned len, struct page *mmap_page,
1576                                           struct ocfs2_write_ctxt *wc)
1577 {
1578         int ret, written = 0;
1579         loff_t end = pos + len;
1580         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1581
1582         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1583              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1584              oi->ip_dyn_features);
1585
1586         /*
1587          * Handle inodes which already have inline data 1st.
1588          */
1589         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1590                 if (mmap_page == NULL &&
1591                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1592                         goto do_inline_write;
1593
1594                 /*
1595                  * The write won't fit - we have to give this inode an
1596                  * inline extent list now.
1597                  */
1598                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1599                 if (ret)
1600                         mlog_errno(ret);
1601                 goto out;
1602         }
1603
1604         /*
1605          * Check whether the inode can accept inline data.
1606          */
1607         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1608                 return 0;
1609
1610         /*
1611          * Check whether the write can fit.
1612          */
1613         if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1614                 return 0;
1615
1616 do_inline_write:
1617         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1618         if (ret) {
1619                 mlog_errno(ret);
1620                 goto out;
1621         }
1622
1623         /*
1624          * This signals to the caller that the data can be written
1625          * inline.
1626          */
1627         written = 1;
1628 out:
1629         return written ? written : ret;
1630 }
1631
1632 /*
1633  * This function only does anything for file systems which can't
1634  * handle sparse files.
1635  *
1636  * What we want to do here is fill in any hole between the current end
1637  * of allocation and the end of our write. That way the rest of the
1638  * write path can treat it as an non-allocating write, which has no
1639  * special case code for sparse/nonsparse files.
1640  */
1641 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1642                                         unsigned len,
1643                                         struct ocfs2_write_ctxt *wc)
1644 {
1645         int ret;
1646         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1647         loff_t newsize = pos + len;
1648
1649         if (ocfs2_sparse_alloc(osb))
1650                 return 0;
1651
1652         if (newsize <= i_size_read(inode))
1653                 return 0;
1654
1655         ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1656         if (ret)
1657                 mlog_errno(ret);
1658
1659         return ret;
1660 }
1661
1662 int ocfs2_write_begin_nolock(struct address_space *mapping,
1663                              loff_t pos, unsigned len, unsigned flags,
1664                              struct page **pagep, void **fsdata,
1665                              struct buffer_head *di_bh, struct page *mmap_page)
1666 {
1667         int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1668         unsigned int clusters_to_alloc, extents_to_split;
1669         struct ocfs2_write_ctxt *wc;
1670         struct inode *inode = mapping->host;
1671         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1672         struct ocfs2_dinode *di;
1673         struct ocfs2_alloc_context *data_ac = NULL;
1674         struct ocfs2_alloc_context *meta_ac = NULL;
1675         handle_t *handle;
1676         struct ocfs2_extent_tree et;
1677
1678         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1679         if (ret) {
1680                 mlog_errno(ret);
1681                 return ret;
1682         }
1683
1684         if (ocfs2_supports_inline_data(osb)) {
1685                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1686                                                      mmap_page, wc);
1687                 if (ret == 1) {
1688                         ret = 0;
1689                         goto success;
1690                 }
1691                 if (ret < 0) {
1692                         mlog_errno(ret);
1693                         goto out;
1694                 }
1695         }
1696
1697         ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1698         if (ret) {
1699                 mlog_errno(ret);
1700                 goto out;
1701         }
1702
1703         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1704                                         &extents_to_split);
1705         if (ret) {
1706                 mlog_errno(ret);
1707                 goto out;
1708         }
1709
1710         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1711
1712         /*
1713          * We set w_target_from, w_target_to here so that
1714          * ocfs2_write_end() knows which range in the target page to
1715          * write out. An allocation requires that we write the entire
1716          * cluster range.
1717          */
1718         if (clusters_to_alloc || extents_to_split) {
1719                 /*
1720                  * XXX: We are stretching the limits of
1721                  * ocfs2_lock_allocators(). It greatly over-estimates
1722                  * the work to be done.
