2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/types.h>
55 #include <linux/fcntl.h>
56 #include <linux/module.h>
57 #include <linux/random.h>
58 #include <linux/cache.h>
59 #include <linux/jhash.h>
60 #include <linux/init.h>
61 #include <linux/times.h>
63 #include <net/net_namespace.h>
65 #include <net/inet_hashtables.h>
67 #include <net/transp_v6.h>
69 #include <net/inet_common.h>
70 #include <net/timewait_sock.h>
72 #include <net/netdma.h>
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
80 #include <linux/crypto.h>
81 #include <linux/scatterlist.h>
83 int sysctl_tcp_tw_reuse __read_mostly;
84 int sysctl_tcp_low_latency __read_mostly;
87 #ifdef CONFIG_TCP_MD5SIG
88 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
90 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
91 __be32 saddr, __be32 daddr,
92 struct tcphdr *th, unsigned int tcplen);
95 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
101 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
102 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
103 .lhash_users = ATOMIC_INIT(0),
104 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
107 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
109 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
112 tcp_hdr(skb)->source);
115 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
117 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
118 struct tcp_sock *tp = tcp_sk(sk);
120 /* With PAWS, it is safe from the viewpoint
121 of data integrity. Even without PAWS it is safe provided sequence
122 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
124 Actually, the idea is close to VJ's one, only timestamp cache is
125 held not per host, but per port pair and TW bucket is used as state
128 If TW bucket has been already destroyed we fall back to VJ's scheme
129 and use initial timestamp retrieved from peer table.
131 if (tcptw->tw_ts_recent_stamp &&
132 (twp == NULL || (sysctl_tcp_tw_reuse &&
133 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
134 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
135 if (tp->write_seq == 0)
137 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
138 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
146 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
148 /* This will initiate an outgoing connection. */
149 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 struct inet_sock *inet = inet_sk(sk);
152 struct tcp_sock *tp = tcp_sk(sk);
153 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
155 __be32 daddr, nexthop;
159 if (addr_len < sizeof(struct sockaddr_in))
162 if (usin->sin_family != AF_INET)
163 return -EAFNOSUPPORT;
165 nexthop = daddr = usin->sin_addr.s_addr;
166 if (inet->opt && inet->opt->srr) {
169 nexthop = inet->opt->faddr;
172 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175 inet->sport, usin->sin_port, sk, 1);
177 if (tmp == -ENETUNREACH)
178 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
187 if (!inet->opt || !inet->opt->srr)
191 inet->saddr = rt->rt_src;
192 inet->rcv_saddr = inet->saddr;
194 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
195 /* Reset inherited state */
196 tp->rx_opt.ts_recent = 0;
197 tp->rx_opt.ts_recent_stamp = 0;
201 if (tcp_death_row.sysctl_tw_recycle &&
202 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
203 struct inet_peer *peer = rt_get_peer(rt);
205 * VJ's idea. We save last timestamp seen from
206 * the destination in peer table, when entering state
207 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
208 * when trying new connection.
211 peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
212 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
213 tp->rx_opt.ts_recent = peer->tcp_ts;
217 inet->dport = usin->sin_port;
220 inet_csk(sk)->icsk_ext_hdr_len = 0;
222 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
224 tp->rx_opt.mss_clamp = 536;
226 /* Socket identity is still unknown (sport may be zero).
227 * However we set state to SYN-SENT and not releasing socket
228 * lock select source port, enter ourselves into the hash tables and
229 * complete initialization after this.
231 tcp_set_state(sk, TCP_SYN_SENT);
232 err = inet_hash_connect(&tcp_death_row, sk);
236 err = ip_route_newports(&rt, IPPROTO_TCP,
237 inet->sport, inet->dport, sk);
241 /* OK, now commit destination to socket. */
242 sk->sk_gso_type = SKB_GSO_TCPV4;
243 sk_setup_caps(sk, &rt->u.dst);
246 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
251 inet->id = tp->write_seq ^ jiffies;
253 err = tcp_connect(sk);
262 * This unhashes the socket and releases the local port,
265 tcp_set_state(sk, TCP_CLOSE);
267 sk->sk_route_caps = 0;
273 * This routine does path mtu discovery as defined in RFC1191.
275 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
277 struct dst_entry *dst;
278 struct inet_sock *inet = inet_sk(sk);
280 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
281 * send out by Linux are always <576bytes so they should go through
284 if (sk->sk_state == TCP_LISTEN)
287 /* We don't check in the destentry if pmtu discovery is forbidden
288 * on this route. We just assume that no packet_to_big packets
289 * are send back when pmtu discovery is not active.
290 * There is a small race when the user changes this flag in the
291 * route, but I think that's acceptable.
293 if ((dst = __sk_dst_check(sk, 0)) == NULL)
296 dst->ops->update_pmtu(dst, mtu);
298 /* Something is about to be wrong... Remember soft error
299 * for the case, if this connection will not able to recover.
301 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
302 sk->sk_err_soft = EMSGSIZE;
306 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
307 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
308 tcp_sync_mss(sk, mtu);
310 /* Resend the TCP packet because it's
311 * clear that the old packet has been
312 * dropped. This is the new "fast" path mtu
315 tcp_simple_retransmit(sk);
316 } /* else let the usual retransmit timer handle it */
320 * This routine is called by the ICMP module when it gets some
321 * sort of error condition. If err < 0 then the socket should
322 * be closed and the error returned to the user. If err > 0
323 * it's just the icmp type << 8 | icmp code. After adjustment
324 * header points to the first 8 bytes of the tcp header. We need
325 * to find the appropriate port.
327 * The locking strategy used here is very "optimistic". When
328 * someone else accesses the socket the ICMP is just dropped
329 * and for some paths there is no check at all.
330 * A more general error queue to queue errors for later handling
331 * is probably better.
335 void tcp_v4_err(struct sk_buff *skb, u32 info)
337 struct iphdr *iph = (struct iphdr *)skb->data;
338 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
340 struct inet_sock *inet;
341 const int type = icmp_hdr(skb)->type;
342 const int code = icmp_hdr(skb)->code;
346 struct net *net = dev_net(skb->dev);
348 if (skb->len < (iph->ihl << 2) + 8) {
349 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
353 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
354 iph->saddr, th->source, inet_iif(skb));
356 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359 if (sk->sk_state == TCP_TIME_WAIT) {
360 inet_twsk_put(inet_twsk(sk));
365 /* If too many ICMPs get dropped on busy
366 * servers this needs to be solved differently.
