2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
16 #include <linux/config.h>
17 #include <linux/cpu.h>
18 #include <linux/kernel.h>
20 #include <linux/node.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <asm/mmzone.h>
30 static struct node *sysfs_nodes;
32 static struct ia64_cpu *sysfs_cpus;
34 int arch_register_cpu(int num)
36 struct node *parent = NULL;
39 parent = &sysfs_nodes[cpu_to_node(num)];
40 #endif /* CONFIG_NUMA */
42 #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)
44 * If CPEI cannot be re-targetted, and this is
45 * CPEI target, then dont create the control file
47 if (!can_cpei_retarget() && is_cpu_cpei_target(num))
48 sysfs_cpus[num].cpu.no_control = 1;
51 return register_cpu(&sysfs_cpus[num].cpu, num, parent);
54 #ifdef CONFIG_HOTPLUG_CPU
56 void arch_unregister_cpu(int num)
58 struct node *parent = NULL;
61 int node = cpu_to_node(num);
62 parent = &sysfs_nodes[node];
63 #endif /* CONFIG_NUMA */
65 return unregister_cpu(&sysfs_cpus[num].cpu, parent);
67 EXPORT_SYMBOL(arch_register_cpu);
68 EXPORT_SYMBOL(arch_unregister_cpu);
69 #endif /*CONFIG_HOTPLUG_CPU*/
72 static int __init topology_init(void)
77 sysfs_nodes = kzalloc(sizeof(struct node) * MAX_NUMNODES, GFP_KERNEL);
84 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
86 for_each_online_node(i) {
87 if ((err = register_node(&sysfs_nodes[i], i, 0)))
92 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
98 for_each_present_cpu(i) {
99 if((err = arch_register_cpu(i)))
106 subsys_initcall(topology_init);
110 * Export cpu cache information through sysfs
114 * A bunch of string array to get pretty printing
116 static const char *cache_types[] = {
120 "Unified" /* unified */
123 static const char *cache_mattrib[]={
131 pal_cache_config_info_t cci;
132 cpumask_t shared_cpu_map;
138 struct cpu_cache_info {
139 struct cache_info *cache_leaves;
140 int num_cache_leaves;
144 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
145 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
148 static void cache_shared_cpu_map_setup( unsigned int cpu,
149 struct cache_info * this_leaf)
151 pal_cache_shared_info_t csi;
152 int num_shared, i = 0;
155 if (cpu_data(cpu)->threads_per_core <= 1 &&
156 cpu_data(cpu)->cores_per_socket <= 1) {
157 cpu_set(cpu, this_leaf->shared_cpu_map);
161 if (ia64_pal_cache_shared_info(this_leaf->level,
164 &csi) != PAL_STATUS_SUCCESS)
167 num_shared = (int) csi.num_shared;
170 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
171 && cpu_data(j)->core_id == csi.log1_cid
172 && cpu_data(j)->thread_id == csi.log1_tid)
173 cpu_set(j, this_leaf->shared_cpu_map);
176 } while (i < num_shared &&
177 ia64_pal_cache_shared_info(this_leaf->level,
180 &csi) == PAL_STATUS_SUCCESS);
183 static void cache_shared_cpu_map_setup(unsigned int cpu,
184 struct cache_info * this_leaf)
186 cpu_set(cpu, this_leaf->shared_cpu_map);
191 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
194 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
197 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
200 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
203 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
207 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
210 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
212 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
215 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
217 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
218 number_of_sets /= this_leaf->cci.pcci_assoc;
219 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
221 return sprintf(buf, "%u\n", number_of_sets);
224 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
227 cpumask_t shared_cpu_map;
229 cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
230 len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
231 len += sprintf(buf+len, "\n");
235 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
237 int type = this_leaf->type + this_leaf->cci.pcci_unified;
238 return sprintf(buf, "%s\n", cache_types[type]);
241 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
243 return sprintf(buf, "%u\n", this_leaf->level);
247 struct attribute attr;
248 ssize_t (*show)(struct cache_info *, char *);
249 ssize_t (*store)(struct cache_info *, const char *, size_t count);
255 #define define_one_ro(_name) \
256 static struct cache_attr _name = \
257 __ATTR(_name, 0444, show_##_name, NULL)
259 define_one_ro(level);
261 define_one_ro(coherency_line_size);