1723                  */
1724                 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1725                      " clusters_to_add = %u, extents_to_split = %u\n",
1726                      (unsigned long long)OCFS2_I(inode)->ip_blkno,
1727                      (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1728                      clusters_to_alloc, extents_to_split);
1729
1730                 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1731                 ret = ocfs2_lock_allocators(inode, &et,
1732                                             clusters_to_alloc, extents_to_split,
1733                                             &data_ac, &meta_ac);
1734                 if (ret) {
1735                         mlog_errno(ret);
1736                         goto out;
1737                 }
1738
1739                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1740                                                     &di->id2.i_list,
1741                                                     clusters_to_alloc);
1742
1743         }
1744
1745         ocfs2_set_target_boundaries(osb, wc, pos, len,
1746                                     clusters_to_alloc + extents_to_split);
1747
1748         handle = ocfs2_start_trans(osb, credits);
1749         if (IS_ERR(handle)) {
1750                 ret = PTR_ERR(handle);
1751                 mlog_errno(ret);
1752                 goto out;
1753         }
1754
1755         wc->w_handle = handle;
1756
1757         /*
1758          * We don't want this to fail in ocfs2_write_end(), so do it
1759          * here.
1760          */
1761         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1762                                    OCFS2_JOURNAL_ACCESS_WRITE);
1763         if (ret) {
1764                 mlog_errno(ret);
1765                 goto out_commit;
1766         }
1767
1768         /*
1769          * Fill our page array first. That way we've grabbed enough so
1770          * that we can zero and flush if we error after adding the
1771          * extent.
1772          */
1773         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1774                                          clusters_to_alloc + extents_to_split,
1775                                          mmap_page);
1776         if (ret) {
1777                 mlog_errno(ret);
1778                 goto out_commit;
1779         }
1780
1781         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1782                                           len);
1783         if (ret) {
1784                 mlog_errno(ret);
1785                 goto out_commit;
1786         }
1787
1788         if (data_ac)
1789                 ocfs2_free_alloc_context(data_ac);
1790         if (meta_ac)
1791                 ocfs2_free_alloc_context(meta_ac);
1792
1793 success:
1794         *pagep = wc->w_target_page;
1795         *fsdata = wc;
1796         return 0;
1797 out_commit:
1798         ocfs2_commit_trans(osb, handle);
1799
1800 out:
1801         ocfs2_free_write_ctxt(wc);
1802
1803         if (data_ac)
1804                 ocfs2_free_alloc_context(data_ac);
1805         if (meta_ac)
1806                 ocfs2_free_alloc_context(meta_ac);
1807         return ret;
1808 }
1809
1810 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1811                              loff_t pos, unsigned len, unsigned flags,
1812                              struct page **pagep, void **fsdata)
1813 {
1814         int ret;
1815         struct buffer_head *di_bh = NULL;
1816         struct inode *inode = mapping->host;
1817
1818         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1819         if (ret) {
1820                 mlog_errno(ret);
1821                 return ret;
1822         }
1823
1824         /*
1825          * Take alloc sem here to prevent concurrent lookups. That way
1826          * the mapping, zeroing and tree manipulation within
1827          * ocfs2_write() will be safe against ->readpage(). This
1828          * should also serve to lock out allocation from a shared
1829          * writeable region.
