1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
47 #include <linux/dca.h>
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
62 static struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69 /* required last entry */
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
126 static int igb_suspend(struct pci_dev *, pm_message_t);
128 static int igb_resume(struct pci_dev *);
130 static void igb_shutdown(struct pci_dev *);
131 #ifdef CONFIG_IGB_DCA
132 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133 static struct notifier_block dca_notifier = {
134 .notifier_call = igb_notify_dca,
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 /* for netdump / net console */
142 static void igb_netpoll(struct net_device *);
145 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146 pci_channel_state_t);
147 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148 static void igb_io_resume(struct pci_dev *);
150 static struct pci_error_handlers igb_err_handler = {
151 .error_detected = igb_io_error_detected,
152 .slot_reset = igb_io_slot_reset,
153 .resume = igb_io_resume,
157 static struct pci_driver igb_driver = {
158 .name = igb_driver_name,
159 .id_table = igb_pci_tbl,
161 .remove = __devexit_p(igb_remove),
163 /* Power Managment Hooks */
164 .suspend = igb_suspend,
165 .resume = igb_resume,
167 .shutdown = igb_shutdown,
168 .err_handler = &igb_err_handler
171 static int global_quad_port_a; /* global quad port a indication */
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
180 * igb_get_hw_dev_name - return device name string
181 * used by hardware layer to print debugging information
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
185 struct igb_adapter *adapter = hw->back;
186 return adapter->netdev->name;
191 * igb_init_module - Driver Registration Routine
193 * igb_init_module is the first routine called when the driver is
194 * loaded. All it does is register with the PCI subsystem.
196 static int __init igb_init_module(void)
199 printk(KERN_INFO "%s - version %s\n",
200 igb_driver_string, igb_driver_version);
202 printk(KERN_INFO "%s\n", igb_copyright);
204 global_quad_port_a = 0;
206 #ifdef CONFIG_IGB_DCA
207 dca_register_notify(&dca_notifier);
210 ret = pci_register_driver(&igb_driver);
214 module_init(igb_init_module);
217 * igb_exit_module - Driver Exit Cleanup Routine
219 * igb_exit_module is called just before the driver is removed
222 static void __exit igb_exit_module(void)
224 #ifdef CONFIG_IGB_DCA
225 dca_unregister_notify(&dca_notifier);
227 pci_unregister_driver(&igb_driver);
230 module_exit(igb_exit_module);
232 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
234 * igb_cache_ring_register - Descriptor ring to register mapping
235 * @adapter: board private structure to initialize
237 * Once we know the feature-set enabled for the device, we'll cache
238 * the register offset the descriptor ring is assigned to.
240 static void igb_cache_ring_register(struct igb_adapter *adapter)
244 switch (adapter->hw.mac.type) {
246 /* The queues are allocated for virtualization such that VF 0
247 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248 * In order to avoid collision we start at the first free queue
249 * and continue consuming queues in the same sequence
251 for (i = 0; i < adapter->num_rx_queues; i++)
252 adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253 for (i = 0; i < adapter->num_tx_queues; i++)
254 adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
258 for (i = 0; i < adapter->num_rx_queues; i++)
259 adapter->rx_ring[i].reg_idx = i;
260 for (i = 0; i < adapter->num_tx_queues; i++)
261 adapter->tx_ring[i].reg_idx = i;
267 * igb_alloc_queues - Allocate memory for all rings
268 * @adapter: board private structure to initialize
270 * We allocate one ring per queue at run-time since we don't know the
271 * number of queues at compile-time.
273 static int igb_alloc_queues(struct igb_adapter *adapter)
277 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278 sizeof(struct igb_ring), GFP_KERNEL);
279 if (!adapter->tx_ring)
282 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283 sizeof(struct igb_ring), GFP_KERNEL);
284 if (!adapter->rx_ring) {
285 kfree(adapter->tx_ring);
289 adapter->rx_ring->buddy = adapter->tx_ring;
291 for (i = 0; i < adapter->num_tx_queues; i++) {
292 struct igb_ring *ring = &(adapter->tx_ring[i]);
293 ring->count = adapter->tx_ring_count;
294 ring->adapter = adapter;
295 ring->queue_index = i;
297 for (i = 0; i < adapter->num_rx_queues; i++) {
298 struct igb_ring *ring = &(adapter->rx_ring[i]);
299 ring->count = adapter->rx_ring_count;
300 ring->adapter = adapter;
301 ring->queue_index = i;
302 ring->itr_register = E1000_ITR;
304 /* set a default napi handler for each rx_ring */
305 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
308 igb_cache_ring_register(adapter);
312 static void igb_free_queues(struct igb_adapter *adapter)
316 for (i = 0; i < adapter->num_rx_queues; i++)
317 netif_napi_del(&adapter->rx_ring[i].napi);
319 kfree(adapter->tx_ring);
320 kfree(adapter->rx_ring);
323 #define IGB_N0_QUEUE -1
324 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325 int tx_queue, int msix_vector)
328 struct e1000_hw *hw = &adapter->hw;
331 switch (hw->mac.type) {
333 /* The 82575 assigns vectors using a bitmask, which matches the
334 bitmask for the EICR/EIMS/EIMC registers. To assign one
335 or more queues to a vector, we write the appropriate bits
336 into the MSIXBM register for that vector. */
337 if (rx_queue > IGB_N0_QUEUE) {
338 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339 adapter->rx_ring[rx_queue].eims_value = msixbm;
341 if (tx_queue > IGB_N0_QUEUE) {
342 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343 adapter->tx_ring[tx_queue].eims_value =
344 E1000_EICR_TX_QUEUE0 << tx_queue;
346 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
349 /* 82576 uses a table-based method for assigning vectors.
350 Each queue has a single entry in the table to which we write
351 a vector number along with a "valid" bit. Sadly, the layout
352 of the table is somewhat counterintuitive. */
353 if (rx_queue > IGB_N0_QUEUE) {
354 index = (rx_queue >> 1);
355 ivar = array_rd32(E1000_IVAR0, index);
356 if (rx_queue & 0x1) {
357 /* vector goes into third byte of register */
358 ivar = ivar & 0xFF00FFFF;
359 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
361 /* vector goes into low byte of register */
362 ivar = ivar & 0xFFFFFF00;
363 ivar |= msix_vector | E1000_IVAR_VALID;
365 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366 array_wr32(E1000_IVAR0, index, ivar);
368 if (tx_queue > IGB_N0_QUEUE) {
369 index = (tx_queue >> 1);
370 ivar = array_rd32(E1000_IVAR0, index);
371 if (tx_queue & 0x1) {
372 /* vector goes into high byte of register */
373 ivar = ivar & 0x00FFFFFF;
374 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
376 /* vector goes into second byte of register */
377 ivar = ivar & 0xFFFF00FF;
378 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
380 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381 array_wr32(E1000_IVAR0, index, ivar);
391 * igb_configure_msix - Configure MSI-X hardware
393 * igb_configure_msix sets up the hardware to properly
394 * generate MSI-X interrupts.
396 static void igb_configure_msix(struct igb_adapter *adapter)
400 struct e1000_hw *hw = &adapter->hw;
402 adapter->eims_enable_mask = 0;
403 if (hw->mac.type == e1000_82576)
404 /* Turn on MSI-X capability first, or our settings
405 * won't stick. And it will take days to debug. */
406 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
407 E1000_GPIE_PBA | E1000_GPIE_EIAME |
410 for (i = 0; i < adapter->num_tx_queues; i++) {
411 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413 adapter->eims_enable_mask |= tx_ring->eims_value;
414 if (tx_ring->itr_val)
415 writel(tx_ring->itr_val,
416 hw->hw_addr + tx_ring->itr_register);
418 writel(1, hw->hw_addr + tx_ring->itr_register);
421 for (i = 0; i < adapter->num_rx_queues; i++) {
422 struct igb_ring *rx_ring = &adapter->rx_ring[i];
423 rx_ring->buddy = NULL;
424 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425 adapter->eims_enable_mask |= rx_ring->eims_value;
426 if (rx_ring->itr_val)
427 writel(rx_ring->itr_val,
428 hw->hw_addr + rx_ring->itr_register);
430 writel(1, hw->hw_addr + rx_ring->itr_register);
434 /* set vector for other causes, i.e. link changes */
435 switch (hw->mac.type) {
437 array_wr32(E1000_MSIXBM(0), vector++,
440 tmp = rd32(E1000_CTRL_EXT);
441 /* enable MSI-X PBA support*/
442 tmp |= E1000_CTRL_EXT_PBA_CLR;
444 /* Auto-Mask interrupts upon ICR read. */
445 tmp |= E1000_CTRL_EXT_EIAME;
446 tmp |= E1000_CTRL_EXT_IRCA;
448 wr32(E1000_CTRL_EXT, tmp);
449 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
450 adapter->eims_other = E1000_EIMS_OTHER;
455 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456 wr32(E1000_IVAR_MISC, tmp);
458 adapter->eims_enable_mask = (1 << (vector)) - 1;
459 adapter->eims_other = 1 << (vector - 1);
462 /* do nothing, since nothing else supports MSI-X */
464 } /* switch (hw->mac.type) */
469 * igb_request_msix - Initialize MSI-X interrupts
471 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
474 static int igb_request_msix(struct igb_adapter *adapter)
476 struct net_device *netdev = adapter->netdev;
477 int i, err = 0, vector = 0;
481 for (i = 0; i < adapter->num_tx_queues; i++) {
482 struct igb_ring *ring = &(adapter->tx_ring[i]);
483 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
484 err = request_irq(adapter->msix_entries[vector].vector,
485 &igb_msix_tx, 0, ring->name,
486 &(adapter->tx_ring[i]));
489 ring->itr_register = E1000_EITR(0) + (vector << 2);
490 ring->itr_val = 976; /* ~4000 ints/sec */
493 for (i = 0; i < adapter->num_rx_queues; i++) {
494 struct igb_ring *ring = &(adapter->rx_ring[i]);
495 if (strlen(netdev->name) < (IFNAMSIZ - 5))
496 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
498 memcpy(ring->name, netdev->name, IFNAMSIZ);
499 err = request_irq(adapter->msix_entries[vector].vector,
500 &igb_msix_rx, 0, ring->name,
501 &(adapter->rx_ring[i]));
504 ring->itr_register = E1000_EITR(0) + (vector << 2);
505 ring->itr_val = adapter->itr;
506 /* overwrite the poll routine for MSIX, we've already done
508 ring->napi.poll = &igb_clean_rx_ring_msix;
512 err = request_irq(adapter->msix_entries[vector].vector,
513 &igb_msix_other, 0, netdev->name, netdev);
517 igb_configure_msix(adapter);
523 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
525 if (adapter->msix_entries) {
526 pci_disable_msix(adapter->pdev);
527 kfree(adapter->msix_entries);
528 adapter->msix_entries = NULL;
529 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
530 pci_disable_msi(adapter->pdev);
536 * igb_set_interrupt_capability - set MSI or MSI-X if supported
538 * Attempt to configure interrupts using the best available
539 * capabilities of the hardware and kernel.
541 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
546 /* Number of supported queues. */
547 /* Having more queues than CPUs doesn't make sense. */
548 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
549 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
551 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
552 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
554 if (!adapter->msix_entries)
557 for (i = 0; i < numvecs; i++)
558 adapter->msix_entries[i].entry = i;
560 err = pci_enable_msix(adapter->pdev,
561 adapter->msix_entries,
566 igb_reset_interrupt_capability(adapter);
568 /* If we can't do MSI-X, try MSI */
570 adapter->num_rx_queues = 1;
571 adapter->num_tx_queues = 1;
572 if (!pci_enable_msi(adapter->pdev))
573 adapter->flags |= IGB_FLAG_HAS_MSI;
575 /* Notify the stack of the (possibly) reduced Tx Queue count. */
576 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
581 * igb_request_irq - initialize interrupts
583 * Attempts to configure interrupts using the best available
584 * capabilities of the hardware and kernel.
586 static int igb_request_irq(struct igb_adapter *adapter)
588 struct net_device *netdev = adapter->netdev;
589 struct e1000_hw *hw = &adapter->hw;
592 if (adapter->msix_entries) {
593 err = igb_request_msix(adapter);
596 /* fall back to MSI */
597 igb_reset_interrupt_capability(adapter);
598 if (!pci_enable_msi(adapter->pdev))
599 adapter->flags |= IGB_FLAG_HAS_MSI;
600 igb_free_all_tx_resources(adapter);
601 igb_free_all_rx_resources(adapter);
602 adapter->num_rx_queues = 1;
603 igb_alloc_queues(adapter);
605 switch (hw->mac.type) {
607 wr32(E1000_MSIXBM(0),
608 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
611 wr32(E1000_IVAR0, E1000_IVAR_VALID);
618 if (adapter->flags & IGB_FLAG_HAS_MSI) {
619 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
620 netdev->name, netdev);
623 /* fall back to legacy interrupts */
624 igb_reset_interrupt_capability(adapter);
625 adapter->flags &= ~IGB_FLAG_HAS_MSI;
628 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
629 netdev->name, netdev);
632 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
639 static void igb_free_irq(struct igb_adapter *adapter)
641 struct net_device *netdev = adapter->netdev;
643 if (adapter->msix_entries) {
646 for (i = 0; i < adapter->num_tx_queues; i++)
647 free_irq(adapter->msix_entries[vector++].vector,
648 &(adapter->tx_ring[i]));
649 for (i = 0; i < adapter->num_rx_queues; i++)
650 free_irq(adapter->msix_entries[vector++].vector,
651 &(adapter->rx_ring[i]));
653 free_irq(adapter->msix_entries[vector++].vector, netdev);
657 free_irq(adapter->pdev->irq, netdev);
661 * igb_irq_disable - Mask off interrupt generation on the NIC
662 * @adapter: board private structure
664 static void igb_irq_disable(struct igb_adapter *adapter)
666 struct e1000_hw *hw = &adapter->hw;
668 if (adapter->msix_entries) {
670 wr32(E1000_EIMC, ~0);
677 synchronize_irq(adapter->pdev->irq);
681 * igb_irq_enable - Enable default interrupt generation settings
682 * @adapter: board private structure
684 static void igb_irq_enable(struct igb_adapter *adapter)
686 struct e1000_hw *hw = &adapter->hw;
688 if (adapter->msix_entries) {
689 wr32(E1000_EIAC, adapter->eims_enable_mask);
690 wr32(E1000_EIAM, adapter->eims_enable_mask);
691 wr32(E1000_EIMS, adapter->eims_enable_mask);
692 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
694 wr32(E1000_IMS, IMS_ENABLE_MASK);
695 wr32(E1000_IAM, IMS_ENABLE_MASK);
699 static void igb_update_mng_vlan(struct igb_adapter *adapter)
701 struct net_device *netdev = adapter->netdev;
702 u16 vid = adapter->hw.mng_cookie.vlan_id;
703 u16 old_vid = adapter->mng_vlan_id;
704 if (adapter->vlgrp) {
705 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
706 if (adapter->hw.mng_cookie.status &
707 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
708 igb_vlan_rx_add_vid(netdev, vid);
709 adapter->mng_vlan_id = vid;
711 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
713 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
715 !vlan_group_get_device(adapter->vlgrp, old_vid))
716 igb_vlan_rx_kill_vid(netdev, old_vid);
718 adapter->mng_vlan_id = vid;
723 * igb_release_hw_control - release control of the h/w to f/w
724 * @adapter: address of board private structure
726 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
727 * For ASF and Pass Through versions of f/w this means that the
728 * driver is no longer loaded.
