2 * message.c - synchronous message handling
5 #include <linux/pci.h> /* for scatterlist macros */
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <asm/byteorder.h>
19 #include "hcd.h" /* for usbcore internals */
22 static void cancel_async_set_config(struct usb_device *udev);
25 struct completion done;
29 static void usb_api_blocking_completion(struct urb *urb)
31 struct api_context *ctx = urb->context;
33 ctx->status = urb->status;
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
46 struct api_context ctx;
50 init_completion(&ctx.done);
52 urb->actual_length = 0;
53 retval = usb_submit_urb(urb, GFP_NOIO);
57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 if (!wait_for_completion_timeout(&ctx.done, expire)) {
60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
62 dev_dbg(&urb->dev->dev,
63 "%s timed out on ep%d%s len=%u/%u\n",
65 usb_endpoint_num(&urb->ep->desc),
66 usb_urb_dir_in(urb) ? "in" : "out",
68 urb->transfer_buffer_length);
73 *actual_length = urb->actual_length;
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
83 struct usb_ctrlrequest *cmd,
84 void *data, int len, int timeout)
90 urb = usb_alloc_urb(0, GFP_NOIO);
94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 len, usb_api_blocking_completion, NULL);
97 retv = usb_start_wait_urb(urb, timeout, &length);
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 * out (if 0 the wait is forever)
117 * Context: !in_interrupt ()
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
122 * If successful, it returns the number of bytes transferred, otherwise a
123 * negative error number.
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler. If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete. Since you don't have a handle on the
130 * URB used, you can't cancel the request.
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 __u8 requesttype, __u16 value, __u16 index, void *data,
134 __u16 size, int timeout)
136 struct usb_ctrlrequest *dr;
139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
143 dr->bRequestType = requesttype;
144 dr->bRequest = request;
145 dr->wValue = cpu_to_le16(value);
146 dr->wIndex = cpu_to_le16(index);
147 dr->wLength = cpu_to_le16(size);
149 /* dbg("usb_control_msg"); */
151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
157 EXPORT_SYMBOL_GPL(usb_control_msg);
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
167 * @timeout: time in msecs to wait for the message to complete before
168 * timing out (if 0 the wait is forever)
170 * Context: !in_interrupt ()
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
175 * If successful, it returns 0, otherwise a negative error number. The number
176 * of actual bytes transferred will be stored in the actual_length paramater.
178 * Don't use this function from within an interrupt context, like a bottom half
179 * handler. If you need an asynchronous message, or need to send a message
180 * from within interrupt context, use usb_submit_urb() If a thread in your
181 * driver uses this call, make sure your disconnect() method can wait for it to
182 * complete. Since you don't have a handle on the URB used, you can't cancel
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 void *data, int len, int *actual_length, int timeout)
188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
200 * @timeout: time in msecs to wait for the message to complete before
201 * timing out (if 0 the wait is forever)
203 * Context: !in_interrupt ()
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
208 * If successful, it returns 0, otherwise a negative error number. The number
209 * of actual bytes transferred will be stored in the actual_length paramater.
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler. If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete. Since you don't have a handle on the URB used, you can't cancel
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints. We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 void *data, int len, int *actual_length, int timeout)
227 struct usb_host_endpoint *ep;
229 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
230 [usb_pipeendpoint(pipe)];
234 urb = usb_alloc_urb(0, GFP_KERNEL);
238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 USB_ENDPOINT_XFER_INT) {
240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 usb_api_blocking_completion, NULL,
245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 usb_api_blocking_completion, NULL);
248 return usb_start_wait_urb(urb, timeout, actual_length);
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
252 /*-------------------------------------------------------------------*/
254 static void sg_clean(struct usb_sg_request *io)
257 while (io->entries--)
258 usb_free_urb(io->urbs [io->entries]);
262 if (io->dev->dev.dma_mask != NULL)
263 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
268 static void sg_complete(struct urb *urb)
270 struct usb_sg_request *io = urb->context;
271 int status = urb->status;
273 spin_lock(&io->lock);
275 /* In 2.5 we require hcds' endpoint queues not to progress after fault
276 * reports, until the completion callback (this!) returns. That lets
277 * device driver code (like this routine) unlink queued urbs first,
278 * if it needs to, since the HC won't work on them at all. So it's
279 * not possible for page N+1 to overwrite page N, and so on.
281 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 * complete before the HCD can get requests away from hardware,
283 * though never during cleanup after a hard fault.
286 && (io->status != -ECONNRESET
287 || status != -ECONNRESET)
288 && urb->actual_length) {
289 dev_err(io->dev->bus->controller,
290 "dev %s ep%d%s scatterlist error %d/%d\n",
292 usb_endpoint_num(&urb->ep->desc),
293 usb_urb_dir_in(urb) ? "in" : "out",
298 if (io->status == 0 && status && status != -ECONNRESET) {
299 int i, found, retval;
303 /* the previous urbs, and this one, completed already.
304 * unlink pending urbs so they won't rx/tx bad data.
305 * careful: unlink can sometimes be synchronous...
307 spin_unlock(&io->lock);
308 for (i = 0, found = 0; i < io->entries; i++) {
309 if (!io->urbs [i] || !io->urbs [i]->dev)
312 retval = usb_unlink_urb(io->urbs [i]);
313 if (retval != -EINPROGRESS &&
316 dev_err(&io->dev->dev,
317 "%s, unlink --> %d\n",
319 } else if (urb == io->urbs [i])
322 spin_lock(&io->lock);
326 /* on the last completion, signal usb_sg_wait() */
327 io->bytes += urb->actual_length;
330 complete(&io->complete);
332 spin_unlock(&io->lock);
337 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
338 * @io: request block being initialized. until usb_sg_wait() returns,
339 * treat this as a pointer to an opaque block of memory,
340 * @dev: the usb device that will send or receive the data
341 * @pipe: endpoint "pipe" used to transfer the data
342 * @period: polling rate for interrupt endpoints, in frames or
343 * (for high speed endpoints) microframes; ignored for bulk
344 * @sg: scatterlist entries
345 * @nents: how many entries in the scatterlist
346 * @length: how many bytes to send from the scatterlist, or zero to
347 * send every byte identified in the list.
