dm snapshot: fix race during exception creation
[linux-2.6] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
24
25 /*
26  * RAID10 provides a combination of RAID0 and RAID1 functionality.
27  * The layout of data is defined by
28  *    chunk_size
29  *    raid_disks
30  *    near_copies (stored in low byte of layout)
31  *    far_copies (stored in second byte of layout)
32  *    far_offset (stored in bit 16 of layout )
33  *
34  * The data to be stored is divided into chunks using chunksize.
35  * Each device is divided into far_copies sections.
36  * In each section, chunks are laid out in a style similar to raid0, but
37  * near_copies copies of each chunk is stored (each on a different drive).
38  * The starting device for each section is offset near_copies from the starting
39  * device of the previous section.
40  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41  * drive.
42  * near_copies and far_copies must be at least one, and their product is at most
43  * raid_disks.
44  *
45  * If far_offset is true, then the far_copies are handled a bit differently.
46  * The copies are still in different stripes, but instead of be very far apart
47  * on disk, there are adjacent stripes.
48  */
49
50 /*
51  * Number of guaranteed r10bios in case of extreme VM load:
52  */
53 #define NR_RAID10_BIOS 256
54
55 static void unplug_slaves(mddev_t *mddev);
56
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62         conf_t *conf = data;
63         r10bio_t *r10_bio;
64         int size = offsetof(struct r10bio_s, devs[conf->copies]);
65
66         /* allocate a r10bio with room for raid_disks entries in the bios array */
67         r10_bio = kzalloc(size, gfp_flags);
68         if (!r10_bio)
69                 unplug_slaves(conf->mddev);
70
71         return r10_bio;
72 }
73
74 static void r10bio_pool_free(void *r10_bio, void *data)
75 {
76         kfree(r10_bio);
77 }
78
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84
85 /*
86  * When performing a resync, we need to read and compare, so
87  * we need as many pages are there are copies.
88  * When performing a recovery, we need 2 bios, one for read,
89  * one for write (we recover only one drive per r10buf)
90  *
91  */
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94         conf_t *conf = data;
95         struct page *page;
96         r10bio_t *r10_bio;
97         struct bio *bio;
98         int i, j;
99         int nalloc;
100
101         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102         if (!r10_bio) {
103                 unplug_slaves(conf->mddev);
104                 return NULL;
105         }
106
107         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108                 nalloc = conf->copies; /* resync */
109         else
110                 nalloc = 2; /* recovery */
111
112         /*
113          * Allocate bios.
114          */
115         for (j = nalloc ; j-- ; ) {
116                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
117                 if (!bio)
118                         goto out_free_bio;
119                 r10_bio->devs[j].bio = bio;
120         }
121         /*
122          * Allocate RESYNC_PAGES data pages and attach them
123          * where needed.
124          */
125         for (j = 0 ; j < nalloc; j++) {
126                 bio = r10_bio->devs[j].bio;
127                 for (i = 0; i < RESYNC_PAGES; i++) {
128                         page = alloc_page(gfp_flags);
129                         if (unlikely(!page))
130                                 goto out_free_pages;
131
132                         bio->bi_io_vec[i].bv_page = page;
133                 }
134         }
135
136         return r10_bio;
137
138 out_free_pages:
139         for ( ; i > 0 ; i--)
140                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
141         while (j--)
142                 for (i = 0; i < RESYNC_PAGES ; i++)
143                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
144         j = -1;
145 out_free_bio:
146         while ( ++j < nalloc )
147                 bio_put(r10_bio->devs[j].bio);
148         r10bio_pool_free(r10_bio, conf);
149         return NULL;
150 }
151
152 static void r10buf_pool_free(void *__r10_bio, void *data)
153 {
154         int i;
155         conf_t *conf = data;
156         r10bio_t *r10bio = __r10_bio;
157         int j;
158
159         for (j=0; j < conf->copies; j++) {
160                 struct bio *bio = r10bio->devs[j].bio;
161                 if (bio) {
162                         for (i = 0; i < RESYNC_PAGES; i++) {
163                                 safe_put_page(bio->bi_io_vec[i].bv_page);
164                                 bio->bi_io_vec[i].bv_page = NULL;
165                         }
166                         bio_put(bio);
167                 }
168         }
169         r10bio_pool_free(r10bio, conf);
170 }
171
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
173 {
174         int i;
175
176         for (i = 0; i < conf->copies; i++) {
177                 struct bio **bio = & r10_bio->devs[i].bio;
178                 if (*bio && *bio != IO_BLOCKED)
179                         bio_put(*bio);
180                 *bio = NULL;
181         }
182 }
183
184 static void free_r10bio(r10bio_t *r10_bio)
185 {
186         conf_t *conf = mddev_to_conf(r10_bio->mddev);
187
188         /*
189          * Wake up any possible resync thread that waits for the device
190          * to go idle.
191          */
192         allow_barrier(conf);
193
194         put_all_bios(conf, r10_bio);
195         mempool_free(r10_bio, conf->r10bio_pool);
196 }
197
198 static void put_buf(r10bio_t *r10_bio)
199 {
200         conf_t *conf = mddev_to_conf(r10_bio->mddev);
201
202         mempool_free(r10_bio, conf->r10buf_pool);
203
204         lower_barrier(conf);
205 }
206
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209         unsigned long flags;
210         mddev_t *mddev = r10_bio->mddev;
211         conf_t *conf = mddev_to_conf(mddev);
212
213         spin_lock_irqsave(&conf->device_lock, flags);
214         list_add(&r10_bio->retry_list, &conf->retry_list);
215         conf->nr_queued ++;
216         spin_unlock_irqrestore(&conf->device_lock, flags);
217
218         md_wakeup_thread(mddev->thread);
219 }
220
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void raid_end_bio_io(r10bio_t *r10_bio)
227 {
228         struct bio *bio = r10_bio->master_bio;
229
230         bio_endio(bio,
231                 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232         free_r10bio(r10_bio);
233 }
234
235 /*
236  * Update disk head position estimator based on IRQ completion info.
237  */
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
239 {
240         conf_t *conf = mddev_to_conf(r10_bio->mddev);
241
242         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243                 r10_bio->devs[slot].addr + (r10_bio->sectors);
244 }
245
246 static void raid10_end_read_request(struct bio *bio, int error)
247 {
248         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
250         int slot, dev;
251         conf_t *conf = mddev_to_conf(r10_bio->mddev);
252
253
254         slot = r10_bio->read_slot;
255         dev = r10_bio->devs[slot].devnum;
256         /*
257          * this branch is our 'one mirror IO has finished' event handler:
258          */
259         update_head_pos(slot, r10_bio);
260
261         if (uptodate) {
262                 /*
263                  * Set R10BIO_Uptodate in our master bio, so that
264                  * we will return a good error code to the higher
265                  * levels even if IO on some other mirrored buffer fails.
266                  *
267                  * The 'master' represents the composite IO operation to
268                  * user-side. So if something waits for IO, then it will
269                  * wait for the 'master' bio.
270                  */
271                 set_bit(R10BIO_Uptodate, &r10_bio->state);
272                 raid_end_bio_io(r10_bio);
273         } else {
274                 /*
275                  * oops, read error:
276                  */
277                 char b[BDEVNAME_SIZE];
278                 if (printk_ratelimit())
279                         printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
280                                bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
281                 reschedule_retry(r10_bio);
282         }
283
284         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
285 }
286
287 static void raid10_end_write_request(struct bio *bio, int error)
288 {
289         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
291         int slot, dev;
292         conf_t *conf = mddev_to_conf(r10_bio->mddev);
293
294         for (slot = 0; slot < conf->copies; slot++)
295                 if (r10_bio->devs[slot].bio == bio)
296                         break;
297         dev = r10_bio->devs[slot].devnum;
298
299         /*
300          * this branch is our 'one mirror IO has finished' event handler:
301          */
302         if (!uptodate) {
303                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
304                 /* an I/O failed, we can't clear the bitmap */
305                 set_bit(R10BIO_Degraded, &r10_bio->state);
306         } else
307                 /*
308                  * Set R10BIO_Uptodate in our master bio, so that
309                  * we will return a good error code for to the higher
310                  * levels even if IO on some other mirrored buffer fails.
311                  *
312                  * The 'master' represents the composite IO operation to
313                  * user-side. So if something waits for IO, then it will
314                  * wait for the 'master' bio.
315                  */
316                 set_bit(R10BIO_Uptodate, &r10_bio->state);
317
318         update_head_pos(slot, r10_bio);
319
320         /*
321          *
322          * Let's see if all mirrored write operations have finished
323          * already.
324          */
325         if (atomic_dec_and_test(&r10_bio->remaining)) {
326                 /* clear the bitmap if all writes complete successfully */
327                 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
328                                 r10_bio->sectors,
329                                 !test_bit(R10BIO_Degraded, &r10_bio->state),
330                                 0);
331                 md_write_end(r10_bio->mddev);
332                 raid_end_bio_io(r10_bio);
333         }
334
335         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
336 }
337
338
339 /*
340  * RAID10 layout manager
341  * Aswell as the chunksize and raid_disks count, there are two
342  * parameters: near_copies and far_copies.
343  * near_copies * far_copies must be <= raid_disks.