731 static void igb_release_hw_control(struct igb_adapter *adapter)
733 struct e1000_hw *hw = &adapter->hw;
736 /* Let firmware take over control of h/w */
737 ctrl_ext = rd32(E1000_CTRL_EXT);
739 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
744 * igb_get_hw_control - get control of the h/w from f/w
745 * @adapter: address of board private structure
747 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
748 * For ASF and Pass Through versions of f/w this means that
749 * the driver is loaded.
752 static void igb_get_hw_control(struct igb_adapter *adapter)
754 struct e1000_hw *hw = &adapter->hw;
757 /* Let firmware know the driver has taken over */
758 ctrl_ext = rd32(E1000_CTRL_EXT);
760 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
764 * igb_configure - configure the hardware for RX and TX
765 * @adapter: private board structure
767 static void igb_configure(struct igb_adapter *adapter)
769 struct net_device *netdev = adapter->netdev;
772 igb_get_hw_control(adapter);
773 igb_set_multi(netdev);
775 igb_restore_vlan(adapter);
777 igb_configure_tx(adapter);
778 igb_setup_rctl(adapter);
779 igb_configure_rx(adapter);
781 igb_rx_fifo_flush_82575(&adapter->hw);
783 /* call IGB_DESC_UNUSED which always leaves
784 * at least 1 descriptor unused to make sure
785 * next_to_use != next_to_clean */
786 for (i = 0; i < adapter->num_rx_queues; i++) {
787 struct igb_ring *ring = &adapter->rx_ring[i];
788 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
792 adapter->tx_queue_len = netdev->tx_queue_len;
797 * igb_up - Open the interface and prepare it to handle traffic
798 * @adapter: board private structure
801 int igb_up(struct igb_adapter *adapter)
803 struct e1000_hw *hw = &adapter->hw;
806 /* hardware has been reset, we need to reload some things */
807 igb_configure(adapter);
809 clear_bit(__IGB_DOWN, &adapter->state);
811 for (i = 0; i < adapter->num_rx_queues; i++)
812 napi_enable(&adapter->rx_ring[i].napi);
813 if (adapter->msix_entries)
814 igb_configure_msix(adapter);
816 /* Clear any pending interrupts. */
818 igb_irq_enable(adapter);
820 /* Fire a link change interrupt to start the watchdog. */
821 wr32(E1000_ICS, E1000_ICS_LSC);
825 void igb_down(struct igb_adapter *adapter)
827 struct e1000_hw *hw = &adapter->hw;
828 struct net_device *netdev = adapter->netdev;
832 /* signal that we're down so the interrupt handler does not
833 * reschedule our watchdog timer */
834 set_bit(__IGB_DOWN, &adapter->state);
836 /* disable receives in the hardware */
837 rctl = rd32(E1000_RCTL);
838 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
839 /* flush and sleep below */
841 netif_tx_stop_all_queues(netdev);
843 /* disable transmits in the hardware */
844 tctl = rd32(E1000_TCTL);
845 tctl &= ~E1000_TCTL_EN;
846 wr32(E1000_TCTL, tctl);
847 /* flush both disables and wait for them to finish */
851 for (i = 0; i < adapter->num_rx_queues; i++)
852 napi_disable(&adapter->rx_ring[i].napi);
854 igb_irq_disable(adapter);
856 del_timer_sync(&adapter->watchdog_timer);
857 del_timer_sync(&adapter->phy_info_timer);
859 netdev->tx_queue_len = adapter->tx_queue_len;
860 netif_carrier_off(netdev);
861 adapter->link_speed = 0;
862 adapter->link_duplex = 0;
864 if (!pci_channel_offline(adapter->pdev))
866 igb_clean_all_tx_rings(adapter);
867 igb_clean_all_rx_rings(adapter);
870 void igb_reinit_locked(struct igb_adapter *adapter)
872 WARN_ON(in_interrupt());
873 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
877 clear_bit(__IGB_RESETTING, &adapter->state);
880 void igb_reset(struct igb_adapter *adapter)
882 struct e1000_hw *hw = &adapter->hw;
883 struct e1000_mac_info *mac = &hw->mac;
884 struct e1000_fc_info *fc = &hw->fc;
885 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
888 /* Repartition Pba for greater than 9k mtu
889 * To take effect CTRL.RST is required.
891 if (mac->type != e1000_82576) {
898 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
899 (mac->type < e1000_82576)) {
900 /* adjust PBA for jumbo frames */
901 wr32(E1000_PBA, pba);
903 /* To maintain wire speed transmits, the Tx FIFO should be
904 * large enough to accommodate two full transmit packets,
905 * rounded up to the next 1KB and expressed in KB. Likewise,
906 * the Rx FIFO should be large enough to accommodate at least
907 * one full receive packet and is similarly rounded up and
908 * expressed in KB. */
909 pba = rd32(E1000_PBA);
910 /* upper 16 bits has Tx packet buffer allocation size in KB */
911 tx_space = pba >> 16;
912 /* lower 16 bits has Rx packet buffer allocation size in KB */
914 /* the tx fifo also stores 16 bytes of information about the tx
915 * but don't include ethernet FCS because hardware appends it */
916 min_tx_space = (adapter->max_frame_size +
917 sizeof(struct e1000_tx_desc) -
919 min_tx_space = ALIGN(min_tx_space, 1024);
921 /* software strips receive CRC, so leave room for it */
922 min_rx_space = adapter->max_frame_size;
923 min_rx_space = ALIGN(min_rx_space, 1024);
926 /* If current Tx allocation is less than the min Tx FIFO size,
927 * and the min Tx FIFO size is less than the current Rx FIFO
928 * allocation, take space away from current Rx allocation */
929 if (tx_space < min_tx_space &&
930 ((min_tx_space - tx_space) < pba)) {
931 pba = pba - (min_tx_space - tx_space);
933 /* if short on rx space, rx wins and must trump tx
935 if (pba < min_rx_space)
938 wr32(E1000_PBA, pba);
941 /* flow control settings */
942 /* The high water mark must be low enough to fit one full frame
943 * (or the size used for early receive) above it in the Rx FIFO.
944 * Set it to the lower of:
945 * - 90% of the Rx FIFO size, or
946 * - the full Rx FIFO size minus one full frame */
947 hwm = min(((pba << 10) * 9 / 10),
948 ((pba << 10) - 2 * adapter->max_frame_size));
950 if (mac->type < e1000_82576) {
951 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
952 fc->low_water = fc->high_water - 8;
954 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
955 fc->low_water = fc->high_water - 16;
957 fc->pause_time = 0xFFFF;
959 fc->type = fc->original_type;
961 /* Allow time for pending master requests to run */
962 adapter->hw.mac.ops.reset_hw(&adapter->hw);
965 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
966 dev_err(&adapter->pdev->dev, "Hardware Error\n");
968 igb_update_mng_vlan(adapter);
970 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
971 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
973 igb_reset_adaptive(&adapter->hw);
974 igb_get_phy_info(&adapter->hw);
977 static const struct net_device_ops igb_netdev_ops = {
978 .ndo_open = igb_open,
979 .ndo_stop = igb_close,
980 .ndo_start_xmit = igb_xmit_frame_adv,
981 .ndo_get_stats = igb_get_stats,
982 .ndo_set_multicast_list = igb_set_multi,
983 .ndo_set_mac_address = igb_set_mac,
984 .ndo_change_mtu = igb_change_mtu,
985 .ndo_do_ioctl = igb_ioctl,
986 .ndo_tx_timeout = igb_tx_timeout,
987 .ndo_validate_addr = eth_validate_addr,
988 .ndo_vlan_rx_register = igb_vlan_rx_register,
989 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
990 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
991 #ifdef CONFIG_NET_POLL_CONTROLLER
992 .ndo_poll_controller = igb_netpoll,
997 * igb_probe - Device Initialization Routine
998 * @pdev: PCI device information struct
999 * @ent: entry in igb_pci_tbl
1001 * Returns 0 on success, negative on failure
1003 * igb_probe initializes an adapter identified by a pci_dev structure.
1004 * The OS initialization, configuring of the adapter private structure,
1005 * and a hardware reset occur.
1007 static int __devinit igb_probe(struct pci_dev *pdev,
1008 const struct pci_device_id *ent)
1010 struct net_device *netdev;
1011 struct igb_adapter *adapter;
1012 struct e1000_hw *hw;
1013 struct pci_dev *us_dev;
1014 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1015 unsigned long mmio_start, mmio_len;
1016 int i, err, pci_using_dac, pos;
1017 u16 eeprom_data = 0, state = 0;
1018 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1021 err = pci_enable_device_mem(pdev);
1026 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1028 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1032 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1034 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1036 dev_err(&pdev->dev, "No usable DMA "
1037 "configuration, aborting\n");
1043 /* 82575 requires that the pci-e link partner disable the L0s state */
1044 switch (pdev->device) {
1045 case E1000_DEV_ID_82575EB_COPPER:
1046 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1047 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1048 us_dev = pdev->bus->self;
1049 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1051 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1053 state &= ~PCIE_LINK_STATE_L0S;
1054 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1056 dev_info(&pdev->dev,
1057 "Disabling ASPM L0s upstream switch port %s\n",
1064 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1070 err = pci_enable_pcie_error_reporting(pdev);
1072 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1074 /* non-fatal, continue */
1077 pci_set_master(pdev);
1078 pci_save_state(pdev);
1081 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1083 goto err_alloc_etherdev;
1085 SET_NETDEV_DEV(netdev, &pdev->dev);
1087 pci_set_drvdata(pdev, netdev);
1088 adapter = netdev_priv(netdev);
1089 adapter->netdev = netdev;
1090 adapter->pdev = pdev;
1093 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1095 mmio_start = pci_resource_start(pdev, 0);
1096 mmio_len = pci_resource_len(pdev, 0);
1099 hw->hw_addr = ioremap(mmio_start, mmio_len);
1103 netdev->netdev_ops = &igb_netdev_ops;
1104 igb_set_ethtool_ops(netdev);
1105 netdev->watchdog_timeo = 5 * HZ;
1107 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1109 netdev->mem_start = mmio_start;
1110 netdev->mem_end = mmio_start + mmio_len;
1112 /* PCI config space info */
1113 hw->vendor_id = pdev->vendor;
1114 hw->device_id = pdev->device;
1115 hw->revision_id = pdev->revision;
1116 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1117 hw->subsystem_device_id = pdev->subsystem_device;
1119 /* setup the private structure */
1121 /* Copy the default MAC, PHY and NVM function pointers */
1122 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1123 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1124 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1125 /* Initialize skew-specific constants */
1126 err = ei->get_invariants(hw);
1130 err = igb_sw_init(adapter);
1134 igb_get_bus_info_pcie(hw);
1137 switch (hw->mac.type) {
1139 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1146 hw->phy.autoneg_wait_to_complete = false;
1147 hw->mac.adaptive_ifs = true;
1149 /* Copper options */
1150 if (hw->phy.media_type == e1000_media_type_copper) {
1151 hw->phy.mdix = AUTO_ALL_MODES;
1152 hw->phy.disable_polarity_correction = false;
1153 hw->phy.ms_type = e1000_ms_hw_default;
1156 if (igb_check_reset_block(hw))
1157 dev_info(&pdev->dev,
1158 "PHY reset is blocked due to SOL/IDER session.\n");
1160 netdev->features = NETIF_F_SG |
1162 NETIF_F_HW_VLAN_TX |
1163 NETIF_F_HW_VLAN_RX |
1164 NETIF_F_HW_VLAN_FILTER;
1166 netdev->features |= NETIF_F_IPV6_CSUM;
1167 netdev->features |= NETIF_F_TSO;
1168 netdev->features |= NETIF_F_TSO6;
1170 #ifdef CONFIG_IGB_LRO
1171 netdev->features |= NETIF_F_GRO;
1174 netdev->vlan_features |= NETIF_F_TSO;
1175 netdev->vlan_features |= NETIF_F_TSO6;
1176 netdev->vlan_features |= NETIF_F_IP_CSUM;
1177 netdev->vlan_features |= NETIF_F_SG;
1180 netdev->features |= NETIF_F_HIGHDMA;
1182 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1184 /* before reading the NVM, reset the controller to put the device in a
1185 * known good starting state */
1186 hw->mac.ops.reset_hw(hw);
1188 /* make sure the NVM is good */
1189 if (igb_validate_nvm_checksum(hw) < 0) {
1190 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1195 /* copy the MAC address out of the NVM */
1196 if (hw->mac.ops.read_mac_addr(hw))
1197 dev_err(&pdev->dev, "NVM Read Error\n");
1199 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1200 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1202 if (!is_valid_ether_addr(netdev->perm_addr)) {
1203 dev_err(&pdev->dev, "Invalid MAC Address\n");
1208 init_timer(&adapter->watchdog_timer);
1209 adapter->watchdog_timer.function = &igb_watchdog;
1210 adapter->watchdog_timer.data = (unsigned long) adapter;
1212 init_timer(&adapter->phy_info_timer);
1213 adapter->phy_info_timer.function = &igb_update_phy_info;
1214 adapter->phy_info_timer.data = (unsigned long) adapter;
1216 INIT_WORK(&adapter->reset_task, igb_reset_task);
1217 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1219 /* Initialize link & ring properties that are user-changeable */
1220 adapter->tx_ring->count = 256;
1221 for (i = 0; i < adapter->num_tx_queues; i++)
1222 adapter->tx_ring[i].count = adapter->tx_ring->count;
1223 adapter->rx_ring->count = 256;
1224 for (i = 0; i < adapter->num_rx_queues; i++)
1225 adapter->rx_ring[i].count = adapter->rx_ring->count;
1227 adapter->fc_autoneg = true;
1228 hw->mac.autoneg = true;
1229 hw->phy.autoneg_advertised = 0x2f;
1231 hw->fc.original_type = e1000_fc_default;
1232 hw->fc.type = e1000_fc_default;
1234 adapter->itr_setting = 3;
1235 adapter->itr = IGB_START_ITR;
1237 igb_validate_mdi_setting(hw);
1239 adapter->rx_csum = 1;
1241 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1242 * enable the ACPI Magic Packet filter
1245 if (hw->bus.func == 0 ||
1246 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1247 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1249 if (eeprom_data & eeprom_apme_mask)
1250 adapter->eeprom_wol |= E1000_WUFC_MAG;
1252 /* now that we have the eeprom settings, apply the special cases where
1253 * the eeprom may be wrong or the board simply won't support wake on