1830          */
1831         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1832
1833         ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1834                                        fsdata, di_bh, NULL);
1835         if (ret) {
1836                 mlog_errno(ret);
1837                 goto out_fail;
1838         }
1839
1840         brelse(di_bh);
1841
1842         return 0;
1843
1844 out_fail:
1845         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1846
1847         brelse(di_bh);
1848         ocfs2_inode_unlock(inode, 1);
1849
1850         return ret;
1851 }
1852
1853 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1854                                    unsigned len, unsigned *copied,
1855                                    struct ocfs2_dinode *di,
1856                                    struct ocfs2_write_ctxt *wc)
1857 {
1858         void *kaddr;
1859
1860         if (unlikely(*copied < len)) {
1861                 if (!PageUptodate(wc->w_target_page)) {
1862                         *copied = 0;
1863                         return;
1864                 }
1865         }
1866
1867         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1868         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1869         kunmap_atomic(kaddr, KM_USER0);
1870
1871         mlog(0, "Data written to inode at offset %llu. "
1872              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1873              (unsigned long long)pos, *copied,
1874              le16_to_cpu(di->id2.i_data.id_count),
1875              le16_to_cpu(di->i_dyn_features));
1876 }
1877
1878 int ocfs2_write_end_nolock(struct address_space *mapping,
1879                            loff_t pos, unsigned len, unsigned copied,
1880                            struct page *page, void *fsdata)
1881 {
1882         int i;
1883         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1884         struct inode *inode = mapping->host;
1885         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1886         struct ocfs2_write_ctxt *wc = fsdata;
1887         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1888         handle_t *handle = wc->w_handle;
1889         struct page *tmppage;
1890
1891         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1892                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1893                 goto out_write_size;
1894         }
1895
1896         if (unlikely(copied < len)) {
1897                 if (!PageUptodate(wc->w_target_page))
1898                         copied = 0;
1899
1900                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1901                                        start+len);
1902         }
1903         flush_dcache_page(wc->w_target_page);
1904
1905         for(i = 0; i < wc->w_num_pages; i++) {
1906                 tmppage = wc->w_pages[i];
1907
1908                 if (tmppage == wc->w_target_page) {
1909                         from = wc->w_target_from;
1910                         to = wc->w_target_to;
1911
1912                         BUG_ON(from > PAGE_CACHE_SIZE ||
1913                                to > PAGE_CACHE_SIZE ||
1914                                to < from);
1915                 } else {
1916                         /*
1917                          * Pages adjacent to the target (if any) imply
1918                          * a hole-filling write in which case we want
1919                          * to flush their entire range.
1920                          */
1921                         from = 0;
1922                         to = PAGE_CACHE_SIZE;
1923                 }
1924
1925                 if (page_has_buffers(tmppage)) {
1926                         if (ocfs2_should_order_data(inode)) {
1927                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1928 #ifdef CONFIG_OCFS2_COMPAT_JBD
1929                                 walk_page_buffers(wc->w_handle,
1930                                                   page_buffers(tmppage),
1931                                                   from, to, NULL,
1932                                                   ocfs2_journal_dirty_data);
1933 #endif
1934                         }
1935                         block_commit_write(tmppage, from, to);
1936                 }
1937         }
1938
1939 out_write_size:
1940         pos += copied;
1941         if (pos > inode->i_size) {
1942                 i_size_write(inode, pos);
1943                 mark_inode_dirty(inode);
1944         }
1945         inode->i_blocks = ocfs2_inode_sector_count(inode);
1946         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1947         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1948         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1949         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1950         ocfs2_journal_dirty(handle, wc->w_di_bh);
1951
1952         ocfs2_commit_trans(osb, handle);
1953
1954         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1955
1956         ocfs2_free_write_ctxt(wc);
1957
1958         return copied;
1959 }
1960
1961 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1962                            loff_t pos, unsigned len, unsigned copied,
1963                            struct page *page, void *fsdata)
1964 {
1965         int ret;
1966         struct inode *inode = mapping->host;
1967
1968         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1969
1970         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1971         ocfs2_inode_unlock(inode, 1);
1972
1973         return ret;
1974 }
1975
1976 const struct address_space_operations ocfs2_aops = {
1977         .readpage       = ocfs2_readpage,
1978         .readpages      = ocfs2_readpages,
1979         .writepage      = ocfs2_writepage,
1980         .write_begin    = ocfs2_write_begin,
1981         .write_end      = ocfs2_write_end,
1982         .bmap           = ocfs2_bmap,
1983         .sync_page      = block_sync_page,
1984         .direct_IO      = ocfs2_direct_IO,
1985         .invalidatepage = ocfs2_invalidatepage,
1986         .releasepage    = ocfs2_releasepage,
1987         .migratepage    = buffer_migrate_page,
1988 };