3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
28 #include <linux/stddef.h>
29 #include <linux/init.h>
30 #include <linux/bootmem.h>
31 #include <linux/highmem.h>
32 #include <linux/initrd.h>
33 #include <linux/pagemap.h>
35 #include <asm/pgalloc.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
42 #include <asm/machdep.h>
43 #include <asm/btext.h>
47 #include <asm/sections.h>
52 #ifndef CPU_FTR_COHERENT_ICACHE
53 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
54 #define CPU_FTR_NOEXECUTE 0
57 int init_bootmem_done;
59 unsigned long memory_limit;
61 extern void hash_preload(struct mm_struct *mm, unsigned long ea,
62 unsigned long access, unsigned long trap);
65 * This is called by /dev/mem to know if a given address has to
66 * be mapped non-cacheable or not
68 int page_is_ram(unsigned long pfn)
70 unsigned long paddr = (pfn << PAGE_SHIFT);
72 #ifndef CONFIG_PPC64 /* XXX for now */
73 return paddr < __pa(high_memory);
76 for (i=0; i < lmb.memory.cnt; i++) {
79 base = lmb.memory.region[i].base;
81 if ((paddr >= base) &&
82 (paddr < (base + lmb.memory.region[i].size))) {
90 EXPORT_SYMBOL(page_is_ram);
92 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
93 unsigned long size, pgprot_t vma_prot)
95 if (ppc_md.phys_mem_access_prot)
96 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
98 if (!page_is_ram(pfn))
99 vma_prot = __pgprot(pgprot_val(vma_prot)
100 | _PAGE_GUARDED | _PAGE_NO_CACHE);
103 EXPORT_SYMBOL(phys_mem_access_prot);
105 #ifdef CONFIG_MEMORY_HOTPLUG
107 void online_page(struct page *page)
109 ClearPageReserved(page);
110 init_page_count(page);
117 int memory_add_physaddr_to_nid(u64 start)
119 return hot_add_scn_to_nid(start);
123 int __devinit arch_add_memory(int nid, u64 start, u64 size)
125 struct pglist_data *pgdata;
127 unsigned long start_pfn = start >> PAGE_SHIFT;
128 unsigned long nr_pages = size >> PAGE_SHIFT;
130 pgdata = NODE_DATA(nid);
132 start = (unsigned long)__va(start);
133 create_section_mapping(start, start + size);
135 /* this should work for most non-highmem platforms */
136 zone = pgdata->node_zones;
138 return __add_pages(zone, start_pfn, nr_pages);
144 * First pass at this code will check to determine if the remove
145 * request is within the RMO. Do not allow removal within the RMO.
147 int __devinit remove_memory(u64 start, u64 size)
150 unsigned long start_pfn, end_pfn, nr_pages;
152 start_pfn = start >> PAGE_SHIFT;
153 nr_pages = size >> PAGE_SHIFT;
154 end_pfn = start_pfn + nr_pages;
156 printk("%s(): Attempting to remove memoy in range "
157 "%lx to %lx\n", __func__, start, start+size);
159 * check for range within RMO
161 zone = page_zone(pfn_to_page(start_pfn));
163 printk("%s(): memory will be removed from "
164 "the %s zone\n", __func__, zone->name);
167 * not handling removing memory ranges that
168 * overlap multiple zones yet
170 if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
173 /* make sure it is NOT in RMO */
174 if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
175 printk("%s(): range to be removed must NOT be in RMO!\n",
180 return __remove_pages(zone, start_pfn, nr_pages);
183 printk("%s(): memory range to be removed overlaps "
184 "multiple zones!!!\n", __func__);
188 #endif /* CONFIG_MEMORY_HOTPLUG */
192 unsigned long total = 0, reserved = 0;
193 unsigned long shared = 0, cached = 0;
194 unsigned long highmem = 0;
199 printk("Mem-info:\n");
201 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
202 for_each_online_pgdat(pgdat) {
204 pgdat_resize_lock(pgdat, &flags);
205 for (i = 0; i < pgdat->node_spanned_pages; i++) {
206 if (!pfn_valid(pgdat->node_start_pfn + i))
208 page = pgdat_page_nr(pgdat, i);
210 if (PageHighMem(page))
212 if (PageReserved(page))
214 else if (PageSwapCache(page))
216 else if (page_count(page))
217 shared += page_count(page) - 1;
219 pgdat_resize_unlock(pgdat, &flags);
221 printk("%ld pages of RAM\n", total);
222 #ifdef CONFIG_HIGHMEM
223 printk("%ld pages of HIGHMEM\n", highmem);
225 printk("%ld reserved pages\n", reserved);
226 printk("%ld pages shared\n", shared);
227 printk("%ld pages swap cached\n", cached);
231 * Initialize the bootmem system and give it all the memory we
232 * have available. If we are using highmem, we only put the
233 * lowmem into the bootmem system.
