3 * Purpose: Generic MCA handling layer
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
58 #include <linux/types.h>
59 #include <linux/init.h>
60 #include <linux/sched.h>
61 #include <linux/interrupt.h>
62 #include <linux/irq.h>
63 #include <linux/smp_lock.h>
64 #include <linux/bootmem.h>
65 #include <linux/acpi.h>
66 #include <linux/timer.h>
67 #include <linux/module.h>
68 #include <linux/kernel.h>
69 #include <linux/smp.h>
70 #include <linux/workqueue.h>
71 #include <linux/cpumask.h>
73 #include <asm/delay.h>
74 #include <asm/kdebug.h>
75 #include <asm/machvec.h>
76 #include <asm/meminit.h>
78 #include <asm/ptrace.h>
79 #include <asm/system.h>
84 #include <asm/hw_irq.h>
89 #if defined(IA64_MCA_DEBUG_INFO)
90 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
92 # define IA64_MCA_DEBUG(fmt...)
95 /* Used by mca_asm.S */
96 u32 ia64_mca_serialize;
97 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
98 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
99 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
100 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
102 unsigned long __per_cpu_mca[NR_CPUS];
105 extern void ia64_os_init_dispatch_monarch (void);
106 extern void ia64_os_init_dispatch_slave (void);
108 static int monarch_cpu = -1;
110 static ia64_mc_info_t ia64_mc_info;
112 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
113 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
114 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
115 #define CPE_HISTORY_LENGTH 5
116 #define CMC_HISTORY_LENGTH 5
118 static struct timer_list cpe_poll_timer;
119 static struct timer_list cmc_poll_timer;
121 * This variable tells whether we are currently in polling mode.
122 * Start with this in the wrong state so we won't play w/ timers
123 * before the system is ready.
125 static int cmc_polling_enabled = 1;
128 * Clearing this variable prevents CPE polling from getting activated
129 * in mca_late_init. Use it if your system doesn't provide a CPEI,
130 * but encounters problems retrieving CPE logs. This should only be
131 * necessary for debugging.
133 static int cpe_poll_enabled = 1;
135 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
137 static int mca_init __initdata;
141 ia64_mca_spin(const char *func)
143 printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
148 * IA64_MCA log support
150 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
151 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
153 typedef struct ia64_state_log_s
157 unsigned long isl_count;
158 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
161 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
163 #define IA64_LOG_ALLOCATE(it, size) \
164 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
165 (ia64_err_rec_t *)alloc_bootmem(size); \
166 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
167 (ia64_err_rec_t *)alloc_bootmem(size);}
168 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
169 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
170 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
171 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
172 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
173 #define IA64_LOG_INDEX_INC(it) \
174 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
175 ia64_state_log[it].isl_count++;}
176 #define IA64_LOG_INDEX_DEC(it) \
177 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
178 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
179 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
180 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
184 * Reset the OS ia64 log buffer
185 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
189 ia64_log_init(int sal_info_type)
193 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
194 IA64_LOG_LOCK_INIT(sal_info_type);
196 // SAL will tell us the maximum size of any error record of this type
197 max_size = ia64_sal_get_state_info_size(sal_info_type);
199 /* alloc_bootmem() doesn't like zero-sized allocations! */
202 // set up OS data structures to hold error info
203 IA64_LOG_ALLOCATE(sal_info_type, max_size);
204 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
205 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
211 * Get the current MCA log from SAL and copy it into the OS log buffer.
213 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
214 * irq_safe whether you can use printk at this point
215 * Outputs : size (total record length)
216 * *buffer (ptr to error record)
220 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
222 sal_log_record_header_t *log_buffer;
226 IA64_LOG_LOCK(sal_info_type);
228 /* Get the process state information */
229 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
231 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
234 IA64_LOG_INDEX_INC(sal_info_type);
235 IA64_LOG_UNLOCK(sal_info_type);
237 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
238 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
240 *buffer = (u8 *) log_buffer;
243 IA64_LOG_UNLOCK(sal_info_type);
249 * ia64_mca_log_sal_error_record
251 * This function retrieves a specified error record type from SAL
252 * and wakes up any processes waiting for error records.
254 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
255 * FIXME: remove MCA and irq_safe.
258 ia64_mca_log_sal_error_record(int sal_info_type)
261 sal_log_record_header_t *rh;
263 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
264 #ifdef IA64_MCA_DEBUG_INFO
265 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
268 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
272 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
275 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
277 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
279 /* Clear logs from corrected errors in case there's no user-level logger */
280 rh = (sal_log_record_header_t *)buffer;
281 if (rh->severity == sal_log_severity_corrected)
282 ia64_sal_clear_state_info(sal_info_type);
287 * See if the MCA surfaced in an instruction range
288 * that has been tagged as recoverable.