368 if (sock_owned_by_user(sk))
369 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
371 if (sk->sk_state == TCP_CLOSE)
375 seq = ntohl(th->seq);
376 if (sk->sk_state != TCP_LISTEN &&
377 !between(seq, tp->snd_una, tp->snd_nxt)) {
378 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
383 case ICMP_SOURCE_QUENCH:
384 /* Just silently ignore these. */
386 case ICMP_PARAMETERPROB:
389 case ICMP_DEST_UNREACH:
390 if (code > NR_ICMP_UNREACH)
393 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
394 if (!sock_owned_by_user(sk))
395 do_pmtu_discovery(sk, iph, info);
399 err = icmp_err_convert[code].errno;
401 case ICMP_TIME_EXCEEDED:
408 switch (sk->sk_state) {
409 struct request_sock *req, **prev;
411 if (sock_owned_by_user(sk))
414 req = inet_csk_search_req(sk, &prev, th->dest,
415 iph->daddr, iph->saddr);
419 /* ICMPs are not backlogged, hence we cannot get
420 an established socket here.
424 if (seq != tcp_rsk(req)->snt_isn) {
425 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
430 * Still in SYN_RECV, just remove it silently.
431 * There is no good way to pass the error to the newly
432 * created socket, and POSIX does not want network
433 * errors returned from accept().
435 inet_csk_reqsk_queue_drop(sk, req, prev);
439 case TCP_SYN_RECV: /* Cannot happen.
440 It can f.e. if SYNs crossed.
442 if (!sock_owned_by_user(sk)) {
445 sk->sk_error_report(sk);
449 sk->sk_err_soft = err;
454 /* If we've already connected we will keep trying
455 * until we time out, or the user gives up.
457 * rfc1122 4.2.3.9 allows to consider as hard errors
458 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
459 * but it is obsoleted by pmtu discovery).
461 * Note, that in modern internet, where routing is unreliable
462 * and in each dark corner broken firewalls sit, sending random
463 * errors ordered by their masters even this two messages finally lose
464 * their original sense (even Linux sends invalid PORT_UNREACHs)
466 * Now we are in compliance with RFCs.
471 if (!sock_owned_by_user(sk) && inet->recverr) {
473 sk->sk_error_report(sk);
474 } else { /* Only an error on timeout */
475 sk->sk_err_soft = err;
483 /* This routine computes an IPv4 TCP checksum. */
484 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
486 struct inet_sock *inet = inet_sk(sk);
487 struct tcphdr *th = tcp_hdr(skb);
489 if (skb->ip_summed == CHECKSUM_PARTIAL) {
490 th->check = ~tcp_v4_check(len, inet->saddr,
492 skb->csum_start = skb_transport_header(skb) - skb->head;
493 skb->csum_offset = offsetof(struct tcphdr, check);
495 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
496 csum_partial((char *)th,
502 int tcp_v4_gso_send_check(struct sk_buff *skb)
504 const struct iphdr *iph;
507 if (!pskb_may_pull(skb, sizeof(*th)))
514 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
515 skb->csum_start = skb_transport_header(skb) - skb->head;
516 skb->csum_offset = offsetof(struct tcphdr, check);
517 skb->ip_summed = CHECKSUM_PARTIAL;
522 * This routine will send an RST to the other tcp.
524 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
526 * Answer: if a packet caused RST, it is not for a socket
527 * existing in our system, if it is matched to a socket,
528 * it is just duplicate segment or bug in other side's TCP.
529 * So that we build reply only basing on parameters
530 * arrived with segment.
531 * Exception: precedence violation. We do not implement it in any case.
534 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
536 struct tcphdr *th = tcp_hdr(skb);
539 #ifdef CONFIG_TCP_MD5SIG
540 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
543 struct ip_reply_arg arg;
544 #ifdef CONFIG_TCP_MD5SIG
545 struct tcp_md5sig_key *key;
549 /* Never send a reset in response to a reset. */
553 if (skb->rtable->rt_type != RTN_LOCAL)
556 /* Swap the send and the receive. */
557 memset(&rep, 0, sizeof(rep));
558 rep.th.dest = th->source;
559 rep.th.source = th->dest;
560 rep.th.doff = sizeof(struct tcphdr) / 4;
564 rep.th.seq = th->ack_seq;
567 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
568 skb->len - (th->doff << 2));
571 memset(&arg, 0, sizeof(arg));
572 arg.iov[0].iov_base = (unsigned char *)&rep;
573 arg.iov[0].iov_len = sizeof(rep.th);
575 #ifdef CONFIG_TCP_MD5SIG
576 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
578 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
580 (TCPOPT_MD5SIG << 8) |
582 /* Update length and the length the header thinks exists */
583 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
584 rep.th.doff = arg.iov[0].iov_len / 4;
586 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[1],
590 &rep.th, arg.iov[0].iov_len);
593 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
594 ip_hdr(skb)->saddr, /* XXX */
595 sizeof(struct tcphdr), IPPROTO_TCP, 0);
596 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
598 net = dev_net(skb->dst->dev);
599 ip_send_reply(net->ipv4.tcp_sock, skb,
600 &arg, arg.iov[0].iov_len);
602 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
603 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
606 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
607 outside socket context is ugly, certainly. What can I do?
610 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
611 u32 win, u32 ts, int oif,
612 struct tcp_md5sig_key *key)
614 struct tcphdr *th = tcp_hdr(skb);
617 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
618 #ifdef CONFIG_TCP_MD5SIG
619 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
623 struct ip_reply_arg arg;
624 struct net *net = dev_net(skb->dev);
626 memset(&rep.th, 0, sizeof(struct tcphdr));
627 memset(&arg, 0, sizeof(arg));
629 arg.iov[0].iov_base = (unsigned char *)&rep;
630 arg.iov[0].iov_len = sizeof(rep.th);
632 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
633 (TCPOPT_TIMESTAMP << 8) |
635 rep.opt[1] = htonl(tcp_time_stamp);
636 rep.opt[2] = htonl(ts);
637 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
640 /* Swap the send and the receive. */
641 rep.th.dest = th->source;
642 rep.th.source = th->dest;
643 rep.th.doff = arg.iov[0].iov_len / 4;
644 rep.th.seq = htonl(seq);
645 rep.th.ack_seq = htonl(ack);
647 rep.th.window = htons(win);
649 #ifdef CONFIG_TCP_MD5SIG
651 int offset = (ts) ? 3 : 0;
653 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
655 (TCPOPT_MD5SIG << 8) |
657 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
658 rep.th.doff = arg.iov[0].iov_len/4;
660 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[offset],
664 &rep.th, arg.iov[0].iov_len);
667 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
668 ip_hdr(skb)->saddr, /* XXX */
669 arg.iov[0].iov_len, IPPROTO_TCP, 0);
670 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
672 arg.bound_dev_if = oif;
674 ip_send_reply(net->ipv4.tcp_sock, skb,
675 &arg, arg.iov[0].iov_len);
677 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
680 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
682 struct inet_timewait_sock *tw = inet_twsk(sk);
683 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
685 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
686 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
689 tcp_twsk_md5_key(tcptw)
695 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb,
696 struct request_sock *req)
698 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
699 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
702 tcp_v4_md5_do_lookup(skb->sk, ip_hdr(skb)->daddr));
706 * Send a SYN-ACK after having received a SYN.