235 #ifndef CONFIG_NEED_MULTIPLE_NODES
236 void __init do_init_bootmem(void)
239 unsigned long start, bootmap_pages;
240 unsigned long total_pages;
243 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
244 #ifdef CONFIG_HIGHMEM
245 total_pages = total_lowmem >> PAGE_SHIFT;
249 * Find an area to use for the bootmem bitmap. Calculate the size of
250 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
251 * Add 1 additional page in case the address isn't page-aligned.
253 bootmap_pages = bootmem_bootmap_pages(total_pages);
255 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
257 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
259 /* Add all physical memory to the bootmem map, mark each area
262 for (i = 0; i < lmb.memory.cnt; i++) {
263 unsigned long base = lmb.memory.region[i].base;
264 unsigned long size = lmb_size_bytes(&lmb.memory, i);
265 #ifdef CONFIG_HIGHMEM
266 if (base >= total_lowmem)
268 if (base + size > total_lowmem)
269 size = total_lowmem - base;
271 free_bootmem(base, size);
274 /* reserve the sections we're already using */
275 for (i = 0; i < lmb.reserved.cnt; i++)
276 reserve_bootmem(lmb.reserved.region[i].base,
277 lmb_size_bytes(&lmb.reserved, i));
279 /* XXX need to clip this if using highmem? */
280 for (i = 0; i < lmb.memory.cnt; i++)
281 memory_present(0, lmb_start_pfn(&lmb.memory, i),
282 lmb_end_pfn(&lmb.memory, i));
283 init_bootmem_done = 1;
287 * paging_init() sets up the page tables - in fact we've already done this.
289 void __init paging_init(void)
291 unsigned long zones_size[MAX_NR_ZONES];
292 unsigned long zholes_size[MAX_NR_ZONES];
293 unsigned long total_ram = lmb_phys_mem_size();
294 unsigned long top_of_ram = lmb_end_of_DRAM();
296 #ifdef CONFIG_HIGHMEM
297 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
298 pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
299 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
300 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
301 kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
302 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
303 kmap_prot = PAGE_KERNEL;
304 #endif /* CONFIG_HIGHMEM */
306 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
307 top_of_ram, total_ram);
308 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
309 (top_of_ram - total_ram) >> 20);
311 * All pages are DMA-able so we put them all in the DMA zone.
313 memset(zones_size, 0, sizeof(zones_size));
314 memset(zholes_size, 0, sizeof(zholes_size));
316 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
317 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
319 #ifdef CONFIG_HIGHMEM
320 zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
321 zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
322 zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
324 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
325 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
326 #endif /* CONFIG_HIGHMEM */
328 free_area_init_node(0, NODE_DATA(0), zones_size,
329 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
331 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
333 void __init mem_init(void)
335 #ifdef CONFIG_NEED_MULTIPLE_NODES
341 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
343 num_physpages = lmb.memory.size >> PAGE_SHIFT;
344 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
346 #ifdef CONFIG_NEED_MULTIPLE_NODES
347 for_each_online_node(nid) {
348 if (NODE_DATA(nid)->node_spanned_pages != 0) {
349 printk("freeing bootmem node %d\n", nid);
351 free_all_bootmem_node(NODE_DATA(nid));
356 totalram_pages += free_all_bootmem();
358 for_each_online_pgdat(pgdat) {
359 for (i = 0; i < pgdat->node_spanned_pages; i++) {
360 if (!pfn_valid(pgdat->node_start_pfn + i))
362 page = pgdat_page_nr(pgdat, i);
363 if (PageReserved(page))
368 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
369 datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
370 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
371 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
373 #ifdef CONFIG_HIGHMEM
375 unsigned long pfn, highmem_mapnr;
377 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
378 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
379 struct page *page = pfn_to_page(pfn);
381 ClearPageReserved(page);
382 init_page_count(page);
386 totalram_pages += totalhigh_pages;
387 printk(KERN_DEBUG "High memory: %luk\n",
388 totalhigh_pages << (PAGE_SHIFT-10));
390 #endif /* CONFIG_HIGHMEM */
392 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
393 "%luk reserved, %luk data, %luk bss, %luk init)\n",
394 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
395 num_physpages << (PAGE_SHIFT-10),
397 reservedpages << (PAGE_SHIFT-10),
404 /* Initialize the vDSO */
409 * This is called when a page has been modified by the kernel.