291 * first First address range to check
292 * last Last address range to check
293 * ip Instruction pointer, address we are looking for
296 * 1 on Success (in the table)/ 0 on Failure (not in the table)
299 search_mca_table (const struct mca_table_entry *first,
300 const struct mca_table_entry *last,
303 const struct mca_table_entry *curr;
304 u64 curr_start, curr_end;
307 while (curr <= last) {
308 curr_start = (u64) &curr->start_addr + curr->start_addr;
309 curr_end = (u64) &curr->end_addr + curr->end_addr;
311 if ((ip >= curr_start) && (ip <= curr_end)) {
319 /* Given an address, look for it in the mca tables. */
320 int mca_recover_range(unsigned long addr)
322 extern struct mca_table_entry __start___mca_table[];
323 extern struct mca_table_entry __stop___mca_table[];
325 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
327 EXPORT_SYMBOL_GPL(mca_recover_range);
332 int ia64_cpe_irq = -1;
335 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
337 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
339 static DEFINE_SPINLOCK(cpe_history_lock);
341 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
342 __FUNCTION__, cpe_irq, smp_processor_id());
344 /* SAL spec states this should run w/ interrupts enabled */
347 /* Get the CPE error record and log it */
348 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
350 spin_lock(&cpe_history_lock);
351 if (!cpe_poll_enabled && cpe_vector >= 0) {
353 int i, count = 1; /* we know 1 happened now */
354 unsigned long now = jiffies;
356 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
357 if (now - cpe_history[i] <= HZ)
361 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
362 if (count >= CPE_HISTORY_LENGTH) {
364 cpe_poll_enabled = 1;
365 spin_unlock(&cpe_history_lock);
366 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
369 * Corrected errors will still be corrected, but
370 * make sure there's a log somewhere that indicates
371 * something is generating more than we can handle.
373 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
375 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
377 /* lock already released, get out now */
380 cpe_history[index++] = now;
381 if (index == CPE_HISTORY_LENGTH)
385 spin_unlock(&cpe_history_lock);
389 #endif /* CONFIG_ACPI */
393 * ia64_mca_register_cpev
395 * Register the corrected platform error vector with SAL.
398 * cpev Corrected Platform Error Vector number
404 ia64_mca_register_cpev (int cpev)
406 /* Register the CPE interrupt vector with SAL */
407 struct ia64_sal_retval isrv;
409 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
411 printk(KERN_ERR "Failed to register Corrected Platform "
412 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
416 IA64_MCA_DEBUG("%s: corrected platform error "
417 "vector %#x registered\n", __FUNCTION__, cpev);
419 #endif /* CONFIG_ACPI */
422 * ia64_mca_cmc_vector_setup
424 * Setup the corrected machine check vector register in the processor.
425 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
426 * This function is invoked on a per-processor basis.
435 ia64_mca_cmc_vector_setup (void)
439 cmcv.cmcv_regval = 0;
440 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
441 cmcv.cmcv_vector = IA64_CMC_VECTOR;
442 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
444 IA64_MCA_DEBUG("%s: CPU %d corrected "
445 "machine check vector %#x registered.\n",
446 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
448 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
449 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
453 * ia64_mca_cmc_vector_disable
455 * Mask the corrected machine check vector register in the processor.
456 * This function is invoked on a per-processor basis.
465 ia64_mca_cmc_vector_disable (void *dummy)
469 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
471 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
472 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
474 IA64_MCA_DEBUG("%s: CPU %d corrected "
475 "machine check vector %#x disabled.\n",
476 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
480 * ia64_mca_cmc_vector_enable
482 * Unmask the corrected machine check vector register in the processor.
483 * This function is invoked on a per-processor basis.
492 ia64_mca_cmc_vector_enable (void *dummy)
496 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
498 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
499 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
501 IA64_MCA_DEBUG("%s: CPU %d corrected "
502 "machine check vector %#x enabled.\n",
503 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
507 * ia64_mca_cmc_vector_disable_keventd
509 * Called via keventd (smp_call_function() is not safe in interrupt context) to
510 * disable the cmc interrupt vector.
513 ia64_mca_cmc_vector_disable_keventd(void *unused)
515 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
519 * ia64_mca_cmc_vector_enable_keventd
521 * Called via keventd (smp_call_function() is not safe in interrupt context) to
522 * enable the cmc interrupt vector.
525 ia64_mca_cmc_vector_enable_keventd(void *unused)
527 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
533 * Send an inter-cpu interrupt to wake-up a particular cpu
534 * and mark that cpu to be out of rendez.
540 ia64_mca_wakeup(int cpu)
542 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
543 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
548 * ia64_mca_wakeup_all
550 * Wakeup all the cpus which have rendez'ed previously.
556 ia64_mca_wakeup_all(void)
560 /* Clear the Rendez checkin flag for all cpus */
561 for_each_online_cpu(cpu) {
562 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
563 ia64_mca_wakeup(cpu);
569 * ia64_mca_rendez_interrupt_handler
571 * This is handler used to put slave processors into spinloop
572 * while the monarch processor does the mca handling and later
573 * wake each slave up once the monarch is done.