707 * This still operates on a request_sock only, not on a big
710 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
711 struct dst_entry *dst)
713 const struct inet_request_sock *ireq = inet_rsk(req);
715 struct sk_buff * skb;
717 /* First, grab a route. */
718 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
721 skb = tcp_make_synack(sk, dst, req);
724 struct tcphdr *th = tcp_hdr(skb);
726 th->check = tcp_v4_check(skb->len,
729 csum_partial((char *)th, skb->len,
732 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
735 err = net_xmit_eval(err);
742 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
744 return __tcp_v4_send_synack(sk, req, NULL);
748 * IPv4 request_sock destructor.
750 static void tcp_v4_reqsk_destructor(struct request_sock *req)
752 kfree(inet_rsk(req)->opt);
755 #ifdef CONFIG_SYN_COOKIES
756 static void syn_flood_warning(struct sk_buff *skb)
758 static unsigned long warntime;
760 if (time_after(jiffies, (warntime + HZ * 60))) {
763 "possible SYN flooding on port %d. Sending cookies.\n",
764 ntohs(tcp_hdr(skb)->dest));
770 * Save and compile IPv4 options into the request_sock if needed.
772 static struct ip_options *tcp_v4_save_options(struct sock *sk,
775 struct ip_options *opt = &(IPCB(skb)->opt);
776 struct ip_options *dopt = NULL;
778 if (opt && opt->optlen) {
779 int opt_size = optlength(opt);
780 dopt = kmalloc(opt_size, GFP_ATOMIC);
782 if (ip_options_echo(dopt, skb)) {
791 #ifdef CONFIG_TCP_MD5SIG
793 * RFC2385 MD5 checksumming requires a mapping of
794 * IP address->MD5 Key.
795 * We need to maintain these in the sk structure.
798 /* Find the Key structure for an address. */
799 static struct tcp_md5sig_key *
800 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
802 struct tcp_sock *tp = tcp_sk(sk);
805 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
807 for (i = 0; i < tp->md5sig_info->entries4; i++) {
808 if (tp->md5sig_info->keys4[i].addr == addr)
809 return &tp->md5sig_info->keys4[i].base;
814 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
815 struct sock *addr_sk)
817 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
820 EXPORT_SYMBOL(tcp_v4_md5_lookup);
822 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
823 struct request_sock *req)
825 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
828 /* This can be called on a newly created socket, from other files */
829 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
830 u8 *newkey, u8 newkeylen)
832 /* Add Key to the list */
833 struct tcp_md5sig_key *key;
834 struct tcp_sock *tp = tcp_sk(sk);
835 struct tcp4_md5sig_key *keys;
837 key = tcp_v4_md5_do_lookup(sk, addr);
839 /* Pre-existing entry - just update that one. */
842 key->keylen = newkeylen;
844 struct tcp_md5sig_info *md5sig;
846 if (!tp->md5sig_info) {
847 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
849 if (!tp->md5sig_info) {
853 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
855 if (tcp_alloc_md5sig_pool() == NULL) {
859 md5sig = tp->md5sig_info;
861 if (md5sig->alloced4 == md5sig->entries4) {
862 keys = kmalloc((sizeof(*keys) *
863 (md5sig->entries4 + 1)), GFP_ATOMIC);
866 tcp_free_md5sig_pool();
870 if (md5sig->entries4)
871 memcpy(keys, md5sig->keys4,
872 sizeof(*keys) * md5sig->entries4);
874 /* Free old key list, and reference new one */
875 kfree(md5sig->keys4);
876 md5sig->keys4 = keys;
880 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
881 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
882 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
887 EXPORT_SYMBOL(tcp_v4_md5_do_add);
889 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
890 u8 *newkey, u8 newkeylen)
892 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
896 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
898 struct tcp_sock *tp = tcp_sk(sk);
901 for (i = 0; i < tp->md5sig_info->entries4; i++) {
902 if (tp->md5sig_info->keys4[i].addr == addr) {
904 kfree(tp->md5sig_info->keys4[i].base.key);
905 tp->md5sig_info->entries4--;
907 if (tp->md5sig_info->entries4 == 0) {
908 kfree(tp->md5sig_info->keys4);
909 tp->md5sig_info->keys4 = NULL;
910 tp->md5sig_info->alloced4 = 0;
911 } else if (tp->md5sig_info->entries4 != i) {
912 /* Need to do some manipulation */
913 memmove(&tp->md5sig_info->keys4[i],
914 &tp->md5sig_info->keys4[i+1],
915 (tp->md5sig_info->entries4 - i) *
916 sizeof(struct tcp4_md5sig_key));
918 tcp_free_md5sig_pool();
925 EXPORT_SYMBOL(tcp_v4_md5_do_del);
927 static void tcp_v4_clear_md5_list(struct sock *sk)
929 struct tcp_sock *tp = tcp_sk(sk);
931 /* Free each key, then the set of key keys,
932 * the crypto element, and then decrement our
933 * hold on the last resort crypto.
935 if (tp->md5sig_info->entries4) {
937 for (i = 0; i < tp->md5sig_info->entries4; i++)
938 kfree(tp->md5sig_info->keys4[i].base.key);
939 tp->md5sig_info->entries4 = 0;
940 tcp_free_md5sig_pool();
942 if (tp->md5sig_info->keys4) {
943 kfree(tp->md5sig_info->keys4);
944 tp->md5sig_info->keys4 = NULL;
945 tp->md5sig_info->alloced4 = 0;
949 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
952 struct tcp_md5sig cmd;
953 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
956 if (optlen < sizeof(cmd))
959 if (copy_from_user(&cmd, optval, sizeof(cmd)))
962 if (sin->sin_family != AF_INET)
965 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
966 if (!tcp_sk(sk)->md5sig_info)
968 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
971 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
974 if (!tcp_sk(sk)->md5sig_info) {
975 struct tcp_sock *tp = tcp_sk(sk);
976 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
982 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
985 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
988 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
989 newkey, cmd.tcpm_keylen);
992 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
993 __be32 saddr, __be32 daddr,
997 struct tcp_md5sig_pool *hp;
998 struct tcp4_pseudohdr *bp;
1002 * Okay, so RFC2385 is turned on for this connection,
1003 * so we need to generate the MD5 hash for the packet now.