348 * @mem_flags: SLAB_* flags affecting memory allocations in this call
350 * Returns zero for success, else a negative errno value. This initializes a
351 * scatter/gather request, allocating resources such as I/O mappings and urb
352 * memory (except maybe memory used by USB controller drivers).
354 * The request must be issued using usb_sg_wait(), which waits for the I/O to
355 * complete (or to be canceled) and then cleans up all resources allocated by
358 * The request may be canceled with usb_sg_cancel(), either before or after
359 * usb_sg_wait() is called.
361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
362 unsigned pipe, unsigned period, struct scatterlist *sg,
363 int nents, size_t length, gfp_t mem_flags)
369 if (!io || !dev || !sg
370 || usb_pipecontrol(pipe)
371 || usb_pipeisoc(pipe)
375 spin_lock_init(&io->lock);
381 /* not all host controllers use DMA (like the mainstream pci ones);
382 * they can use PIO (sl811) or be software over another transport.
384 dma = (dev->dev.dma_mask != NULL);
386 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
391 /* initialize all the urbs we'll use */
392 if (io->entries <= 0)
395 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
399 urb_flags = URB_NO_INTERRUPT;
401 urb_flags |= URB_NO_TRANSFER_DMA_MAP;
402 if (usb_pipein(pipe))
403 urb_flags |= URB_SHORT_NOT_OK;
405 for_each_sg(sg, sg, io->entries, i) {
408 io->urbs[i] = usb_alloc_urb(0, mem_flags);
414 io->urbs[i]->dev = NULL;
415 io->urbs[i]->pipe = pipe;
416 io->urbs[i]->interval = period;
417 io->urbs[i]->transfer_flags = urb_flags;
419 io->urbs[i]->complete = sg_complete;
420 io->urbs[i]->context = io;
423 * Some systems need to revert to PIO when DMA is temporarily
424 * unavailable. For their sakes, both transfer_buffer and
425 * transfer_dma are set when possible. However this can only
426 * work on systems without:
428 * - HIGHMEM, since DMA buffers located in high memory are
429 * not directly addressable by the CPU for PIO;
431 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to
432 * make virtually discontiguous buffers be "dma-contiguous"
433 * so that PIO and DMA need diferent numbers of URBs.
435 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL
436 * to prevent stale pointers and to help spot bugs.
439 io->urbs[i]->transfer_dma = sg_dma_address(sg);
440 len = sg_dma_len(sg);
441 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU)
442 io->urbs[i]->transfer_buffer = NULL;
444 io->urbs[i]->transfer_buffer = sg_virt(sg);
447 /* hc may use _only_ transfer_buffer */
448 io->urbs[i]->transfer_buffer = sg_virt(sg);
453 len = min_t(unsigned, len, length);
458 io->urbs[i]->transfer_buffer_length = len;
460 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
462 /* transaction state */
463 io->count = io->entries;
466 init_completion(&io->complete);
473 EXPORT_SYMBOL_GPL(usb_sg_init);
476 * usb_sg_wait - synchronously execute scatter/gather request
477 * @io: request block handle, as initialized with usb_sg_init().
478 * some fields become accessible when this call returns.
479 * Context: !in_interrupt ()
481 * This function blocks until the specified I/O operation completes. It
482 * leverages the grouping of the related I/O requests to get good transfer
483 * rates, by queueing the requests. At higher speeds, such queuing can
484 * significantly improve USB throughput.
486 * There are three kinds of completion for this function.
487 * (1) success, where io->status is zero. The number of io->bytes
488 * transferred is as requested.
489 * (2) error, where io->status is a negative errno value. The number
490 * of io->bytes transferred before the error is usually less
491 * than requested, and can be nonzero.
492 * (3) cancellation, a type of error with status -ECONNRESET that
493 * is initiated by usb_sg_cancel().
495 * When this function returns, all memory allocated through usb_sg_init() or
496 * this call will have been freed. The request block parameter may still be
497 * passed to usb_sg_cancel(), or it may be freed. It could also be
498 * reinitialized and then reused.
500 * Data Transfer Rates:
502 * Bulk transfers are valid for full or high speed endpoints.
503 * The best full speed data rate is 19 packets of 64 bytes each
504 * per frame, or 1216 bytes per millisecond.
505 * The best high speed data rate is 13 packets of 512 bytes each
506 * per microframe, or 52 KBytes per millisecond.
508 * The reason to use interrupt transfers through this API would most likely
509 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
510 * could be transferred. That capability is less useful for low or full
511 * speed interrupt endpoints, which allow at most one packet per millisecond,
512 * of at most 8 or 64 bytes (respectively).
514 void usb_sg_wait(struct usb_sg_request *io)
517 int entries = io->entries;
519 /* queue the urbs. */
520 spin_lock_irq(&io->lock);
522 while (i < entries && !io->status) {
525 io->urbs[i]->dev = io->dev;
526 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
528 /* after we submit, let completions or cancelations fire;
529 * we handshake using io->status.
531 spin_unlock_irq(&io->lock);
533 /* maybe we retrying will recover */
534 case -ENXIO: /* hc didn't queue this one */
537 io->urbs[i]->dev = NULL;
542 /* no error? continue immediately.
544 * NOTE: to work better with UHCI (4K I/O buffer may
545 * need 3K of TDs) it may be good to limit how many
546 * URBs are queued at once; N milliseconds?