579 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
582 int cpu = smp_processor_id();
583 struct ia64_mca_notify_die nd =
584 { .sos = NULL, .monarch_cpu = &monarch_cpu };
586 /* Mask all interrupts */
587 local_irq_save(flags);
588 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, (long)&nd, 0, 0)
590 ia64_mca_spin(__FUNCTION__);
592 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
593 /* Register with the SAL monarch that the slave has
596 ia64_sal_mc_rendez();
598 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, (long)&nd, 0, 0)
600 ia64_mca_spin(__FUNCTION__);
602 /* Wait for the monarch cpu to exit. */
603 while (monarch_cpu != -1)
604 cpu_relax(); /* spin until monarch leaves */
606 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, (long)&nd, 0, 0)
608 ia64_mca_spin(__FUNCTION__);
610 /* Enable all interrupts */
611 local_irq_restore(flags);
616 * ia64_mca_wakeup_int_handler
618 * The interrupt handler for processing the inter-cpu interrupt to the
619 * slave cpu which was spinning in the rendez loop.
620 * Since this spinning is done by turning off the interrupts and
621 * polling on the wakeup-interrupt bit in the IRR, there is
622 * nothing useful to be done in the handler.
624 * Inputs : wakeup_irq (Wakeup-interrupt bit)
625 * arg (Interrupt handler specific argument)
626 * ptregs (Exception frame at the time of the interrupt)
631 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
636 /* Function pointer for extra MCA recovery */
637 int (*ia64_mca_ucmc_extension)
638 (void*,struct ia64_sal_os_state*)
642 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
644 if (ia64_mca_ucmc_extension)
647 ia64_mca_ucmc_extension = fn;
652 ia64_unreg_MCA_extension(void)
654 if (ia64_mca_ucmc_extension)
655 ia64_mca_ucmc_extension = NULL;
658 EXPORT_SYMBOL(ia64_reg_MCA_extension);
659 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
663 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
665 u64 fslot, tslot, nat;
667 fslot = ((unsigned long)fr >> 3) & 63;
668 tslot = ((unsigned long)tr >> 3) & 63;
669 *tnat &= ~(1UL << tslot);
670 nat = (fnat >> fslot) & 1;
671 *tnat |= (nat << tslot);
674 /* Change the comm field on the MCA/INT task to include the pid that
675 * was interrupted, it makes for easier debugging. If that pid was 0
676 * (swapper or nested MCA/INIT) then use the start of the previous comm
677 * field suffixed with its cpu.
681 ia64_mca_modify_comm(const task_t *previous_current)
683 char *p, comm[sizeof(current->comm)];
684 if (previous_current->pid)
685 snprintf(comm, sizeof(comm), "%s %d",
686 current->comm, previous_current->pid);
689 if ((p = strchr(previous_current->comm, ' ')))
690 l = p - previous_current->comm;
692 l = strlen(previous_current->comm);
693 snprintf(comm, sizeof(comm), "%s %*s %d",
694 current->comm, l, previous_current->comm,
695 task_thread_info(previous_current)->cpu);
697 memcpy(current->comm, comm, sizeof(current->comm));
700 /* On entry to this routine, we are running on the per cpu stack, see
701 * mca_asm.h. The original stack has not been touched by this event. Some of
702 * the original stack's registers will be in the RBS on this stack. This stack
703 * also contains a partial pt_regs and switch_stack, the rest of the data is in
706 * The first thing to do is modify the original stack to look like a blocked
707 * task so we can run backtrace on the original task. Also mark the per cpu
708 * stack as current to ensure that we use the correct task state, it also means
709 * that we can do backtrace on the MCA/INIT handler code itself.
713 ia64_mca_modify_original_stack(struct pt_regs *regs,
714 const struct switch_stack *sw,
715 struct ia64_sal_os_state *sos,
720 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
721 const pal_min_state_area_t *ms = sos->pal_min_state;
722 task_t *previous_current;
723 struct pt_regs *old_regs;
724 struct switch_stack *old_sw;
725 unsigned size = sizeof(struct pt_regs) +
726 sizeof(struct switch_stack) + 16;
727 u64 *old_bspstore, *old_bsp;
728 u64 *new_bspstore, *new_bsp;
729 u64 old_unat, old_rnat, new_rnat, nat;
730 u64 slots, loadrs = regs->loadrs;
731 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
732 u64 ar_bspstore = regs->ar_bspstore;
733 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
736 int cpu = smp_processor_id();
738 previous_current = curr_task(cpu);
739 set_curr_task(cpu, current);
740 if ((p = strchr(current->comm, ' ')))
743 /* Best effort attempt to cope with MCA/INIT delivered while in
746 regs->cr_ipsr = ms->pmsa_ipsr;
747 if (ia64_psr(regs)->dt == 0) {
759 if (ia64_psr(regs)->rt == 0) {
772 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
773 * have been copied to the old stack, the old stack may fail the
774 * validation tests below. So ia64_old_stack() must restore the dirty
775 * registers from the new stack. The old and new bspstore probably
776 * have different alignments, so loadrs calculated on the old bsp
777 * cannot be used to restore from the new bsp. Calculate a suitable
778 * loadrs for the new stack and save it in the new pt_regs, where
779 * ia64_old_stack() can get it.