1006 hp = tcp_get_md5sig_pool();
1008 goto clear_hash_noput;
1010 bp = &hp->md5_blk.ip4;
1013 * The TCP pseudo-header (in the order: source IP address,
1014 * destination IP address, zero-padded protocol number, and
1020 bp->protocol = IPPROTO_TCP;
1021 bp->len = htons(tcplen);
1023 err = tcp_calc_md5_hash(md5_hash, key, sizeof(*bp),
1028 /* Free up the crypto pool */
1029 tcp_put_md5sig_pool();
1033 tcp_put_md5sig_pool();
1035 memset(md5_hash, 0, 16);
1039 int tcp_v4_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1041 struct dst_entry *dst,
1042 struct request_sock *req,
1044 unsigned int tcplen)
1046 __be32 saddr, daddr;
1049 saddr = inet_sk(sk)->saddr;
1050 daddr = inet_sk(sk)->daddr;
1052 struct rtable *rt = (struct rtable *)dst;
1057 return tcp_v4_do_calc_md5_hash(md5_hash, key,
1062 EXPORT_SYMBOL(tcp_v4_calc_md5_hash);
1064 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1067 * This gets called for each TCP segment that arrives
1068 * so we want to be efficient.
1069 * We have 3 drop cases:
1070 * o No MD5 hash and one expected.
1071 * o MD5 hash and we're not expecting one.
1072 * o MD5 hash and its wrong.
1074 __u8 *hash_location = NULL;
1075 struct tcp_md5sig_key *hash_expected;
1076 const struct iphdr *iph = ip_hdr(skb);
1077 struct tcphdr *th = tcp_hdr(skb);
1079 unsigned char newhash[16];
1081 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1082 hash_location = tcp_parse_md5sig_option(th);
1084 /* We've parsed the options - do we have a hash? */
1085 if (!hash_expected && !hash_location)
1088 if (hash_expected && !hash_location) {
1089 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash expected but NOT found "
1090 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1091 NIPQUAD(iph->saddr), ntohs(th->source),
1092 NIPQUAD(iph->daddr), ntohs(th->dest));
1096 if (!hash_expected && hash_location) {
1097 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash NOT expected but found "
1098 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1099 NIPQUAD(iph->saddr), ntohs(th->source),
1100 NIPQUAD(iph->daddr), ntohs(th->dest));
1104 /* Okay, so this is hash_expected and hash_location -
1105 * so we need to calculate the checksum.
1107 genhash = tcp_v4_do_calc_md5_hash(newhash,
1109 iph->saddr, iph->daddr,
1112 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1113 if (net_ratelimit()) {
1114 printk(KERN_INFO "MD5 Hash failed for "
1115 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1116 NIPQUAD(iph->saddr), ntohs(th->source),
1117 NIPQUAD(iph->daddr), ntohs(th->dest),
1118 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1127 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1129 .obj_size = sizeof(struct tcp_request_sock),
1130 .rtx_syn_ack = tcp_v4_send_synack,
1131 .send_ack = tcp_v4_reqsk_send_ack,
1132 .destructor = tcp_v4_reqsk_destructor,
1133 .send_reset = tcp_v4_send_reset,
1136 #ifdef CONFIG_TCP_MD5SIG
1137 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1138 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1142 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1143 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1144 .twsk_unique = tcp_twsk_unique,
1145 .twsk_destructor= tcp_twsk_destructor,
1148 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1150 struct inet_request_sock *ireq;
1151 struct tcp_options_received tmp_opt;
1152 struct request_sock *req;
1153 __be32 saddr = ip_hdr(skb)->saddr;
1154 __be32 daddr = ip_hdr(skb)->daddr;
1155 __u32 isn = TCP_SKB_CB(skb)->when;
1156 struct dst_entry *dst = NULL;
1157 #ifdef CONFIG_SYN_COOKIES
1158 int want_cookie = 0;
1160 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1163 /* Never answer to SYNs send to broadcast or multicast */
1164 if (skb->rtable->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1167 /* TW buckets are converted to open requests without
1168 * limitations, they conserve resources and peer is
1169 * evidently real one.
1171 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1172 #ifdef CONFIG_SYN_COOKIES
1173 if (sysctl_tcp_syncookies) {
1180 /* Accept backlog is full. If we have already queued enough
1181 * of warm entries in syn queue, drop request. It is better than
1182 * clogging syn queue with openreqs with exponentially increasing
1185 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1188 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1192 #ifdef CONFIG_TCP_MD5SIG
1193 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1196 tcp_clear_options(&tmp_opt);
1197 tmp_opt.mss_clamp = 536;
1198 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
1200 tcp_parse_options(skb, &tmp_opt, 0);
1202 if (want_cookie && !tmp_opt.saw_tstamp)
1203 tcp_clear_options(&tmp_opt);
1205 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1206 /* Some OSes (unknown ones, but I see them on web server, which
1207 * contains information interesting only for windows'
1208 * users) do not send their stamp in SYN. It is easy case.
1209 * We simply do not advertise TS support.
1211 tmp_opt.saw_tstamp = 0;
1212 tmp_opt.tstamp_ok = 0;
1214 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1216 tcp_openreq_init(req, &tmp_opt, skb);
1218 if (security_inet_conn_request(sk, skb, req))
1221 ireq = inet_rsk(req);
1222 ireq->loc_addr = daddr;
1223 ireq->rmt_addr = saddr;
1224 ireq->opt = tcp_v4_save_options(sk, skb);
1226 TCP_ECN_create_request(req, tcp_hdr(skb));
1229 #ifdef CONFIG_SYN_COOKIES
1230 syn_flood_warning(skb);
1231 req->cookie_ts = tmp_opt.tstamp_ok;
1233 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1235 struct inet_peer *peer = NULL;
1237 /* VJ's idea. We save last timestamp seen
1238 * from the destination in peer table, when entering
1239 * state TIME-WAIT, and check against it before
1240 * accepting new connection request.