553 /* fail any uncompleted urbs */
555 io->urbs[i]->dev = NULL;
556 io->urbs[i]->status = retval;
557 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
561 spin_lock_irq(&io->lock);
562 if (retval && (io->status == 0 || io->status == -ECONNRESET))
565 io->count -= entries - i;
567 complete(&io->complete);
568 spin_unlock_irq(&io->lock);
570 /* OK, yes, this could be packaged as non-blocking.
571 * So could the submit loop above ... but it's easier to
572 * solve neither problem than to solve both!
574 wait_for_completion(&io->complete);
578 EXPORT_SYMBOL_GPL(usb_sg_wait);
581 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
582 * @io: request block, initialized with usb_sg_init()
584 * This stops a request after it has been started by usb_sg_wait().
585 * It can also prevents one initialized by usb_sg_init() from starting,
586 * so that call just frees resources allocated to the request.
588 void usb_sg_cancel(struct usb_sg_request *io)
592 spin_lock_irqsave(&io->lock, flags);
594 /* shut everything down, if it didn't already */
598 io->status = -ECONNRESET;
599 spin_unlock(&io->lock);
600 for (i = 0; i < io->entries; i++) {
603 if (!io->urbs [i]->dev)
605 retval = usb_unlink_urb(io->urbs [i]);
606 if (retval != -EINPROGRESS && retval != -EBUSY)
607 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
610 spin_lock(&io->lock);
612 spin_unlock_irqrestore(&io->lock, flags);
614 EXPORT_SYMBOL_GPL(usb_sg_cancel);
616 /*-------------------------------------------------------------------*/
619 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
620 * @dev: the device whose descriptor is being retrieved
621 * @type: the descriptor type (USB_DT_*)
622 * @index: the number of the descriptor
623 * @buf: where to put the descriptor
624 * @size: how big is "buf"?
625 * Context: !in_interrupt ()
627 * Gets a USB descriptor. Convenience functions exist to simplify
628 * getting some types of descriptors. Use
629 * usb_get_string() or usb_string() for USB_DT_STRING.
630 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
631 * are part of the device structure.
632 * In addition to a number of USB-standard descriptors, some
633 * devices also use class-specific or vendor-specific descriptors.
635 * This call is synchronous, and may not be used in an interrupt context.
637 * Returns the number of bytes received on success, or else the status code
638 * returned by the underlying usb_control_msg() call.
640 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
641 unsigned char index, void *buf, int size)
646 memset(buf, 0, size); /* Make sure we parse really received data */
648 for (i = 0; i < 3; ++i) {
649 /* retry on length 0 or error; some devices are flakey */
650 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
651 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
652 (type << 8) + index, 0, buf, size,
653 USB_CTRL_GET_TIMEOUT);
654 if (result <= 0 && result != -ETIMEDOUT)
656 if (result > 1 && ((u8 *)buf)[1] != type) {
664 EXPORT_SYMBOL_GPL(usb_get_descriptor);
667 * usb_get_string - gets a string descriptor
668 * @dev: the device whose string descriptor is being retrieved
669 * @langid: code for language chosen (from string descriptor zero)
670 * @index: the number of the descriptor
671 * @buf: where to put the string
672 * @size: how big is "buf"?
673 * Context: !in_interrupt ()
675 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
676 * in little-endian byte order).
677 * The usb_string() function will often be a convenient way to turn
678 * these strings into kernel-printable form.
680 * Strings may be referenced in device, configuration, interface, or other
681 * descriptors, and could also be used in vendor-specific ways.
683 * This call is synchronous, and may not be used in an interrupt context.
685 * Returns the number of bytes received on success, or else the status code
686 * returned by the underlying usb_control_msg() call.
688 static int usb_get_string(struct usb_device *dev, unsigned short langid,
689 unsigned char index, void *buf, int size)
694 for (i = 0; i < 3; ++i) {
695 /* retry on length 0 or stall; some devices are flakey */
696 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
697 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
698 (USB_DT_STRING << 8) + index, langid, buf, size,
699 USB_CTRL_GET_TIMEOUT);
700 if (result == 0 || result == -EPIPE)
702 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
711 static void usb_try_string_workarounds(unsigned char *buf, int *length)
713 int newlength, oldlength = *length;
715 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
716 if (!isprint(buf[newlength]) || buf[newlength + 1])
725 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
726 unsigned int index, unsigned char *buf)
730 /* Try to read the string descriptor by asking for the maximum
731 * possible number of bytes */
732 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
735 rc = usb_get_string(dev, langid, index, buf, 255);
737 /* If that failed try to read the descriptor length, then
738 * ask for just that many bytes */
740 rc = usb_get_string(dev, langid, index, buf, 2);
742 rc = usb_get_string(dev, langid, index, buf, buf[0]);
746 if (!buf[0] && !buf[1])
747 usb_try_string_workarounds(buf, &rc);
749 /* There might be extra junk at the end of the descriptor */
753 rc = rc - (rc & 1); /* force a multiple of two */
757 rc = (rc < 0 ? rc : -EINVAL);
763 * usb_string - returns UTF-8 version of a string descriptor
764 * @dev: the device whose string descriptor is being retrieved
765 * @index: the number of the descriptor
766 * @buf: where to put the string
767 * @size: how big is "buf"?
768 * Context: !in_interrupt ()
770 * This converts the UTF-16LE encoded strings returned by devices, from
771 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
772 * that are more usable in most kernel contexts. Note that this function
773 * chooses strings in the first language supported by the device.
775 * This call is synchronous, and may not be used in an interrupt context.
