Merge master.kernel.org:/home/rmk/linux-2.6-mmc
[linux-2.6] / arch / ia64 / kernel / topology.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  *              2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *      Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *      Populate cpu cache entries in sysfs for cpu cache info
14  */
15
16 #include <linux/config.h>
17 #include <linux/cpu.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/node.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <asm/mmzone.h>
26 #include <asm/numa.h>
27 #include <asm/cpu.h>
28
29 #ifdef CONFIG_NUMA
30 static struct node *sysfs_nodes;
31 #endif
32 static struct ia64_cpu *sysfs_cpus;
33
34 int arch_register_cpu(int num)
35 {
36         struct node *parent = NULL;
37         
38 #ifdef CONFIG_NUMA
39         parent = &sysfs_nodes[cpu_to_node(num)];
40 #endif /* CONFIG_NUMA */
41
42 #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)
43         /*
44          * If CPEI cannot be re-targetted, and this is
45          * CPEI target, then dont create the control file
46          */
47         if (!can_cpei_retarget() && is_cpu_cpei_target(num))
48                 sysfs_cpus[num].cpu.no_control = 1;
49 #endif
50
51         return register_cpu(&sysfs_cpus[num].cpu, num, parent);
52 }
53
54 #ifdef CONFIG_HOTPLUG_CPU
55
56 void arch_unregister_cpu(int num)
57 {
58         struct node *parent = NULL;
59
60 #ifdef CONFIG_NUMA
61         int node = cpu_to_node(num);
62         parent = &sysfs_nodes[node];
63 #endif /* CONFIG_NUMA */
64
65         return unregister_cpu(&sysfs_cpus[num].cpu, parent);
66 }
67 EXPORT_SYMBOL(arch_register_cpu);
68 EXPORT_SYMBOL(arch_unregister_cpu);
69 #endif /*CONFIG_HOTPLUG_CPU*/
70
71
72 static int __init topology_init(void)
73 {
74         int i, err = 0;
75
76 #ifdef CONFIG_NUMA
77         sysfs_nodes = kzalloc(sizeof(struct node) * MAX_NUMNODES, GFP_KERNEL);
78         if (!sysfs_nodes) {
79                 err = -ENOMEM;
80                 goto out;
81         }
82
83         /*
84          * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
85          */
86         for_each_online_node(i) {
87                 if ((err = register_node(&sysfs_nodes[i], i, 0)))
88                         goto out;
89         }
90 #endif
91
92         sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
93         if (!sysfs_cpus) {
94                 err = -ENOMEM;
95                 goto out;
96         }
97
98         for_each_present_cpu(i) {
99                 if((err = arch_register_cpu(i)))
100                         goto out;
101         }
102 out:
103         return err;
104 }
105
106 subsys_initcall(topology_init);
107
108
109 /*
110  * Export cpu cache information through sysfs
111  */
112
113 /*
114  *  A bunch of string array to get pretty printing
115  */
116 static const char *cache_types[] = {
117         "",                     /* not used */
118         "Instruction",
119         "Data",
120         "Unified"       /* unified */
121 };
122
123 static const char *cache_mattrib[]={
124         "WriteThrough",
125         "WriteBack",
126         "",             /* reserved */
127         ""              /* reserved */
128 };
129
130 struct cache_info {
131         pal_cache_config_info_t cci;
132         cpumask_t shared_cpu_map;
133         int level;
134         int type;
135         struct kobject kobj;
136 };
137
138 struct cpu_cache_info {
139         struct cache_info *cache_leaves;
140         int     num_cache_leaves;
141         struct kobject kobj;
142 };
143
144 static struct cpu_cache_info    all_cpu_cache_info[NR_CPUS];
145 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
146
147 #ifdef CONFIG_SMP
148 static void cache_shared_cpu_map_setup( unsigned int cpu,
149                 struct cache_info * this_leaf)
150 {
151         pal_cache_shared_info_t csi;
152         int num_shared, i = 0;
153         unsigned int j;
154
155         if (cpu_data(cpu)->threads_per_core <= 1 &&
156                 cpu_data(cpu)->cores_per_socket <= 1) {
157                 cpu_set(cpu, this_leaf->shared_cpu_map);
158                 return;
159         }
160
161         if (ia64_pal_cache_shared_info(this_leaf->level,
162                                         this_leaf->type,
163                                         0,
164                                         &csi) != PAL_STATUS_SUCCESS)
165                 return;
166
167         num_shared = (int) csi.num_shared;
168         do {
169                 for_each_cpu(j)
170                         if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
171                                 && cpu_data(j)->core_id == csi.log1_cid
172                                 && cpu_data(j)->thread_id == csi.log1_tid)
173                                 cpu_set(j, this_leaf->shared_cpu_map);
174
175                 i++;
176         } while (i < num_shared &&