781 old_bspstore = (u64 *)ar_bspstore;
782 old_bsp = (u64 *)ar_bsp;
783 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
784 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
785 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
786 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
788 /* Verify the previous stack state before we change it */
789 if (user_mode(regs)) {
790 msg = "occurred in user space";
791 /* previous_current is guaranteed to be valid when the task was
792 * in user space, so ...
794 ia64_mca_modify_comm(previous_current);
798 if (!mca_recover_range(ms->pmsa_iip)) {
799 if (r13 != sos->prev_IA64_KR_CURRENT) {
800 msg = "inconsistent previous current and r13";
803 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
804 msg = "inconsistent r12 and r13";
807 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
808 msg = "inconsistent ar.bspstore and r13";
813 msg = "old_bspstore is in the wrong region";
816 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
817 msg = "inconsistent ar.bsp and r13";
820 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
821 if (ar_bspstore + size > r12) {
822 msg = "no room for blocked state";
827 ia64_mca_modify_comm(previous_current);
829 /* Make the original task look blocked. First stack a struct pt_regs,
830 * describing the state at the time of interrupt. mca_asm.S built a
831 * partial pt_regs, copy it and fill in the blanks using minstate.
833 p = (char *)r12 - sizeof(*regs);
834 old_regs = (struct pt_regs *)p;
835 memcpy(old_regs, regs, sizeof(*regs));
836 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
837 * pmsa_{xip,xpsr,xfs}
839 if (ia64_psr(regs)->ic) {
840 old_regs->cr_iip = ms->pmsa_iip;
841 old_regs->cr_ipsr = ms->pmsa_ipsr;
842 old_regs->cr_ifs = ms->pmsa_ifs;
844 old_regs->cr_iip = ms->pmsa_xip;
845 old_regs->cr_ipsr = ms->pmsa_xpsr;
846 old_regs->cr_ifs = ms->pmsa_xfs;
848 old_regs->pr = ms->pmsa_pr;
849 old_regs->b0 = ms->pmsa_br0;
850 old_regs->loadrs = loadrs;
851 old_regs->ar_rsc = ms->pmsa_rsc;
852 old_unat = old_regs->ar_unat;
853 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
854 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
855 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
856 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
857 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
858 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
859 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
860 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
861 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
862 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
863 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
864 if (ia64_psr(old_regs)->bn)
865 bank = ms->pmsa_bank1_gr;
867 bank = ms->pmsa_bank0_gr;
868 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
869 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
870 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
871 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
872 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
873 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
874 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
875 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
876 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
877 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
878 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
879 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
880 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
881 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
882 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
883 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
885 /* Next stack a struct switch_stack. mca_asm.S built a partial
886 * switch_stack, copy it and fill in the blanks using pt_regs and
889 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
890 * ar.pfs is set to 0.
892 * unwind.c::unw_unwind() does special processing for interrupt frames.
893 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
894 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
895 * that this is documented, of course. Set PRED_NON_SYSCALL in the
896 * switch_stack on the original stack so it will unwind correctly when
897 * unwind.c reads pt_regs.
899 * thread.ksp is updated to point to the synthesized switch_stack.
901 p -= sizeof(struct switch_stack);
902 old_sw = (struct switch_stack *)p;
903 memcpy(old_sw, sw, sizeof(*sw));
904 old_sw->caller_unat = old_unat;
905 old_sw->ar_fpsr = old_regs->ar_fpsr;
906 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
907 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
908 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
909 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
910 old_sw->b0 = (u64)ia64_leave_kernel;
911 old_sw->b1 = ms->pmsa_br1;
913 old_sw->ar_unat = old_unat;
914 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
915 previous_current->thread.ksp = (u64)p - 16;
917 /* Finally copy the original stack's registers back to its RBS.
918 * Registers from ar.bspstore through ar.bsp at the time of the event
919 * are in the current RBS, copy them back to the original stack. The
920 * copy must be done register by register because the original bspstore
921 * and the current one have different alignments, so the saved RNAT
922 * data occurs at different places.