777 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
779 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
785 if (dev->state == USB_STATE_SUSPENDED)
786 return -EHOSTUNREACH;
787 if (size <= 0 || !buf || !index)
790 tbuf = kmalloc(256 + 2, GFP_NOIO);
794 /* get langid for strings if it's not yet known */
795 if (!dev->have_langid) {
796 err = usb_string_sub(dev, 0, 0, tbuf);
799 "string descriptor 0 read error: %d\n",
801 } else if (err < 4) {
802 dev_err(&dev->dev, "string descriptor 0 too short\n");
804 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
805 /* always use the first langid listed */
806 dev_dbg(&dev->dev, "default language 0x%04x\n",
810 dev->have_langid = 1;
813 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
817 for (u = 2; u < err; u += 2)
818 le16_to_cpus((u16 *)&tbuf[u]);
821 size--; /* leave room for trailing NULL char in output buffer */
822 err = utf8_wcstombs(buf, (u16 *)&tbuf[2], size);
825 if (tbuf[1] != USB_DT_STRING)
827 "wrong descriptor type %02x for string %d (\"%s\")\n",
828 tbuf[1], index, buf);
834 EXPORT_SYMBOL_GPL(usb_string);
836 /* one UTF-8-encoded 16-bit character has at most three bytes */
837 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
840 * usb_cache_string - read a string descriptor and cache it for later use
841 * @udev: the device whose string descriptor is being read
842 * @index: the descriptor index
844 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
845 * or NULL if the index is 0 or the string could not be read.
847 char *usb_cache_string(struct usb_device *udev, int index)
850 char *smallbuf = NULL;
856 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_KERNEL);
858 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
860 smallbuf = kmalloc(++len, GFP_KERNEL);
863 memcpy(smallbuf, buf, len);
871 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
872 * @dev: the device whose device descriptor is being updated
873 * @size: how much of the descriptor to read
874 * Context: !in_interrupt ()
876 * Updates the copy of the device descriptor stored in the device structure,
877 * which dedicates space for this purpose.
879 * Not exported, only for use by the core. If drivers really want to read
880 * the device descriptor directly, they can call usb_get_descriptor() with
881 * type = USB_DT_DEVICE and index = 0.
883 * This call is synchronous, and may not be used in an interrupt context.
885 * Returns the number of bytes received on success, or else the status code
886 * returned by the underlying usb_control_msg() call.
888 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
890 struct usb_device_descriptor *desc;
893 if (size > sizeof(*desc))
895 desc = kmalloc(sizeof(*desc), GFP_NOIO);
899 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
901 memcpy(&dev->descriptor, desc, size);
907 * usb_get_status - issues a GET_STATUS call
908 * @dev: the device whose status is being checked
909 * @type: USB_RECIP_*; for device, interface, or endpoint
910 * @target: zero (for device), else interface or endpoint number
911 * @data: pointer to two bytes of bitmap data
912 * Context: !in_interrupt ()
914 * Returns device, interface, or endpoint status. Normally only of
915 * interest to see if the device is self powered, or has enabled the
916 * remote wakeup facility; or whether a bulk or interrupt endpoint
917 * is halted ("stalled").
919 * Bits in these status bitmaps are set using the SET_FEATURE request,
920 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
921 * function should be used to clear halt ("stall") status.
923 * This call is synchronous, and may not be used in an interrupt context.
925 * Returns the number of bytes received on success, or else the status code
926 * returned by the underlying usb_control_msg() call.
928 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
931 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
936 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
937 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
938 sizeof(*status), USB_CTRL_GET_TIMEOUT);
940 *(u16 *)data = *status;
944 EXPORT_SYMBOL_GPL(usb_get_status);
947 * usb_clear_halt - tells device to clear endpoint halt/stall condition
948 * @dev: device whose endpoint is halted
949 * @pipe: endpoint "pipe" being cleared
950 * Context: !in_interrupt ()
952 * This is used to clear halt conditions for bulk and interrupt endpoints,
953 * as reported by URB completion status. Endpoints that are halted are
954 * sometimes referred to as being "stalled". Such endpoints are unable
955 * to transmit or receive data until the halt status is cleared. Any URBs
956 * queued for such an endpoint should normally be unlinked by the driver
957 * before clearing the halt condition, as described in sections 5.7.5
958 * and 5.8.5 of the USB 2.0 spec.
960 * Note that control and isochronous endpoints don't halt, although control
961 * endpoints report "protocol stall" (for unsupported requests) using the
962 * same status code used to report a true stall.
964 * This call is synchronous, and may not be used in an interrupt context.
966 * Returns zero on success, or else the status code returned by the
967 * underlying usb_control_msg() call.
969 int usb_clear_halt(struct usb_device *dev, int pipe)
972 int endp = usb_pipeendpoint(pipe);
974 if (usb_pipein(pipe))
977 /* we don't care if it wasn't halted first. in fact some devices
978 * (like some ibmcam model 1 units) seem to expect hosts to make
979 * this request for iso endpoints, which can't halt!
981 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
982 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
983 USB_ENDPOINT_HALT, endp, NULL, 0,
984 USB_CTRL_SET_TIMEOUT);
986 /* don't un-halt or force to DATA0 except on success */
990 /* NOTE: seems like Microsoft and Apple don't bother verifying
991 * the clear "took", so some devices could lock up if you check...
992 * such as the Hagiwara FlashGate DUAL. So we won't bother.
994 * NOTE: make sure the logic here doesn't diverge much from
995 * the copy in usb-storage, for as long as we need two copies.
998 usb_reset_endpoint(dev, endp);
1002 EXPORT_SYMBOL_GPL(usb_clear_halt);
1004 static int create_intf_ep_devs(struct usb_interface *intf)
1006 struct usb_device *udev = interface_to_usbdev(intf);
1007 struct usb_host_interface *alt = intf->cur_altsetting;
1010 if (intf->ep_devs_created || intf->unregistering)
1013 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1014 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1015 intf->ep_devs_created = 1;
1019 static void remove_intf_ep_devs(struct usb_interface *intf)
1021 struct usb_host_interface *alt = intf->cur_altsetting;
1024 if (!intf->ep_devs_created)
1027 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1028 usb_remove_ep_devs(&alt->endpoint[i]);
1029 intf->ep_devs_created = 0;
1033 * usb_disable_endpoint -- Disable an endpoint by address
1034 * @dev: the device whose endpoint is being disabled
1035 * @epaddr: the endpoint's address. Endpoint number for output,
1036 * endpoint number + USB_DIR_IN for input
1037 * @reset_hardware: flag to erase any endpoint state stored in the
1038 * controller hardware
1040 * Disables the endpoint for URB submission and nukes all pending URBs.