344  * Normally one of these will be 1.
345  * If both are 1, we get raid0.
346  * If near_copies == raid_disks, we get raid1.
347  *
348  * Chunks are layed out in raid0 style with near_copies copies of the
349  * first chunk, followed by near_copies copies of the next chunk and
350  * so on.
351  * If far_copies > 1, then after 1/far_copies of the array has been assigned
352  * as described above, we start again with a device offset of near_copies.
353  * So we effectively have another copy of the whole array further down all
354  * the drives, but with blocks on different drives.
355  * With this layout, and block is never stored twice on the one device.
356  *
357  * raid10_find_phys finds the sector offset of a given virtual sector
358  * on each device that it is on.
359  *
360  * raid10_find_virt does the reverse mapping, from a device and a
361  * sector offset to a virtual address
362  */
363
364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
365 {
366         int n,f;
367         sector_t sector;
368         sector_t chunk;
369         sector_t stripe;
370         int dev;
371
372         int slot = 0;
373
374         /* now calculate first sector/dev */
375         chunk = r10bio->sector >> conf->chunk_shift;
376         sector = r10bio->sector & conf->chunk_mask;
377
378         chunk *= conf->near_copies;
379         stripe = chunk;
380         dev = sector_div(stripe, conf->raid_disks);
381         if (conf->far_offset)
382                 stripe *= conf->far_copies;
383
384         sector += stripe << conf->chunk_shift;
385
386         /* and calculate all the others */
387         for (n=0; n < conf->near_copies; n++) {
388                 int d = dev;
389                 sector_t s = sector;
390                 r10bio->devs[slot].addr = sector;
391                 r10bio->devs[slot].devnum = d;
392                 slot++;
393
394                 for (f = 1; f < conf->far_copies; f++) {
395                         d += conf->near_copies;
396                         if (d >= conf->raid_disks)
397                                 d -= conf->raid_disks;
398                         s += conf->stride;
399                         r10bio->devs[slot].devnum = d;
400                         r10bio->devs[slot].addr = s;
401                         slot++;
402                 }
403                 dev++;
404                 if (dev >= conf->raid_disks) {
405                         dev = 0;
406                         sector += (conf->chunk_mask + 1);
407                 }
408         }
409         BUG_ON(slot != conf->copies);
410 }
411
412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
413 {
414         sector_t offset, chunk, vchunk;
415
416         offset = sector & conf->chunk_mask;
417         if (conf->far_offset) {
418                 int fc;
419                 chunk = sector >> conf->chunk_shift;
420                 fc = sector_div(chunk, conf->far_copies);
421                 dev -= fc * conf->near_copies;
422                 if (dev < 0)
423                         dev += conf->raid_disks;
424         } else {
425                 while (sector >= conf->stride) {
426                         sector -= conf->stride;
427                         if (dev < conf->near_copies)
428                                 dev += conf->raid_disks - conf->near_copies;
429                         else
430                                 dev -= conf->near_copies;
431                 }
432                 chunk = sector >> conf->chunk_shift;
433         }
434         vchunk = chunk * conf->raid_disks + dev;
435         sector_div(vchunk, conf->near_copies);
436         return (vchunk << conf->chunk_shift) + offset;
437 }
438
439 /**
440  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
441  *      @q: request queue
442  *      @bvm: properties of new bio
443  *      @biovec: the request that could be merged to it.
444  *
445  *      Return amount of bytes we can accept at this offset
446  *      If near_copies == raid_disk, there are no striping issues,
447  *      but in that case, the function isn't called at all.
448  */
449 static int raid10_mergeable_bvec(struct request_queue *q,
450                                  struct bvec_merge_data *bvm,
451                                  struct bio_vec *biovec)
452 {
453         mddev_t *mddev = q->queuedata;
454         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
455         int max;
456         unsigned int chunk_sectors = mddev->chunk_size >> 9;
457         unsigned int bio_sectors = bvm->bi_size >> 9;
458
459         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
460         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
461         if (max <= biovec->bv_len && bio_sectors == 0)
462                 return biovec->bv_len;
463         else
464                 return max;
465 }
466
467 /*
468  * This routine returns the disk from which the requested read should
469  * be done. There is a per-array 'next expected sequential IO' sector
470  * number - if this matches on the next IO then we use the last disk.
471  * There is also a per-disk 'last know head position' sector that is
472  * maintained from IRQ contexts, both the normal and the resync IO
473  * completion handlers update this position correctly. If there is no
474  * perfect sequential match then we pick the disk whose head is closest.
475  *
476  * If there are 2 mirrors in the same 2 devices, performance degrades
477  * because position is mirror, not device based.
478  *
479  * The rdev for the device selected will have nr_pending incremented.
480  */
481
482 /*
483  * FIXME: possibly should rethink readbalancing and do it differently
484  * depending on near_copies / far_copies geometry.
485  */
486 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
487 {
488         const unsigned long this_sector = r10_bio->sector;
489         int disk, slot, nslot;
490         const int sectors = r10_bio->sectors;
491         sector_t new_distance, current_distance;
492         mdk_rdev_t *rdev;
493
494         raid10_find_phys(conf, r10_bio);
495         rcu_read_lock();
496         /*
497          * Check if we can balance. We can balance on the whole
498          * device if no resync is going on (recovery is ok), or below
499          * the resync window. We take the first readable disk when
500          * above the resync window.
501          */
502         if (conf->mddev->recovery_cp < MaxSector
503             && (this_sector + sectors >= conf->next_resync)) {
504                 /* make sure that disk is operational */
505                 slot = 0;
506                 disk = r10_bio->devs[slot].devnum;
507
508                 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
509                        r10_bio->devs[slot].bio == IO_BLOCKED ||
510                        !test_bit(In_sync, &rdev->flags)) {
511                         slot++;
512                         if (slot == conf->copies) {
513                                 slot = 0;
514                                 disk = -1;
515                                 break;
516                         }
517                         disk = r10_bio->devs[slot].devnum;
518                 }
519                 goto rb_out;
520         }
521
522
523         /* make sure the disk is operational */
524         slot = 0;
525         disk = r10_bio->devs[slot].devnum;
526         while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
527                r10_bio->devs[slot].bio == IO_BLOCKED ||
528                !test_bit(In_sync, &rdev->flags)) {
529                 slot ++;
530                 if (slot == conf->copies) {
531                         disk = -1;
532                         goto rb_out;
533                 }
534                 disk = r10_bio->devs[slot].devnum;
535         }
536
537
538         current_distance = abs(r10_bio->devs[slot].addr -
539                                conf->mirrors[disk].head_position);
540
541         /* Find the disk whose head is closest,
542          * or - for far > 1 - find the closest to partition beginning */
543
544         for (nslot = slot; nslot < conf->copies; nslot++) {
545                 int ndisk = r10_bio->devs[nslot].devnum;
546
547
548                 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
549                     r10_bio->devs[nslot].bio == IO_BLOCKED ||
550                     !test_bit(In_sync, &rdev->flags))
551                         continue;
552
553                 /* This optimisation is debatable, and completely destroys
554                  * sequential read speed for 'far copies' arrays.  So only
555                  * keep it for 'near' arrays, and review those later.
556                  */
557                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
558                         disk = ndisk;
559                         slot = nslot;
560                         break;
561                 }
562
563                 /* for far > 1 always use the lowest address */
564                 if (conf->far_copies > 1)
565                         new_distance = r10_bio->devs[nslot].addr;
566                 else
567                         new_distance = abs(r10_bio->devs[nslot].addr -
568                                            conf->mirrors[ndisk].head_position);
569                 if (new_distance < current_distance) {
570                         current_distance = new_distance;
571                         disk = ndisk;
572                         slot = nslot;
573                 }
574         }
575
576 rb_out:
577         r10_bio->read_slot = slot;
578 /*      conf->next_seq_sect = this_sector + sectors;*/
579
580         if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
581                 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
582         else
583                 disk = -1;
584         rcu_read_unlock();
585
586         return disk;
587 }
588
589 static void unplug_slaves(mddev_t *mddev)
590 {
591         conf_t *conf = mddev_to_conf(mddev);
592         int i;
593
594         rcu_read_lock();
595         for (i=0; i<mddev->raid_disks; i++) {
596                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
597                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
598                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
599
600                         atomic_inc(&rdev->nr_pending);
601                         rcu_read_unlock();
602
603                         blk_unplug(r_queue);
604
605                         rdev_dec_pending(rdev, mddev);
606                         rcu_read_lock();
607                 }
608         }
609         rcu_read_unlock();
610 }
611
612 static void raid10_unplug(struct request_queue *q)
613 {
614         mddev_t *mddev = q->queuedata;
615
616         unplug_slaves(q->queuedata);
617         md_wakeup_thread(mddev->thread);
618 }
619
620 static int raid10_congested(void *data, int bits)
621 {
622         mddev_t *mddev = data;
623         conf_t *conf = mddev_to_conf(mddev);
624         int i, ret = 0;
625
626         rcu_read_lock();
627         for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
628                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
629                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
630                         struct request_queue *q = bdev_get_queue(rdev->bdev);
631
632                         ret |= bdi_congested(&q->backing_dev_info, bits);
633                 }
634         }
635         rcu_read_unlock();
636         return ret;
637 }
638
639 static int flush_pending_writes(conf_t *conf)
640 {
641         /* Any writes that have been queued but are awaiting
642          * bitmap updates get flushed here.
