2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
42 * near_copies and far_copies must be at least one, and their product is at most
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
51 * Number of guaranteed r10bios in case of extreme VM load:
53 #define NR_RAID10_BIOS 256
55 static void unplug_slaves(mddev_t *mddev);
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
64 int size = offsetof(struct r10bio_s, devs[conf->copies]);
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio = kzalloc(size, gfp_flags);
69 unplug_slaves(conf->mddev);
74 static void r10bio_pool_free(void *r10_bio, void *data)
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
101 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
103 unplug_slaves(conf->mddev);
107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 nalloc = conf->copies; /* resync */
110 nalloc = 2; /* recovery */
115 for (j = nalloc ; j-- ; ) {
116 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
119 r10_bio->devs[j].bio = bio;
122 * Allocate RESYNC_PAGES data pages and attach them
125 for (j = 0 ; j < nalloc; j++) {
126 bio = r10_bio->devs[j].bio;
127 for (i = 0; i < RESYNC_PAGES; i++) {
128 page = alloc_page(gfp_flags);
132 bio->bi_io_vec[i].bv_page = page;
140 safe_put_page(bio->bi_io_vec[i-1].bv_page);
142 for (i = 0; i < RESYNC_PAGES ; i++)
143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
146 while ( ++j < nalloc )
147 bio_put(r10_bio->devs[j].bio);
148 r10bio_pool_free(r10_bio, conf);
152 static void r10buf_pool_free(void *__r10_bio, void *data)
156 r10bio_t *r10bio = __r10_bio;
159 for (j=0; j < conf->copies; j++) {
160 struct bio *bio = r10bio->devs[j].bio;
162 for (i = 0; i < RESYNC_PAGES; i++) {
163 safe_put_page(bio->bi_io_vec[i].bv_page);
164 bio->bi_io_vec[i].bv_page = NULL;
169 r10bio_pool_free(r10bio, conf);
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
176 for (i = 0; i < conf->copies; i++) {
177 struct bio **bio = & r10_bio->devs[i].bio;
178 if (*bio && *bio != IO_BLOCKED)
184 static void free_r10bio(r10bio_t *r10_bio)
186 conf_t *conf = mddev_to_conf(r10_bio->mddev);
189 * Wake up any possible resync thread that waits for the device
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
198 static void put_buf(r10bio_t *r10_bio)
200 conf_t *conf = mddev_to_conf(r10_bio->mddev);
202 mempool_free(r10_bio, conf->r10buf_pool);
207 static void reschedule_retry(r10bio_t *r10_bio)
210 mddev_t *mddev = r10_bio->mddev;
211 conf_t *conf = mddev_to_conf(mddev);
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
216 spin_unlock_irqrestore(&conf->device_lock, flags);
218 md_wakeup_thread(mddev->thread);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
226 static void raid_end_bio_io(r10bio_t *r10_bio)
228 struct bio *bio = r10_bio->master_bio;
231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232 free_r10bio(r10_bio);
236 * Update disk head position estimator based on IRQ completion info.
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
240 conf_t *conf = mddev_to_conf(r10_bio->mddev);
242 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243 r10_bio->devs[slot].addr + (r10_bio->sectors);
246 static void raid10_end_read_request(struct bio *bio, int error)
248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
251 conf_t *conf = mddev_to_conf(r10_bio->mddev);
254 slot = r10_bio->read_slot;
255 dev = r10_bio->devs[slot].devnum;
257 * this branch is our 'one mirror IO has finished' event handler:
259 update_head_pos(slot, r10_bio);
263 * Set R10BIO_Uptodate in our master bio, so that
264 * we will return a good error code to the higher
265 * levels even if IO on some other mirrored buffer fails.
267 * The 'master' represents the composite IO operation to
268 * user-side. So if something waits for IO, then it will
269 * wait for the 'master' bio.