1041 * If @reset_hardware is set then also deallocates hcd/hardware state
1044 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1045 bool reset_hardware)
1047 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1048 struct usb_host_endpoint *ep;
1053 if (usb_endpoint_out(epaddr)) {
1054 ep = dev->ep_out[epnum];
1056 dev->ep_out[epnum] = NULL;
1058 ep = dev->ep_in[epnum];
1060 dev->ep_in[epnum] = NULL;
1064 usb_hcd_flush_endpoint(dev, ep);
1066 usb_hcd_disable_endpoint(dev, ep);
1071 * usb_reset_endpoint - Reset an endpoint's state.
1072 * @dev: the device whose endpoint is to be reset
1073 * @epaddr: the endpoint's address. Endpoint number for output,
1074 * endpoint number + USB_DIR_IN for input
1076 * Resets any host-side endpoint state such as the toggle bit,
1077 * sequence number or current window.
1079 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1081 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1082 struct usb_host_endpoint *ep;
1084 if (usb_endpoint_out(epaddr))
1085 ep = dev->ep_out[epnum];
1087 ep = dev->ep_in[epnum];
1089 usb_hcd_reset_endpoint(dev, ep);
1091 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1095 * usb_disable_interface -- Disable all endpoints for an interface
1096 * @dev: the device whose interface is being disabled
1097 * @intf: pointer to the interface descriptor
1098 * @reset_hardware: flag to erase any endpoint state stored in the
1099 * controller hardware
1101 * Disables all the endpoints for the interface's current altsetting.
1103 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1104 bool reset_hardware)
1106 struct usb_host_interface *alt = intf->cur_altsetting;
1109 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1110 usb_disable_endpoint(dev,
1111 alt->endpoint[i].desc.bEndpointAddress,
1117 * usb_disable_device - Disable all the endpoints for a USB device
1118 * @dev: the device whose endpoints are being disabled
1119 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1121 * Disables all the device's endpoints, potentially including endpoint 0.
1122 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1123 * pending urbs) and usbcore state for the interfaces, so that usbcore
1124 * must usb_set_configuration() before any interfaces could be used.
1126 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1130 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1131 skip_ep0 ? "non-ep0" : "all");
1132 for (i = skip_ep0; i < 16; ++i) {
1133 usb_disable_endpoint(dev, i, true);
1134 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1137 /* getting rid of interfaces will disconnect
1138 * any drivers bound to them (a key side effect)
1140 if (dev->actconfig) {
1141 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1142 struct usb_interface *interface;
1144 /* remove this interface if it has been registered */
1145 interface = dev->actconfig->interface[i];
1146 if (!device_is_registered(&interface->dev))
1148 dev_dbg(&dev->dev, "unregistering interface %s\n",
1149 dev_name(&interface->dev));
1150 interface->unregistering = 1;
1151 remove_intf_ep_devs(interface);
1152 device_del(&interface->dev);
1155 /* Now that the interfaces are unbound, nobody should
1156 * try to access them.
1158 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1159 put_device(&dev->actconfig->interface[i]->dev);
1160 dev->actconfig->interface[i] = NULL;
1162 dev->actconfig = NULL;
1163 if (dev->state == USB_STATE_CONFIGURED)
1164 usb_set_device_state(dev, USB_STATE_ADDRESS);
1169 * usb_enable_endpoint - Enable an endpoint for USB communications
1170 * @dev: the device whose interface is being enabled
1172 * @reset_ep: flag to reset the endpoint state
1174 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1175 * For control endpoints, both the input and output sides are handled.
1177 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1180 int epnum = usb_endpoint_num(&ep->desc);
1181 int is_out = usb_endpoint_dir_out(&ep->desc);
1182 int is_control = usb_endpoint_xfer_control(&ep->desc);
1185 usb_hcd_reset_endpoint(dev, ep);
1186 if (is_out || is_control)
1187 dev->ep_out[epnum] = ep;
1188 if (!is_out || is_control)
1189 dev->ep_in[epnum] = ep;
1194 * usb_enable_interface - Enable all the endpoints for an interface
1195 * @dev: the device whose interface is being enabled
1196 * @intf: pointer to the interface descriptor
1197 * @reset_eps: flag to reset the endpoints' state
1199 * Enables all the endpoints for the interface's current altsetting.
1201 void usb_enable_interface(struct usb_device *dev,
1202 struct usb_interface *intf, bool reset_eps)
1204 struct usb_host_interface *alt = intf->cur_altsetting;
1207 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1208 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1212 * usb_set_interface - Makes a particular alternate setting be current
1213 * @dev: the device whose interface is being updated
1214 * @interface: the interface being updated
1215 * @alternate: the setting being chosen.
1216 * Context: !in_interrupt ()
1218 * This is used to enable data transfers on interfaces that may not
1219 * be enabled by default. Not all devices support such configurability.
1220 * Only the driver bound to an interface may change its setting.
1222 * Within any given configuration, each interface may have several
1223 * alternative settings. These are often used to control levels of
1224 * bandwidth consumption. For example, the default setting for a high
1225 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1226 * while interrupt transfers of up to 3KBytes per microframe are legal.
1227 * Also, isochronous endpoints may never be part of an
1228 * interface's default setting. To access such bandwidth, alternate
1229 * interface settings must be made current.
1231 * Note that in the Linux USB subsystem, bandwidth associated with
1232 * an endpoint in a given alternate setting is not reserved until an URB
1233 * is submitted that needs that bandwidth. Some other operating systems
1234 * allocate bandwidth early, when a configuration is chosen.
1236 * This call is synchronous, and may not be used in an interrupt context.
