2 * This file contains the routines for handling the MMU on those
3 * PowerPC implementations where the MMU substantially follows the
4 * architecture specification. This includes the 6xx, 7xx, 7xxx,
5 * 8260, and POWER3 implementations but excludes the 8xx and 4xx.
8 * Derived from arch/ppc/mm/init.c:
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
12 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
13 * Copyright (C) 1996 Paul Mackerras
14 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
16 * Derived from "arch/i386/mm/init.c"
17 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version
22 * 2 of the License, or (at your option) any later version.
26 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/highmem.h>
33 #include <asm/machdep.h>
39 unsigned long Hash_size, Hash_mask;
42 union ubat { /* BAT register values to be loaded */
45 } BATS[8][2]; /* 8 pairs of IBAT, DBAT */
47 struct batrange { /* stores address ranges mapped by BATs */
54 * Return PA for this VA if it is mapped by a BAT, or 0
56 unsigned long v_mapped_by_bats(unsigned long va)
59 for (b = 0; b < 4; ++b)
60 if (va >= bat_addrs[b].start && va < bat_addrs[b].limit)
61 return bat_addrs[b].phys + (va - bat_addrs[b].start);
66 * Return VA for a given PA or 0 if not mapped
68 unsigned long p_mapped_by_bats(unsigned long pa)
71 for (b = 0; b < 4; ++b)
72 if (pa >= bat_addrs[b].phys
73 && pa < (bat_addrs[b].limit-bat_addrs[b].start)
75 return bat_addrs[b].start+(pa-bat_addrs[b].phys);
79 unsigned long __init mmu_mapin_ram(void)
84 unsigned long tot, bl, done;
85 unsigned long max_size = (256<<20);
88 if (__map_without_bats)
91 /* Set up BAT2 and if necessary BAT3 to cover RAM. */
93 /* Make sure we don't map a block larger than the
94 smallest alignment of the physical address. */
95 /* alignment of PPC_MEMSTART */
96 align = ~(PPC_MEMSTART-1) & PPC_MEMSTART;
97 /* set BAT block size to MIN(max_size, align) */
98 if (align && align < max_size)
102 for (bl = 128<<10; bl < max_size; bl <<= 1) {
107 setbat(2, KERNELBASE, PPC_MEMSTART, bl, _PAGE_RAM);
108 done = (unsigned long)bat_addrs[2].limit - KERNELBASE + 1;
109 if ((done < tot) && !bat_addrs[3].limit) {
110 /* use BAT3 to cover a bit more */
112 for (bl = 128<<10; bl < max_size; bl <<= 1)
115 setbat(3, KERNELBASE+done, PPC_MEMSTART+done, bl, _PAGE_RAM);
116 done = (unsigned long)bat_addrs[3].limit - KERNELBASE + 1;
124 * Set up one of the I/D BAT (block address translation) register pairs.
125 * The parameters are not checked; in particular size must be a power
126 * of 2 between 128k and 256M.
128 void __init setbat(int index, unsigned long virt, unsigned long phys,
129 unsigned int size, int flags)
133 union ubat *bat = BATS[index];
135 if (((flags & _PAGE_NO_CACHE) == 0) &&
136 cpu_has_feature(CPU_FTR_NEED_COHERENT))
137 flags |= _PAGE_COHERENT;
139 bl = (size >> 17) - 1;
140 if (PVR_VER(mfspr(SPRN_PVR)) != 1) {
143 wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE
144 | _PAGE_COHERENT | _PAGE_GUARDED);
145 wimgxpp |= (flags & _PAGE_RW)? BPP_RW: BPP_RX;
146 bat[1].word[0] = virt | (bl << 2) | 2; /* Vs=1, Vp=0 */
147 bat[1].word[1] = phys | wimgxpp;
148 #ifndef CONFIG_KGDB /* want user access for breakpoints */
149 if (flags & _PAGE_USER)
151 bat[1].bat.batu.vp = 1;
152 if (flags & _PAGE_GUARDED) {
153 /* G bit must be zero in IBATs */
154 bat[0].word[0] = bat[0].word[1] = 0;
156 /* make IBAT same as DBAT */
163 wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE
165 wimgxpp |= (flags & _PAGE_RW)?
166 ((flags & _PAGE_USER)? PP_RWRW: PP_RWXX): PP_RXRX;
167 bat->word[0] = virt | wimgxpp | 4; /* Ks=0, Ku=1 */
168 bat->word[1] = phys | bl | 0x40; /* V=1 */
171 bat_addrs[index].start = virt;
172 bat_addrs[index].limit = virt + ((bl + 1) << 17) - 1;
173 bat_addrs[index].phys = phys;
177 * Preload a translation in the hash table
179 void hash_preload(struct mm_struct *mm, unsigned long ea,
180 unsigned long access, unsigned long trap)
186 pmd = pmd_offset(pgd_offset(mm, ea), ea);
188 add_hash_page(mm->context.id, ea, pmd_val(*pmd));
192 * Initialize the hash table and patch the instructions in hashtable.S.