1254 * lan on a particular port */
1255 switch (pdev->device) {
1256 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1257 adapter->eeprom_wol = 0;
1259 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1260 case E1000_DEV_ID_82576_FIBER:
1261 case E1000_DEV_ID_82576_SERDES:
1262 /* Wake events only supported on port A for dual fiber
1263 * regardless of eeprom setting */
1264 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1265 adapter->eeprom_wol = 0;
1269 /* initialize the wol settings based on the eeprom settings */
1270 adapter->wol = adapter->eeprom_wol;
1271 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1273 /* reset the hardware with the new settings */
1276 /* let the f/w know that the h/w is now under the control of the
1278 igb_get_hw_control(adapter);
1280 /* tell the stack to leave us alone until igb_open() is called */
1281 netif_carrier_off(netdev);
1282 netif_tx_stop_all_queues(netdev);
1284 strcpy(netdev->name, "eth%d");
1285 err = register_netdev(netdev);
1289 #ifdef CONFIG_IGB_DCA
1290 if (dca_add_requester(&pdev->dev) == 0) {
1291 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1292 dev_info(&pdev->dev, "DCA enabled\n");
1293 /* Always use CB2 mode, difference is masked
1294 * in the CB driver. */
1295 wr32(E1000_DCA_CTRL, 2);
1296 igb_setup_dca(adapter);
1300 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1301 /* print bus type/speed/width info */
1302 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1304 ((hw->bus.speed == e1000_bus_speed_2500)
1305 ? "2.5Gb/s" : "unknown"),
1306 ((hw->bus.width == e1000_bus_width_pcie_x4)
1307 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1308 ? "Width x1" : "unknown"),
1311 igb_read_part_num(hw, &part_num);
1312 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1313 (part_num >> 8), (part_num & 0xff));
1315 dev_info(&pdev->dev,
1316 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1317 adapter->msix_entries ? "MSI-X" :
1318 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1319 adapter->num_rx_queues, adapter->num_tx_queues);
1324 igb_release_hw_control(adapter);
1326 if (!igb_check_reset_block(hw))
1329 if (hw->flash_address)
1330 iounmap(hw->flash_address);
1332 igb_free_queues(adapter);
1335 iounmap(hw->hw_addr);
1337 free_netdev(netdev);
1339 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1343 pci_disable_device(pdev);
1348 * igb_remove - Device Removal Routine
1349 * @pdev: PCI device information struct
1351 * igb_remove is called by the PCI subsystem to alert the driver
1352 * that it should release a PCI device. The could be caused by a
1353 * Hot-Plug event, or because the driver is going to be removed from
1356 static void __devexit igb_remove(struct pci_dev *pdev)
1358 struct net_device *netdev = pci_get_drvdata(pdev);
1359 struct igb_adapter *adapter = netdev_priv(netdev);
1360 struct e1000_hw *hw = &adapter->hw;
1363 /* flush_scheduled work may reschedule our watchdog task, so
1364 * explicitly disable watchdog tasks from being rescheduled */
1365 set_bit(__IGB_DOWN, &adapter->state);
1366 del_timer_sync(&adapter->watchdog_timer);
1367 del_timer_sync(&adapter->phy_info_timer);
1369 flush_scheduled_work();
1371 #ifdef CONFIG_IGB_DCA
1372 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1373 dev_info(&pdev->dev, "DCA disabled\n");
1374 dca_remove_requester(&pdev->dev);
1375 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1376 wr32(E1000_DCA_CTRL, 1);
1380 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1381 * would have already happened in close and is redundant. */
1382 igb_release_hw_control(adapter);
1384 unregister_netdev(netdev);
1386 if (!igb_check_reset_block(&adapter->hw))
1387 igb_reset_phy(&adapter->hw);
1389 igb_reset_interrupt_capability(adapter);
1391 igb_free_queues(adapter);
1393 iounmap(hw->hw_addr);
1394 if (hw->flash_address)
1395 iounmap(hw->flash_address);
1396 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1399 free_netdev(netdev);
1401 err = pci_disable_pcie_error_reporting(pdev);
1404 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1406 pci_disable_device(pdev);
1410 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1411 * @adapter: board private structure to initialize
1413 * igb_sw_init initializes the Adapter private data structure.
1414 * Fields are initialized based on PCI device information and
1415 * OS network device settings (MTU size).
1417 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1419 struct e1000_hw *hw = &adapter->hw;
1420 struct net_device *netdev = adapter->netdev;
1421 struct pci_dev *pdev = adapter->pdev;
1423 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1425 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1426 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1427 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1428 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1429 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1430 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1432 /* This call may decrease the number of queues depending on
1433 * interrupt mode. */
1434 igb_set_interrupt_capability(adapter);
1436 if (igb_alloc_queues(adapter)) {
1437 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1441 /* Explicitly disable IRQ since the NIC can be in any state. */
1442 igb_irq_disable(adapter);
1444 set_bit(__IGB_DOWN, &adapter->state);
1449 * igb_open - Called when a network interface is made active
1450 * @netdev: network interface device structure
1452 * Returns 0 on success, negative value on failure
1454 * The open entry point is called when a network interface is made
1455 * active by the system (IFF_UP). At this point all resources needed
1456 * for transmit and receive operations are allocated, the interrupt
1457 * handler is registered with the OS, the watchdog timer is started,
1458 * and the stack is notified that the interface is ready.
1460 static int igb_open(struct net_device *netdev)
1462 struct igb_adapter *adapter = netdev_priv(netdev);
1463 struct e1000_hw *hw = &adapter->hw;
1467 /* disallow open during test */
1468 if (test_bit(__IGB_TESTING, &adapter->state))
1471 /* allocate transmit descriptors */
1472 err = igb_setup_all_tx_resources(adapter);
1476 /* allocate receive descriptors */
1477 err = igb_setup_all_rx_resources(adapter);
1481 /* e1000_power_up_phy(adapter); */
1483 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1484 if ((adapter->hw.mng_cookie.status &
1485 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1486 igb_update_mng_vlan(adapter);
1488 /* before we allocate an interrupt, we must be ready to handle it.
1489 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1490 * as soon as we call pci_request_irq, so we have to setup our
1491 * clean_rx handler before we do so. */
1492 igb_configure(adapter);
1494 err = igb_request_irq(adapter);
1498 /* From here on the code is the same as igb_up() */
1499 clear_bit(__IGB_DOWN, &adapter->state);
1501 for (i = 0; i < adapter->num_rx_queues; i++)
1502 napi_enable(&adapter->rx_ring[i].napi);
1504 /* Clear any pending interrupts. */
1507 igb_irq_enable(adapter);
1509 netif_tx_start_all_queues(netdev);
1511 /* Fire a link status change interrupt to start the watchdog. */
1512 wr32(E1000_ICS, E1000_ICS_LSC);
1517 igb_release_hw_control(adapter);
1518 /* e1000_power_down_phy(adapter); */
1519 igb_free_all_rx_resources(adapter);
1521 igb_free_all_tx_resources(adapter);
1529 * igb_close - Disables a network interface
1530 * @netdev: network interface device structure
1532 * Returns 0, this is not allowed to fail
1534 * The close entry point is called when an interface is de-activated
1535 * by the OS. The hardware is still under the driver's control, but
1536 * needs to be disabled. A global MAC reset is issued to stop the
1537 * hardware, and all transmit and receive resources are freed.
1539 static int igb_close(struct net_device *netdev)
1541 struct igb_adapter *adapter = netdev_priv(netdev);
1543 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1546 igb_free_irq(adapter);
1548 igb_free_all_tx_resources(adapter);
1549 igb_free_all_rx_resources(adapter);
1551 /* kill manageability vlan ID if supported, but not if a vlan with
1552 * the same ID is registered on the host OS (let 8021q kill it) */
1553 if ((adapter->hw.mng_cookie.status &
1554 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1556 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1557 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1563 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1564 * @adapter: board private structure
1565 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1567 * Return 0 on success, negative on failure
1570 int igb_setup_tx_resources(struct igb_adapter *adapter,
1571 struct igb_ring *tx_ring)
1573 struct pci_dev *pdev = adapter->pdev;
1576 size = sizeof(struct igb_buffer) * tx_ring->count;
1577 tx_ring->buffer_info = vmalloc(size);
1578 if (!tx_ring->buffer_info)
1580 memset(tx_ring->buffer_info, 0, size);
1582 /* round up to nearest 4K */
1583 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1584 tx_ring->size = ALIGN(tx_ring->size, 4096);
1586 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1592 tx_ring->adapter = adapter;
1593 tx_ring->next_to_use = 0;
1594 tx_ring->next_to_clean = 0;
1598 vfree(tx_ring->buffer_info);
1599 dev_err(&adapter->pdev->dev,
1600 "Unable to allocate memory for the transmit descriptor ring\n");
1605 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1606 * (Descriptors) for all queues
1607 * @adapter: board private structure
1609 * Return 0 on success, negative on failure
1611 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1616 for (i = 0; i < adapter->num_tx_queues; i++) {
1617 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1619 dev_err(&adapter->pdev->dev,
1620 "Allocation for Tx Queue %u failed\n", i);
1621 for (i--; i >= 0; i--)
1622 igb_free_tx_resources(&adapter->tx_ring[i]);
1627 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1628 r_idx = i % adapter->num_tx_queues;
1629 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1635 * igb_configure_tx - Configure transmit Unit after Reset
1636 * @adapter: board private structure
1638 * Configure the Tx unit of the MAC after a reset.
1640 static void igb_configure_tx(struct igb_adapter *adapter)
1643 struct e1000_hw *hw = &adapter->hw;
1648 for (i = 0; i < adapter->num_tx_queues; i++) {
1649 struct igb_ring *ring = &(adapter->tx_ring[i]);
1651 wr32(E1000_TDLEN(j),
1652 ring->count * sizeof(struct e1000_tx_desc));
1654 wr32(E1000_TDBAL(j),
1655 tdba & 0x00000000ffffffffULL);
1656 wr32(E1000_TDBAH(j), tdba >> 32);
1658 ring->head = E1000_TDH(j);
1659 ring->tail = E1000_TDT(j);
1660 writel(0, hw->hw_addr + ring->tail);
1661 writel(0, hw->hw_addr + ring->head);
1662 txdctl = rd32(E1000_TXDCTL(j));
1663 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1664 wr32(E1000_TXDCTL(j), txdctl);
1666 /* Turn off Relaxed Ordering on head write-backs. The
1667 * writebacks MUST be delivered in order or it will
1668 * completely screw up our bookeeping.
1670 txctrl = rd32(E1000_DCA_TXCTRL(j));
1671 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1672 wr32(E1000_DCA_TXCTRL(j), txctrl);
1677 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1679 /* Program the Transmit Control Register */
1681 tctl = rd32(E1000_TCTL);
1682 tctl &= ~E1000_TCTL_CT;
1683 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1684 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1686 igb_config_collision_dist(hw);
1688 /* Setup Transmit Descriptor Settings for eop descriptor */
1689 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1691 /* Enable transmits */
1692 tctl |= E1000_TCTL_EN;
1694 wr32(E1000_TCTL, tctl);
1698 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1699 * @adapter: board private structure
1700 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1702 * Returns 0 on success, negative on failure
1705 int igb_setup_rx_resources(struct igb_adapter *adapter,
1706 struct igb_ring *rx_ring)
1708 struct pci_dev *pdev = adapter->pdev;
1711 size = sizeof(struct igb_buffer) * rx_ring->count;
1712 rx_ring->buffer_info = vmalloc(size);
1713 if (!rx_ring->buffer_info)
1715 memset(rx_ring->buffer_info, 0, size);
1717 desc_len = sizeof(union e1000_adv_rx_desc);
1719 /* Round up to nearest 4K */
1720 rx_ring->size = rx_ring->count * desc_len;
1721 rx_ring->size = ALIGN(rx_ring->size, 4096);
1723 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1729 rx_ring->next_to_clean = 0;
1730 rx_ring->next_to_use = 0;
1732 rx_ring->adapter = adapter;
1737 vfree(rx_ring->buffer_info);
1738 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1739 "the receive descriptor ring\n");
1744 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1745 * (Descriptors) for all queues
1746 * @adapter: board private structure
1748 * Return 0 on success, negative on failure
1750 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1754 for (i = 0; i < adapter->num_rx_queues; i++) {
1755 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1757 dev_err(&adapter->pdev->dev,
1758 "Allocation for Rx Queue %u failed\n", i);
1759 for (i--; i >= 0; i--)
1760 igb_free_rx_resources(&adapter->rx_ring[i]);
1769 * igb_setup_rctl - configure the receive control registers
1770 * @adapter: Board private structure
1772 static void igb_setup_rctl(struct igb_adapter *adapter)
1774 struct e1000_hw *hw = &adapter->hw;
1779 rctl = rd32(E1000_RCTL);
1781 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1782 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1784 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1785 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1788 * enable stripping of CRC. It's unlikely this will break BMC
1789 * redirection as it did with e1000. Newer features require
1790 * that the HW strips the CRC.