1237 * Also, drivers must not change altsettings while urbs are scheduled for
1238 * endpoints in that interface; all such urbs must first be completed
1239 * (perhaps forced by unlinking).
1241 * Returns zero on success, or else the status code returned by the
1242 * underlying usb_control_msg() call.
1244 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1246 struct usb_interface *iface;
1247 struct usb_host_interface *alt;
1250 unsigned int epaddr;
1253 if (dev->state == USB_STATE_SUSPENDED)
1254 return -EHOSTUNREACH;
1256 iface = usb_ifnum_to_if(dev, interface);
1258 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1263 alt = usb_altnum_to_altsetting(iface, alternate);
1265 dev_warn(&dev->dev, "selecting invalid altsetting %d",
1270 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1273 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1274 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1275 alternate, interface, NULL, 0, 5000);
1277 /* 9.4.10 says devices don't need this and are free to STALL the
1278 * request if the interface only has one alternate setting.
1280 if (ret == -EPIPE && iface->num_altsetting == 1) {
1282 "manual set_interface for iface %d, alt %d\n",
1283 interface, alternate);
1288 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1289 * when they implement async or easily-killable versions of this or
1290 * other "should-be-internal" functions (like clear_halt).
1291 * should hcd+usbcore postprocess control requests?
1294 /* prevent submissions using previous endpoint settings */
1295 if (iface->cur_altsetting != alt) {
1296 remove_intf_ep_devs(iface);
1297 usb_remove_sysfs_intf_files(iface);
1299 usb_disable_interface(dev, iface, true);
1301 iface->cur_altsetting = alt;
1303 /* If the interface only has one altsetting and the device didn't
1304 * accept the request, we attempt to carry out the equivalent action
1305 * by manually clearing the HALT feature for each endpoint in the
1311 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1312 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1313 pipe = __create_pipe(dev,
1314 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1315 (usb_endpoint_out(epaddr) ?
1316 USB_DIR_OUT : USB_DIR_IN);
1318 usb_clear_halt(dev, pipe);
1322 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1325 * Despite EP0 is always present in all interfaces/AS, the list of
1326 * endpoints from the descriptor does not contain EP0. Due to its
1327 * omnipresence one might expect EP0 being considered "affected" by
1328 * any SetInterface request and hence assume toggles need to be reset.
1329 * However, EP0 toggles are re-synced for every individual transfer
1330 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1331 * (Likewise, EP0 never "halts" on well designed devices.)
1333 usb_enable_interface(dev, iface, true);
1334 if (device_is_registered(&iface->dev)) {
1335 usb_create_sysfs_intf_files(iface);
1336 create_intf_ep_devs(iface);
1340 EXPORT_SYMBOL_GPL(usb_set_interface);
1343 * usb_reset_configuration - lightweight device reset
1344 * @dev: the device whose configuration is being reset
1346 * This issues a standard SET_CONFIGURATION request to the device using
1347 * the current configuration. The effect is to reset most USB-related
1348 * state in the device, including interface altsettings (reset to zero),
1349 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1350 * endpoints). Other usbcore state is unchanged, including bindings of
1351 * usb device drivers to interfaces.
1353 * Because this affects multiple interfaces, avoid using this with composite
1354 * (multi-interface) devices. Instead, the driver for each interface may
1355 * use usb_set_interface() on the interfaces it claims. Be careful though;
1356 * some devices don't support the SET_INTERFACE request, and others won't
1357 * reset all the interface state (notably endpoint state). Resetting the whole
1358 * configuration would affect other drivers' interfaces.
1360 * The caller must own the device lock.
1362 * Returns zero on success, else a negative error code.
1364 int usb_reset_configuration(struct usb_device *dev)
1367 struct usb_host_config *config;
1369 if (dev->state == USB_STATE_SUSPENDED)
1370 return -EHOSTUNREACH;
1372 /* caller must have locked the device and must own
1373 * the usb bus readlock (so driver bindings are stable);
1374 * calls during probe() are fine
1377 for (i = 1; i < 16; ++i) {
1378 usb_disable_endpoint(dev, i, true);
1379 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1382 config = dev->actconfig;
1383 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1384 USB_REQ_SET_CONFIGURATION, 0,
1385 config->desc.bConfigurationValue, 0,
1386 NULL, 0, USB_CTRL_SET_TIMEOUT);
1390 /* re-init hc/hcd interface/endpoint state */
1391 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1392 struct usb_interface *intf = config->interface[i];
1393 struct usb_host_interface *alt;
1395 alt = usb_altnum_to_altsetting(intf, 0);
1397 /* No altsetting 0? We'll assume the first altsetting.
1398 * We could use a GetInterface call, but if a device is
1399 * so non-compliant that it doesn't have altsetting 0
1400 * then I wouldn't trust its reply anyway.