1242 * If "isn" is not zero, this request hit alive
1243 * timewait bucket, so that all the necessary checks
1244 * are made in the function processing timewait state.
1246 if (tmp_opt.saw_tstamp &&
1247 tcp_death_row.sysctl_tw_recycle &&
1248 (dst = inet_csk_route_req(sk, req)) != NULL &&
1249 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1250 peer->v4daddr == saddr) {
1251 if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1252 (s32)(peer->tcp_ts - req->ts_recent) >
1254 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
1255 goto drop_and_release;
1258 /* Kill the following clause, if you dislike this way. */
1259 else if (!sysctl_tcp_syncookies &&
1260 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1261 (sysctl_max_syn_backlog >> 2)) &&
1262 (!peer || !peer->tcp_ts_stamp) &&
1263 (!dst || !dst_metric(dst, RTAX_RTT))) {
1264 /* Without syncookies last quarter of
1265 * backlog is filled with destinations,
1266 * proven to be alive.
1267 * It means that we continue to communicate
1268 * to destinations, already remembered
1269 * to the moment of synflood.
1271 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1272 "request from " NIPQUAD_FMT "/%u\n",
1274 ntohs(tcp_hdr(skb)->source));
1275 goto drop_and_release;
1278 isn = tcp_v4_init_sequence(skb);
1280 tcp_rsk(req)->snt_isn = isn;
1282 if (__tcp_v4_send_synack(sk, req, dst) || want_cookie)
1285 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1298 * The three way handshake has completed - we got a valid synack -
1299 * now create the new socket.
1301 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1302 struct request_sock *req,
1303 struct dst_entry *dst)
1305 struct inet_request_sock *ireq;
1306 struct inet_sock *newinet;
1307 struct tcp_sock *newtp;
1309 #ifdef CONFIG_TCP_MD5SIG
1310 struct tcp_md5sig_key *key;
1313 if (sk_acceptq_is_full(sk))
1316 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1319 newsk = tcp_create_openreq_child(sk, req, skb);
1323 newsk->sk_gso_type = SKB_GSO_TCPV4;
1324 sk_setup_caps(newsk, dst);
1326 newtp = tcp_sk(newsk);
1327 newinet = inet_sk(newsk);
1328 ireq = inet_rsk(req);
1329 newinet->daddr = ireq->rmt_addr;
1330 newinet->rcv_saddr = ireq->loc_addr;
1331 newinet->saddr = ireq->loc_addr;
1332 newinet->opt = ireq->opt;
1334 newinet->mc_index = inet_iif(skb);
1335 newinet->mc_ttl = ip_hdr(skb)->ttl;
1336 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1338 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1339 newinet->id = newtp->write_seq ^ jiffies;
1341 tcp_mtup_init(newsk);
1342 tcp_sync_mss(newsk, dst_mtu(dst));
1343 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1344 tcp_initialize_rcv_mss(newsk);
1346 #ifdef CONFIG_TCP_MD5SIG
1347 /* Copy over the MD5 key from the original socket */
1348 if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1350 * We're using one, so create a matching key
1351 * on the newsk structure. If we fail to get
1352 * memory, then we end up not copying the key
1355 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1357 tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1358 newkey, key->keylen);
1362 __inet_hash_nolisten(newsk);
1363 __inet_inherit_port(sk, newsk);
1368 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1370 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1375 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1377 struct tcphdr *th = tcp_hdr(skb);
1378 const struct iphdr *iph = ip_hdr(skb);
1380 struct request_sock **prev;
1381 /* Find possible connection requests. */
1382 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1383 iph->saddr, iph->daddr);
1385 return tcp_check_req(sk, skb, req, prev);
1387 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1388 th->source, iph->daddr, th->dest, inet_iif(skb));
1391 if (nsk->sk_state != TCP_TIME_WAIT) {
1395 inet_twsk_put(inet_twsk(nsk));
1399 #ifdef CONFIG_SYN_COOKIES
1400 if (!th->rst && !th->syn && th->ack)
1401 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1406 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1408 const struct iphdr *iph = ip_hdr(skb);
1410 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1411 if (!tcp_v4_check(skb->len, iph->saddr,
1412 iph->daddr, skb->csum)) {
1413 skb->ip_summed = CHECKSUM_UNNECESSARY;
1418 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1419 skb->len, IPPROTO_TCP, 0);
1421 if (skb->len <= 76) {
1422 return __skb_checksum_complete(skb);
1428 /* The socket must have it's spinlock held when we get
1431 * We have a potential double-lock case here, so even when
1432 * doing backlog processing we use the BH locking scheme.
1433 * This is because we cannot sleep with the original spinlock
1436 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1439 #ifdef CONFIG_TCP_MD5SIG
1441 * We really want to reject the packet as early as possible
1443 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1444 * o There is an MD5 option and we're not expecting one
1446 if (tcp_v4_inbound_md5_hash(sk, skb))
1450 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1451 TCP_CHECK_TIMER(sk);
1452 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1456 TCP_CHECK_TIMER(sk);
1460 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1463 if (sk->sk_state == TCP_LISTEN) {
1464 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1469 if (tcp_child_process(sk, nsk, skb)) {
1477 TCP_CHECK_TIMER(sk);
1478 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1482 TCP_CHECK_TIMER(sk);
1486 tcp_v4_send_reset(rsk, skb);
1489 /* Be careful here. If this function gets more complicated and
1490 * gcc suffers from register pressure on the x86, sk (in %ebx)
1491 * might be destroyed here. This current version compiles correctly,
1492 * but you have been warned.
1497 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1505 int tcp_v4_rcv(struct sk_buff *skb)
1507 const struct iphdr *iph;
1511 struct net *net = dev_net(skb->dev);
1513 if (skb->pkt_type != PACKET_HOST)
1516 /* Count it even if it's bad */
1517 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1519 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1524 if (th->doff < sizeof(struct tcphdr) / 4)
1526 if (!pskb_may_pull(skb, th->doff * 4))
1529 /* An explanation is required here, I think.
1530 * Packet length and doff are validated by header prediction,
1531 * provided case of th->doff==0 is eliminated.