924 * mca_asm does cover, so the old_bsp already includes all registers at
925 * the time of MCA/INIT. It also does flushrs, so all registers before
926 * this function have been written to backing store on the MCA/INIT
929 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
930 old_rnat = regs->ar_rnat;
932 if (ia64_rse_is_rnat_slot(new_bspstore)) {
933 new_rnat = ia64_get_rnat(new_bspstore++);
935 if (ia64_rse_is_rnat_slot(old_bspstore)) {
936 *old_bspstore++ = old_rnat;
939 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
940 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
941 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
942 *old_bspstore++ = *new_bspstore++;
944 old_sw->ar_bspstore = (unsigned long)old_bspstore;
945 old_sw->ar_rnat = old_rnat;
947 sos->prev_task = previous_current;
948 return previous_current;
951 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
952 smp_processor_id(), type, msg);
953 return previous_current;
956 /* The monarch/slave interaction is based on monarch_cpu and requires that all
957 * slaves have entered rendezvous before the monarch leaves. If any cpu has
958 * not entered rendezvous yet then wait a bit. The assumption is that any
959 * slave that has not rendezvoused after a reasonable time is never going to do
960 * so. In this context, slave includes cpus that respond to the MCA rendezvous
961 * interrupt, as well as cpus that receive the INIT slave event.
965 ia64_wait_for_slaves(int monarch, const char *type)
967 int c, wait = 0, missing = 0;
968 for_each_online_cpu(c) {
971 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
972 udelay(1000); /* short wait first */
979 for_each_online_cpu(c) {
982 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
983 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
984 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
991 printk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
992 for_each_online_cpu(c) {
995 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1002 printk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1009 * This is uncorrectable machine check handler called from OS_MCA
1010 * dispatch code which is in turn called from SAL_CHECK().
1011 * This is the place where the core of OS MCA handling is done.
1012 * Right now the logs are extracted and displayed in a well-defined
1013 * format. This handler code is supposed to be run only on the
1014 * monarch processor. Once the monarch is done with MCA handling
1015 * further MCA logging is enabled by clearing logs.
1016 * Monarch also has the duty of sending wakeup-IPIs to pull the
1017 * slave processors out of rendezvous spinloop.
1020 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1021 struct ia64_sal_os_state *sos)
1023 pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
1024 &sos->proc_state_param;
1025 int recover, cpu = smp_processor_id();
1026 task_t *previous_current;
1027 struct ia64_mca_notify_die nd =
1028 { .sos = sos, .monarch_cpu = &monarch_cpu };
1030 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
1031 console_loglevel = 15; /* make sure printks make it to console */
1032 printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n",
1033 sos->proc_state_param, cpu, sos->monarch);
1035 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1037 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1039 ia64_mca_spin(__FUNCTION__);
1040 ia64_wait_for_slaves(cpu, "MCA");
1042 /* Wakeup all the processors which are spinning in the rendezvous loop.
1043 * They will leave SAL, then spin in the OS with interrupts disabled
1044 * until this monarch cpu leaves the MCA handler. That gets control
1045 * back to the OS so we can backtrace the other cpus, backtrace when
1046 * spinning in SAL does not work.
1048 ia64_mca_wakeup_all();
1049 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1051 ia64_mca_spin(__FUNCTION__);
1053 /* Get the MCA error record and log it */
1054 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1056 /* TLB error is only exist in this SAL error record */
1057 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1058 /* other error recovery */
1059 || (ia64_mca_ucmc_extension
1060 && ia64_mca_ucmc_extension(
1061 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1065 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1066 rh->severity = sal_log_severity_corrected;
1067 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1068 sos->os_status = IA64_MCA_CORRECTED;
1070 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1072 ia64_mca_spin(__FUNCTION__);
1074 set_curr_task(cpu, previous_current);
1078 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1079 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1082 * ia64_mca_cmc_int_handler
1084 * This is corrected machine check interrupt handler.
1085 * Right now the logs are extracted and displayed in a well-defined
1090 * client data arg ptr
1091 * saved registers ptr
1097 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1099 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1101 static DEFINE_SPINLOCK(cmc_history_lock);
1103 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1104 __FUNCTION__, cmc_irq, smp_processor_id());
1106 /* SAL spec states this should run w/ interrupts enabled */
1109 /* Get the CMC error record and log it */
1110 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1112 spin_lock(&cmc_history_lock);
1113 if (!cmc_polling_enabled) {
1114 int i, count = 1; /* we know 1 happened now */
1115 unsigned long now = jiffies;
1117 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1118 if (now - cmc_history[i] <= HZ)
1122 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1123 if (count >= CMC_HISTORY_LENGTH) {
1125 cmc_polling_enabled = 1;
1126 spin_unlock(&cmc_history_lock);
1127 /* If we're being hit with CMC interrupts, we won't
1128 * ever execute the schedule_work() below. Need to
1129 * disable CMC interrupts on this processor now.
1131 ia64_mca_cmc_vector_disable(NULL);
1132 schedule_work(&cmc_disable_work);
1135 * Corrected errors will still be corrected, but
1136 * make sure there's a log somewhere that indicates
1137 * something is generating more than we can handle.