1403 alt = &intf->altsetting[0];
1405 if (alt != intf->cur_altsetting) {
1406 remove_intf_ep_devs(intf);
1407 usb_remove_sysfs_intf_files(intf);
1409 intf->cur_altsetting = alt;
1410 usb_enable_interface(dev, intf, true);
1411 if (device_is_registered(&intf->dev)) {
1412 usb_create_sysfs_intf_files(intf);
1413 create_intf_ep_devs(intf);
1418 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1420 static void usb_release_interface(struct device *dev)
1422 struct usb_interface *intf = to_usb_interface(dev);
1423 struct usb_interface_cache *intfc =
1424 altsetting_to_usb_interface_cache(intf->altsetting);
1426 kref_put(&intfc->ref, usb_release_interface_cache);
1430 #ifdef CONFIG_HOTPLUG
1431 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1433 struct usb_device *usb_dev;
1434 struct usb_interface *intf;
1435 struct usb_host_interface *alt;
1437 intf = to_usb_interface(dev);
1438 usb_dev = interface_to_usbdev(intf);
1439 alt = intf->cur_altsetting;
1441 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1442 alt->desc.bInterfaceClass,
1443 alt->desc.bInterfaceSubClass,
1444 alt->desc.bInterfaceProtocol))
1447 if (add_uevent_var(env,
1449 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1450 le16_to_cpu(usb_dev->descriptor.idVendor),
1451 le16_to_cpu(usb_dev->descriptor.idProduct),
1452 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1453 usb_dev->descriptor.bDeviceClass,
1454 usb_dev->descriptor.bDeviceSubClass,
1455 usb_dev->descriptor.bDeviceProtocol,
1456 alt->desc.bInterfaceClass,
1457 alt->desc.bInterfaceSubClass,
1458 alt->desc.bInterfaceProtocol))
1466 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1470 #endif /* CONFIG_HOTPLUG */
1472 struct device_type usb_if_device_type = {
1473 .name = "usb_interface",
1474 .release = usb_release_interface,
1475 .uevent = usb_if_uevent,
1478 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1479 struct usb_host_config *config,
1482 struct usb_interface_assoc_descriptor *retval = NULL;
1483 struct usb_interface_assoc_descriptor *intf_assoc;
1488 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1489 intf_assoc = config->intf_assoc[i];
1490 if (intf_assoc->bInterfaceCount == 0)
1493 first_intf = intf_assoc->bFirstInterface;
1494 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1495 if (inum >= first_intf && inum <= last_intf) {
1497 retval = intf_assoc;
1499 dev_err(&dev->dev, "Interface #%d referenced"
1500 " by multiple IADs\n", inum);
1509 * Internal function to queue a device reset
1511 * This is initialized into the workstruct in 'struct
1512 * usb_device->reset_ws' that is launched by
1513 * message.c:usb_set_configuration() when initializing each 'struct
1516 * It is safe to get the USB device without reference counts because
1517 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1518 * this function will be ran only if @iface is alive (and before
1519 * freeing it any scheduled instances of it will have been cancelled).
1521 * We need to set a flag (usb_dev->reset_running) because when we call
1522 * the reset, the interfaces might be unbound. The current interface
1523 * cannot try to remove the queued work as it would cause a deadlock
1524 * (you cannot remove your work from within your executing
1525 * workqueue). This flag lets it know, so that
1526 * usb_cancel_queued_reset() doesn't try to do it.
1528 * See usb_queue_reset_device() for more details
1530 void __usb_queue_reset_device(struct work_struct *ws)
1533 struct usb_interface *iface =
1534 container_of(ws, struct usb_interface, reset_ws);
1535 struct usb_device *udev = interface_to_usbdev(iface);
1537 rc = usb_lock_device_for_reset(udev, iface);
1539 iface->reset_running = 1;
1540 usb_reset_device(udev);
1541 iface->reset_running = 0;
1542 usb_unlock_device(udev);
1548 * usb_set_configuration - Makes a particular device setting be current
1549 * @dev: the device whose configuration is being updated
1550 * @configuration: the configuration being chosen.
1551 * Context: !in_interrupt(), caller owns the device lock
1553 * This is used to enable non-default device modes. Not all devices
1554 * use this kind of configurability; many devices only have one
1557 * @configuration is the value of the configuration to be installed.
1558 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1559 * must be non-zero; a value of zero indicates that the device in
1560 * unconfigured. However some devices erroneously use 0 as one of their
1561 * configuration values. To help manage such devices, this routine will
1562 * accept @configuration = -1 as indicating the device should be put in
1563 * an unconfigured state.
1565 * USB device configurations may affect Linux interoperability,
1566 * power consumption and the functionality available. For example,
1567 * the default configuration is limited to using 100mA of bus power,
1568 * so that when certain device functionality requires more power,
1569 * and the device is bus powered, that functionality should be in some
1570 * non-default device configuration. Other device modes may also be
1571 * reflected as configuration options, such as whether two ISDN
1572 * channels are available independently; and choosing between open
1573 * standard device protocols (like CDC) or proprietary ones.
1575 * Note that a non-authorized device (dev->authorized == 0) will only
1576 * be put in unconfigured mode.
1578 * Note that USB has an additional level of device configurability,
1579 * associated with interfaces. That configurability is accessed using
1580 * usb_set_interface().
1582 * This call is synchronous. The calling context must be able to sleep,
1583 * must own the device lock, and must not hold the driver model's USB
1584 * bus mutex; usb interface driver probe() methods cannot use this routine.
1586 * Returns zero on success, or else the status code returned by the
1587 * underlying call that failed. On successful completion, each interface
1588 * in the original device configuration has been destroyed, and each one
1589 * in the new configuration has been probed by all relevant usb device
1590 * drivers currently known to the kernel.
1592 int usb_set_configuration(struct usb_device *dev, int configuration)
1595 struct usb_host_config *cp = NULL;
1596 struct usb_interface **new_interfaces = NULL;
1599 if (dev->authorized == 0 || configuration == -1)
1602 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1603 if (dev->config[i].desc.bConfigurationValue ==
1605 cp = &dev->config[i];
1610 if ((!cp && configuration != 0))
1613 /* The USB spec says configuration 0 means unconfigured.
1614 * But if a device includes a configuration numbered 0,
1615 * we will accept it as a correctly configured state.
1616 * Use -1 if you really want to unconfigure the device.
1618 if (cp && configuration == 0)
1619 dev_warn(&dev->dev, "config 0 descriptor??\n");
1621 /* Allocate memory for new interfaces before doing anything else,
1622 * so that if we run out then nothing will have changed. */
1625 nintf = cp->desc.bNumInterfaces;
1626 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1628 if (!new_interfaces) {
1629 dev_err(&dev->dev, "Out of memory\n");
1633 for (; n < nintf; ++n) {
1634 new_interfaces[n] = kzalloc(
1635 sizeof(struct usb_interface),
1637 if (!new_interfaces[n]) {
1638 dev_err(&dev->dev, "Out of memory\n");
1642 kfree(new_interfaces[n]);
1643 kfree(new_interfaces);
1648 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1650 dev_warn(&dev->dev, "new config #%d exceeds power "
1655 /* Wake up the device so we can send it the Set-Config request */
1656 ret = usb_autoresume_device(dev);
1658 goto free_interfaces;
1660 /* if it's already configured, clear out old state first.