643          * We return 1 if any requests were actually submitted.
644          */
645         int rv = 0;
646
647         spin_lock_irq(&conf->device_lock);
648
649         if (conf->pending_bio_list.head) {
650                 struct bio *bio;
651                 bio = bio_list_get(&conf->pending_bio_list);
652                 blk_remove_plug(conf->mddev->queue);
653                 spin_unlock_irq(&conf->device_lock);
654                 /* flush any pending bitmap writes to disk
655                  * before proceeding w/ I/O */
656                 bitmap_unplug(conf->mddev->bitmap);
657
658                 while (bio) { /* submit pending writes */
659                         struct bio *next = bio->bi_next;
660                         bio->bi_next = NULL;
661                         generic_make_request(bio);
662                         bio = next;
663                 }
664                 rv = 1;
665         } else
666                 spin_unlock_irq(&conf->device_lock);
667         return rv;
668 }
669 /* Barriers....
670  * Sometimes we need to suspend IO while we do something else,
671  * either some resync/recovery, or reconfigure the array.
672  * To do this we raise a 'barrier'.
673  * The 'barrier' is a counter that can be raised multiple times
674  * to count how many activities are happening which preclude
675  * normal IO.
676  * We can only raise the barrier if there is no pending IO.
677  * i.e. if nr_pending == 0.
678  * We choose only to raise the barrier if no-one is waiting for the
679  * barrier to go down.  This means that as soon as an IO request
680  * is ready, no other operations which require a barrier will start
681  * until the IO request has had a chance.
682  *
683  * So: regular IO calls 'wait_barrier'.  When that returns there
684  *    is no backgroup IO happening,  It must arrange to call
685  *    allow_barrier when it has finished its IO.
686  * backgroup IO calls must call raise_barrier.  Once that returns
687  *    there is no normal IO happeing.  It must arrange to call
688  *    lower_barrier when the particular background IO completes.
689  */
690 #define RESYNC_DEPTH 32
691
692 static void raise_barrier(conf_t *conf, int force)
693 {
694         BUG_ON(force && !conf->barrier);
695         spin_lock_irq(&conf->resync_lock);
696
697         /* Wait until no block IO is waiting (unless 'force') */
698         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
699                             conf->resync_lock,
700                             raid10_unplug(conf->mddev->queue));
701
702         /* block any new IO from starting */
703         conf->barrier++;
704
705         /* No wait for all pending IO to complete */
706         wait_event_lock_irq(conf->wait_barrier,
707                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
708                             conf->resync_lock,
709                             raid10_unplug(conf->mddev->queue));
710
711         spin_unlock_irq(&conf->resync_lock);
712 }
713
714 static void lower_barrier(conf_t *conf)
715 {
716         unsigned long flags;
717         spin_lock_irqsave(&conf->resync_lock, flags);
718         conf->barrier--;
719         spin_unlock_irqrestore(&conf->resync_lock, flags);
720         wake_up(&conf->wait_barrier);
721 }
722
723 static void wait_barrier(conf_t *conf)
724 {
725         spin_lock_irq(&conf->resync_lock);
726         if (conf->barrier) {
727                 conf->nr_waiting++;
728                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
729                                     conf->resync_lock,
730                                     raid10_unplug(conf->mddev->queue));
731                 conf->nr_waiting--;
732         }
733         conf->nr_pending++;
734         spin_unlock_irq(&conf->resync_lock);
735 }
736
737 static void allow_barrier(conf_t *conf)
738 {
739         unsigned long flags;
740         spin_lock_irqsave(&conf->resync_lock, flags);
741         conf->nr_pending--;
742         spin_unlock_irqrestore(&conf->resync_lock, flags);
743         wake_up(&conf->wait_barrier);
744 }
745
746 static void freeze_array(conf_t *conf)
747 {
748         /* stop syncio and normal IO and wait for everything to
749          * go quiet.
750          * We increment barrier and nr_waiting, and then
751          * wait until nr_pending match nr_queued+1
752          * This is called in the context of one normal IO request
753          * that has failed. Thus any sync request that might be pending
754          * will be blocked by nr_pending, and we need to wait for
755          * pending IO requests to complete or be queued for re-try.
756          * Thus the number queued (nr_queued) plus this request (1)
757          * must match the number of pending IOs (nr_pending) before
758          * we continue.
759          */
760         spin_lock_irq(&conf->resync_lock);
761         conf->barrier++;
762         conf->nr_waiting++;
763         wait_event_lock_irq(conf->wait_barrier,
764                             conf->nr_pending == conf->nr_queued+1,
765                             conf->resync_lock,
766                             ({ flush_pending_writes(conf);
767                                raid10_unplug(conf->mddev->queue); }));
768         spin_unlock_irq(&conf->resync_lock);
769 }
770
771 static void unfreeze_array(conf_t *conf)
772 {
773         /* reverse the effect of the freeze */
774         spin_lock_irq(&conf->resync_lock);
775         conf->barrier--;
776         conf->nr_waiting--;
777         wake_up(&conf->wait_barrier);
778         spin_unlock_irq(&conf->resync_lock);
779 }
780
781 static int make_request(struct request_queue *q, struct bio * bio)
782 {
783         mddev_t *mddev = q->queuedata;
784         conf_t *conf = mddev_to_conf(mddev);
785         mirror_info_t *mirror;
786         r10bio_t *r10_bio;
787         struct bio *read_bio;
788         int i;
789         int chunk_sects = conf->chunk_mask + 1;
790         const int rw = bio_data_dir(bio);
791         const int do_sync = bio_sync(bio);
792         struct bio_list bl;
793         unsigned long flags;
794         mdk_rdev_t *blocked_rdev;
795
796         if (unlikely(bio_barrier(bio))) {
797                 bio_endio(bio, -EOPNOTSUPP);
798                 return 0;
799         }
800
801         /* If this request crosses a chunk boundary, we need to
802          * split it.  This will only happen for 1 PAGE (or less) requests.
803          */
804         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
805                       > chunk_sects &&
806                     conf->near_copies < conf->raid_disks)) {
807                 struct bio_pair *bp;
808                 /* Sanity check -- queue functions should prevent this happening */
809                 if (bio->bi_vcnt != 1 ||
810                     bio->bi_idx != 0)
811                         goto bad_map;
812                 /* This is a one page bio that upper layers
813                  * refuse to split for us, so we need to split it.
814                  */
815                 bp = bio_split(bio, bio_split_pool,
816                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
817                 if (make_request(q, &bp->bio1))
818                         generic_make_request(&bp->bio1);
819                 if (make_request(q, &bp->bio2))
820                         generic_make_request(&bp->bio2);
821
822                 bio_pair_release(bp);
823                 return 0;
824         bad_map:
825                 printk("raid10_make_request bug: can't convert block across chunks"
826                        " or bigger than %dk %llu %d\n", chunk_sects/2,
827                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
828
829                 bio_io_error(bio);
830                 return 0;
831         }
832
833         md_write_start(mddev, bio);
834
835         /*
836          * Register the new request and wait if the reconstruction
837          * thread has put up a bar for new requests.
838          * Continue immediately if no resync is active currently.