1532 * So, we defer the checks. */
1533 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1538 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1539 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1540 skb->len - th->doff * 4);
1541 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1542 TCP_SKB_CB(skb)->when = 0;
1543 TCP_SKB_CB(skb)->flags = iph->tos;
1544 TCP_SKB_CB(skb)->sacked = 0;
1546 sk = __inet_lookup(net, &tcp_hashinfo, iph->saddr,
1547 th->source, iph->daddr, th->dest, inet_iif(skb));
1552 if (sk->sk_state == TCP_TIME_WAIT)
1555 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1556 goto discard_and_relse;
1559 if (sk_filter(sk, skb))
1560 goto discard_and_relse;
1564 bh_lock_sock_nested(sk);
1566 if (!sock_owned_by_user(sk)) {
1567 #ifdef CONFIG_NET_DMA
1568 struct tcp_sock *tp = tcp_sk(sk);
1569 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1570 tp->ucopy.dma_chan = get_softnet_dma();
1571 if (tp->ucopy.dma_chan)
1572 ret = tcp_v4_do_rcv(sk, skb);
1576 if (!tcp_prequeue(sk, skb))
1577 ret = tcp_v4_do_rcv(sk, skb);
1580 sk_add_backlog(sk, skb);
1588 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1591 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1593 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1595 tcp_v4_send_reset(NULL, skb);
1599 /* Discard frame. */
1608 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1609 inet_twsk_put(inet_twsk(sk));
1613 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1614 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1615 inet_twsk_put(inet_twsk(sk));
1618 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1620 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1622 iph->daddr, th->dest,
1625 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1626 inet_twsk_put(inet_twsk(sk));
1630 /* Fall through to ACK */
1633 tcp_v4_timewait_ack(sk, skb);
1637 case TCP_TW_SUCCESS:;
1642 /* VJ's idea. Save last timestamp seen from this destination
1643 * and hold it at least for normal timewait interval to use for duplicate
1644 * segment detection in subsequent connections, before they enter synchronized
1648 int tcp_v4_remember_stamp(struct sock *sk)
1650 struct inet_sock *inet = inet_sk(sk);
1651 struct tcp_sock *tp = tcp_sk(sk);
1652 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1653 struct inet_peer *peer = NULL;
1656 if (!rt || rt->rt_dst != inet->daddr) {
1657 peer = inet_getpeer(inet->daddr, 1);
1661 rt_bind_peer(rt, 1);
1666 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1667 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1668 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1669 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1670 peer->tcp_ts = tp->rx_opt.ts_recent;
1680 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1682 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1685 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1687 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1688 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1689 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1690 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1691 peer->tcp_ts = tcptw->tw_ts_recent;
1700 struct inet_connection_sock_af_ops ipv4_specific = {
1701 .queue_xmit = ip_queue_xmit,
1702 .send_check = tcp_v4_send_check,
1703 .rebuild_header = inet_sk_rebuild_header,
1704 .conn_request = tcp_v4_conn_request,
1705 .syn_recv_sock = tcp_v4_syn_recv_sock,
1706 .remember_stamp = tcp_v4_remember_stamp,
1707 .net_header_len = sizeof(struct iphdr),
1708 .setsockopt = ip_setsockopt,
1709 .getsockopt = ip_getsockopt,
1710 .addr2sockaddr = inet_csk_addr2sockaddr,
1711 .sockaddr_len = sizeof(struct sockaddr_in),
1712 .bind_conflict = inet_csk_bind_conflict,
1713 #ifdef CONFIG_COMPAT
1714 .compat_setsockopt = compat_ip_setsockopt,
1715 .compat_getsockopt = compat_ip_getsockopt,
1719 #ifdef CONFIG_TCP_MD5SIG
1720 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1721 .md5_lookup = tcp_v4_md5_lookup,
1722 .calc_md5_hash = tcp_v4_calc_md5_hash,
1723 .md5_add = tcp_v4_md5_add_func,
1724 .md5_parse = tcp_v4_parse_md5_keys,
1728 /* NOTE: A lot of things set to zero explicitly by call to
1729 * sk_alloc() so need not be done here.
1731 static int tcp_v4_init_sock(struct sock *sk)
1733 struct inet_connection_sock *icsk = inet_csk(sk);
1734 struct tcp_sock *tp = tcp_sk(sk);
1736 skb_queue_head_init(&tp->out_of_order_queue);
1737 tcp_init_xmit_timers(sk);
1738 tcp_prequeue_init(tp);
1740 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1741 tp->mdev = TCP_TIMEOUT_INIT;
1743 /* So many TCP implementations out there (incorrectly) count the
1744 * initial SYN frame in their delayed-ACK and congestion control
1745 * algorithms that we must have the following bandaid to talk
1746 * efficiently to them. -DaveM
1750 /* See draft-stevens-tcpca-spec-01 for discussion of the
1751 * initialization of these values.
1753 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1754 tp->snd_cwnd_clamp = ~0;
1755 tp->mss_cache = 536;
1757 tp->reordering = sysctl_tcp_reordering;
1758 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1760 sk->sk_state = TCP_CLOSE;
1762 sk->sk_write_space = sk_stream_write_space;
1763 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1765 icsk->icsk_af_ops = &ipv4_specific;
1766 icsk->icsk_sync_mss = tcp_sync_mss;
1767 #ifdef CONFIG_TCP_MD5SIG
1768 tp->af_specific = &tcp_sock_ipv4_specific;
1771 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1772 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1774 atomic_inc(&tcp_sockets_allocated);
1779 void tcp_v4_destroy_sock(struct sock *sk)
1781 struct tcp_sock *tp = tcp_sk(sk);
1783 tcp_clear_xmit_timers(sk);
1785 tcp_cleanup_congestion_control(sk);
1787 /* Cleanup up the write buffer. */
1788 tcp_write_queue_purge(sk);
1790 /* Cleans up our, hopefully empty, out_of_order_queue. */
1791 __skb_queue_purge(&tp->out_of_order_queue);
1793 #ifdef CONFIG_TCP_MD5SIG
1794 /* Clean up the MD5 key list, if any */
1795 if (tp->md5sig_info) {
1796 tcp_v4_clear_md5_list(sk);
1797 kfree(tp->md5sig_info);
1798 tp->md5sig_info = NULL;
1802 #ifdef CONFIG_NET_DMA
1803 /* Cleans up our sk_async_wait_queue */
1804 __skb_queue_purge(&sk->sk_async_wait_queue);
1807 /* Clean prequeue, it must be empty really */
1808 __skb_queue_purge(&tp->ucopy.prequeue);
1810 /* Clean up a referenced TCP bind bucket. */
1811 if (inet_csk(sk)->icsk_bind_hash)
1815 * If sendmsg cached page exists, toss it.