177                 ia64_pal_cache_shared_info(this_leaf->level,
178                                 this_leaf->type,
179                                 i,
180                                 &csi) == PAL_STATUS_SUCCESS);
181 }
182 #else
183 static void cache_shared_cpu_map_setup(unsigned int cpu,
184                 struct cache_info * this_leaf)
185 {
186         cpu_set(cpu, this_leaf->shared_cpu_map);
187         return;
188 }
189 #endif
190
191 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
192                                         char *buf)
193 {
194         return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
195 }
196
197 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
198                                         char *buf)
199 {
200         return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
201 }
202
203 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
204 {
205         return sprintf(buf,
206                         "%s\n",
207                         cache_mattrib[this_leaf->cci.pcci_cache_attr]);
208 }
209
210 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
211 {
212         return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
213 }
214
215 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
216 {
217         unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
218         number_of_sets /= this_leaf->cci.pcci_assoc;
219         number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
220
221         return sprintf(buf, "%u\n", number_of_sets);
222 }
223
224 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
225 {
226         ssize_t len;
227         cpumask_t shared_cpu_map;
228
229         cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
230         len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
231         len += sprintf(buf+len, "\n");
232         return len;
233 }
234
235 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
236 {
237         int type = this_leaf->type + this_leaf->cci.pcci_unified;
238         return sprintf(buf, "%s\n", cache_types[type]);
239 }
240
241 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
242 {
243         return sprintf(buf, "%u\n", this_leaf->level);
244 }
245
246 struct cache_attr {
247         struct attribute attr;
248         ssize_t (*show)(struct cache_info *, char *);
249         ssize_t (*store)(struct cache_info *, const char *, size_t count);
250 };
251
252 #ifdef define_one_ro
253         #undef define_one_ro
254 #endif
255 #define define_one_ro(_name) \
256         static struct cache_attr _name = \
257 __ATTR(_name, 0444, show_##_name, NULL)
258
259 define_one_ro(level);
260 define_one_ro(type);
261 define_one_ro(coherency_line_size);
262 define_one_ro(ways_of_associativity);
263 define_one_ro(size);
264 define_one_ro(number_of_sets);
265 define_one_ro(shared_cpu_map);
266 define_one_ro(attributes);
267
268 static struct attribute * cache_default_attrs[] = {
269         &type.attr,
270         &level.attr,
271         &coherency_line_size.attr,
272         &ways_of_associativity.attr,
273         &attributes.attr,
274         &size.attr,
275         &number_of_sets.attr,
276         &shared_cpu_map.attr,
277         NULL
278 };
279
280 #define to_object(k) container_of(k, struct cache_info, kobj)
281 #define to_attr(a) container_of(a, struct cache_attr, attr)
282
283 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
284 {
285         struct cache_attr *fattr = to_attr(attr);
286         struct cache_info *this_leaf = to_object(kobj);
287         ssize_t ret;
288
289         ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
290         return ret;
291 }
292
293 static struct sysfs_ops cache_sysfs_ops = {
294         .show   = cache_show
295 };
296
297 static struct kobj_type cache_ktype = {
298         .sysfs_ops      = &cache_sysfs_ops,
299         .default_attrs  = cache_default_attrs,
300 };
301
302 static struct kobj_type cache_ktype_percpu_entry = {
303         .sysfs_ops      = &cache_sysfs_ops,
304 };
305
306 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
307 {
308         if (all_cpu_cache_info[cpu].cache_leaves) {
309                 kfree(all_cpu_cache_info[cpu].cache_leaves);
310                 all_cpu_cache_info[cpu].cache_leaves = NULL;
311         }
312         all_cpu_cache_info[cpu].num_cache_leaves = 0;
313         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
314
315         return;
316 }
317
318 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
319 {
320         u64 i, levels, unique_caches;
321         pal_cache_config_info_t cci;
322         int j;
323         s64 status;
324         struct cache_info *this_cache;
325         int num_cache_leaves = 0;
326
327         if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
328                 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
329                 return -1;
330         }
331