839          */
840         wait_barrier(conf);
841
842         disk_stat_inc(mddev->gendisk, ios[rw]);
843         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
844
845         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
846
847         r10_bio->master_bio = bio;
848         r10_bio->sectors = bio->bi_size >> 9;
849
850         r10_bio->mddev = mddev;
851         r10_bio->sector = bio->bi_sector;
852         r10_bio->state = 0;
853
854         if (rw == READ) {
855                 /*
856                  * read balancing logic:
857                  */
858                 int disk = read_balance(conf, r10_bio);
859                 int slot = r10_bio->read_slot;
860                 if (disk < 0) {
861                         raid_end_bio_io(r10_bio);
862                         return 0;
863                 }
864                 mirror = conf->mirrors + disk;
865
866                 read_bio = bio_clone(bio, GFP_NOIO);
867
868                 r10_bio->devs[slot].bio = read_bio;
869
870                 read_bio->bi_sector = r10_bio->devs[slot].addr +
871                         mirror->rdev->data_offset;
872                 read_bio->bi_bdev = mirror->rdev->bdev;
873                 read_bio->bi_end_io = raid10_end_read_request;
874                 read_bio->bi_rw = READ | do_sync;
875                 read_bio->bi_private = r10_bio;
876
877                 generic_make_request(read_bio);
878                 return 0;
879         }
880
881         /*
882          * WRITE:
883          */
884         /* first select target devices under rcu_lock and
885          * inc refcount on their rdev.  Record them by setting
886          * bios[x] to bio
887          */
888         raid10_find_phys(conf, r10_bio);
889  retry_write:
890         blocked_rdev = NULL;
891         rcu_read_lock();
892         for (i = 0;  i < conf->copies; i++) {
893                 int d = r10_bio->devs[i].devnum;
894                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
895                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
896                         atomic_inc(&rdev->nr_pending);
897                         blocked_rdev = rdev;
898                         break;
899                 }
900                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
901                         atomic_inc(&rdev->nr_pending);
902                         r10_bio->devs[i].bio = bio;
903                 } else {
904                         r10_bio->devs[i].bio = NULL;
905                         set_bit(R10BIO_Degraded, &r10_bio->state);
906                 }
907         }
908         rcu_read_unlock();
909
910         if (unlikely(blocked_rdev)) {
911                 /* Have to wait for this device to get unblocked, then retry */
912                 int j;
913                 int d;
914
915                 for (j = 0; j < i; j++)
916                         if (r10_bio->devs[j].bio) {
917                                 d = r10_bio->devs[j].devnum;
918                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
919                         }
920                 allow_barrier(conf);
921                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
922                 wait_barrier(conf);
923                 goto retry_write;
924         }
925
926         atomic_set(&r10_bio->remaining, 0);
927
928         bio_list_init(&bl);
929         for (i = 0; i < conf->copies; i++) {
930                 struct bio *mbio;
931                 int d = r10_bio->devs[i].devnum;
932                 if (!r10_bio->devs[i].bio)
933                         continue;
934
935                 mbio = bio_clone(bio, GFP_NOIO);
936                 r10_bio->devs[i].bio = mbio;
937
938                 mbio->bi_sector = r10_bio->devs[i].addr+
939                         conf->mirrors[d].rdev->data_offset;
940                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
941                 mbio->bi_end_io = raid10_end_write_request;
942                 mbio->bi_rw = WRITE | do_sync;
943                 mbio->bi_private = r10_bio;
944
945                 atomic_inc(&r10_bio->remaining);
946                 bio_list_add(&bl, mbio);
947         }
948
949         if (unlikely(!atomic_read(&r10_bio->remaining))) {
950                 /* the array is dead */
951                 md_write_end(mddev);
952                 raid_end_bio_io(r10_bio);
953                 return 0;
954         }
955
956         bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
957         spin_lock_irqsave(&conf->device_lock, flags);
958         bio_list_merge(&conf->pending_bio_list, &bl);
959         blk_plug_device(mddev->queue);
960         spin_unlock_irqrestore(&conf->device_lock, flags);
961
962         /* In case raid10d snuck in to freeze_array */
963         wake_up(&conf->wait_barrier);
964
965         if (do_sync)
966                 md_wakeup_thread(mddev->thread);
967
968         return 0;
969 }
970
971 static void status(struct seq_file *seq, mddev_t *mddev)
972 {
973         conf_t *conf = mddev_to_conf(mddev);
974         int i;
975
976         if (conf->near_copies < conf->raid_disks)
977                 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
978         if (conf->near_copies > 1)
979                 seq_printf(seq, " %d near-copies", conf->near_copies);
980         if (conf->far_copies > 1) {
981                 if (conf->far_offset)
982                         seq_printf(seq, " %d offset-copies", conf->far_copies);
983                 else
984                         seq_printf(seq, " %d far-copies", conf->far_copies);
985         }
986         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
987                                         conf->raid_disks - mddev->degraded);
988         for (i = 0; i < conf->raid_disks; i++)
989                 seq_printf(seq, "%s",
990                               conf->mirrors[i].rdev &&
991                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
992         seq_printf(seq, "]");
993 }
994
995 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
996 {
997         char b[BDEVNAME_SIZE];
998         conf_t *conf = mddev_to_conf(mddev);
999
1000         /*
1001          * If it is not operational, then we have already marked it as dead
1002          * else if it is the last working disks, ignore the error, let the
1003          * next level up know.
1004          * else mark the drive as failed
1005          */
1006         if (test_bit(In_sync, &rdev->flags)
1007             && conf->raid_disks-mddev->degraded == 1)
1008                 /*
1009                  * Don't fail the drive, just return an IO error.
1010                  * The test should really be more sophisticated than
1011                  * "working_disks == 1", but it isn't critical, and
1012                  * can wait until we do more sophisticated "is the drive
1013                  * really dead" tests...
1014                  */
1015                 return;
1016         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1017                 unsigned long flags;
1018                 spin_lock_irqsave(&conf->device_lock, flags);
1019                 mddev->degraded++;
1020                 spin_unlock_irqrestore(&conf->device_lock, flags);
1021                 /*
1022                  * if recovery is running, make sure it aborts.
1023                  */
1024                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1025         }
1026         set_bit(Faulty, &rdev->flags);
1027         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1028         printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1029                 "raid10: Operation continuing on %d devices.\n",
1030                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1031 }
1032
1033 static void print_conf(conf_t *conf)
1034 {
1035         int i;
1036         mirror_info_t *tmp;
1037
1038         printk("RAID10 conf printout:\n");
1039         if (!conf) {
1040                 printk("(!conf)\n");
1041                 return;
1042         }
1043         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1044                 conf->raid_disks);
1045
1046         for (i = 0; i < conf->raid_disks; i++) {
1047                 char b[BDEVNAME_SIZE];
1048                 tmp = conf->mirrors + i;
1049                 if (tmp->rdev)
1050                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1051                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1052                                 !test_bit(Faulty, &tmp->rdev->flags),
1053                                 bdevname(tmp->rdev->bdev,b));
1054         }
1055 }
1056
1057 static void close_sync(conf_t *conf)
1058 {
1059         wait_barrier(conf);
1060         allow_barrier(conf);
1061
1062         mempool_destroy(conf->r10buf_pool);
1063         conf->r10buf_pool = NULL;
1064 }
1065
1066 /* check if there are enough drives for
1067  * every block to appear on atleast one
1068  */
1069 static int enough(conf_t *conf)
1070 {
1071         int first = 0;
1072
1073         do {
1074                 int n = conf->copies;
1075                 int cnt = 0;
1076                 while (n--) {
1077                         if (conf->mirrors[first].rdev)
1078                                 cnt++;
1079                         first = (first+1) % conf->raid_disks;
1080                 }
1081                 if (cnt == 0)
1082                         return 0;
1083         } while (first != 0);
1084         return 1;
1085 }
1086
1087 static int raid10_spare_active(mddev_t *mddev)
1088 {
1089         int i;
1090         conf_t *conf = mddev->private;
1091         mirror_info_t *tmp;
1092
1093         /*
1094          * Find all non-in_sync disks within the RAID10 configuration
1095          * and mark them in_sync
1096          */
1097         for (i = 0; i < conf->raid_disks; i++) {
1098                 tmp = conf->mirrors + i;
1099                 if (tmp->rdev
1100                     && !test_bit(Faulty, &tmp->rdev->flags)
1101                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1102                         unsigned long flags;
1103                         spin_lock_irqsave(&conf->device_lock, flags);
1104                         mddev->degraded--;
1105                         spin_unlock_irqrestore(&conf->device_lock, flags);
1106                 }
1107         }
1108
1109         print_conf(conf);
1110         return 0;
1111 }
1112
1113
1114 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1115 {
1116         conf_t *conf = mddev->private;
1117         int found = 0;
1118         int mirror;
1119         mirror_info_t *p;
1120
1121         if (mddev->recovery_cp < MaxSector)
1122                 /* only hot-add to in-sync arrays, as recovery is
1123                  * very different from resync
1124                  */
1125                 return 0;
1126         if (!enough(conf))
1127                 return 0;
1128
1129         if (rdev->saved_raid_disk >= 0 &&
1130             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1131                 mirror = rdev->saved_raid_disk;
1132         else
1133                 mirror = 0;
1134         for ( ; mirror < mddev->raid_disks; mirror++)
1135                 if ( !(p=conf->mirrors+mirror)->rdev) {
1136
1137                         blk_queue_stack_limits(mddev->queue,
1138                                                rdev->bdev->bd_disk->queue);
1139                         /* as we don't honour merge_bvec_fn, we must never risk
1140                          * violating it, so limit ->max_sector to one PAGE, as
1141                          * a one page request is never in violation.
1142                          */
1143                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1144                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
1145                                 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1146
1147                         p->head_position = 0;
1148                         rdev->raid_disk = mirror;
1149                         found = 1;
1150                         if (rdev->saved_raid_disk != mirror)
1151                                 conf->fullsync = 1;
1152                         rcu_assign_pointer(p->rdev, rdev);
1153                         break;
1154                 }
1155
1156         print_conf(conf);
1157         return found;
1158 }
1159
1160 static int raid10_remove_disk(mddev_t *mddev, int number)
1161 {
1162         conf_t *conf = mddev->private;
1163         int err = 0;
1164         mdk_rdev_t *rdev;
1165         mirror_info_t *p = conf->mirrors+ number;
1166
1167         print_conf(conf);
1168         rdev = p->rdev;
1169         if (rdev) {
1170                 if (test_bit(In_sync, &rdev->flags) ||
1171                     atomic_read(&rdev->nr_pending)) {
1172                         err = -EBUSY;
1173                         goto abort;
1174                 }
1175                 /* Only remove faulty devices in recovery
1176                  * is not possible.