1817 if (sk->sk_sndmsg_page) {
1818 __free_page(sk->sk_sndmsg_page);
1819 sk->sk_sndmsg_page = NULL;
1822 atomic_dec(&tcp_sockets_allocated);
1825 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1827 #ifdef CONFIG_PROC_FS
1828 /* Proc filesystem TCP sock list dumping. */
1830 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1832 return hlist_empty(head) ? NULL :
1833 list_entry(head->first, struct inet_timewait_sock, tw_node);
1836 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1838 return tw->tw_node.next ?
1839 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1842 static void *listening_get_next(struct seq_file *seq, void *cur)
1844 struct inet_connection_sock *icsk;
1845 struct hlist_node *node;
1846 struct sock *sk = cur;
1847 struct tcp_iter_state* st = seq->private;
1848 struct net *net = seq_file_net(seq);
1852 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1858 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1859 struct request_sock *req = cur;
1861 icsk = inet_csk(st->syn_wait_sk);
1865 if (req->rsk_ops->family == st->family &&
1866 net_eq(sock_net(req->sk), net)) {
1872 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1875 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1877 sk = sk_next(st->syn_wait_sk);
1878 st->state = TCP_SEQ_STATE_LISTENING;
1879 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1881 icsk = inet_csk(sk);
1882 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1883 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1885 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1889 sk_for_each_from(sk, node) {
1890 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
1894 icsk = inet_csk(sk);
1895 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1896 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1898 st->uid = sock_i_uid(sk);
1899 st->syn_wait_sk = sk;
1900 st->state = TCP_SEQ_STATE_OPENREQ;
1904 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1906 if (++st->bucket < INET_LHTABLE_SIZE) {
1907 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1915 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1917 void *rc = listening_get_next(seq, NULL);
1919 while (rc && *pos) {
1920 rc = listening_get_next(seq, rc);
1926 static void *established_get_first(struct seq_file *seq)
1928 struct tcp_iter_state* st = seq->private;
1929 struct net *net = seq_file_net(seq);
1932 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1934 struct hlist_node *node;
1935 struct inet_timewait_sock *tw;
1936 rwlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1939 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1940 if (sk->sk_family != st->family ||
1941 !net_eq(sock_net(sk), net)) {
1947 st->state = TCP_SEQ_STATE_TIME_WAIT;
1948 inet_twsk_for_each(tw, node,
1949 &tcp_hashinfo.ehash[st->bucket].twchain) {
1950 if (tw->tw_family != st->family ||
1951 !net_eq(twsk_net(tw), net)) {
1957 read_unlock_bh(lock);
1958 st->state = TCP_SEQ_STATE_ESTABLISHED;
1964 static void *established_get_next(struct seq_file *seq, void *cur)
1966 struct sock *sk = cur;
1967 struct inet_timewait_sock *tw;
1968 struct hlist_node *node;
1969 struct tcp_iter_state* st = seq->private;
1970 struct net *net = seq_file_net(seq);
1974 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1978 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
1985 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1986 st->state = TCP_SEQ_STATE_ESTABLISHED;
1988 if (++st->bucket < tcp_hashinfo.ehash_size) {
1989 read_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1990 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1998 sk_for_each_from(sk, node) {
1999 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2003 st->state = TCP_SEQ_STATE_TIME_WAIT;
2004 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2012 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2014 void *rc = established_get_first(seq);
2017 rc = established_get_next(seq, rc);
2023 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2026 struct tcp_iter_state* st = seq->private;
2028 inet_listen_lock(&tcp_hashinfo);
2029 st->state = TCP_SEQ_STATE_LISTENING;
2030 rc = listening_get_idx(seq, &pos);
2033 inet_listen_unlock(&tcp_hashinfo);
2034 st->state = TCP_SEQ_STATE_ESTABLISHED;
2035 rc = established_get_idx(seq, pos);
2041 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2043 struct tcp_iter_state* st = seq->private;
2044 st->state = TCP_SEQ_STATE_LISTENING;
2046 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2049 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2052 struct tcp_iter_state* st;
2054 if (v == SEQ_START_TOKEN) {
2055 rc = tcp_get_idx(seq, 0);
2060 switch (st->state) {
2061 case TCP_SEQ_STATE_OPENREQ:
2062 case TCP_SEQ_STATE_LISTENING:
2063 rc = listening_get_next(seq, v);
2065 inet_listen_unlock(&tcp_hashinfo);
2066 st->state = TCP_SEQ_STATE_ESTABLISHED;
2067 rc = established_get_first(seq);
2070 case TCP_SEQ_STATE_ESTABLISHED:
2071 case TCP_SEQ_STATE_TIME_WAIT:
2072 rc = established_get_next(seq, v);
2080 static void tcp_seq_stop(struct seq_file *seq, void *v)
2082 struct tcp_iter_state* st = seq->private;
2084 switch (st->state) {
2085 case TCP_SEQ_STATE_OPENREQ:
2087 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2088 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2090 case TCP_SEQ_STATE_LISTENING:
2091 if (v != SEQ_START_TOKEN)
2092 inet_listen_unlock(&tcp_hashinfo);
2094 case TCP_SEQ_STATE_TIME_WAIT:
2095 case TCP_SEQ_STATE_ESTABLISHED:
2097 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2102 static int tcp_seq_open(struct inode *inode, struct file *file)
2104 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2105 struct tcp_iter_state *s;
2108 err = seq_open_net(inode, file, &afinfo->seq_ops,
2109 sizeof(struct tcp_iter_state));
2113 s = ((struct seq_file *)file->private_data)->private;
2114 s->family = afinfo->family;
2118 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2121 struct proc_dir_entry *p;
2123 afinfo->seq_fops.open = tcp_seq_open;
2124 afinfo->seq_fops.read = seq_read;
2125 afinfo->seq_fops.llseek = seq_lseek;
2126 afinfo->seq_fops.release = seq_release_net;
2128 afinfo->seq_ops.start = tcp_seq_start;
2129 afinfo->seq_ops.next = tcp_seq_next;