1792 rctl |= E1000_RCTL_SECRC;
1795 * disable store bad packets and clear size bits.
1797 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1799 /* enable LPE when to prevent packets larger than max_frame_size */
1800 rctl |= E1000_RCTL_LPE;
1802 /* Setup buffer sizes */
1803 switch (adapter->rx_buffer_len) {
1804 case IGB_RXBUFFER_256:
1805 rctl |= E1000_RCTL_SZ_256;
1807 case IGB_RXBUFFER_512:
1808 rctl |= E1000_RCTL_SZ_512;
1811 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1812 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1816 /* 82575 and greater support packet-split where the protocol
1817 * header is placed in skb->data and the packet data is
1818 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1819 * In the case of a non-split, skb->data is linearly filled,
1820 * followed by the page buffers. Therefore, skb->data is
1821 * sized to hold the largest protocol header.
1823 /* allocations using alloc_page take too long for regular MTU
1824 * so only enable packet split for jumbo frames */
1825 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1826 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1827 srrctl |= adapter->rx_ps_hdr_size <<
1828 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1829 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1831 adapter->rx_ps_hdr_size = 0;
1832 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1835 for (i = 0; i < adapter->num_rx_queues; i++) {
1836 j = adapter->rx_ring[i].reg_idx;
1837 wr32(E1000_SRRCTL(j), srrctl);
1840 wr32(E1000_RCTL, rctl);
1844 * igb_configure_rx - Configure receive Unit after Reset
1845 * @adapter: board private structure
1847 * Configure the Rx unit of the MAC after a reset.
1849 static void igb_configure_rx(struct igb_adapter *adapter)
1852 struct e1000_hw *hw = &adapter->hw;
1857 /* disable receives while setting up the descriptors */
1858 rctl = rd32(E1000_RCTL);
1859 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1863 if (adapter->itr_setting > 3)
1864 wr32(E1000_ITR, adapter->itr);
1866 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1867 * the Base and Length of the Rx Descriptor Ring */
1868 for (i = 0; i < adapter->num_rx_queues; i++) {
1869 struct igb_ring *ring = &(adapter->rx_ring[i]);
1872 wr32(E1000_RDBAL(j),
1873 rdba & 0x00000000ffffffffULL);
1874 wr32(E1000_RDBAH(j), rdba >> 32);
1875 wr32(E1000_RDLEN(j),
1876 ring->count * sizeof(union e1000_adv_rx_desc));
1878 ring->head = E1000_RDH(j);
1879 ring->tail = E1000_RDT(j);
1880 writel(0, hw->hw_addr + ring->tail);
1881 writel(0, hw->hw_addr + ring->head);
1883 rxdctl = rd32(E1000_RXDCTL(j));
1884 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1885 rxdctl &= 0xFFF00000;
1886 rxdctl |= IGB_RX_PTHRESH;
1887 rxdctl |= IGB_RX_HTHRESH << 8;
1888 rxdctl |= IGB_RX_WTHRESH << 16;
1889 wr32(E1000_RXDCTL(j), rxdctl);
1892 if (adapter->num_rx_queues > 1) {
1901 get_random_bytes(&random[0], 40);
1903 if (hw->mac.type >= e1000_82576)
1907 for (j = 0; j < (32 * 4); j++) {
1909 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1912 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1914 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1916 /* Fill out hash function seeds */
1917 for (j = 0; j < 10; j++)
1918 array_wr32(E1000_RSSRK(0), j, random[j]);
1920 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1921 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1922 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1923 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1924 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1925 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1926 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1927 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1930 wr32(E1000_MRQC, mrqc);
1932 /* Multiqueue and raw packet checksumming are mutually
1933 * exclusive. Note that this not the same as TCP/IP
1934 * checksumming, which works fine. */
1935 rxcsum = rd32(E1000_RXCSUM);
1936 rxcsum |= E1000_RXCSUM_PCSD;
1937 wr32(E1000_RXCSUM, rxcsum);
1939 /* Enable Receive Checksum Offload for TCP and UDP */
1940 rxcsum = rd32(E1000_RXCSUM);
1941 if (adapter->rx_csum) {
1942 rxcsum |= E1000_RXCSUM_TUOFL;
1944 /* Enable IPv4 payload checksum for UDP fragments
1945 * Must be used in conjunction with packet-split. */
1946 if (adapter->rx_ps_hdr_size)
1947 rxcsum |= E1000_RXCSUM_IPPCSE;
1949 rxcsum &= ~E1000_RXCSUM_TUOFL;
1950 /* don't need to clear IPPCSE as it defaults to 0 */
1952 wr32(E1000_RXCSUM, rxcsum);
1957 adapter->max_frame_size + VLAN_TAG_SIZE);
1959 wr32(E1000_RLPML, adapter->max_frame_size);
1961 /* Enable Receives */
1962 wr32(E1000_RCTL, rctl);
1966 * igb_free_tx_resources - Free Tx Resources per Queue
1967 * @tx_ring: Tx descriptor ring for a specific queue
1969 * Free all transmit software resources
1971 void igb_free_tx_resources(struct igb_ring *tx_ring)
1973 struct pci_dev *pdev = tx_ring->adapter->pdev;
1975 igb_clean_tx_ring(tx_ring);
1977 vfree(tx_ring->buffer_info);
1978 tx_ring->buffer_info = NULL;
1980 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1982 tx_ring->desc = NULL;
1986 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1987 * @adapter: board private structure
1989 * Free all transmit software resources
1991 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1995 for (i = 0; i < adapter->num_tx_queues; i++)
1996 igb_free_tx_resources(&adapter->tx_ring[i]);
1999 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2000 struct igb_buffer *buffer_info)
2002 if (buffer_info->dma) {
2003 pci_unmap_page(adapter->pdev,
2005 buffer_info->length,
2007 buffer_info->dma = 0;
2009 if (buffer_info->skb) {
2010 dev_kfree_skb_any(buffer_info->skb);
2011 buffer_info->skb = NULL;
2013 buffer_info->time_stamp = 0;
2014 /* buffer_info must be completely set up in the transmit path */
2018 * igb_clean_tx_ring - Free Tx Buffers
2019 * @tx_ring: ring to be cleaned
2021 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2023 struct igb_adapter *adapter = tx_ring->adapter;
2024 struct igb_buffer *buffer_info;
2028 if (!tx_ring->buffer_info)
2030 /* Free all the Tx ring sk_buffs */
2032 for (i = 0; i < tx_ring->count; i++) {
2033 buffer_info = &tx_ring->buffer_info[i];
2034 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2037 size = sizeof(struct igb_buffer) * tx_ring->count;
2038 memset(tx_ring->buffer_info, 0, size);
2040 /* Zero out the descriptor ring */
2042 memset(tx_ring->desc, 0, tx_ring->size);
2044 tx_ring->next_to_use = 0;
2045 tx_ring->next_to_clean = 0;
2047 writel(0, adapter->hw.hw_addr + tx_ring->head);
2048 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2052 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2053 * @adapter: board private structure
2055 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2059 for (i = 0; i < adapter->num_tx_queues; i++)
2060 igb_clean_tx_ring(&adapter->tx_ring[i]);
2064 * igb_free_rx_resources - Free Rx Resources
2065 * @rx_ring: ring to clean the resources from
2067 * Free all receive software resources
2069 void igb_free_rx_resources(struct igb_ring *rx_ring)
2071 struct pci_dev *pdev = rx_ring->adapter->pdev;
2073 igb_clean_rx_ring(rx_ring);
2075 vfree(rx_ring->buffer_info);
2076 rx_ring->buffer_info = NULL;
2078 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2080 rx_ring->desc = NULL;
2084 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2085 * @adapter: board private structure
2087 * Free all receive software resources
2089 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2093 for (i = 0; i < adapter->num_rx_queues; i++)
2094 igb_free_rx_resources(&adapter->rx_ring[i]);
2098 * igb_clean_rx_ring - Free Rx Buffers per Queue
2099 * @rx_ring: ring to free buffers from
2101 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2103 struct igb_adapter *adapter = rx_ring->adapter;
2104 struct igb_buffer *buffer_info;
2105 struct pci_dev *pdev = adapter->pdev;
2109 if (!rx_ring->buffer_info)
2111 /* Free all the Rx ring sk_buffs */
2112 for (i = 0; i < rx_ring->count; i++) {
2113 buffer_info = &rx_ring->buffer_info[i];
2114 if (buffer_info->dma) {
2115 if (adapter->rx_ps_hdr_size)
2116 pci_unmap_single(pdev, buffer_info->dma,
2117 adapter->rx_ps_hdr_size,
2118 PCI_DMA_FROMDEVICE);
2120 pci_unmap_single(pdev, buffer_info->dma,
2121 adapter->rx_buffer_len,
2122 PCI_DMA_FROMDEVICE);
2123 buffer_info->dma = 0;
2126 if (buffer_info->skb) {
2127 dev_kfree_skb(buffer_info->skb);
2128 buffer_info->skb = NULL;
2130 if (buffer_info->page) {
2131 if (buffer_info->page_dma)
2132 pci_unmap_page(pdev, buffer_info->page_dma,
2134 PCI_DMA_FROMDEVICE);
2135 put_page(buffer_info->page);
2136 buffer_info->page = NULL;
2137 buffer_info->page_dma = 0;
2138 buffer_info->page_offset = 0;
2142 size = sizeof(struct igb_buffer) * rx_ring->count;
2143 memset(rx_ring->buffer_info, 0, size);
2145 /* Zero out the descriptor ring */
2146 memset(rx_ring->desc, 0, rx_ring->size);
2148 rx_ring->next_to_clean = 0;
2149 rx_ring->next_to_use = 0;
2151 writel(0, adapter->hw.hw_addr + rx_ring->head);
2152 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2156 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2157 * @adapter: board private structure
2159 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2163 for (i = 0; i < adapter->num_rx_queues; i++)
2164 igb_clean_rx_ring(&adapter->rx_ring[i]);
2168 * igb_set_mac - Change the Ethernet Address of the NIC
2169 * @netdev: network interface device structure
2170 * @p: pointer to an address structure
2172 * Returns 0 on success, negative on failure
2174 static int igb_set_mac(struct net_device *netdev, void *p)
2176 struct igb_adapter *adapter = netdev_priv(netdev);
2177 struct e1000_hw *hw = &adapter->hw;
2178 struct sockaddr *addr = p;
2180 if (!is_valid_ether_addr(addr->sa_data))
2181 return -EADDRNOTAVAIL;
2183 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2184 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2186 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2192 * igb_set_multi - Multicast and Promiscuous mode set
2193 * @netdev: network interface device structure
2195 * The set_multi entry point is called whenever the multicast address
2196 * list or the network interface flags are updated. This routine is
2197 * responsible for configuring the hardware for proper multicast,
2198 * promiscuous mode, and all-multi behavior.
2200 static void igb_set_multi(struct net_device *netdev)
2202 struct igb_adapter *adapter = netdev_priv(netdev);
2203 struct e1000_hw *hw = &adapter->hw;
2204 struct e1000_mac_info *mac = &hw->mac;
2205 struct dev_mc_list *mc_ptr;
2210 /* Check for Promiscuous and All Multicast modes */
2212 rctl = rd32(E1000_RCTL);
2214 if (netdev->flags & IFF_PROMISC) {
2215 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2216 rctl &= ~E1000_RCTL_VFE;
2218 if (netdev->flags & IFF_ALLMULTI) {
2219 rctl |= E1000_RCTL_MPE;
2220 rctl &= ~E1000_RCTL_UPE;
2222 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2223 rctl |= E1000_RCTL_VFE;
2225 wr32(E1000_RCTL, rctl);
2227 if (!netdev->mc_count) {
2228 /* nothing to program, so clear mc list */
2229 igb_update_mc_addr_list(hw, NULL, 0, 1,
2230 mac->rar_entry_count);
2234 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2238 /* The shared function expects a packed array of only addresses. */
2239 mc_ptr = netdev->mc_list;
2241 for (i = 0; i < netdev->mc_count; i++) {
2244 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2245 mc_ptr = mc_ptr->next;
2247 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2251 /* Need to wait a few seconds after link up to get diagnostic information from
2253 static void igb_update_phy_info(unsigned long data)
2255 struct igb_adapter *adapter = (struct igb_adapter *) data;
2256 igb_get_phy_info(&adapter->hw);
2260 * igb_has_link - check shared code for link and determine up/down
2261 * @adapter: pointer to driver private info
2263 static bool igb_has_link(struct igb_adapter *adapter)
2265 struct e1000_hw *hw = &adapter->hw;
2266 bool link_active = false;
2269 /* get_link_status is set on LSC (link status) interrupt or
2270 * rx sequence error interrupt. get_link_status will stay
2271 * false until the e1000_check_for_link establishes link
2272 * for copper adapters ONLY
2274 switch (hw->phy.media_type) {
2275 case e1000_media_type_copper:
2276 if (hw->mac.get_link_status) {
2277 ret_val = hw->mac.ops.check_for_link(hw);
2278 link_active = !hw->mac.get_link_status;
2283 case e1000_media_type_fiber:
2284 ret_val = hw->mac.ops.check_for_link(hw);
2285 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2287 case e1000_media_type_internal_serdes:
2288 ret_val = hw->mac.ops.check_for_link(hw);
2289 link_active = hw->mac.serdes_has_link;
2292 case e1000_media_type_unknown:
2300 * igb_watchdog - Timer Call-back
2301 * @data: pointer to adapter cast into an unsigned long
2303 static void igb_watchdog(unsigned long data)
2305 struct igb_adapter *adapter = (struct igb_adapter *)data;
2306 /* Do the rest outside of interrupt context */
2307 schedule_work(&adapter->watchdog_task);
2310 static void igb_watchdog_task(struct work_struct *work)
2312 struct igb_adapter *adapter = container_of(work,
2313 struct igb_adapter, watchdog_task);
2314 struct e1000_hw *hw = &adapter->hw;
2315 struct net_device *netdev = adapter->netdev;
2316 struct igb_ring *tx_ring = adapter->tx_ring;
2321 link = igb_has_link(adapter);
2322 if ((netif_carrier_ok(netdev)) && link)
2326 if (!netif_carrier_ok(netdev)) {
2328 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2329 &adapter->link_speed,
2330 &adapter->link_duplex);
2332 ctrl = rd32(E1000_CTRL);
2333 /* Links status message must follow this format */
2334 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2335 "Flow Control: %s\n",
2337 adapter->link_speed,
2338 adapter->link_duplex == FULL_DUPLEX ?