271 set_bit(R10BIO_Uptodate, &r10_bio->state);
272 raid_end_bio_io(r10_bio);
277 char b[BDEVNAME_SIZE];
278 if (printk_ratelimit())
279 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
280 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
281 reschedule_retry(r10_bio);
284 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
287 static void raid10_end_write_request(struct bio *bio, int error)
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
292 conf_t *conf = mddev_to_conf(r10_bio->mddev);
294 for (slot = 0; slot < conf->copies; slot++)
295 if (r10_bio->devs[slot].bio == bio)
297 dev = r10_bio->devs[slot].devnum;
300 * this branch is our 'one mirror IO has finished' event handler:
303 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
304 /* an I/O failed, we can't clear the bitmap */
305 set_bit(R10BIO_Degraded, &r10_bio->state);
308 * Set R10BIO_Uptodate in our master bio, so that
309 * we will return a good error code for to the higher
310 * levels even if IO on some other mirrored buffer fails.
312 * The 'master' represents the composite IO operation to
313 * user-side. So if something waits for IO, then it will
314 * wait for the 'master' bio.
316 set_bit(R10BIO_Uptodate, &r10_bio->state);
318 update_head_pos(slot, r10_bio);
322 * Let's see if all mirrored write operations have finished
325 if (atomic_dec_and_test(&r10_bio->remaining)) {
326 /* clear the bitmap if all writes complete successfully */
327 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
329 !test_bit(R10BIO_Degraded, &r10_bio->state),
331 md_write_end(r10_bio->mddev);
332 raid_end_bio_io(r10_bio);
335 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
340 * RAID10 layout manager
341 * Aswell as the chunksize and raid_disks count, there are two
342 * parameters: near_copies and far_copies.
343 * near_copies * far_copies must be <= raid_disks.
344 * Normally one of these will be 1.
345 * If both are 1, we get raid0.
346 * If near_copies == raid_disks, we get raid1.
348 * Chunks are layed out in raid0 style with near_copies copies of the
349 * first chunk, followed by near_copies copies of the next chunk and
351 * If far_copies > 1, then after 1/far_copies of the array has been assigned
352 * as described above, we start again with a device offset of near_copies.
353 * So we effectively have another copy of the whole array further down all
354 * the drives, but with blocks on different drives.
355 * With this layout, and block is never stored twice on the one device.
357 * raid10_find_phys finds the sector offset of a given virtual sector
358 * on each device that it is on.
360 * raid10_find_virt does the reverse mapping, from a device and a
361 * sector offset to a virtual address
364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
374 /* now calculate first sector/dev */
375 chunk = r10bio->sector >> conf->chunk_shift;
376 sector = r10bio->sector & conf->chunk_mask;
378 chunk *= conf->near_copies;
380 dev = sector_div(stripe, conf->raid_disks);
381 if (conf->far_offset)
382 stripe *= conf->far_copies;
384 sector += stripe << conf->chunk_shift;
386 /* and calculate all the others */
387 for (n=0; n < conf->near_copies; n++) {
390 r10bio->devs[slot].addr = sector;
391 r10bio->devs[slot].devnum = d;
394 for (f = 1; f < conf->far_copies; f++) {
395 d += conf->near_copies;
396 if (d >= conf->raid_disks)
397 d -= conf->raid_disks;
399 r10bio->devs[slot].devnum = d;
400 r10bio->devs[slot].addr = s;
404 if (dev >= conf->raid_disks) {
406 sector += (conf->chunk_mask + 1);
409 BUG_ON(slot != conf->copies);
412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
414 sector_t offset, chunk, vchunk;
416 offset = sector & conf->chunk_mask;
417 if (conf->far_offset) {
419 chunk = sector >> conf->chunk_shift;
420 fc = sector_div(chunk, conf->far_copies);
421 dev -= fc * conf->near_copies;
423 dev += conf->raid_disks;
425 while (sector >= conf->stride) {
426 sector -= conf->stride;
427 if (dev < conf->near_copies)
428 dev += conf->raid_disks - conf->near_copies;
430 dev -= conf->near_copies;
432 chunk = sector >> conf->chunk_shift;
434 vchunk = chunk * conf->raid_disks + dev;
435 sector_div(vchunk, conf->near_copies);
436 return (vchunk << conf->chunk_shift) + offset;
440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
442 * @bvm: properties of new bio
443 * @biovec: the request that could be merged to it.