2130 afinfo->seq_ops.stop = tcp_seq_stop;
2132 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2133 &afinfo->seq_fops, afinfo);
2139 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2141 proc_net_remove(net, afinfo->name);
2144 static void get_openreq4(struct sock *sk, struct request_sock *req,
2145 struct seq_file *f, int i, int uid, int *len)
2147 const struct inet_request_sock *ireq = inet_rsk(req);
2148 int ttd = req->expires - jiffies;
2150 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2151 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2154 ntohs(inet_sk(sk)->sport),
2156 ntohs(ireq->rmt_port),
2158 0, 0, /* could print option size, but that is af dependent. */
2159 1, /* timers active (only the expire timer) */
2160 jiffies_to_clock_t(ttd),
2163 0, /* non standard timer */
2164 0, /* open_requests have no inode */
2165 atomic_read(&sk->sk_refcnt),
2170 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2173 unsigned long timer_expires;
2174 struct tcp_sock *tp = tcp_sk(sk);
2175 const struct inet_connection_sock *icsk = inet_csk(sk);
2176 struct inet_sock *inet = inet_sk(sk);
2177 __be32 dest = inet->daddr;
2178 __be32 src = inet->rcv_saddr;
2179 __u16 destp = ntohs(inet->dport);
2180 __u16 srcp = ntohs(inet->sport);
2182 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2184 timer_expires = icsk->icsk_timeout;
2185 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2187 timer_expires = icsk->icsk_timeout;
2188 } else if (timer_pending(&sk->sk_timer)) {
2190 timer_expires = sk->sk_timer.expires;
2193 timer_expires = jiffies;
2196 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2197 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2198 i, src, srcp, dest, destp, sk->sk_state,
2199 tp->write_seq - tp->snd_una,
2200 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2201 (tp->rcv_nxt - tp->copied_seq),
2203 jiffies_to_clock_t(timer_expires - jiffies),
2204 icsk->icsk_retransmits,
2206 icsk->icsk_probes_out,
2208 atomic_read(&sk->sk_refcnt), sk,
2209 jiffies_to_clock_t(icsk->icsk_rto),
2210 jiffies_to_clock_t(icsk->icsk_ack.ato),
2211 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2213 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh,
2217 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2218 struct seq_file *f, int i, int *len)
2222 int ttd = tw->tw_ttd - jiffies;
2227 dest = tw->tw_daddr;
2228 src = tw->tw_rcv_saddr;
2229 destp = ntohs(tw->tw_dport);
2230 srcp = ntohs(tw->tw_sport);
2232 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2233 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2234 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2235 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2236 atomic_read(&tw->tw_refcnt), tw, len);
2241 static int tcp4_seq_show(struct seq_file *seq, void *v)
2243 struct tcp_iter_state* st;
2246 if (v == SEQ_START_TOKEN) {
2247 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2248 " sl local_address rem_address st tx_queue "
2249 "rx_queue tr tm->when retrnsmt uid timeout "
2255 switch (st->state) {
2256 case TCP_SEQ_STATE_LISTENING:
2257 case TCP_SEQ_STATE_ESTABLISHED:
2258 get_tcp4_sock(v, seq, st->num, &len);
2260 case TCP_SEQ_STATE_OPENREQ:
2261 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2263 case TCP_SEQ_STATE_TIME_WAIT:
2264 get_timewait4_sock(v, seq, st->num, &len);
2267 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2272 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2276 .owner = THIS_MODULE,
2279 .show = tcp4_seq_show,
2283 static int tcp4_proc_init_net(struct net *net)
2285 return tcp_proc_register(net, &tcp4_seq_afinfo);
2288 static void tcp4_proc_exit_net(struct net *net)
2290 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2293 static struct pernet_operations tcp4_net_ops = {
2294 .init = tcp4_proc_init_net,
2295 .exit = tcp4_proc_exit_net,
2298 int __init tcp4_proc_init(void)
2300 return register_pernet_subsys(&tcp4_net_ops);
2303 void tcp4_proc_exit(void)
2305 unregister_pernet_subsys(&tcp4_net_ops);
2307 #endif /* CONFIG_PROC_FS */
2309 struct proto tcp_prot = {
2311 .owner = THIS_MODULE,
2313 .connect = tcp_v4_connect,
2314 .disconnect = tcp_disconnect,
2315 .accept = inet_csk_accept,
2317 .init = tcp_v4_init_sock,
2318 .destroy = tcp_v4_destroy_sock,
2319 .shutdown = tcp_shutdown,
2320 .setsockopt = tcp_setsockopt,
2321 .getsockopt = tcp_getsockopt,
2322 .recvmsg = tcp_recvmsg,
2323 .backlog_rcv = tcp_v4_do_rcv,
2325 .unhash = inet_unhash,
2326 .get_port = inet_csk_get_port,
2327 .enter_memory_pressure = tcp_enter_memory_pressure,
2328 .sockets_allocated = &tcp_sockets_allocated,
2329 .orphan_count = &tcp_orphan_count,
2330 .memory_allocated = &tcp_memory_allocated,
2331 .memory_pressure = &tcp_memory_pressure,
2332 .sysctl_mem = sysctl_tcp_mem,
2333 .sysctl_wmem = sysctl_tcp_wmem,
2334 .sysctl_rmem = sysctl_tcp_rmem,
2335 .max_header = MAX_TCP_HEADER,
2336 .obj_size = sizeof(struct tcp_sock),
2337 .twsk_prot = &tcp_timewait_sock_ops,
2338 .rsk_prot = &tcp_request_sock_ops,
2339 .h.hashinfo = &tcp_hashinfo,
2340 #ifdef CONFIG_COMPAT
2341 .compat_setsockopt = compat_tcp_setsockopt,
2342 .compat_getsockopt = compat_tcp_getsockopt,
2347 static int __net_init tcp_sk_init(struct net *net)
2349 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2350 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2353 static void __net_exit tcp_sk_exit(struct net *net)
2355 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2358 static struct pernet_operations __net_initdata tcp_sk_ops = {
2359 .init = tcp_sk_init,
2360 .exit = tcp_sk_exit,
2363 void __init tcp_v4_init(void)
2365 if (register_pernet_device(&tcp_sk_ops))
2366 panic("Failed to create the TCP control socket.\n");
2369 EXPORT_SYMBOL(ipv4_specific);
2370 EXPORT_SYMBOL(tcp_hashinfo);
2371 EXPORT_SYMBOL(tcp_prot);
2372 EXPORT_SYMBOL(tcp_v4_conn_request);
2373 EXPORT_SYMBOL(tcp_v4_connect);
2374 EXPORT_SYMBOL(tcp_v4_do_rcv);
2375 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2376 EXPORT_SYMBOL(tcp_v4_send_check);
2377 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2379 #ifdef CONFIG_PROC_FS
2380 EXPORT_SYMBOL(tcp_proc_register);
2381 EXPORT_SYMBOL(tcp_proc_unregister);
2383 EXPORT_SYMBOL(sysctl_tcp_low_latency);