262 define_one_ro(ways_of_associativity);
264 define_one_ro(number_of_sets);
265 define_one_ro(shared_cpu_map);
266 define_one_ro(attributes);
268 static struct attribute * cache_default_attrs[] = {
271 &coherency_line_size.attr,
272 &ways_of_associativity.attr,
275 &number_of_sets.attr,
276 &shared_cpu_map.attr,
280 #define to_object(k) container_of(k, struct cache_info, kobj)
281 #define to_attr(a) container_of(a, struct cache_attr, attr)
283 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
285 struct cache_attr *fattr = to_attr(attr);
286 struct cache_info *this_leaf = to_object(kobj);
289 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
293 static struct sysfs_ops cache_sysfs_ops = {
297 static struct kobj_type cache_ktype = {
298 .sysfs_ops = &cache_sysfs_ops,
299 .default_attrs = cache_default_attrs,
302 static struct kobj_type cache_ktype_percpu_entry = {
303 .sysfs_ops = &cache_sysfs_ops,
306 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
308 if (all_cpu_cache_info[cpu].cache_leaves) {
309 kfree(all_cpu_cache_info[cpu].cache_leaves);
310 all_cpu_cache_info[cpu].cache_leaves = NULL;
312 all_cpu_cache_info[cpu].num_cache_leaves = 0;
313 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
318 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
320 u64 i, levels, unique_caches;
321 pal_cache_config_info_t cci;
324 struct cache_info *this_cache;
325 int num_cache_leaves = 0;
327 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
328 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
332 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
334 if (this_cache == NULL)
337 for (i=0; i < levels; i++) {
338 for (j=2; j >0 ; j--) {
339 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
343 this_cache[num_cache_leaves].cci = cci;
344 this_cache[num_cache_leaves].level = i + 1;
345 this_cache[num_cache_leaves].type = j;
347 cache_shared_cpu_map_setup(cpu,
348 &this_cache[num_cache_leaves]);
353 all_cpu_cache_info[cpu].cache_leaves = this_cache;
354 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
356 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
361 /* Add cache interface for CPU device */
362 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
364 unsigned int cpu = sys_dev->id;
366 struct cache_info *this_object;
370 if (all_cpu_cache_info[cpu].kobj.parent)
373 oldmask = current->cpus_allowed;
374 retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
375 if (unlikely(retval))
378 retval = cpu_cache_sysfs_init(cpu);
379 set_cpus_allowed(current, oldmask);
380 if (unlikely(retval < 0))
383 all_cpu_cache_info[cpu].kobj.parent = &sys_dev->kobj;
384 kobject_set_name(&all_cpu_cache_info[cpu].kobj, "%s", "cache");
385 all_cpu_cache_info[cpu].kobj.ktype = &cache_ktype_percpu_entry;
386 retval = kobject_register(&all_cpu_cache_info[cpu].kobj);
388 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
389 this_object = LEAF_KOBJECT_PTR(cpu,i);
390 this_object->kobj.parent = &all_cpu_cache_info[cpu].kobj;
391 kobject_set_name(&(this_object->kobj), "index%1lu", i);
392 this_object->kobj.ktype = &cache_ktype;
393 retval = kobject_register(&(this_object->kobj));
394 if (unlikely(retval)) {
395 for (j = 0; j < i; j++) {
397 &(LEAF_KOBJECT_PTR(cpu,j)->kobj));
399 kobject_unregister(&all_cpu_cache_info[cpu].kobj);
400 cpu_cache_sysfs_exit(cpu);
407 /* Remove cache interface for CPU device */
408 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
410 unsigned int cpu = sys_dev->id;
413 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
414 kobject_unregister(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
416 if (all_cpu_cache_info[cpu].kobj.parent) {
417 kobject_unregister(&all_cpu_cache_info[cpu].kobj);
418 memset(&all_cpu_cache_info[cpu].kobj,
420 sizeof(struct kobject));
423 cpu_cache_sysfs_exit(cpu);
429 * When a cpu is hot-plugged, do a check and initiate
430 * cache kobject if necessary
432 static int cache_cpu_callback(struct notifier_block *nfb,
433 unsigned long action, void *hcpu)
435 unsigned int cpu = (unsigned long)hcpu;
436 struct sys_device *sys_dev;
438 sys_dev = get_cpu_sysdev(cpu);
441 cache_add_dev(sys_dev);
444 cache_remove_dev(sys_dev);
450 static struct notifier_block cache_cpu_notifier =
452 .notifier_call = cache_cpu_callback
455 static int __cpuinit cache_sysfs_init(void)
459 for_each_online_cpu(i) {
460 cache_cpu_callback(&cache_cpu_notifier, CPU_ONLINE,
464 register_cpu_notifier(&cache_cpu_notifier);
469 device_initcall(cache_sysfs_init);