2339 "Full Duplex" : "Half Duplex",
2340 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2341 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2342 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2343 E1000_CTRL_TFCE) ? "TX" : "None")));
2345 /* tweak tx_queue_len according to speed/duplex and
2346 * adjust the timeout factor */
2347 netdev->tx_queue_len = adapter->tx_queue_len;
2348 adapter->tx_timeout_factor = 1;
2349 switch (adapter->link_speed) {
2351 netdev->tx_queue_len = 10;
2352 adapter->tx_timeout_factor = 14;
2355 netdev->tx_queue_len = 100;
2356 /* maybe add some timeout factor ? */
2360 netif_carrier_on(netdev);
2361 netif_tx_wake_all_queues(netdev);
2363 /* link state has changed, schedule phy info update */
2364 if (!test_bit(__IGB_DOWN, &adapter->state))
2365 mod_timer(&adapter->phy_info_timer,
2366 round_jiffies(jiffies + 2 * HZ));
2369 if (netif_carrier_ok(netdev)) {
2370 adapter->link_speed = 0;
2371 adapter->link_duplex = 0;
2372 /* Links status message must follow this format */
2373 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2375 netif_carrier_off(netdev);
2376 netif_tx_stop_all_queues(netdev);
2378 /* link state has changed, schedule phy info update */
2379 if (!test_bit(__IGB_DOWN, &adapter->state))
2380 mod_timer(&adapter->phy_info_timer,
2381 round_jiffies(jiffies + 2 * HZ));
2386 igb_update_stats(adapter);
2388 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2389 adapter->tpt_old = adapter->stats.tpt;
2390 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2391 adapter->colc_old = adapter->stats.colc;
2393 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2394 adapter->gorc_old = adapter->stats.gorc;
2395 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2396 adapter->gotc_old = adapter->stats.gotc;
2398 igb_update_adaptive(&adapter->hw);
2400 if (!netif_carrier_ok(netdev)) {
2401 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2402 /* We've lost link, so the controller stops DMA,
2403 * but we've got queued Tx work that's never going
2404 * to get done, so reset controller to flush Tx.
2405 * (Do the reset outside of interrupt context). */
2406 adapter->tx_timeout_count++;
2407 schedule_work(&adapter->reset_task);
2411 /* Cause software interrupt to ensure rx ring is cleaned */
2412 if (adapter->msix_entries) {
2413 for (i = 0; i < adapter->num_rx_queues; i++)
2414 eics |= adapter->rx_ring[i].eims_value;
2415 wr32(E1000_EICS, eics);
2417 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2420 /* Force detection of hung controller every watchdog period */
2421 tx_ring->detect_tx_hung = true;
2423 /* Reset the timer */
2424 if (!test_bit(__IGB_DOWN, &adapter->state))
2425 mod_timer(&adapter->watchdog_timer,
2426 round_jiffies(jiffies + 2 * HZ));
2429 enum latency_range {
2433 latency_invalid = 255
2438 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2440 * Stores a new ITR value based on strictly on packet size. This
2441 * algorithm is less sophisticated than that used in igb_update_itr,
2442 * due to the difficulty of synchronizing statistics across multiple
2443 * receive rings. The divisors and thresholds used by this fuction
2444 * were determined based on theoretical maximum wire speed and testing
2445 * data, in order to minimize response time while increasing bulk
2447 * This functionality is controlled by the InterruptThrottleRate module
2448 * parameter (see igb_param.c)
2449 * NOTE: This function is called only when operating in a multiqueue
2450 * receive environment.
2451 * @rx_ring: pointer to ring
2453 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2455 int new_val = rx_ring->itr_val;
2456 int avg_wire_size = 0;
2457 struct igb_adapter *adapter = rx_ring->adapter;
2459 if (!rx_ring->total_packets)
2460 goto clear_counts; /* no packets, so don't do anything */
2462 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2463 * ints/sec - ITR timer value of 120 ticks.
2465 if (adapter->link_speed != SPEED_1000) {
2469 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2471 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2472 avg_wire_size += 24;
2474 /* Don't starve jumbo frames */
2475 avg_wire_size = min(avg_wire_size, 3000);
2477 /* Give a little boost to mid-size frames */
2478 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2479 new_val = avg_wire_size / 3;
2481 new_val = avg_wire_size / 2;
2484 if (new_val != rx_ring->itr_val) {
2485 rx_ring->itr_val = new_val;
2486 rx_ring->set_itr = 1;
2489 rx_ring->total_bytes = 0;
2490 rx_ring->total_packets = 0;
2494 * igb_update_itr - update the dynamic ITR value based on statistics
2495 * Stores a new ITR value based on packets and byte
2496 * counts during the last interrupt. The advantage of per interrupt
2497 * computation is faster updates and more accurate ITR for the current
2498 * traffic pattern. Constants in this function were computed
2499 * based on theoretical maximum wire speed and thresholds were set based
2500 * on testing data as well as attempting to minimize response time
2501 * while increasing bulk throughput.
2502 * this functionality is controlled by the InterruptThrottleRate module
2503 * parameter (see igb_param.c)
2504 * NOTE: These calculations are only valid when operating in a single-
2505 * queue environment.
2506 * @adapter: pointer to adapter
2507 * @itr_setting: current adapter->itr
2508 * @packets: the number of packets during this measurement interval
2509 * @bytes: the number of bytes during this measurement interval
2511 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2512 int packets, int bytes)
2514 unsigned int retval = itr_setting;
2517 goto update_itr_done;
2519 switch (itr_setting) {
2520 case lowest_latency:
2521 /* handle TSO and jumbo frames */
2522 if (bytes/packets > 8000)
2523 retval = bulk_latency;
2524 else if ((packets < 5) && (bytes > 512))
2525 retval = low_latency;
2527 case low_latency: /* 50 usec aka 20000 ints/s */
2528 if (bytes > 10000) {
2529 /* this if handles the TSO accounting */
2530 if (bytes/packets > 8000) {
2531 retval = bulk_latency;
2532 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2533 retval = bulk_latency;
2534 } else if ((packets > 35)) {
2535 retval = lowest_latency;
2537 } else if (bytes/packets > 2000) {
2538 retval = bulk_latency;
2539 } else if (packets <= 2 && bytes < 512) {
2540 retval = lowest_latency;
2543 case bulk_latency: /* 250 usec aka 4000 ints/s */
2544 if (bytes > 25000) {
2546 retval = low_latency;
2547 } else if (bytes < 6000) {
2548 retval = low_latency;
2557 static void igb_set_itr(struct igb_adapter *adapter)
2560 u32 new_itr = adapter->itr;
2562 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2563 if (adapter->link_speed != SPEED_1000) {
2569 adapter->rx_itr = igb_update_itr(adapter,
2571 adapter->rx_ring->total_packets,
2572 adapter->rx_ring->total_bytes);
2574 if (adapter->rx_ring->buddy) {
2575 adapter->tx_itr = igb_update_itr(adapter,
2577 adapter->tx_ring->total_packets,
2578 adapter->tx_ring->total_bytes);
2580 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2582 current_itr = adapter->rx_itr;
2585 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2586 if (adapter->itr_setting == 3 &&
2587 current_itr == lowest_latency)
2588 current_itr = low_latency;
2590 switch (current_itr) {
2591 /* counts and packets in update_itr are dependent on these numbers */
2592 case lowest_latency:
2596 new_itr = 20000; /* aka hwitr = ~200 */
2606 adapter->rx_ring->total_bytes = 0;
2607 adapter->rx_ring->total_packets = 0;
2608 if (adapter->rx_ring->buddy) {
2609 adapter->rx_ring->buddy->total_bytes = 0;
2610 adapter->rx_ring->buddy->total_packets = 0;
2613 if (new_itr != adapter->itr) {
2614 /* this attempts to bias the interrupt rate towards Bulk
2615 * by adding intermediate steps when interrupt rate is
2617 new_itr = new_itr > adapter->itr ?
2618 min(adapter->itr + (new_itr >> 2), new_itr) :
2620 /* Don't write the value here; it resets the adapter's
2621 * internal timer, and causes us to delay far longer than
2622 * we should between interrupts. Instead, we write the ITR
2623 * value at the beginning of the next interrupt so the timing
2624 * ends up being correct.
2626 adapter->itr = new_itr;
2627 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2628 adapter->rx_ring->set_itr = 1;
2635 #define IGB_TX_FLAGS_CSUM 0x00000001
2636 #define IGB_TX_FLAGS_VLAN 0x00000002
2637 #define IGB_TX_FLAGS_TSO 0x00000004
2638 #define IGB_TX_FLAGS_IPV4 0x00000008
2639 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2640 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2642 static inline int igb_tso_adv(struct igb_adapter *adapter,
2643 struct igb_ring *tx_ring,
2644 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2646 struct e1000_adv_tx_context_desc *context_desc;
2649 struct igb_buffer *buffer_info;
2650 u32 info = 0, tu_cmd = 0;
2651 u32 mss_l4len_idx, l4len;
2654 if (skb_header_cloned(skb)) {
2655 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2660 l4len = tcp_hdrlen(skb);
2663 if (skb->protocol == htons(ETH_P_IP)) {
2664 struct iphdr *iph = ip_hdr(skb);
2667 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2671 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2672 ipv6_hdr(skb)->payload_len = 0;
2673 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2674 &ipv6_hdr(skb)->daddr,
2678 i = tx_ring->next_to_use;
2680 buffer_info = &tx_ring->buffer_info[i];
2681 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2682 /* VLAN MACLEN IPLEN */
2683 if (tx_flags & IGB_TX_FLAGS_VLAN)
2684 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2685 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2686 *hdr_len += skb_network_offset(skb);
2687 info |= skb_network_header_len(skb);
2688 *hdr_len += skb_network_header_len(skb);
2689 context_desc->vlan_macip_lens = cpu_to_le32(info);
2691 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2692 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2694 if (skb->protocol == htons(ETH_P_IP))
2695 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2696 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2698 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2701 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2702 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2704 /* Context index must be unique per ring. */
2705 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2706 mss_l4len_idx |= tx_ring->queue_index << 4;
2708 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2709 context_desc->seqnum_seed = 0;
2711 buffer_info->time_stamp = jiffies;
2712 buffer_info->next_to_watch = i;
2713 buffer_info->dma = 0;
2715 if (i == tx_ring->count)
2718 tx_ring->next_to_use = i;
2723 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2724 struct igb_ring *tx_ring,
2725 struct sk_buff *skb, u32 tx_flags)
2727 struct e1000_adv_tx_context_desc *context_desc;
2729 struct igb_buffer *buffer_info;
2730 u32 info = 0, tu_cmd = 0;
2732 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2733 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2734 i = tx_ring->next_to_use;
2735 buffer_info = &tx_ring->buffer_info[i];
2736 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2738 if (tx_flags & IGB_TX_FLAGS_VLAN)
2739 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2740 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2741 if (skb->ip_summed == CHECKSUM_PARTIAL)
2742 info |= skb_network_header_len(skb);
2744 context_desc->vlan_macip_lens = cpu_to_le32(info);
2746 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2748 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2749 switch (skb->protocol) {
2750 case cpu_to_be16(ETH_P_IP):
2751 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2752 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2753 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2755 case cpu_to_be16(ETH_P_IPV6):
2756 /* XXX what about other V6 headers?? */
2757 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2758 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2761 if (unlikely(net_ratelimit()))
2762 dev_warn(&adapter->pdev->dev,
2763 "partial checksum but proto=%x!\n",
2769 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2770 context_desc->seqnum_seed = 0;
2771 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2772 context_desc->mss_l4len_idx =
2773 cpu_to_le32(tx_ring->queue_index << 4);
2775 buffer_info->time_stamp = jiffies;
2776 buffer_info->next_to_watch = i;
2777 buffer_info->dma = 0;
2780 if (i == tx_ring->count)
2782 tx_ring->next_to_use = i;
2791 #define IGB_MAX_TXD_PWR 16
2792 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2794 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2795 struct igb_ring *tx_ring, struct sk_buff *skb,
2798 struct igb_buffer *buffer_info;
2799 unsigned int len = skb_headlen(skb);
2800 unsigned int count = 0, i;
2803 i = tx_ring->next_to_use;
2805 buffer_info = &tx_ring->buffer_info[i];
2806 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2807 buffer_info->length = len;
2808 /* set time_stamp *before* dma to help avoid a possible race */
2809 buffer_info->time_stamp = jiffies;
2810 buffer_info->next_to_watch = i;
2811 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2815 if (i == tx_ring->count)
2818 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2819 struct skb_frag_struct *frag;
2821 frag = &skb_shinfo(skb)->frags[f];
2824 buffer_info = &tx_ring->buffer_info[i];
2825 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2826 buffer_info->length = len;
2827 buffer_info->time_stamp = jiffies;
2828 buffer_info->next_to_watch = i;
2829 buffer_info->dma = pci_map_page(adapter->pdev,
2837 if (i == tx_ring->count)
2841 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2842 tx_ring->buffer_info[i].skb = skb;
2843 tx_ring->buffer_info[first].next_to_watch = i;
2848 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2849 struct igb_ring *tx_ring,
2850 int tx_flags, int count, u32 paylen,
2853 union e1000_adv_tx_desc *tx_desc = NULL;
2854 struct igb_buffer *buffer_info;
2855 u32 olinfo_status = 0, cmd_type_len;
2858 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2859 E1000_ADVTXD_DCMD_DEXT);
2861 if (tx_flags & IGB_TX_FLAGS_VLAN)
2862 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2864 if (tx_flags & IGB_TX_FLAGS_TSO) {
2865 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2867 /* insert tcp checksum */
2868 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2870 /* insert ip checksum */
2871 if (tx_flags & IGB_TX_FLAGS_IPV4)