1139 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1141 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1143 /* lock already released, get out now */
1146 cmc_history[index++] = now;
1147 if (index == CMC_HISTORY_LENGTH)
1151 spin_unlock(&cmc_history_lock);
1156 * ia64_mca_cmc_int_caller
1158 * Triggered by sw interrupt from CMC polling routine. Calls
1159 * real interrupt handler and either triggers a sw interrupt
1160 * on the next cpu or does cleanup at the end.
1164 * client data arg ptr
1165 * saved registers ptr
1170 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1172 static int start_count = -1;
1175 cpuid = smp_processor_id();
1177 /* If first cpu, update count */
1178 if (start_count == -1)
1179 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1181 ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1183 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1185 if (cpuid < NR_CPUS) {
1186 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1188 /* If no log record, switch out of polling mode */
1189 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1191 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1192 schedule_work(&cmc_enable_work);
1193 cmc_polling_enabled = 0;
1197 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1209 * Poll for Corrected Machine Checks (CMCs)
1211 * Inputs : dummy(unused)
1216 ia64_mca_cmc_poll (unsigned long dummy)
1218 /* Trigger a CMC interrupt cascade */
1219 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1223 * ia64_mca_cpe_int_caller
1225 * Triggered by sw interrupt from CPE polling routine. Calls
1226 * real interrupt handler and either triggers a sw interrupt
1227 * on the next cpu or does cleanup at the end.
1231 * client data arg ptr
1232 * saved registers ptr
1239 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1241 static int start_count = -1;
1242 static int poll_time = MIN_CPE_POLL_INTERVAL;
1245 cpuid = smp_processor_id();
1247 /* If first cpu, update count */
1248 if (start_count == -1)
1249 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1251 ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1253 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1255 if (cpuid < NR_CPUS) {
1256 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1259 * If a log was recorded, increase our polling frequency,
1260 * otherwise, backoff or return to interrupt mode.
1262 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1263 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1264 } else if (cpe_vector < 0) {
1265 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1267 poll_time = MIN_CPE_POLL_INTERVAL;
1269 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1270 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1271 cpe_poll_enabled = 0;
1274 if (cpe_poll_enabled)
1275 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1285 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1286 * on first cpu, from there it will trickle through all the cpus.
1288 * Inputs : dummy(unused)
1293 ia64_mca_cpe_poll (unsigned long dummy)
1295 /* Trigger a CPE interrupt cascade */
1296 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1299 #endif /* CONFIG_ACPI */
1302 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1305 struct task_struct *g, *t;
1306 if (val != DIE_INIT_MONARCH_PROCESS)
1308 printk(KERN_ERR "Processes interrupted by INIT -");
1309 for_each_online_cpu(c) {
1310 struct ia64_sal_os_state *s;
1311 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1312 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1316 printk(" %d", g->pid);
1318 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1322 if (read_trylock(&tasklist_lock)) {
1323 do_each_thread (g, t) {
1324 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1325 show_stack(t, NULL);
1326 } while_each_thread (g, t);
1327 read_unlock(&tasklist_lock);
1333 * C portion of the OS INIT handler
1335 * Called from ia64_os_init_dispatch
1337 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1338 * this event. This code is used for both monarch and slave INIT events, see
1341 * All INIT events switch to the INIT stack and change the previous process to
1342 * blocked status. If one of the INIT events is the monarch then we are
1343 * probably processing the nmi button/command. Use the monarch cpu to dump all
1344 * the processes. The slave INIT events all spin until the monarch cpu
1345 * returns. We can also get INIT slave events for MCA, in which case the MCA
1346 * process is the monarch.
1350 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1351 struct ia64_sal_os_state *sos)
1353 static atomic_t slaves;
1354 static atomic_t monarchs;
1355 task_t *previous_current;
1356 int cpu = smp_processor_id();
1357 struct ia64_mca_notify_die nd =
1358 { .sos = sos, .monarch_cpu = &monarch_cpu };
1360 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
1361 console_loglevel = 15; /* make sure printks make it to console */
1363 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1365 printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1366 sos->proc_state_param, cpu, sos->monarch);
1367 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1369 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1370 sos->os_status = IA64_INIT_RESUME;
1372 /* FIXME: Workaround for broken proms that drive all INIT events as
1373 * slaves. The last slave that enters is promoted to be a monarch.
1374 * Remove this code in September 2006, that gives platforms a year to
1375 * fix their proms and get their customers updated.
1377 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1378 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1380 atomic_dec(&slaves);
1384 /* FIXME: Workaround for broken proms that drive all INIT events as
1385 * monarchs. Second and subsequent monarchs are demoted to slaves.
1386 * Remove this code in September 2006, that gives platforms a year to
1387 * fix their proms and get their customers updated.