1177                  */
1178                 if (!test_bit(Faulty, &rdev->flags) &&
1179                     enough(conf)) {
1180                         err = -EBUSY;
1181                         goto abort;
1182                 }
1183                 p->rdev = NULL;
1184                 synchronize_rcu();
1185                 if (atomic_read(&rdev->nr_pending)) {
1186                         /* lost the race, try later */
1187                         err = -EBUSY;
1188                         p->rdev = rdev;
1189                 }
1190         }
1191 abort:
1192
1193         print_conf(conf);
1194         return err;
1195 }
1196
1197
1198 static void end_sync_read(struct bio *bio, int error)
1199 {
1200         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1201         conf_t *conf = mddev_to_conf(r10_bio->mddev);
1202         int i,d;
1203
1204         for (i=0; i<conf->copies; i++)
1205                 if (r10_bio->devs[i].bio == bio)
1206                         break;
1207         BUG_ON(i == conf->copies);
1208         update_head_pos(i, r10_bio);
1209         d = r10_bio->devs[i].devnum;
1210
1211         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1212                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1213         else {
1214                 atomic_add(r10_bio->sectors,
1215                            &conf->mirrors[d].rdev->corrected_errors);
1216                 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1217                         md_error(r10_bio->mddev,
1218                                  conf->mirrors[d].rdev);
1219         }
1220
1221         /* for reconstruct, we always reschedule after a read.
1222          * for resync, only after all reads
1223          */
1224         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1225             atomic_dec_and_test(&r10_bio->remaining)) {
1226                 /* we have read all the blocks,
1227                  * do the comparison in process context in raid10d
1228                  */
1229                 reschedule_retry(r10_bio);
1230         }
1231         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1232 }
1233
1234 static void end_sync_write(struct bio *bio, int error)
1235 {
1236         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1237         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1238         mddev_t *mddev = r10_bio->mddev;
1239         conf_t *conf = mddev_to_conf(mddev);
1240         int i,d;
1241
1242         for (i = 0; i < conf->copies; i++)
1243                 if (r10_bio->devs[i].bio == bio)
1244                         break;
1245         d = r10_bio->devs[i].devnum;
1246
1247         if (!uptodate)
1248                 md_error(mddev, conf->mirrors[d].rdev);
1249
1250         update_head_pos(i, r10_bio);
1251
1252         while (atomic_dec_and_test(&r10_bio->remaining)) {
1253                 if (r10_bio->master_bio == NULL) {
1254                         /* the primary of several recovery bios */
1255                         md_done_sync(mddev, r10_bio->sectors, 1);
1256                         put_buf(r10_bio);
1257                         break;
1258                 } else {
1259                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1260                         put_buf(r10_bio);
1261                         r10_bio = r10_bio2;
1262                 }
1263         }
1264         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1265 }
1266
1267 /*
1268  * Note: sync and recover and handled very differently for raid10
1269  * This code is for resync.
1270  * For resync, we read through virtual addresses and read all blocks.
1271  * If there is any error, we schedule a write.  The lowest numbered
1272  * drive is authoritative.
1273  * However requests come for physical address, so we need to map.
1274  * For every physical address there are raid_disks/copies virtual addresses,
1275  * which is always are least one, but is not necessarly an integer.
1276  * This means that a physical address can span multiple chunks, so we may
1277  * have to submit multiple io requests for a single sync request.
1278  */
1279 /*
1280  * We check if all blocks are in-sync and only write to blocks that
1281  * aren't in sync
1282  */
1283 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1284 {
1285         conf_t *conf = mddev_to_conf(mddev);
1286         int i, first;
1287         struct bio *tbio, *fbio;
1288
1289         atomic_set(&r10_bio->remaining, 1);
1290
1291         /* find the first device with a block */
1292         for (i=0; i<conf->copies; i++)
1293                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1294                         break;
1295
1296         if (i == conf->copies)
1297                 goto done;
1298
1299         first = i;
1300         fbio = r10_bio->devs[i].bio;
1301
1302         /* now find blocks with errors */
1303         for (i=0 ; i < conf->copies ; i++) {
1304                 int  j, d;
1305                 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1306
1307                 tbio = r10_bio->devs[i].bio;
1308
1309                 if (tbio->bi_end_io != end_sync_read)
1310                         continue;
1311                 if (i == first)
1312                         continue;
1313                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1314                         /* We know that the bi_io_vec layout is the same for
1315                          * both 'first' and 'i', so we just compare them.
1316                          * All vec entries are PAGE_SIZE;
1317                          */
1318                         for (j = 0; j < vcnt; j++)
1319                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1320                                            page_address(tbio->bi_io_vec[j].bv_page),
1321                                            PAGE_SIZE))
1322                                         break;
1323                         if (j == vcnt)
1324                                 continue;
1325                         mddev->resync_mismatches += r10_bio->sectors;
1326                 }
1327                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1328                         /* Don't fix anything. */
1329                         continue;
1330                 /* Ok, we need to write this bio
1331                  * First we need to fixup bv_offset, bv_len and
1332                  * bi_vecs, as the read request might have corrupted these
1333                  */
1334                 tbio->bi_vcnt = vcnt;
1335                 tbio->bi_size = r10_bio->sectors << 9;
1336                 tbio->bi_idx = 0;
1337                 tbio->bi_phys_segments = 0;
1338                 tbio->bi_hw_segments = 0;
1339                 tbio->bi_hw_front_size = 0;
1340                 tbio->bi_hw_back_size = 0;
1341                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1342                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1343                 tbio->bi_next = NULL;
1344                 tbio->bi_rw = WRITE;
1345                 tbio->bi_private = r10_bio;
1346                 tbio->bi_sector = r10_bio->devs[i].addr;
1347
1348                 for (j=0; j < vcnt ; j++) {
1349                         tbio->bi_io_vec[j].bv_offset = 0;
1350                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1351
1352                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1353                                page_address(fbio->bi_io_vec[j].bv_page),
1354                                PAGE_SIZE);
1355                 }
1356                 tbio->bi_end_io = end_sync_write;
1357
1358                 d = r10_bio->devs[i].devnum;
1359                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1360                 atomic_inc(&r10_bio->remaining);
1361                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1362
1363                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1364                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1365                 generic_make_request(tbio);
1366         }
1367
1368 done:
1369         if (atomic_dec_and_test(&r10_bio->remaining)) {
1370                 md_done_sync(mddev, r10_bio->sectors, 1);
1371                 put_buf(r10_bio);
1372         }
1373 }
1374
1375 /*
1376  * Now for the recovery code.
1377  * Recovery happens across physical sectors.
1378  * We recover all non-is_sync drives by finding the virtual address of
1379  * each, and then choose a working drive that also has that virt address.
1380  * There is a separate r10_bio for each non-in_sync drive.
1381  * Only the first two slots are in use. The first for reading,
1382  * The second for writing.
1383  *
1384  */
1385
1386 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1387 {
1388         conf_t *conf = mddev_to_conf(mddev);
1389         int i, d;
1390         struct bio *bio, *wbio;
1391
1392
1393         /* move the pages across to the second bio
1394          * and submit the write request
1395          */
1396         bio = r10_bio->devs[0].bio;
1397         wbio = r10_bio->devs[1].bio;
1398         for (i=0; i < wbio->bi_vcnt; i++) {
1399                 struct page *p = bio->bi_io_vec[i].bv_page;
1400                 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1401                 wbio->bi_io_vec[i].bv_page = p;
1402         }
1403         d = r10_bio->devs[1].devnum;
1404
1405         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1406         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1407         if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1408                 generic_make_request(wbio);
1409         else
1410                 bio_endio(wbio, -EIO);
1411 }
1412
1413
1414 /*
1415  * This is a kernel thread which:
1416  *
1417  *      1.      Retries failed read operations on working mirrors.
1418  *      2.      Updates the raid superblock when problems encounter.
1419  *      3.      Performs writes following reads for array synchronising.