2872 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2874 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2875 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2878 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2879 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2880 IGB_TX_FLAGS_VLAN)))
2881 olinfo_status |= tx_ring->queue_index << 4;
2883 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2885 i = tx_ring->next_to_use;
2887 buffer_info = &tx_ring->buffer_info[i];
2888 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2889 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2890 tx_desc->read.cmd_type_len =
2891 cpu_to_le32(cmd_type_len | buffer_info->length);
2892 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2894 if (i == tx_ring->count)
2898 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2899 /* Force memory writes to complete before letting h/w
2900 * know there are new descriptors to fetch. (Only
2901 * applicable for weak-ordered memory model archs,
2902 * such as IA-64). */
2905 tx_ring->next_to_use = i;
2906 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2907 /* we need this if more than one processor can write to our tail
2908 * at a time, it syncronizes IO on IA64/Altix systems */
2912 static int __igb_maybe_stop_tx(struct net_device *netdev,
2913 struct igb_ring *tx_ring, int size)
2915 struct igb_adapter *adapter = netdev_priv(netdev);
2917 netif_stop_subqueue(netdev, tx_ring->queue_index);
2919 /* Herbert's original patch had:
2920 * smp_mb__after_netif_stop_queue();
2921 * but since that doesn't exist yet, just open code it. */
2924 /* We need to check again in a case another CPU has just
2925 * made room available. */
2926 if (IGB_DESC_UNUSED(tx_ring) < size)
2930 netif_wake_subqueue(netdev, tx_ring->queue_index);
2931 ++adapter->restart_queue;
2935 static int igb_maybe_stop_tx(struct net_device *netdev,
2936 struct igb_ring *tx_ring, int size)
2938 if (IGB_DESC_UNUSED(tx_ring) >= size)
2940 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2943 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2945 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2946 struct net_device *netdev,
2947 struct igb_ring *tx_ring)
2949 struct igb_adapter *adapter = netdev_priv(netdev);
2951 unsigned int tx_flags = 0;
2956 len = skb_headlen(skb);
2958 if (test_bit(__IGB_DOWN, &adapter->state)) {
2959 dev_kfree_skb_any(skb);
2960 return NETDEV_TX_OK;
2963 if (skb->len <= 0) {
2964 dev_kfree_skb_any(skb);
2965 return NETDEV_TX_OK;
2968 /* need: 1 descriptor per page,
2969 * + 2 desc gap to keep tail from touching head,
2970 * + 1 desc for skb->data,
2971 * + 1 desc for context descriptor,
2972 * otherwise try next time */
2973 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2974 /* this is a hard error */
2975 return NETDEV_TX_BUSY;
2979 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2980 tx_flags |= IGB_TX_FLAGS_VLAN;
2981 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2984 if (skb->protocol == htons(ETH_P_IP))
2985 tx_flags |= IGB_TX_FLAGS_IPV4;
2987 first = tx_ring->next_to_use;
2989 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2993 dev_kfree_skb_any(skb);
2994 return NETDEV_TX_OK;
2998 tx_flags |= IGB_TX_FLAGS_TSO;
2999 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3000 if (skb->ip_summed == CHECKSUM_PARTIAL)
3001 tx_flags |= IGB_TX_FLAGS_CSUM;
3003 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3004 igb_tx_map_adv(adapter, tx_ring, skb, first),
3007 netdev->trans_start = jiffies;
3009 /* Make sure there is space in the ring for the next send. */
3010 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3012 return NETDEV_TX_OK;
3015 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3017 struct igb_adapter *adapter = netdev_priv(netdev);
3018 struct igb_ring *tx_ring;
3021 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3022 tx_ring = adapter->multi_tx_table[r_idx];
3024 /* This goes back to the question of how to logically map a tx queue
3025 * to a flow. Right now, performance is impacted slightly negatively
3026 * if using multiple tx queues. If the stack breaks away from a
3027 * single qdisc implementation, we can look at this again. */
3028 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3032 * igb_tx_timeout - Respond to a Tx Hang
3033 * @netdev: network interface device structure
3035 static void igb_tx_timeout(struct net_device *netdev)
3037 struct igb_adapter *adapter = netdev_priv(netdev);
3038 struct e1000_hw *hw = &adapter->hw;
3040 /* Do the reset outside of interrupt context */
3041 adapter->tx_timeout_count++;
3042 schedule_work(&adapter->reset_task);
3043 wr32(E1000_EICS, adapter->eims_enable_mask &
3044 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3047 static void igb_reset_task(struct work_struct *work)
3049 struct igb_adapter *adapter;
3050 adapter = container_of(work, struct igb_adapter, reset_task);
3052 igb_reinit_locked(adapter);
3056 * igb_get_stats - Get System Network Statistics
3057 * @netdev: network interface device structure
3059 * Returns the address of the device statistics structure.
3060 * The statistics are actually updated from the timer callback.
3062 static struct net_device_stats *
3063 igb_get_stats(struct net_device *netdev)
3065 struct igb_adapter *adapter = netdev_priv(netdev);
3067 /* only return the current stats */
3068 return &adapter->net_stats;
3072 * igb_change_mtu - Change the Maximum Transfer Unit
3073 * @netdev: network interface device structure
3074 * @new_mtu: new value for maximum frame size
3076 * Returns 0 on success, negative on failure
3078 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3080 struct igb_adapter *adapter = netdev_priv(netdev);
3081 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3083 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3084 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3085 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3089 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3090 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3091 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3095 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3097 /* igb_down has a dependency on max_frame_size */
3098 adapter->max_frame_size = max_frame;
3099 if (netif_running(netdev))
3102 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3103 * means we reserve 2 more, this pushes us to allocate from the next
3105 * i.e. RXBUFFER_2048 --> size-4096 slab
3108 if (max_frame <= IGB_RXBUFFER_256)
3109 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3110 else if (max_frame <= IGB_RXBUFFER_512)
3111 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3112 else if (max_frame <= IGB_RXBUFFER_1024)
3113 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3114 else if (max_frame <= IGB_RXBUFFER_2048)
3115 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3117 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3118 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3120 adapter->rx_buffer_len = PAGE_SIZE / 2;
3122 /* adjust allocation if LPE protects us, and we aren't using SBP */
3123 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3124 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3125 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3127 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3128 netdev->mtu, new_mtu);
3129 netdev->mtu = new_mtu;
3131 if (netif_running(netdev))
3136 clear_bit(__IGB_RESETTING, &adapter->state);
3142 * igb_update_stats - Update the board statistics counters
3143 * @adapter: board private structure
3146 void igb_update_stats(struct igb_adapter *adapter)
3148 struct e1000_hw *hw = &adapter->hw;
3149 struct pci_dev *pdev = adapter->pdev;
3152 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3155 * Prevent stats update while adapter is being reset, or if the pci
3156 * connection is down.
3158 if (adapter->link_speed == 0)
3160 if (pci_channel_offline(pdev))
3163 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3164 adapter->stats.gprc += rd32(E1000_GPRC);
3165 adapter->stats.gorc += rd32(E1000_GORCL);
3166 rd32(E1000_GORCH); /* clear GORCL */
3167 adapter->stats.bprc += rd32(E1000_BPRC);
3168 adapter->stats.mprc += rd32(E1000_MPRC);
3169 adapter->stats.roc += rd32(E1000_ROC);
3171 adapter->stats.prc64 += rd32(E1000_PRC64);
3172 adapter->stats.prc127 += rd32(E1000_PRC127);
3173 adapter->stats.prc255 += rd32(E1000_PRC255);
3174 adapter->stats.prc511 += rd32(E1000_PRC511);
3175 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3176 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3177 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3178 adapter->stats.sec += rd32(E1000_SEC);
3180 adapter->stats.mpc += rd32(E1000_MPC);
3181 adapter->stats.scc += rd32(E1000_SCC);
3182 adapter->stats.ecol += rd32(E1000_ECOL);
3183 adapter->stats.mcc += rd32(E1000_MCC);
3184 adapter->stats.latecol += rd32(E1000_LATECOL);
3185 adapter->stats.dc += rd32(E1000_DC);
3186 adapter->stats.rlec += rd32(E1000_RLEC);
3187 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3188 adapter->stats.xontxc += rd32(E1000_XONTXC);
3189 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3190 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3191 adapter->stats.fcruc += rd32(E1000_FCRUC);
3192 adapter->stats.gptc += rd32(E1000_GPTC);
3193 adapter->stats.gotc += rd32(E1000_GOTCL);
3194 rd32(E1000_GOTCH); /* clear GOTCL */
3195 adapter->stats.rnbc += rd32(E1000_RNBC);
3196 adapter->stats.ruc += rd32(E1000_RUC);
3197 adapter->stats.rfc += rd32(E1000_RFC);
3198 adapter->stats.rjc += rd32(E1000_RJC);
3199 adapter->stats.tor += rd32(E1000_TORH);
3200 adapter->stats.tot += rd32(E1000_TOTH);
3201 adapter->stats.tpr += rd32(E1000_TPR);
3203 adapter->stats.ptc64 += rd32(E1000_PTC64);
3204 adapter->stats.ptc127 += rd32(E1000_PTC127);
3205 adapter->stats.ptc255 += rd32(E1000_PTC255);
3206 adapter->stats.ptc511 += rd32(E1000_PTC511);
3207 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3208 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3210 adapter->stats.mptc += rd32(E1000_MPTC);
3211 adapter->stats.bptc += rd32(E1000_BPTC);
3213 /* used for adaptive IFS */
3215 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3216 adapter->stats.tpt += hw->mac.tx_packet_delta;
3217 hw->mac.collision_delta = rd32(E1000_COLC);
3218 adapter->stats.colc += hw->mac.collision_delta;
3220 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3221 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3222 adapter->stats.tncrs += rd32(E1000_TNCRS);
3223 adapter->stats.tsctc += rd32(E1000_TSCTC);
3224 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3226 adapter->stats.iac += rd32(E1000_IAC);
3227 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3228 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3229 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3230 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3231 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3232 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3233 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3234 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3236 /* Fill out the OS statistics structure */
3237 adapter->net_stats.multicast = adapter->stats.mprc;
3238 adapter->net_stats.collisions = adapter->stats.colc;
3242 /* RLEC on some newer hardware can be incorrect so build
3243 * our own version based on RUC and ROC */
3244 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3245 adapter->stats.crcerrs + adapter->stats.algnerrc +
3246 adapter->stats.ruc + adapter->stats.roc +
3247 adapter->stats.cexterr;
3248 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3250 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3251 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3252 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3255 adapter->net_stats.tx_errors = adapter->stats.ecol +
3256 adapter->stats.latecol;
3257 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3258 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3259 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3261 /* Tx Dropped needs to be maintained elsewhere */
3264 if (hw->phy.media_type == e1000_media_type_copper) {
3265 if ((adapter->link_speed == SPEED_1000) &&
3266 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3268 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3269 adapter->phy_stats.idle_errors += phy_tmp;
3273 /* Management Stats */
3274 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3275 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3276 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3280 static irqreturn_t igb_msix_other(int irq, void *data)
3282 struct net_device *netdev = data;
3283 struct igb_adapter *adapter = netdev_priv(netdev);
3284 struct e1000_hw *hw = &adapter->hw;
3285 u32 icr = rd32(E1000_ICR);
3287 /* reading ICR causes bit 31 of EICR to be cleared */
3289 if(icr & E1000_ICR_DOUTSYNC) {
3290 /* HW is reporting DMA is out of sync */
3291 adapter->stats.doosync++;
3293 if (!(icr & E1000_ICR_LSC))
3294 goto no_link_interrupt;
3295 hw->mac.get_link_status = 1;
3296 /* guard against interrupt when we're going down */
3297 if (!test_bit(__IGB_DOWN, &adapter->state))
3298 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3301 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3302 wr32(E1000_EIMS, adapter->eims_other);
3307 static irqreturn_t igb_msix_tx(int irq, void *data)
3309 struct igb_ring *tx_ring = data;
3310 struct igb_adapter *adapter = tx_ring->adapter;
3311 struct e1000_hw *hw = &adapter->hw;
3313 #ifdef CONFIG_IGB_DCA
3314 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3315 igb_update_tx_dca(tx_ring);
3317 tx_ring->total_bytes = 0;
3318 tx_ring->total_packets = 0;
3320 /* auto mask will automatically reenable the interrupt when we write
3322 if (!igb_clean_tx_irq(tx_ring))
3323 /* Ring was not completely cleaned, so fire another interrupt */
3324 wr32(E1000_EICS, tx_ring->eims_value);
3326 wr32(E1000_EIMS, tx_ring->eims_value);
3331 static void igb_write_itr(struct igb_ring *ring)
3333 struct e1000_hw *hw = &ring->adapter->hw;
3334 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3335 switch (hw->mac.type) {
3337 wr32(ring->itr_register,
3342 wr32(ring->itr_register,
3344 (ring->itr_val << 16));
3351 static irqreturn_t igb_msix_rx(int irq, void *data)
3353 struct igb_ring *rx_ring = data;
3355 /* Write the ITR value calculated at the end of the
3356 * previous interrupt.