1389 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1390 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1392 atomic_dec(&monarchs);
1396 if (!sos->monarch) {
1397 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1398 while (monarch_cpu == -1)
1399 cpu_relax(); /* spin until monarch enters */
1400 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1402 ia64_mca_spin(__FUNCTION__);
1403 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1405 ia64_mca_spin(__FUNCTION__);
1406 while (monarch_cpu != -1)
1407 cpu_relax(); /* spin until monarch leaves */
1408 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1410 ia64_mca_spin(__FUNCTION__);
1411 printk("Slave on cpu %d returning to normal service.\n", cpu);
1412 set_curr_task(cpu, previous_current);
1413 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1414 atomic_dec(&slaves);
1419 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1421 ia64_mca_spin(__FUNCTION__);
1424 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1425 * generated via the BMC's command-line interface, but since the console is on the
1426 * same serial line, the user will need some time to switch out of the BMC before
1429 printk("Delaying for 5 seconds...\n");
1431 ia64_wait_for_slaves(cpu, "INIT");
1432 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1433 * to default_monarch_init_process() above and just print all the
1436 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1438 ia64_mca_spin(__FUNCTION__);
1439 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1441 ia64_mca_spin(__FUNCTION__);
1442 printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1443 atomic_dec(&monarchs);
1444 set_curr_task(cpu, previous_current);
1450 ia64_mca_disable_cpe_polling(char *str)
1452 cpe_poll_enabled = 0;
1456 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1458 static struct irqaction cmci_irqaction = {
1459 .handler = ia64_mca_cmc_int_handler,
1460 .flags = IRQF_DISABLED,
1464 static struct irqaction cmcp_irqaction = {
1465 .handler = ia64_mca_cmc_int_caller,
1466 .flags = IRQF_DISABLED,
1470 static struct irqaction mca_rdzv_irqaction = {
1471 .handler = ia64_mca_rendez_int_handler,
1472 .flags = IRQF_DISABLED,
1476 static struct irqaction mca_wkup_irqaction = {
1477 .handler = ia64_mca_wakeup_int_handler,
1478 .flags = IRQF_DISABLED,
1483 static struct irqaction mca_cpe_irqaction = {
1484 .handler = ia64_mca_cpe_int_handler,
1485 .flags = IRQF_DISABLED,
1489 static struct irqaction mca_cpep_irqaction = {
1490 .handler = ia64_mca_cpe_int_caller,
1491 .flags = IRQF_DISABLED,
1494 #endif /* CONFIG_ACPI */
1496 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1497 * these stacks can never sleep, they cannot return from the kernel to user
1498 * space, they do not appear in a normal ps listing. So there is no need to
1499 * format most of the fields.
1502 static void __cpuinit
1503 format_mca_init_stack(void *mca_data, unsigned long offset,
1504 const char *type, int cpu)
1506 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1507 struct thread_info *ti;
1508 memset(p, 0, KERNEL_STACK_SIZE);
1509 ti = task_thread_info(p);
1510 ti->flags = _TIF_MCA_INIT;
1511 ti->preempt_count = 1;
1514 p->thread_info = ti;
1515 p->state = TASK_UNINTERRUPTIBLE;
1516 cpu_set(cpu, p->cpus_allowed);
1517 INIT_LIST_HEAD(&p->tasks);
1518 p->parent = p->real_parent = p->group_leader = p;
1519 INIT_LIST_HEAD(&p->children);
1520 INIT_LIST_HEAD(&p->sibling);
1521 strncpy(p->comm, type, sizeof(p->comm)-1);
1524 /* Do per-CPU MCA-related initialization. */
1527 ia64_mca_cpu_init(void *cpu_data)
1530 static int first_time = 1;
1537 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1538 * NR_CPUS + KERNEL_STACK_SIZE);
1539 mca_data = (void *)(((unsigned long)mca_data +
1540 KERNEL_STACK_SIZE - 1) &
1541 (-KERNEL_STACK_SIZE));
1542 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1543 format_mca_init_stack(mca_data,
1544 offsetof(struct ia64_mca_cpu, mca_stack),
1546 format_mca_init_stack(mca_data,
1547 offsetof(struct ia64_mca_cpu, init_stack),
1549 __per_cpu_mca[cpu] = __pa(mca_data);
1550 mca_data += sizeof(struct ia64_mca_cpu);
1555 * The MCA info structure was allocated earlier and its
1556 * physical address saved in __per_cpu_mca[cpu]. Copy that
1557 * address * to ia64_mca_data so we can access it as a per-CPU
1560 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1563 * Stash away a copy of the PTE needed to map the per-CPU page.
1564 * We may need it during MCA recovery.
1566 __get_cpu_var(ia64_mca_per_cpu_pte) =
1567 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1570 * Also, stash away a copy of the PAL address and the PTE
1573 pal_vaddr = efi_get_pal_addr();
1576 __get_cpu_var(ia64_mca_pal_base) =
1577 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1578 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1585 * Do all the system level mca specific initialization.