1661 * getting rid of old interfaces means unbinding their drivers.
1663 if (dev->state != USB_STATE_ADDRESS)
1664 usb_disable_device(dev, 1); /* Skip ep0 */
1666 /* Get rid of pending async Set-Config requests for this device */
1667 cancel_async_set_config(dev);
1669 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1670 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1671 NULL, 0, USB_CTRL_SET_TIMEOUT);
1673 /* All the old state is gone, so what else can we do?
1674 * The device is probably useless now anyway.
1679 dev->actconfig = cp;
1681 usb_set_device_state(dev, USB_STATE_ADDRESS);
1682 usb_autosuspend_device(dev);
1683 goto free_interfaces;
1685 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1687 /* Initialize the new interface structures and the
1688 * hc/hcd/usbcore interface/endpoint state.
1690 for (i = 0; i < nintf; ++i) {
1691 struct usb_interface_cache *intfc;
1692 struct usb_interface *intf;
1693 struct usb_host_interface *alt;
1695 cp->interface[i] = intf = new_interfaces[i];
1696 intfc = cp->intf_cache[i];
1697 intf->altsetting = intfc->altsetting;
1698 intf->num_altsetting = intfc->num_altsetting;
1699 intf->intf_assoc = find_iad(dev, cp, i);
1700 kref_get(&intfc->ref);
1702 alt = usb_altnum_to_altsetting(intf, 0);
1704 /* No altsetting 0? We'll assume the first altsetting.
1705 * We could use a GetInterface call, but if a device is
1706 * so non-compliant that it doesn't have altsetting 0
1707 * then I wouldn't trust its reply anyway.
1710 alt = &intf->altsetting[0];
1712 intf->cur_altsetting = alt;
1713 usb_enable_interface(dev, intf, true);
1714 intf->dev.parent = &dev->dev;
1715 intf->dev.driver = NULL;
1716 intf->dev.bus = &usb_bus_type;
1717 intf->dev.type = &usb_if_device_type;
1718 intf->dev.groups = usb_interface_groups;
1719 intf->dev.dma_mask = dev->dev.dma_mask;
1720 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1721 device_initialize(&intf->dev);
1722 mark_quiesced(intf);
1723 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1724 dev->bus->busnum, dev->devpath,
1725 configuration, alt->desc.bInterfaceNumber);
1727 kfree(new_interfaces);
1729 if (cp->string == NULL &&
1730 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1731 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1733 /* Now that all the interfaces are set up, register them
1734 * to trigger binding of drivers to interfaces. probe()
1735 * routines may install different altsettings and may
1736 * claim() any interfaces not yet bound. Many class drivers
1737 * need that: CDC, audio, video, etc.
1739 for (i = 0; i < nintf; ++i) {
1740 struct usb_interface *intf = cp->interface[i];
1743 "adding %s (config #%d, interface %d)\n",
1744 dev_name(&intf->dev), configuration,
1745 intf->cur_altsetting->desc.bInterfaceNumber);
1746 ret = device_add(&intf->dev);
1748 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1749 dev_name(&intf->dev), ret);
1752 create_intf_ep_devs(intf);
1755 usb_autosuspend_device(dev);
1759 static LIST_HEAD(set_config_list);
1760 static DEFINE_SPINLOCK(set_config_lock);
1762 struct set_config_request {
1763 struct usb_device *udev;
1765 struct work_struct work;
1766 struct list_head node;
1769 /* Worker routine for usb_driver_set_configuration() */
1770 static void driver_set_config_work(struct work_struct *work)
1772 struct set_config_request *req =
1773 container_of(work, struct set_config_request, work);
1774 struct usb_device *udev = req->udev;
1776 usb_lock_device(udev);
1777 spin_lock(&set_config_lock);
1778 list_del(&req->node);
1779 spin_unlock(&set_config_lock);
1781 if (req->config >= -1) /* Is req still valid? */
1782 usb_set_configuration(udev, req->config);
1783 usb_unlock_device(udev);
1788 /* Cancel pending Set-Config requests for a device whose configuration
1791 static void cancel_async_set_config(struct usb_device *udev)
1793 struct set_config_request *req;
1795 spin_lock(&set_config_lock);
1796 list_for_each_entry(req, &set_config_list, node) {
1797 if (req->udev == udev)
1798 req->config = -999; /* Mark as cancelled */
1800 spin_unlock(&set_config_lock);
1804 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1805 * @udev: the device whose configuration is being updated
1806 * @config: the configuration being chosen.
1807 * Context: In process context, must be able to sleep
1809 * Device interface drivers are not allowed to change device configurations.
1810 * This is because changing configurations will destroy the interface the
1811 * driver is bound to and create new ones; it would be like a floppy-disk
1812 * driver telling the computer to replace the floppy-disk drive with a
1815 * Still, in certain specialized circumstances the need may arise. This
1816 * routine gets around the normal restrictions by using a work thread to
1817 * submit the change-config request.
1819 * Returns 0 if the request was succesfully queued, error code otherwise.
1820 * The caller has no way to know whether the queued request will eventually
1823 int usb_driver_set_configuration(struct usb_device *udev, int config)
1825 struct set_config_request *req;
1827 req = kmalloc(sizeof(*req), GFP_KERNEL);
1831 req->config = config;
1832 INIT_WORK(&req->work, driver_set_config_work);
1834 spin_lock(&set_config_lock);
1835 list_add(&req->node, &set_config_list);
1836 spin_unlock(&set_config_lock);
1839 schedule_work(&req->work);
1842 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);