410 * It just marks the page as not i-cache clean. We do the i-cache
411 * flush later when the page is given to a user process, if necessary.
413 void flush_dcache_page(struct page *page)
415 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
417 /* avoid an atomic op if possible */
418 if (test_bit(PG_arch_1, &page->flags))
419 clear_bit(PG_arch_1, &page->flags);
421 EXPORT_SYMBOL(flush_dcache_page);
423 void flush_dcache_icache_page(struct page *page)
426 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
427 __flush_dcache_icache(start);
428 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
429 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
430 /* On 8xx there is no need to kmap since highmem is not supported */
431 __flush_dcache_icache(page_address(page));
433 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
437 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
442 * We shouldnt have to do this, but some versions of glibc
443 * require it (ld.so assumes zero filled pages are icache clean)
446 flush_dcache_page(pg);
448 EXPORT_SYMBOL(clear_user_page);
450 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
453 copy_page(vto, vfrom);
456 * We should be able to use the following optimisation, however
457 * there are two problems.
458 * Firstly a bug in some versions of binutils meant PLT sections
459 * were not marked executable.
460 * Secondly the first word in the GOT section is blrl, used
461 * to establish the GOT address. Until recently the GOT was
462 * not marked executable.
466 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
470 flush_dcache_page(pg);
473 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
474 unsigned long addr, int len)
478 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
479 flush_icache_range(maddr, maddr + len);
482 EXPORT_SYMBOL(flush_icache_user_range);
485 * This is called at the end of handling a user page fault, when the
486 * fault has been handled by updating a PTE in the linux page tables.
487 * We use it to preload an HPTE into the hash table corresponding to
488 * the updated linux PTE.
490 * This must always be called with the pte lock held.
492 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
495 #ifdef CONFIG_PPC_STD_MMU
496 unsigned long access = 0, trap;
498 unsigned long pfn = pte_pfn(pte);
500 /* handle i-cache coherency */
501 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
502 !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
504 struct page *page = pfn_to_page(pfn);
505 if (!PageReserved(page)
506 && !test_bit(PG_arch_1, &page->flags)) {
507 if (vma->vm_mm == current->active_mm) {
509 /* On 8xx, cache control instructions (particularly
510 * "dcbst" from flush_dcache_icache) fault as write
511 * operation if there is an unpopulated TLB entry
512 * for the address in question. To workaround that,
513 * we invalidate the TLB here, thus avoiding dcbst
518 __flush_dcache_icache((void *) address);
520 flush_dcache_icache_page(page);
521 set_bit(PG_arch_1, &page->flags);
525 #ifdef CONFIG_PPC_STD_MMU
526 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
527 if (!pte_young(pte) || address >= TASK_SIZE)
530 /* We try to figure out if we are coming from an instruction
531 * access fault and pass that down to __hash_page so we avoid
532 * double-faulting on execution of fresh text. We have to test
533 * for regs NULL since init will get here first thing at boot
535 * We also avoid filling the hash if not coming from a fault
537 if (current->thread.regs == NULL)
539 trap = TRAP(current->thread.regs);
541 access |= _PAGE_EXEC;
542 else if (trap != 0x300)
544 hash_preload(vma->vm_mm, address, access, trap);
545 #endif /* CONFIG_PPC_STD_MMU */