1587 * 1. Register spinloop and wakeup request interrupt vectors
1589 * 2. Register OS_MCA handler entry point
1591 * 3. Register OS_INIT handler entry point
1593 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1595 * Note that this initialization is done very early before some kernel
1596 * services are available.
1605 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1606 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1607 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1610 struct ia64_sal_retval isrv;
1611 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1612 static struct notifier_block default_init_monarch_nb = {
1613 .notifier_call = default_monarch_init_process,
1614 .priority = 0/* we need to notified last */
1617 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1619 /* Clear the Rendez checkin flag for all cpus */
1620 for(i = 0 ; i < NR_CPUS; i++)
1621 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1624 * Register the rendezvous spinloop and wakeup mechanism with SAL
1627 /* Register the rendezvous interrupt vector with SAL */
1629 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1630 SAL_MC_PARAM_MECHANISM_INT,
1631 IA64_MCA_RENDEZ_VECTOR,
1633 SAL_MC_PARAM_RZ_ALWAYS);
1638 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1639 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1641 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1644 printk(KERN_ERR "Failed to register rendezvous interrupt "
1645 "with SAL (status %ld)\n", rc);
1649 /* Register the wakeup interrupt vector with SAL */
1650 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1651 SAL_MC_PARAM_MECHANISM_INT,
1652 IA64_MCA_WAKEUP_VECTOR,
1656 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1657 "(status %ld)\n", rc);
1661 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1663 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1665 * XXX - disable SAL checksum by setting size to 0; should be
1666 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1668 ia64_mc_info.imi_mca_handler_size = 0;
1670 /* Register the os mca handler with SAL */
1671 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1672 ia64_mc_info.imi_mca_handler,
1673 ia64_tpa(mca_hldlr_ptr->gp),
1674 ia64_mc_info.imi_mca_handler_size,
1677 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1678 "(status %ld)\n", rc);
1682 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1683 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1686 * XXX - disable SAL checksum by setting size to 0, should be
1687 * size of the actual init handler in mca_asm.S.
1689 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1690 ia64_mc_info.imi_monarch_init_handler_size = 0;
1691 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1692 ia64_mc_info.imi_slave_init_handler_size = 0;
1694 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1695 ia64_mc_info.imi_monarch_init_handler);
1697 /* Register the os init handler with SAL */
1698 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1699 ia64_mc_info.imi_monarch_init_handler,
1700 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1701 ia64_mc_info.imi_monarch_init_handler_size,
1702 ia64_mc_info.imi_slave_init_handler,
1703 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1704 ia64_mc_info.imi_slave_init_handler_size)))
1706 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1707 "(status %ld)\n", rc);
1710 if (register_die_notifier(&default_init_monarch_nb)) {
1711 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1715 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1718 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1719 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1721 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1722 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1723 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1725 /* Setup the MCA rendezvous interrupt vector */
1726 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1728 /* Setup the MCA wakeup interrupt vector */
1729 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1732 /* Setup the CPEI/P handler */
1733 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1736 /* Initialize the areas set aside by the OS to buffer the
1737 * platform/processor error states for MCA/INIT/CMC
1740 ia64_log_init(SAL_INFO_TYPE_MCA);
1741 ia64_log_init(SAL_INFO_TYPE_INIT);
1742 ia64_log_init(SAL_INFO_TYPE_CMC);
1743 ia64_log_init(SAL_INFO_TYPE_CPE);
1746 printk(KERN_INFO "MCA related initialization done\n");
1750 * ia64_mca_late_init
1752 * Opportunity to setup things that require initialization later
1753 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1754 * platform doesn't support an interrupt driven mechanism.
1760 ia64_mca_late_init(void)
1765 /* Setup the CMCI/P vector and handler */
1766 init_timer(&cmc_poll_timer);
1767 cmc_poll_timer.function = ia64_mca_cmc_poll;
1769 /* Unmask/enable the vector */
1770 cmc_polling_enabled = 0;
1771 schedule_work(&cmc_enable_work);
1773 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1776 /* Setup the CPEI/P vector and handler */
1777 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1778 init_timer(&cpe_poll_timer);
1779 cpe_poll_timer.function = ia64_mca_cpe_poll;
1785 if (cpe_vector >= 0) {
1786 /* If platform supports CPEI, enable the irq. */
1787 cpe_poll_enabled = 0;
1788 for (irq = 0; irq < NR_IRQS; ++irq)
1789 if (irq_to_vector(irq) == cpe_vector) {
1790 desc = irq_desc + irq;
1791 desc->status |= IRQ_PER_CPU;
1792 setup_irq(irq, &mca_cpe_irqaction);
1795 ia64_mca_register_cpev(cpe_vector);
1796 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1798 /* If platform doesn't support CPEI, get the timer going. */
1799 if (cpe_poll_enabled) {
1800 ia64_mca_cpe_poll(0UL);
1801 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1810 device_initcall(ia64_mca_late_init);