1420  */
1421
1422 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1423 {
1424         int sect = 0; /* Offset from r10_bio->sector */
1425         int sectors = r10_bio->sectors;
1426         mdk_rdev_t*rdev;
1427         while(sectors) {
1428                 int s = sectors;
1429                 int sl = r10_bio->read_slot;
1430                 int success = 0;
1431                 int start;
1432
1433                 if (s > (PAGE_SIZE>>9))
1434                         s = PAGE_SIZE >> 9;
1435
1436                 rcu_read_lock();
1437                 do {
1438                         int d = r10_bio->devs[sl].devnum;
1439                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1440                         if (rdev &&
1441                             test_bit(In_sync, &rdev->flags)) {
1442                                 atomic_inc(&rdev->nr_pending);
1443                                 rcu_read_unlock();
1444                                 success = sync_page_io(rdev->bdev,
1445                                                        r10_bio->devs[sl].addr +
1446                                                        sect + rdev->data_offset,
1447                                                        s<<9,
1448                                                        conf->tmppage, READ);
1449                                 rdev_dec_pending(rdev, mddev);
1450                                 rcu_read_lock();
1451                                 if (success)
1452                                         break;
1453                         }
1454                         sl++;
1455                         if (sl == conf->copies)
1456                                 sl = 0;
1457                 } while (!success && sl != r10_bio->read_slot);
1458                 rcu_read_unlock();
1459
1460                 if (!success) {
1461                         /* Cannot read from anywhere -- bye bye array */
1462                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1463                         md_error(mddev, conf->mirrors[dn].rdev);
1464                         break;
1465                 }
1466
1467                 start = sl;
1468                 /* write it back and re-read */
1469                 rcu_read_lock();
1470                 while (sl != r10_bio->read_slot) {
1471                         int d;
1472                         if (sl==0)
1473                                 sl = conf->copies;
1474                         sl--;
1475                         d = r10_bio->devs[sl].devnum;
1476                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1477                         if (rdev &&
1478                             test_bit(In_sync, &rdev->flags)) {
1479                                 atomic_inc(&rdev->nr_pending);
1480                                 rcu_read_unlock();
1481                                 atomic_add(s, &rdev->corrected_errors);
1482                                 if (sync_page_io(rdev->bdev,
1483                                                  r10_bio->devs[sl].addr +
1484                                                  sect + rdev->data_offset,
1485                                                  s<<9, conf->tmppage, WRITE)
1486                                     == 0)
1487                                         /* Well, this device is dead */
1488                                         md_error(mddev, rdev);
1489                                 rdev_dec_pending(rdev, mddev);
1490                                 rcu_read_lock();
1491                         }
1492                 }
1493                 sl = start;
1494                 while (sl != r10_bio->read_slot) {
1495                         int d;
1496                         if (sl==0)
1497                                 sl = conf->copies;
1498                         sl--;
1499                         d = r10_bio->devs[sl].devnum;
1500                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1501                         if (rdev &&
1502                             test_bit(In_sync, &rdev->flags)) {
1503                                 char b[BDEVNAME_SIZE];
1504                                 atomic_inc(&rdev->nr_pending);
1505                                 rcu_read_unlock();
1506                                 if (sync_page_io(rdev->bdev,
1507                                                  r10_bio->devs[sl].addr +
1508                                                  sect + rdev->data_offset,
1509                                                  s<<9, conf->tmppage, READ) == 0)
1510                                         /* Well, this device is dead */
1511                                         md_error(mddev, rdev);
1512                                 else
1513                                         printk(KERN_INFO
1514                                                "raid10:%s: read error corrected"
1515                                                " (%d sectors at %llu on %s)\n",
1516                                                mdname(mddev), s,
1517                                                (unsigned long long)(sect+
1518                                                     rdev->data_offset),
1519                                                bdevname(rdev->bdev, b));
1520
1521                                 rdev_dec_pending(rdev, mddev);
1522                                 rcu_read_lock();
1523                         }
1524                 }
1525                 rcu_read_unlock();
1526
1527                 sectors -= s;
1528                 sect += s;
1529         }
1530 }
1531
1532 static void raid10d(mddev_t *mddev)
1533 {
1534         r10bio_t *r10_bio;
1535         struct bio *bio;
1536         unsigned long flags;
1537         conf_t *conf = mddev_to_conf(mddev);
1538         struct list_head *head = &conf->retry_list;
1539         int unplug=0;
1540         mdk_rdev_t *rdev;
1541
1542         md_check_recovery(mddev);
1543
1544         for (;;) {
1545                 char b[BDEVNAME_SIZE];
1546
1547                 unplug += flush_pending_writes(conf);
1548
1549                 spin_lock_irqsave(&conf->device_lock, flags);
1550                 if (list_empty(head)) {
1551                         spin_unlock_irqrestore(&conf->device_lock, flags);
1552                         break;
1553                 }
1554                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1555                 list_del(head->prev);
1556                 conf->nr_queued--;
1557                 spin_unlock_irqrestore(&conf->device_lock, flags);
1558
1559                 mddev = r10_bio->mddev;
1560                 conf = mddev_to_conf(mddev);
1561                 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1562                         sync_request_write(mddev, r10_bio);
1563                         unplug = 1;
1564                 } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1565                         recovery_request_write(mddev, r10_bio);
1566                         unplug = 1;
1567                 } else {
1568                         int mirror;
1569                         /* we got a read error. Maybe the drive is bad.  Maybe just
1570                          * the block and we can fix it.
1571                          * We freeze all other IO, and try reading the block from
1572                          * other devices.  When we find one, we re-write
1573                          * and check it that fixes the read error.
1574                          * This is all done synchronously while the array is
1575                          * frozen.
1576                          */
1577                         if (mddev->ro == 0) {
1578                                 freeze_array(conf);
1579                                 fix_read_error(conf, mddev, r10_bio);
1580                                 unfreeze_array(conf);
1581                         }
1582
1583                         bio = r10_bio->devs[r10_bio->read_slot].bio;
1584                         r10_bio->devs[r10_bio->read_slot].bio =
1585                                 mddev->ro ? IO_BLOCKED : NULL;
1586                         mirror = read_balance(conf, r10_bio);
1587                         if (mirror == -1) {
1588                                 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1589                                        " read error for block %llu\n",
1590                                        bdevname(bio->bi_bdev,b),
1591                                        (unsigned long long)r10_bio->sector);
1592                                 raid_end_bio_io(r10_bio);
1593                                 bio_put(bio);
1594                         } else {
1595                                 const int do_sync = bio_sync(r10_bio->master_bio);
1596                                 bio_put(bio);
1597                                 rdev = conf->mirrors[mirror].rdev;
1598                                 if (printk_ratelimit())
1599                                         printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1600                                                " another mirror\n",
1601                                                bdevname(rdev->bdev,b),
1602                                                (unsigned long long)r10_bio->sector);
1603                                 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1604                                 r10_bio->devs[r10_bio->read_slot].bio = bio;
1605                                 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1606                                         + rdev->data_offset;
1607                                 bio->bi_bdev = rdev->bdev;
1608                                 bio->bi_rw = READ | do_sync;
1609                                 bio->bi_private = r10_bio;
1610                                 bio->bi_end_io = raid10_end_read_request;
1611                                 unplug = 1;
1612                                 generic_make_request(bio);
1613                         }
1614                 }
1615         }
1616         if (unplug)
1617                 unplug_slaves(mddev);
1618 }
1619
1620
1621 static int init_resync(conf_t *conf)
1622 {
1623         int buffs;
1624
1625         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1626         BUG_ON(conf->r10buf_pool);
1627         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1628         if (!conf->r10buf_pool)
1629                 return -ENOMEM;
1630         conf->next_resync = 0;
1631         return 0;
1632 }
1633
1634 /*
1635  * perform a "sync" on one "block"
1636  *
1637  * We need to make sure that no normal I/O request - particularly write
1638  * requests - conflict with active sync requests.
1639  *
1640  * This is achieved by tracking pending requests and a 'barrier' concept
1641  * that can be installed to exclude normal IO requests.
1642  *
1643  * Resync and recovery are handled very differently.
1644  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1645  *
1646  * For resync, we iterate over virtual addresses, read all copies,
1647  * and update if there are differences.  If only one copy is live,
1648  * skip it.
1649  * For recovery, we iterate over physical addresses, read a good
1650  * value for each non-in_sync drive, and over-write.
1651  *
1652  * So, for recovery we may have several outstanding complex requests for a
1653  * given address, one for each out-of-sync device.  We model this by allocating
1654  * a number of r10_bio structures, one for each out-of-sync device.
1655  * As we setup these structures, we collect all bio's together into a list
1656  * which we then process collectively to add pages, and then process again
1657  * to pass to generic_make_request.
1658  *
1659  * The r10_bio structures are linked using a borrowed master_bio pointer.
1660  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1661  * has its remaining count decremented to 0, the whole complex operation
1662  * is complete.
1663  *
1664  */
1665
1666 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1667 {
1668         conf_t *conf = mddev_to_conf(mddev);
1669         r10bio_t *r10_bio;
1670         struct bio *biolist = NULL, *bio;
1671         sector_t max_sector, nr_sectors;
1672         int disk;
1673         int i;
1674         int max_sync;
1675         int sync_blocks;
1676
1677         sector_t sectors_skipped = 0;
1678         int chunks_skipped = 0;
1679
1680         if (!conf->r10buf_pool)
1681                 if (init_resync(conf))
1682                         return 0;
1683
1684  skipped:
1685         max_sector = mddev->size << 1;
1686         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1687                 max_sector = mddev->resync_max_sectors;
1688         if (sector_nr >= max_sector) {
1689                 /* If we aborted, we need to abort the
1690                  * sync on the 'current' bitmap chucks (there can
1691                  * be several when recovering multiple devices).
1692                  * as we may have started syncing it but not finished.
1693                  * We can find the current address in
1694                  * mddev->curr_resync, but for recovery,
1695                  * we need to convert that to several
1696                  * virtual addresses.
1697                  */
1698                 if (mddev->curr_resync < max_sector) { /* aborted */
1699                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1700                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1701                                                 &sync_blocks, 1);
1702                         else for (i=0; i<conf->raid_disks; i++) {
1703                                 sector_t sect =
1704                                         raid10_find_virt(conf, mddev->curr_resync, i);
1705                                 bitmap_end_sync(mddev->bitmap, sect,
1706                                                 &sync_blocks, 1);
1707                         }
1708                 } else /* completed sync */
1709                         conf->fullsync = 0;
1710
1711                 bitmap_close_sync(mddev->bitmap);
1712                 close_sync(conf);
1713                 *skipped = 1;
1714                 return sectors_skipped;
1715         }
1716         if (chunks_skipped >= conf->raid_disks) {
1717                 /* if there has been nothing to do on any drive,
1718                  * then there is nothing to do at all..