3359 igb_write_itr(rx_ring);
3361 if (napi_schedule_prep(&rx_ring->napi))
3362 __napi_schedule(&rx_ring->napi);
3364 #ifdef CONFIG_IGB_DCA
3365 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3366 igb_update_rx_dca(rx_ring);
3371 #ifdef CONFIG_IGB_DCA
3372 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3375 struct igb_adapter *adapter = rx_ring->adapter;
3376 struct e1000_hw *hw = &adapter->hw;
3377 int cpu = get_cpu();
3378 int q = rx_ring->reg_idx;
3380 if (rx_ring->cpu != cpu) {
3381 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3382 if (hw->mac.type == e1000_82576) {
3383 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3384 dca_rxctrl |= dca_get_tag(cpu) <<
3385 E1000_DCA_RXCTRL_CPUID_SHIFT;
3387 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3388 dca_rxctrl |= dca_get_tag(cpu);
3390 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3391 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3392 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3393 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3399 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3402 struct igb_adapter *adapter = tx_ring->adapter;
3403 struct e1000_hw *hw = &adapter->hw;
3404 int cpu = get_cpu();
3405 int q = tx_ring->reg_idx;
3407 if (tx_ring->cpu != cpu) {
3408 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3409 if (hw->mac.type == e1000_82576) {
3410 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3411 dca_txctrl |= dca_get_tag(cpu) <<
3412 E1000_DCA_TXCTRL_CPUID_SHIFT;
3414 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3415 dca_txctrl |= dca_get_tag(cpu);
3417 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3418 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3424 static void igb_setup_dca(struct igb_adapter *adapter)
3428 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3431 for (i = 0; i < adapter->num_tx_queues; i++) {
3432 adapter->tx_ring[i].cpu = -1;
3433 igb_update_tx_dca(&adapter->tx_ring[i]);
3435 for (i = 0; i < adapter->num_rx_queues; i++) {
3436 adapter->rx_ring[i].cpu = -1;
3437 igb_update_rx_dca(&adapter->rx_ring[i]);
3441 static int __igb_notify_dca(struct device *dev, void *data)
3443 struct net_device *netdev = dev_get_drvdata(dev);
3444 struct igb_adapter *adapter = netdev_priv(netdev);
3445 struct e1000_hw *hw = &adapter->hw;
3446 unsigned long event = *(unsigned long *)data;
3449 case DCA_PROVIDER_ADD:
3450 /* if already enabled, don't do it again */
3451 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3453 /* Always use CB2 mode, difference is masked
3454 * in the CB driver. */
3455 wr32(E1000_DCA_CTRL, 2);
3456 if (dca_add_requester(dev) == 0) {
3457 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3458 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3459 igb_setup_dca(adapter);
3462 /* Fall Through since DCA is disabled. */
3463 case DCA_PROVIDER_REMOVE:
3464 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3465 /* without this a class_device is left
3466 * hanging around in the sysfs model */
3467 dca_remove_requester(dev);
3468 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3469 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3470 wr32(E1000_DCA_CTRL, 1);
3478 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3483 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3486 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3488 #endif /* CONFIG_IGB_DCA */
3491 * igb_intr_msi - Interrupt Handler
3492 * @irq: interrupt number
3493 * @data: pointer to a network interface device structure
3495 static irqreturn_t igb_intr_msi(int irq, void *data)
3497 struct net_device *netdev = data;
3498 struct igb_adapter *adapter = netdev_priv(netdev);
3499 struct e1000_hw *hw = &adapter->hw;
3500 /* read ICR disables interrupts using IAM */
3501 u32 icr = rd32(E1000_ICR);
3503 igb_write_itr(adapter->rx_ring);
3505 if(icr & E1000_ICR_DOUTSYNC) {
3506 /* HW is reporting DMA is out of sync */
3507 adapter->stats.doosync++;
3510 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3511 hw->mac.get_link_status = 1;
3512 if (!test_bit(__IGB_DOWN, &adapter->state))
3513 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3516 napi_schedule(&adapter->rx_ring[0].napi);
3522 * igb_intr - Legacy Interrupt Handler
3523 * @irq: interrupt number
3524 * @data: pointer to a network interface device structure
3526 static irqreturn_t igb_intr(int irq, void *data)
3528 struct net_device *netdev = data;
3529 struct igb_adapter *adapter = netdev_priv(netdev);
3530 struct e1000_hw *hw = &adapter->hw;
3531 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3532 * need for the IMC write */
3533 u32 icr = rd32(E1000_ICR);
3535 return IRQ_NONE; /* Not our interrupt */
3537 igb_write_itr(adapter->rx_ring);
3539 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3540 * not set, then the adapter didn't send an interrupt */
3541 if (!(icr & E1000_ICR_INT_ASSERTED))
3544 if(icr & E1000_ICR_DOUTSYNC) {
3545 /* HW is reporting DMA is out of sync */
3546 adapter->stats.doosync++;
3549 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3550 hw->mac.get_link_status = 1;
3551 /* guard against interrupt when we're going down */
3552 if (!test_bit(__IGB_DOWN, &adapter->state))
3553 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3556 napi_schedule(&adapter->rx_ring[0].napi);
3562 * igb_poll - NAPI Rx polling callback
3563 * @napi: napi polling structure
3564 * @budget: count of how many packets we should handle
3566 static int igb_poll(struct napi_struct *napi, int budget)
3568 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3569 struct igb_adapter *adapter = rx_ring->adapter;
3570 struct net_device *netdev = adapter->netdev;
3571 int tx_clean_complete, work_done = 0;
3573 /* this poll routine only supports one tx and one rx queue */
3574 #ifdef CONFIG_IGB_DCA
3575 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3576 igb_update_tx_dca(&adapter->tx_ring[0]);
3578 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3580 #ifdef CONFIG_IGB_DCA
3581 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3582 igb_update_rx_dca(&adapter->rx_ring[0]);
3584 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3586 /* If no Tx and not enough Rx work done, exit the polling mode */
3587 if ((tx_clean_complete && (work_done < budget)) ||
3588 !netif_running(netdev)) {
3589 if (adapter->itr_setting & 3)
3590 igb_set_itr(adapter);
3591 napi_complete(napi);
3592 if (!test_bit(__IGB_DOWN, &adapter->state))
3593 igb_irq_enable(adapter);
3600 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3602 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3603 struct igb_adapter *adapter = rx_ring->adapter;
3604 struct e1000_hw *hw = &adapter->hw;
3605 struct net_device *netdev = adapter->netdev;
3608 #ifdef CONFIG_IGB_DCA
3609 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3610 igb_update_rx_dca(rx_ring);
3612 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3615 /* If not enough Rx work done, exit the polling mode */
3616 if ((work_done == 0) || !netif_running(netdev)) {
3617 napi_complete(napi);
3619 if (adapter->itr_setting & 3) {
3620 if (adapter->num_rx_queues == 1)
3621 igb_set_itr(adapter);
3623 igb_update_ring_itr(rx_ring);
3626 if (!test_bit(__IGB_DOWN, &adapter->state))
3627 wr32(E1000_EIMS, rx_ring->eims_value);
3636 * igb_clean_tx_irq - Reclaim resources after transmit completes
3637 * @adapter: board private structure
3638 * returns true if ring is completely cleaned
3640 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3642 struct igb_adapter *adapter = tx_ring->adapter;
3643 struct net_device *netdev = adapter->netdev;
3644 struct e1000_hw *hw = &adapter->hw;
3645 struct igb_buffer *buffer_info;
3646 struct sk_buff *skb;
3647 union e1000_adv_tx_desc *tx_desc, *eop_desc;
3648 unsigned int total_bytes = 0, total_packets = 0;
3649 unsigned int i, eop, count = 0;
3650 bool cleaned = false;
3652 i = tx_ring->next_to_clean;
3653 eop = tx_ring->buffer_info[i].next_to_watch;
3654 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3656 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3657 (count < tx_ring->count)) {
3658 for (cleaned = false; !cleaned; count++) {
3659 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3660 buffer_info = &tx_ring->buffer_info[i];
3661 cleaned = (i == eop);
3662 skb = buffer_info->skb;
3665 unsigned int segs, bytecount;
3666 /* gso_segs is currently only valid for tcp */
3667 segs = skb_shinfo(skb)->gso_segs ?: 1;
3668 /* multiply data chunks by size of headers */
3669 bytecount = ((segs - 1) * skb_headlen(skb)) +
3671 total_packets += segs;
3672 total_bytes += bytecount;
3675 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3676 tx_desc->wb.status = 0;
3679 if (i == tx_ring->count)
3683 eop = tx_ring->buffer_info[i].next_to_watch;
3684 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3687 tx_ring->next_to_clean = i;
3689 if (unlikely(count &&
3690 netif_carrier_ok(netdev) &&
3691 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3692 /* Make sure that anybody stopping the queue after this
3693 * sees the new next_to_clean.
3696 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3697 !(test_bit(__IGB_DOWN, &adapter->state))) {
3698 netif_wake_subqueue(netdev, tx_ring->queue_index);
3699 ++adapter->restart_queue;
3703 if (tx_ring->detect_tx_hung) {
3704 /* Detect a transmit hang in hardware, this serializes the
3705 * check with the clearing of time_stamp and movement of i */
3706 tx_ring->detect_tx_hung = false;
3707 if (tx_ring->buffer_info[i].time_stamp &&
3708 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3709 (adapter->tx_timeout_factor * HZ))
3710 && !(rd32(E1000_STATUS) &
3711 E1000_STATUS_TXOFF)) {
3713 /* detected Tx unit hang */
3714 dev_err(&adapter->pdev->dev,
3715 "Detected Tx Unit Hang\n"
3719 " next_to_use <%x>\n"
3720 " next_to_clean <%x>\n"
3721 "buffer_info[next_to_clean]\n"
3722 " time_stamp <%lx>\n"
3723 " next_to_watch <%x>\n"
3725 " desc.status <%x>\n",
3726 tx_ring->queue_index,
3727 readl(adapter->hw.hw_addr + tx_ring->head),
3728 readl(adapter->hw.hw_addr + tx_ring->tail),
3729 tx_ring->next_to_use,
3730 tx_ring->next_to_clean,
3731 tx_ring->buffer_info[i].time_stamp,
3734 eop_desc->wb.status);
3735 netif_stop_subqueue(netdev, tx_ring->queue_index);
3738 tx_ring->total_bytes += total_bytes;
3739 tx_ring->total_packets += total_packets;
3740 tx_ring->tx_stats.bytes += total_bytes;
3741 tx_ring->tx_stats.packets += total_packets;
3742 adapter->net_stats.tx_bytes += total_bytes;
3743 adapter->net_stats.tx_packets += total_packets;
3744 return (count < tx_ring->count);
3748 * igb_receive_skb - helper function to handle rx indications
3749 * @ring: pointer to receive ring receving this packet
3750 * @status: descriptor status field as written by hardware
3751 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3752 * @skb: pointer to sk_buff to be indicated to stack
3754 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3755 union e1000_adv_rx_desc * rx_desc,
3756 struct sk_buff *skb)
3758 struct igb_adapter * adapter = ring->adapter;
3759 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3761 skb_record_rx_queue(skb, ring->queue_index);
3762 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3764 vlan_gro_receive(&ring->napi, adapter->vlgrp,
3765 le16_to_cpu(rx_desc->wb.upper.vlan),
3768 napi_gro_receive(&ring->napi, skb);
3771 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3772 le16_to_cpu(rx_desc->wb.upper.vlan));
3774 netif_receive_skb(skb);
3779 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3780 u32 status_err, struct sk_buff *skb)
3782 skb->ip_summed = CHECKSUM_NONE;
3784 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3785 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3787 /* TCP/UDP checksum error bit is set */
3789 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3790 /* let the stack verify checksum errors */
3791 adapter->hw_csum_err++;
3794 /* It must be a TCP or UDP packet with a valid checksum */
3795 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3796 skb->ip_summed = CHECKSUM_UNNECESSARY;
3798 adapter->hw_csum_good++;
3801 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3802 int *work_done, int budget)
3804 struct igb_adapter *adapter = rx_ring->adapter;
3805 struct net_device *netdev = adapter->netdev;
3806 struct pci_dev *pdev = adapter->pdev;
3807 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3808 struct igb_buffer *buffer_info , *next_buffer;
3809 struct sk_buff *skb;
3811 u32 length, hlen, staterr;
3812 bool cleaned = false;
3813 int cleaned_count = 0;
3814 unsigned int total_bytes = 0, total_packets = 0;
3816 i = rx_ring->next_to_clean;
3817 buffer_info = &rx_ring->buffer_info[i];
3818 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3819 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3821 while (staterr & E1000_RXD_STAT_DD) {
3822 if (*work_done >= budget)
3826 skb = buffer_info->skb;
3827 prefetch(skb->data - NET_IP_ALIGN);
3828 buffer_info->skb = NULL;
3831 if (i == rx_ring->count)
3833 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3835 next_buffer = &rx_ring->buffer_info[i];
3837 length = le16_to_cpu(rx_desc->wb.upper.length);
3841 if (!adapter->rx_ps_hdr_size) {
3842 pci_unmap_single(pdev, buffer_info->dma,
3843 adapter->rx_buffer_len +
3845 PCI_DMA_FROMDEVICE);
3846 skb_put(skb, length);
3850 /* HW will not DMA in data larger than the given buffer, even
3851 * if it parses the (NFS, of course) header to be larger. In
3852 * that case, it fills the header buffer and spills the rest
3855 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3856 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3857 if (hlen > adapter->rx_ps_hdr_size)
3858 hlen = adapter->rx_ps_hdr_size;
3860 if (!skb_shinfo(skb)->nr_frags) {
3861 pci_unmap_single(pdev, buffer_info->dma,
3862 adapter->rx_ps_hdr_size +
3864 PCI_DMA_FROMDEVICE);
3869 pci_unmap_page(pdev, buffer_info->page_dma,