332         this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
333                         GFP_KERNEL);
334         if (this_cache == NULL)
335                 return -ENOMEM;
336
337         for (i=0; i < levels; i++) {
338                 for (j=2; j >0 ; j--) {
339                         if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
340                                         PAL_STATUS_SUCCESS)
341                                 continue;
342
343                         this_cache[num_cache_leaves].cci = cci;
344                         this_cache[num_cache_leaves].level = i + 1;
345                         this_cache[num_cache_leaves].type = j;
346
347                         cache_shared_cpu_map_setup(cpu,
348                                         &this_cache[num_cache_leaves]);
349                         num_cache_leaves ++;
350                 }
351         }
352
353         all_cpu_cache_info[cpu].cache_leaves = this_cache;
354         all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
355
356         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
357
358         return 0;
359 }
360
361 /* Add cache interface for CPU device */
362 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
363 {
364         unsigned int cpu = sys_dev->id;
365         unsigned long i, j;
366         struct cache_info *this_object;
367         int retval = 0;
368         cpumask_t oldmask;
369
370         if (all_cpu_cache_info[cpu].kobj.parent)
371                 return 0;
372
373         oldmask = current->cpus_allowed;
374         retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
375         if (unlikely(retval))
376                 return retval;
377
378         retval = cpu_cache_sysfs_init(cpu);
379         set_cpus_allowed(current, oldmask);
380         if (unlikely(retval < 0))
381                 return retval;
382
383         all_cpu_cache_info[cpu].kobj.parent = &sys_dev->kobj;
384         kobject_set_name(&all_cpu_cache_info[cpu].kobj, "%s", "cache");
385         all_cpu_cache_info[cpu].kobj.ktype = &cache_ktype_percpu_entry;
386         retval = kobject_register(&all_cpu_cache_info[cpu].kobj);
387
388         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
389                 this_object = LEAF_KOBJECT_PTR(cpu,i);
390                 this_object->kobj.parent = &all_cpu_cache_info[cpu].kobj;
391                 kobject_set_name(&(this_object->kobj), "index%1lu", i);
392                 this_object->kobj.ktype = &cache_ktype;
393                 retval = kobject_register(&(this_object->kobj));
394                 if (unlikely(retval)) {
395                         for (j = 0; j < i; j++) {
396                                 kobject_unregister(
397                                         &(LEAF_KOBJECT_PTR(cpu,j)->kobj));
398                         }
399                         kobject_unregister(&all_cpu_cache_info[cpu].kobj);
400                         cpu_cache_sysfs_exit(cpu);
401                         break;
402                 }
403         }
404         return retval;
405 }
406
407 /* Remove cache interface for CPU device */
408 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
409 {
410         unsigned int cpu = sys_dev->id;
411         unsigned long i;
412
413         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
414                 kobject_unregister(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
415
416         if (all_cpu_cache_info[cpu].kobj.parent) {
417                 kobject_unregister(&all_cpu_cache_info[cpu].kobj);
418                 memset(&all_cpu_cache_info[cpu].kobj,
419                         0,
420                         sizeof(struct kobject));
421         }
422
423         cpu_cache_sysfs_exit(cpu);
424
425         return 0;
426 }
427
428 /*
429  * When a cpu is hot-plugged, do a check and initiate
430  * cache kobject if necessary
431  */
432 static int cache_cpu_callback(struct notifier_block *nfb,
433                 unsigned long action, void *hcpu)
434 {
435         unsigned int cpu = (unsigned long)hcpu;
436         struct sys_device *sys_dev;
437
438         sys_dev = get_cpu_sysdev(cpu);
439         switch (action) {
440         case CPU_ONLINE:
441                 cache_add_dev(sys_dev);
442                 break;
443         case CPU_DEAD:
444                 cache_remove_dev(sys_dev);
445                 break;
446         }
447         return NOTIFY_OK;
448 }
449
450 static struct notifier_block cache_cpu_notifier =
451 {
452         .notifier_call = cache_cpu_callback
453 };
454
455 static int __cpuinit cache_sysfs_init(void)
456 {
457         int i;
458
459         for_each_online_cpu(i) {
460                 cache_cpu_callback(&cache_cpu_notifier, CPU_ONLINE,
461                                 (void *)(long)i);
462         }
463
464         register_cpu_notifier(&cache_cpu_notifier);
465
466         return 0;
467 }
468
469 device_initcall(cache_sysfs_init);
470