1719                  */
1720                 *skipped = 1;
1721                 return (max_sector - sector_nr) + sectors_skipped;
1722         }
1723
1724         if (max_sector > mddev->resync_max)
1725                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1726
1727         /* make sure whole request will fit in a chunk - if chunks
1728          * are meaningful
1729          */
1730         if (conf->near_copies < conf->raid_disks &&
1731             max_sector > (sector_nr | conf->chunk_mask))
1732                 max_sector = (sector_nr | conf->chunk_mask) + 1;
1733         /*
1734          * If there is non-resync activity waiting for us then
1735          * put in a delay to throttle resync.
1736          */
1737         if (!go_faster && conf->nr_waiting)
1738                 msleep_interruptible(1000);
1739
1740         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1741
1742         /* Again, very different code for resync and recovery.
1743          * Both must result in an r10bio with a list of bios that
1744          * have bi_end_io, bi_sector, bi_bdev set,
1745          * and bi_private set to the r10bio.
1746          * For recovery, we may actually create several r10bios
1747          * with 2 bios in each, that correspond to the bios in the main one.
1748          * In this case, the subordinate r10bios link back through a
1749          * borrowed master_bio pointer, and the counter in the master
1750          * includes a ref from each subordinate.
1751          */
1752         /* First, we decide what to do and set ->bi_end_io
1753          * To end_sync_read if we want to read, and
1754          * end_sync_write if we will want to write.
1755          */
1756
1757         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1758         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1759                 /* recovery... the complicated one */
1760                 int i, j, k;
1761                 r10_bio = NULL;
1762
1763                 for (i=0 ; i<conf->raid_disks; i++)
1764                         if (conf->mirrors[i].rdev &&
1765                             !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1766                                 int still_degraded = 0;
1767                                 /* want to reconstruct this device */
1768                                 r10bio_t *rb2 = r10_bio;
1769                                 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1770                                 int must_sync;
1771                                 /* Unless we are doing a full sync, we only need
1772                                  * to recover the block if it is set in the bitmap
1773                                  */
1774                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1775                                                               &sync_blocks, 1);
1776                                 if (sync_blocks < max_sync)
1777                                         max_sync = sync_blocks;
1778                                 if (!must_sync &&
1779                                     !conf->fullsync) {
1780                                         /* yep, skip the sync_blocks here, but don't assume
1781                                          * that there will never be anything to do here
1782                                          */
1783                                         chunks_skipped = -1;
1784                                         continue;
1785                                 }
1786
1787                                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1788                                 raise_barrier(conf, rb2 != NULL);
1789                                 atomic_set(&r10_bio->remaining, 0);
1790
1791                                 r10_bio->master_bio = (struct bio*)rb2;
1792                                 if (rb2)
1793                                         atomic_inc(&rb2->remaining);
1794                                 r10_bio->mddev = mddev;
1795                                 set_bit(R10BIO_IsRecover, &r10_bio->state);
1796                                 r10_bio->sector = sect;
1797
1798                                 raid10_find_phys(conf, r10_bio);
1799                                 /* Need to check if this section will still be
1800                                  * degraded
1801                                  */
1802                                 for (j=0; j<conf->copies;j++) {
1803                                         int d = r10_bio->devs[j].devnum;
1804                                         if (conf->mirrors[d].rdev == NULL ||
1805                                             test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1806                                                 still_degraded = 1;
1807                                                 break;
1808                                         }
1809                                 }
1810                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1811                                                               &sync_blocks, still_degraded);
1812
1813                                 for (j=0; j<conf->copies;j++) {
1814                                         int d = r10_bio->devs[j].devnum;
1815                                         if (conf->mirrors[d].rdev &&
1816                                             test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1817                                                 /* This is where we read from */
1818                                                 bio = r10_bio->devs[0].bio;
1819                                                 bio->bi_next = biolist;
1820                                                 biolist = bio;
1821                                                 bio->bi_private = r10_bio;
1822                                                 bio->bi_end_io = end_sync_read;
1823                                                 bio->bi_rw = READ;
1824                                                 bio->bi_sector = r10_bio->devs[j].addr +
1825                                                         conf->mirrors[d].rdev->data_offset;
1826                                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1827                                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1828                                                 atomic_inc(&r10_bio->remaining);
1829                                                 /* and we write to 'i' */
1830
1831                                                 for (k=0; k<conf->copies; k++)
1832                                                         if (r10_bio->devs[k].devnum == i)
1833                                                                 break;
1834                                                 BUG_ON(k == conf->copies);
1835                                                 bio = r10_bio->devs[1].bio;
1836                                                 bio->bi_next = biolist;
1837                                                 biolist = bio;
1838                                                 bio->bi_private = r10_bio;
1839                                                 bio->bi_end_io = end_sync_write;
1840                                                 bio->bi_rw = WRITE;
1841                                                 bio->bi_sector = r10_bio->devs[k].addr +
1842                                                         conf->mirrors[i].rdev->data_offset;
1843                                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1844
1845                                                 r10_bio->devs[0].devnum = d;
1846                                                 r10_bio->devs[1].devnum = i;
1847
1848                                                 break;
1849                                         }
1850                                 }
1851                                 if (j == conf->copies) {
1852                                         /* Cannot recover, so abort the recovery */
1853                                         put_buf(r10_bio);
1854                                         if (rb2)
1855                                                 atomic_dec(&rb2->remaining);
1856                                         r10_bio = rb2;
1857                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
1858                                                               &mddev->recovery))
1859                                                 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1860                                                        mdname(mddev));
1861                                         break;
1862                                 }
1863                         }
1864                 if (biolist == NULL) {
1865                         while (r10_bio) {
1866                                 r10bio_t *rb2 = r10_bio;
1867                                 r10_bio = (r10bio_t*) rb2->master_bio;
1868                                 rb2->master_bio = NULL;
1869                                 put_buf(rb2);
1870                         }
1871                         goto giveup;
1872                 }
1873         } else {
1874                 /* resync. Schedule a read for every block at this virt offset */
1875                 int count = 0;
1876
1877                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1878                                        &sync_blocks, mddev->degraded) &&
1879                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1880                         /* We can skip this block */
1881                         *skipped = 1;
1882                         return sync_blocks + sectors_skipped;
1883                 }
1884                 if (sync_blocks < max_sync)
1885                         max_sync = sync_blocks;
1886                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1887
1888                 r10_bio->mddev = mddev;
1889                 atomic_set(&r10_bio->remaining, 0);
1890                 raise_barrier(conf, 0);
1891                 conf->next_resync = sector_nr;
1892
1893                 r10_bio->master_bio = NULL;
1894                 r10_bio->sector = sector_nr;
1895                 set_bit(R10BIO_IsSync, &r10_bio->state);
1896                 raid10_find_phys(conf, r10_bio);
1897                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1898
1899                 for (i=0; i<conf->copies; i++) {
1900                         int d = r10_bio->devs[i].devnum;
1901                         bio = r10_bio->devs[i].bio;
1902                         bio->bi_end_io = NULL;
1903                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
1904                         if (conf->mirrors[d].rdev == NULL ||
1905                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1906                                 continue;
1907                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1908                         atomic_inc(&r10_bio->remaining);
1909                         bio->bi_next = biolist;
1910                         biolist = bio;
1911                         bio->bi_private = r10_bio;
1912                         bio->bi_end_io = end_sync_read;
1913                         bio->bi_rw = READ;
1914                         bio->bi_sector = r10_bio->devs[i].addr +
1915                                 conf->mirrors[d].rdev->data_offset;
1916                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1917                         count++;
1918                 }
1919
1920                 if (count < 2) {
1921                         for (i=0; i<conf->copies; i++) {
1922                                 int d = r10_bio->devs[i].devnum;
1923                                 if (r10_bio->devs[i].bio->bi_end_io)
1924                                         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1925                         }
1926                         put_buf(r10_bio);
1927                         biolist = NULL;
1928                         goto giveup;
1929                 }
1930         }
1931
1932         for (bio = biolist; bio ; bio=bio->bi_next) {
1933
1934                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1935                 if (bio->bi_end_io)
1936                         bio->bi_flags |= 1 << BIO_UPTODATE;
1937                 bio->bi_vcnt = 0;
1938                 bio->bi_idx = 0;
1939                 bio->bi_phys_segments = 0;
1940                 bio->bi_hw_segments = 0;
1941                 bio->bi_size = 0;
1942         }
1943
1944         nr_sectors = 0;
1945         if (sector_nr + max_sync < max_sector)
1946                 max_sector = sector_nr + max_sync;
1947         do {
1948                 struct page *page;
1949                 int len = PAGE_SIZE;
1950                 disk = 0;
1951                 if (sector_nr + (len>>9) > max_sector)
1952                         len = (max_sector - sector_nr) << 9;
1953                 if (len == 0)
1954                         break;
1955                 for (bio= biolist ; bio ; bio=bio->bi_next) {
1956                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1957                         if (bio_add_page(bio, page, len, 0) == 0) {
1958                                 /* stop here */
1959                                 struct bio *bio2;
1960                                 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1961                                 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1962                                         /* remove last page from this bio */
1963                                         bio2->bi_vcnt--;
1964                                         bio2->bi_size -= len;
1965                                         bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1966                                 }
1967                                 goto bio_full;
1968                         }
1969                         disk = i;
1970                 }
1971                 nr_sectors += len>>9;
1972                 sector_nr += len>>9;
1973         } while (biolist->bi_vcnt < RESYNC_PAGES);
1974  bio_full:
1975         r10_bio->sectors = nr_sectors;
1976
1977         while (biolist) {
1978                 bio = biolist;
1979                 biolist = biolist->bi_next;
1980
1981                 bio->bi_next = NULL;
1982                 r10_bio = bio->bi_private;
1983                 r10_bio->sectors = nr_sectors;
1984
1985                 if (bio->bi_end_io == end_sync_read) {
1986                         md_sync_acct(bio->bi_bdev, nr_sectors);
1987                         generic_make_request(bio);
1988                 }
1989         }
1990
1991         if (sectors_skipped)
1992                 /* pretend they weren't skipped, it makes
1993                  * no important difference in this case
1994                  */
1995                 md_done_sync(mddev, sectors_skipped, 1);
1996
1997         return sectors_skipped + nr_sectors;
1998  giveup:
1999         /* There is nowhere to write, so all non-sync
2000          * drives must be failed, so try the next chunk...