194 void __init MMU_init_hw(void)
196 unsigned int hmask, mb, mb2;
197 unsigned int n_hpteg, lg_n_hpteg;
199 extern unsigned int hash_page_patch_A[];
200 extern unsigned int hash_page_patch_B[], hash_page_patch_C[];
201 extern unsigned int hash_page[];
202 extern unsigned int flush_hash_patch_A[], flush_hash_patch_B[];
204 if (!cpu_has_feature(CPU_FTR_HPTE_TABLE)) {
206 * Put a blr (procedure return) instruction at the
207 * start of hash_page, since we can still get DSI
208 * exceptions on a 603.
210 hash_page[0] = 0x4e800020;
211 flush_icache_range((unsigned long) &hash_page[0],
212 (unsigned long) &hash_page[1]);
216 if ( ppc_md.progress ) ppc_md.progress("hash:enter", 0x105);
218 #define LG_HPTEG_SIZE 6 /* 64 bytes per HPTEG */
219 #define SDR1_LOW_BITS ((n_hpteg - 1) >> 10)
220 #define MIN_N_HPTEG 1024 /* min 64kB hash table */
223 * Allow 1 HPTE (1/8 HPTEG) for each page of memory.
224 * This is less than the recommended amount, but then
227 n_hpteg = total_memory / (PAGE_SIZE * 8);
228 if (n_hpteg < MIN_N_HPTEG)
229 n_hpteg = MIN_N_HPTEG;
230 lg_n_hpteg = __ilog2(n_hpteg);
231 if (n_hpteg & (n_hpteg - 1)) {
232 ++lg_n_hpteg; /* round up if not power of 2 */
233 n_hpteg = 1 << lg_n_hpteg;
235 Hash_size = n_hpteg << LG_HPTEG_SIZE;
238 * Find some memory for the hash table.
240 if ( ppc_md.progress ) ppc_md.progress("hash:find piece", 0x322);
241 Hash = __va(lmb_alloc_base(Hash_size, Hash_size,
242 __initial_memory_limit));
243 cacheable_memzero(Hash, Hash_size);
244 _SDR1 = __pa(Hash) | SDR1_LOW_BITS;
246 Hash_end = (PTE *) ((unsigned long)Hash + Hash_size);
248 printk("Total memory = %ldMB; using %ldkB for hash table (at %p)\n",
249 total_memory >> 20, Hash_size >> 10, Hash);
253 * Patch up the instructions in hashtable.S:create_hpte
255 if ( ppc_md.progress ) ppc_md.progress("hash:patch", 0x345);
256 Hash_mask = n_hpteg - 1;
257 hmask = Hash_mask >> (16 - LG_HPTEG_SIZE);
258 mb2 = mb = 32 - LG_HPTEG_SIZE - lg_n_hpteg;
260 mb2 = 16 - LG_HPTEG_SIZE;
262 hash_page_patch_A[0] = (hash_page_patch_A[0] & ~0xffff)
263 | ((unsigned int)(Hash) >> 16);
264 hash_page_patch_A[1] = (hash_page_patch_A[1] & ~0x7c0) | (mb << 6);
265 hash_page_patch_A[2] = (hash_page_patch_A[2] & ~0x7c0) | (mb2 << 6);
266 hash_page_patch_B[0] = (hash_page_patch_B[0] & ~0xffff) | hmask;
267 hash_page_patch_C[0] = (hash_page_patch_C[0] & ~0xffff) | hmask;
270 * Ensure that the locations we've patched have been written
271 * out from the data cache and invalidated in the instruction
272 * cache, on those machines with split caches.
274 flush_icache_range((unsigned long) &hash_page_patch_A[0],
275 (unsigned long) &hash_page_patch_C[1]);
278 * Patch up the instructions in hashtable.S:flush_hash_page
280 flush_hash_patch_A[0] = (flush_hash_patch_A[0] & ~0xffff)
281 | ((unsigned int)(Hash) >> 16);
282 flush_hash_patch_A[1] = (flush_hash_patch_A[1] & ~0x7c0) | (mb << 6);
283 flush_hash_patch_A[2] = (flush_hash_patch_A[2] & ~0x7c0) | (mb2 << 6);
284 flush_hash_patch_B[0] = (flush_hash_patch_B[0] & ~0xffff) | hmask;
285 flush_icache_range((unsigned long) &flush_hash_patch_A[0],
286 (unsigned long) &flush_hash_patch_B[1]);
288 if ( ppc_md.progress ) ppc_md.progress("hash:done", 0x205);