3870 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3871 buffer_info->page_dma = 0;
3873 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3875 buffer_info->page_offset,
3878 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3879 (page_count(buffer_info->page) != 1))
3880 buffer_info->page = NULL;
3882 get_page(buffer_info->page);
3885 skb->data_len += length;
3887 skb->truesize += length;
3890 if (!(staterr & E1000_RXD_STAT_EOP)) {
3891 buffer_info->skb = next_buffer->skb;
3892 buffer_info->dma = next_buffer->dma;
3893 next_buffer->skb = skb;
3894 next_buffer->dma = 0;
3898 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3899 dev_kfree_skb_irq(skb);
3903 total_bytes += skb->len;
3906 igb_rx_checksum_adv(adapter, staterr, skb);
3908 skb->protocol = eth_type_trans(skb, netdev);
3910 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3913 rx_desc->wb.upper.status_error = 0;
3915 /* return some buffers to hardware, one at a time is too slow */
3916 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3917 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3921 /* use prefetched values */
3923 buffer_info = next_buffer;
3924 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3927 rx_ring->next_to_clean = i;
3928 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3931 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3933 rx_ring->total_packets += total_packets;
3934 rx_ring->total_bytes += total_bytes;
3935 rx_ring->rx_stats.packets += total_packets;
3936 rx_ring->rx_stats.bytes += total_bytes;
3937 adapter->net_stats.rx_bytes += total_bytes;
3938 adapter->net_stats.rx_packets += total_packets;
3944 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3945 * @adapter: address of board private structure
3947 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3950 struct igb_adapter *adapter = rx_ring->adapter;
3951 struct net_device *netdev = adapter->netdev;
3952 struct pci_dev *pdev = adapter->pdev;
3953 union e1000_adv_rx_desc *rx_desc;
3954 struct igb_buffer *buffer_info;
3955 struct sk_buff *skb;
3959 i = rx_ring->next_to_use;
3960 buffer_info = &rx_ring->buffer_info[i];
3962 if (adapter->rx_ps_hdr_size)
3963 bufsz = adapter->rx_ps_hdr_size;
3965 bufsz = adapter->rx_buffer_len;
3966 bufsz += NET_IP_ALIGN;
3968 while (cleaned_count--) {
3969 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3971 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3972 if (!buffer_info->page) {
3973 buffer_info->page = alloc_page(GFP_ATOMIC);
3974 if (!buffer_info->page) {
3975 adapter->alloc_rx_buff_failed++;
3978 buffer_info->page_offset = 0;
3980 buffer_info->page_offset ^= PAGE_SIZE / 2;
3982 buffer_info->page_dma =
3983 pci_map_page(pdev, buffer_info->page,
3984 buffer_info->page_offset,
3986 PCI_DMA_FROMDEVICE);
3989 if (!buffer_info->skb) {
3990 skb = netdev_alloc_skb(netdev, bufsz);
3992 adapter->alloc_rx_buff_failed++;
3996 /* Make buffer alignment 2 beyond a 16 byte boundary
3997 * this will result in a 16 byte aligned IP header after
3998 * the 14 byte MAC header is removed
4000 skb_reserve(skb, NET_IP_ALIGN);
4002 buffer_info->skb = skb;
4003 buffer_info->dma = pci_map_single(pdev, skb->data,
4005 PCI_DMA_FROMDEVICE);
4007 /* Refresh the desc even if buffer_addrs didn't change because
4008 * each write-back erases this info. */
4009 if (adapter->rx_ps_hdr_size) {
4010 rx_desc->read.pkt_addr =
4011 cpu_to_le64(buffer_info->page_dma);
4012 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4014 rx_desc->read.pkt_addr =
4015 cpu_to_le64(buffer_info->dma);
4016 rx_desc->read.hdr_addr = 0;
4020 if (i == rx_ring->count)
4022 buffer_info = &rx_ring->buffer_info[i];
4026 if (rx_ring->next_to_use != i) {
4027 rx_ring->next_to_use = i;
4029 i = (rx_ring->count - 1);
4033 /* Force memory writes to complete before letting h/w
4034 * know there are new descriptors to fetch. (Only
4035 * applicable for weak-ordered memory model archs,
4036 * such as IA-64). */
4038 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4048 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4050 struct igb_adapter *adapter = netdev_priv(netdev);
4051 struct mii_ioctl_data *data = if_mii(ifr);
4053 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4058 data->phy_id = adapter->hw.phy.addr;
4061 if (!capable(CAP_NET_ADMIN))
4063 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4080 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4086 return igb_mii_ioctl(netdev, ifr, cmd);
4092 static void igb_vlan_rx_register(struct net_device *netdev,
4093 struct vlan_group *grp)
4095 struct igb_adapter *adapter = netdev_priv(netdev);
4096 struct e1000_hw *hw = &adapter->hw;
4099 igb_irq_disable(adapter);
4100 adapter->vlgrp = grp;
4103 /* enable VLAN tag insert/strip */
4104 ctrl = rd32(E1000_CTRL);
4105 ctrl |= E1000_CTRL_VME;
4106 wr32(E1000_CTRL, ctrl);
4108 /* enable VLAN receive filtering */
4109 rctl = rd32(E1000_RCTL);
4110 rctl &= ~E1000_RCTL_CFIEN;
4111 wr32(E1000_RCTL, rctl);
4112 igb_update_mng_vlan(adapter);
4114 adapter->max_frame_size + VLAN_TAG_SIZE);
4116 /* disable VLAN tag insert/strip */
4117 ctrl = rd32(E1000_CTRL);
4118 ctrl &= ~E1000_CTRL_VME;
4119 wr32(E1000_CTRL, ctrl);
4121 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4122 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4123 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4126 adapter->max_frame_size);
4129 if (!test_bit(__IGB_DOWN, &adapter->state))
4130 igb_irq_enable(adapter);
4133 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4135 struct igb_adapter *adapter = netdev_priv(netdev);
4136 struct e1000_hw *hw = &adapter->hw;
4139 if ((hw->mng_cookie.status &
4140 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4141 (vid == adapter->mng_vlan_id))
4143 /* add VID to filter table */
4144 index = (vid >> 5) & 0x7F;
4145 vfta = array_rd32(E1000_VFTA, index);
4146 vfta |= (1 << (vid & 0x1F));
4147 igb_write_vfta(&adapter->hw, index, vfta);
4150 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4152 struct igb_adapter *adapter = netdev_priv(netdev);
4153 struct e1000_hw *hw = &adapter->hw;
4156 igb_irq_disable(adapter);
4157 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4159 if (!test_bit(__IGB_DOWN, &adapter->state))
4160 igb_irq_enable(adapter);
4162 if ((adapter->hw.mng_cookie.status &
4163 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4164 (vid == adapter->mng_vlan_id)) {
4165 /* release control to f/w */
4166 igb_release_hw_control(adapter);
4170 /* remove VID from filter table */
4171 index = (vid >> 5) & 0x7F;
4172 vfta = array_rd32(E1000_VFTA, index);
4173 vfta &= ~(1 << (vid & 0x1F));
4174 igb_write_vfta(&adapter->hw, index, vfta);
4177 static void igb_restore_vlan(struct igb_adapter *adapter)
4179 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4181 if (adapter->vlgrp) {
4183 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4184 if (!vlan_group_get_device(adapter->vlgrp, vid))
4186 igb_vlan_rx_add_vid(adapter->netdev, vid);
4191 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4193 struct e1000_mac_info *mac = &adapter->hw.mac;
4197 /* Fiber NICs only allow 1000 gbps Full duplex */
4198 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4199 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4200 dev_err(&adapter->pdev->dev,
4201 "Unsupported Speed/Duplex configuration\n");
4206 case SPEED_10 + DUPLEX_HALF:
4207 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4209 case SPEED_10 + DUPLEX_FULL:
4210 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4212 case SPEED_100 + DUPLEX_HALF:
4213 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4215 case SPEED_100 + DUPLEX_FULL:
4216 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4218 case SPEED_1000 + DUPLEX_FULL:
4220 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4222 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4224 dev_err(&adapter->pdev->dev,
4225 "Unsupported Speed/Duplex configuration\n");
4232 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4234 struct net_device *netdev = pci_get_drvdata(pdev);
4235 struct igb_adapter *adapter = netdev_priv(netdev);
4236 struct e1000_hw *hw = &adapter->hw;
4237 u32 ctrl, rctl, status;
4238 u32 wufc = adapter->wol;
4243 netif_device_detach(netdev);
4245 if (netif_running(netdev))
4248 igb_reset_interrupt_capability(adapter);
4250 igb_free_queues(adapter);
4253 retval = pci_save_state(pdev);
4258 status = rd32(E1000_STATUS);
4259 if (status & E1000_STATUS_LU)
4260 wufc &= ~E1000_WUFC_LNKC;
4263 igb_setup_rctl(adapter);
4264 igb_set_multi(netdev);
4266 /* turn on all-multi mode if wake on multicast is enabled */
4267 if (wufc & E1000_WUFC_MC) {
4268 rctl = rd32(E1000_RCTL);
4269 rctl |= E1000_RCTL_MPE;
4270 wr32(E1000_RCTL, rctl);
4273 ctrl = rd32(E1000_CTRL);
4274 /* advertise wake from D3Cold */
4275 #define E1000_CTRL_ADVD3WUC 0x00100000
4276 /* phy power management enable */
4277 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4278 ctrl |= E1000_CTRL_ADVD3WUC;
4279 wr32(E1000_CTRL, ctrl);
4281 /* Allow time for pending master requests to run */
4282 igb_disable_pcie_master(&adapter->hw);
4284 wr32(E1000_WUC, E1000_WUC_PME_EN);
4285 wr32(E1000_WUFC, wufc);
4288 wr32(E1000_WUFC, 0);
4291 /* make sure adapter isn't asleep if manageability/wol is enabled */
4292 if (wufc || adapter->en_mng_pt) {
4293 pci_enable_wake(pdev, PCI_D3hot, 1);
4294 pci_enable_wake(pdev, PCI_D3cold, 1);
4296 igb_shutdown_fiber_serdes_link_82575(hw);
4297 pci_enable_wake(pdev, PCI_D3hot, 0);
4298 pci_enable_wake(pdev, PCI_D3cold, 0);
4301 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4302 * would have already happened in close and is redundant. */
4303 igb_release_hw_control(adapter);
4305 pci_disable_device(pdev);
4307 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4313 static int igb_resume(struct pci_dev *pdev)
4315 struct net_device *netdev = pci_get_drvdata(pdev);
4316 struct igb_adapter *adapter = netdev_priv(netdev);
4317 struct e1000_hw *hw = &adapter->hw;
4320 pci_set_power_state(pdev, PCI_D0);
4321 pci_restore_state(pdev);
4323 err = pci_enable_device_mem(pdev);
4326 "igb: Cannot enable PCI device from suspend\n");
4329 pci_set_master(pdev);
4331 pci_enable_wake(pdev, PCI_D3hot, 0);
4332 pci_enable_wake(pdev, PCI_D3cold, 0);
4334 igb_set_interrupt_capability(adapter);
4336 if (igb_alloc_queues(adapter)) {
4337 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4341 /* e1000_power_up_phy(adapter); */
4345 /* let the f/w know that the h/w is now under the control of the
4347 igb_get_hw_control(adapter);
4349 wr32(E1000_WUS, ~0);
4351 if (netif_running(netdev)) {
4352 err = igb_open(netdev);
4357 netif_device_attach(netdev);
4363 static void igb_shutdown(struct pci_dev *pdev)
4365 igb_suspend(pdev, PMSG_SUSPEND);
4368 #ifdef CONFIG_NET_POLL_CONTROLLER
4370 * Polling 'interrupt' - used by things like netconsole to send skbs
4371 * without having to re-enable interrupts. It's not called while
4372 * the interrupt routine is executing.
4374 static void igb_netpoll(struct net_device *netdev)
4376 struct igb_adapter *adapter = netdev_priv(netdev);
4377 struct e1000_hw *hw = &adapter->hw;
4380 if (!adapter->msix_entries) {
4381 igb_irq_disable(adapter);
4382 napi_schedule(&adapter->rx_ring[0].napi);
4386 for (i = 0; i < adapter->num_tx_queues; i++) {
4387 struct igb_ring *tx_ring = &adapter->tx_ring[i];
4388 wr32(E1000_EIMC, tx_ring->eims_value);
4389 igb_clean_tx_irq(tx_ring);
4390 wr32(E1000_EIMS, tx_ring->eims_value);
4393 for (i = 0; i < adapter->num_rx_queues; i++) {
4394 struct igb_ring *rx_ring = &adapter->rx_ring[i];
4395 wr32(E1000_EIMC, rx_ring->eims_value);
4396 napi_schedule(&rx_ring->napi);
4399 #endif /* CONFIG_NET_POLL_CONTROLLER */
4402 * igb_io_error_detected - called when PCI error is detected
4403 * @pdev: Pointer to PCI device
4404 * @state: The current pci connection state
4406 * This function is called after a PCI bus error affecting
4407 * this device has been detected.
4409 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4410 pci_channel_state_t state)
4412 struct net_device *netdev = pci_get_drvdata(pdev);
4413 struct igb_adapter *adapter = netdev_priv(netdev);
4415 netif_device_detach(netdev);
4417 if (netif_running(netdev))
4419 pci_disable_device(pdev);
4421 /* Request a slot slot reset. */
4422 return PCI_ERS_RESULT_NEED_RESET;
4426 * igb_io_slot_reset - called after the pci bus has been reset.
4427 * @pdev: Pointer to PCI device
4429 * Restart the card from scratch, as if from a cold-boot. Implementation
4430 * resembles the first-half of the igb_resume routine.
4432 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4434 struct net_device *netdev = pci_get_drvdata(pdev);
4435 struct igb_adapter *adapter = netdev_priv(netdev);
4436 struct e1000_hw *hw = &adapter->hw;
4437 pci_ers_result_t result;
4440 if (pci_enable_device_mem(pdev)) {
4442 "Cannot re-enable PCI device after reset.\n");
4443 result = PCI_ERS_RESULT_DISCONNECT;
4445 pci_set_master(pdev);
4446 pci_restore_state(pdev);
4448 pci_enable_wake(pdev, PCI_D3hot, 0);
4449 pci_enable_wake(pdev, PCI_D3cold, 0);
4452 wr32(E1000_WUS, ~0);
4453 result = PCI_ERS_RESULT_RECOVERED;
4456 err = pci_cleanup_aer_uncorrect_error_status(pdev);
4458 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4459 "failed 0x%0x\n", err);
4460 /* non-fatal, continue */
4467 * igb_io_resume - called when traffic can start flowing again.
4468 * @pdev: Pointer to PCI device
4470 * This callback is called when the error recovery driver tells us that
4471 * its OK to resume normal operation. Implementation resembles the
4472 * second-half of the igb_resume routine.
4474 static void igb_io_resume(struct pci_dev *pdev)
4476 struct net_device *netdev = pci_get_drvdata(pdev);
4477 struct igb_adapter *adapter = netdev_priv(netdev);
4479 if (netif_running(netdev)) {
4480 if (igb_up(adapter)) {
4481 dev_err(&pdev->dev, "igb_up failed after reset\n");
4486 netif_device_attach(netdev);
4488 /* let the f/w know that the h/w is now under the control of the
4490 igb_get_hw_control(adapter);