2001          */
2002         {
2003         sector_t sec = max_sector - sector_nr;
2004         sectors_skipped += sec;
2005         chunks_skipped ++;
2006         sector_nr = max_sector;
2007         goto skipped;
2008         }
2009 }
2010
2011 static int run(mddev_t *mddev)
2012 {
2013         conf_t *conf;
2014         int i, disk_idx;
2015         mirror_info_t *disk;
2016         mdk_rdev_t *rdev;
2017         struct list_head *tmp;
2018         int nc, fc, fo;
2019         sector_t stride, size;
2020
2021         if (mddev->chunk_size == 0) {
2022                 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
2023                 return -EINVAL;
2024         }
2025
2026         nc = mddev->layout & 255;
2027         fc = (mddev->layout >> 8) & 255;
2028         fo = mddev->layout & (1<<16);
2029         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2030             (mddev->layout >> 17)) {
2031                 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2032                        mdname(mddev), mddev->layout);
2033                 goto out;
2034         }
2035         /*
2036          * copy the already verified devices into our private RAID10
2037          * bookkeeping area. [whatever we allocate in run(),
2038          * should be freed in stop()]
2039          */
2040         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2041         mddev->private = conf;
2042         if (!conf) {
2043                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2044                         mdname(mddev));
2045                 goto out;
2046         }
2047         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2048                                  GFP_KERNEL);
2049         if (!conf->mirrors) {
2050                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2051                        mdname(mddev));
2052                 goto out_free_conf;
2053         }
2054
2055         conf->tmppage = alloc_page(GFP_KERNEL);
2056         if (!conf->tmppage)
2057                 goto out_free_conf;
2058
2059         conf->mddev = mddev;
2060         conf->raid_disks = mddev->raid_disks;
2061         conf->near_copies = nc;
2062         conf->far_copies = fc;
2063         conf->copies = nc*fc;
2064         conf->far_offset = fo;
2065         conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2066         conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2067         size = mddev->size >> (conf->chunk_shift-1);
2068         sector_div(size, fc);
2069         size = size * conf->raid_disks;
2070         sector_div(size, nc);
2071         /* 'size' is now the number of chunks in the array */
2072         /* calculate "used chunks per device" in 'stride' */
2073         stride = size * conf->copies;
2074
2075         /* We need to round up when dividing by raid_disks to
2076          * get the stride size.
2077          */
2078         stride += conf->raid_disks - 1;
2079         sector_div(stride, conf->raid_disks);
2080         mddev->size = stride  << (conf->chunk_shift-1);
2081
2082         if (fo)
2083                 stride = 1;
2084         else
2085                 sector_div(stride, fc);
2086         conf->stride = stride << conf->chunk_shift;
2087
2088         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2089                                                 r10bio_pool_free, conf);
2090         if (!conf->r10bio_pool) {
2091                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2092                         mdname(mddev));
2093                 goto out_free_conf;
2094         }
2095
2096         spin_lock_init(&conf->device_lock);
2097         mddev->queue->queue_lock = &conf->device_lock;
2098
2099         rdev_for_each(rdev, tmp, mddev) {
2100                 disk_idx = rdev->raid_disk;
2101                 if (disk_idx >= mddev->raid_disks
2102                     || disk_idx < 0)
2103                         continue;
2104                 disk = conf->mirrors + disk_idx;
2105
2106                 disk->rdev = rdev;
2107
2108                 blk_queue_stack_limits(mddev->queue,
2109                                        rdev->bdev->bd_disk->queue);
2110                 /* as we don't honour merge_bvec_fn, we must never risk
2111                  * violating it, so limit ->max_sector to one PAGE, as
2112                  * a one page request is never in violation.
2113                  */
2114                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2115                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
2116                         mddev->queue->max_sectors = (PAGE_SIZE>>9);
2117
2118                 disk->head_position = 0;
2119         }
2120         INIT_LIST_HEAD(&conf->retry_list);
2121
2122         spin_lock_init(&conf->resync_lock);
2123         init_waitqueue_head(&conf->wait_barrier);
2124
2125         /* need to check that every block has at least one working mirror */
2126         if (!enough(conf)) {
2127                 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2128                        mdname(mddev));
2129                 goto out_free_conf;
2130         }
2131
2132         mddev->degraded = 0;
2133         for (i = 0; i < conf->raid_disks; i++) {
2134
2135                 disk = conf->mirrors + i;
2136
2137                 if (!disk->rdev ||
2138                     !test_bit(In_sync, &disk->rdev->flags)) {
2139                         disk->head_position = 0;
2140                         mddev->degraded++;
2141                         if (disk->rdev)
2142                                 conf->fullsync = 1;
2143                 }
2144         }
2145
2146
2147         mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2148         if (!mddev->thread) {
2149                 printk(KERN_ERR
2150                        "raid10: couldn't allocate thread for %s\n",
2151                        mdname(mddev));
2152                 goto out_free_conf;
2153         }
2154
2155         printk(KERN_INFO
2156                 "raid10: raid set %s active with %d out of %d devices\n",
2157                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2158                 mddev->raid_disks);
2159         /*
2160          * Ok, everything is just fine now
2161          */
2162         mddev->array_size = size << (conf->chunk_shift-1);
2163         mddev->resync_max_sectors = size << conf->chunk_shift;
2164
2165         mddev->queue->unplug_fn = raid10_unplug;
2166         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2167         mddev->queue->backing_dev_info.congested_data = mddev;
2168
2169         /* Calculate max read-ahead size.
2170          * We need to readahead at least twice a whole stripe....
2171          * maybe...
2172          */
2173         {
2174                 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2175                 stripe /= conf->near_copies;
2176                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2177                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2178         }
2179
2180         if (conf->near_copies < mddev->raid_disks)
2181                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2182         return 0;
2183
2184 out_free_conf:
2185         if (conf->r10bio_pool)
2186                 mempool_destroy(conf->r10bio_pool);
2187         safe_put_page(conf->tmppage);
2188         kfree(conf->mirrors);
2189         kfree(conf);
2190         mddev->private = NULL;
2191 out:
2192         return -EIO;
2193 }
2194
2195 static int stop(mddev_t *mddev)
2196 {
2197         conf_t *conf = mddev_to_conf(mddev);
2198
2199         md_unregister_thread(mddev->thread);
2200         mddev->thread = NULL;
2201         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2202         if (conf->r10bio_pool)
2203                 mempool_destroy(conf->r10bio_pool);
2204         kfree(conf->mirrors);
2205         kfree(conf);
2206         mddev->private = NULL;
2207         return 0;
2208 }
2209
2210 static void raid10_quiesce(mddev_t *mddev, int state)
2211 {
2212         conf_t *conf = mddev_to_conf(mddev);
2213
2214         switch(state) {
2215         case 1:
2216                 raise_barrier(conf, 0);
2217                 break;
2218         case 0:
2219                 lower_barrier(conf);
2220                 break;
2221         }
2222         if (mddev->thread) {
2223                 if (mddev->bitmap)
2224                         mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2225                 else
2226                         mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2227                 md_wakeup_thread(mddev->thread);
2228         }
2229 }
2230
2231 static struct mdk_personality raid10_personality =
2232 {
2233         .name           = "raid10",
2234         .level          = 10,
2235         .owner          = THIS_MODULE,
2236         .make_request   = make_request,
2237         .run            = run,
2238         .stop           = stop,
2239         .status         = status,
2240         .error_handler  = error,
2241         .hot_add_disk   = raid10_add_disk,
2242         .hot_remove_disk= raid10_remove_disk,
2243         .spare_active   = raid10_spare_active,
2244         .sync_request   = sync_request,
2245         .quiesce        = raid10_quiesce,
2246 };
2247
2248 static int __init raid_init(void)
2249 {
2250         return register_md_personality(&raid10_personality);
2251 }
2252
2253 static void raid_exit(void)
2254 {
2255         unregister_md_personality(&raid10_personality);
2256 }
2257
2258 module_init(raid_init);
2259 module_exit(raid_exit);
2260 MODULE_LICENSE("GPL");
2261 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2262 MODULE_ALIAS("md-raid10");
2263 MODULE_ALIAS("md-level-10");