445 * Return amount of bytes we can accept at this offset
446 * If near_copies == raid_disk, there are no striping issues,
447 * but in that case, the function isn't called at all.
449 static int raid10_mergeable_bvec(struct request_queue *q,
450 struct bvec_merge_data *bvm,
451 struct bio_vec *biovec)
453 mddev_t *mddev = q->queuedata;
454 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
456 unsigned int chunk_sectors = mddev->chunk_size >> 9;
457 unsigned int bio_sectors = bvm->bi_size >> 9;
459 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
460 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
461 if (max <= biovec->bv_len && bio_sectors == 0)
462 return biovec->bv_len;
468 * This routine returns the disk from which the requested read should
469 * be done. There is a per-array 'next expected sequential IO' sector
470 * number - if this matches on the next IO then we use the last disk.
471 * There is also a per-disk 'last know head position' sector that is
472 * maintained from IRQ contexts, both the normal and the resync IO
473 * completion handlers update this position correctly. If there is no
474 * perfect sequential match then we pick the disk whose head is closest.
476 * If there are 2 mirrors in the same 2 devices, performance degrades
477 * because position is mirror, not device based.
479 * The rdev for the device selected will have nr_pending incremented.
483 * FIXME: possibly should rethink readbalancing and do it differently
484 * depending on near_copies / far_copies geometry.
486 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
488 const unsigned long this_sector = r10_bio->sector;
489 int disk, slot, nslot;
490 const int sectors = r10_bio->sectors;
491 sector_t new_distance, current_distance;
494 raid10_find_phys(conf, r10_bio);
497 * Check if we can balance. We can balance on the whole
498 * device if no resync is going on (recovery is ok), or below
499 * the resync window. We take the first readable disk when
500 * above the resync window.
502 if (conf->mddev->recovery_cp < MaxSector
503 && (this_sector + sectors >= conf->next_resync)) {
504 /* make sure that disk is operational */
506 disk = r10_bio->devs[slot].devnum;
508 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
509 r10_bio->devs[slot].bio == IO_BLOCKED ||
510 !test_bit(In_sync, &rdev->flags)) {
512 if (slot == conf->copies) {
517 disk = r10_bio->devs[slot].devnum;
523 /* make sure the disk is operational */
525 disk = r10_bio->devs[slot].devnum;
526 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
527 r10_bio->devs[slot].bio == IO_BLOCKED ||
528 !test_bit(In_sync, &rdev->flags)) {
530 if (slot == conf->copies) {
534 disk = r10_bio->devs[slot].devnum;
538 current_distance = abs(r10_bio->devs[slot].addr -
539 conf->mirrors[disk].head_position);
541 /* Find the disk whose head is closest,
542 * or - for far > 1 - find the closest to partition beginning */
544 for (nslot = slot; nslot < conf->copies; nslot++) {
545 int ndisk = r10_bio->devs[nslot].devnum;
548 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
549 r10_bio->devs[nslot].bio == IO_BLOCKED ||
550 !test_bit(In_sync, &rdev->flags))
553 /* This optimisation is debatable, and completely destroys
554 * sequential read speed for 'far copies' arrays. So only
555 * keep it for 'near' arrays, and review those later.
557 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
563 /* for far > 1 always use the lowest address */
564 if (conf->far_copies > 1)
565 new_distance = r10_bio->devs[nslot].addr;
567 new_distance = abs(r10_bio->devs[nslot].addr -
568 conf->mirrors[ndisk].head_position);
569 if (new_distance < current_distance) {
570 current_distance = new_distance;
577 r10_bio->read_slot = slot;
578 /* conf->next_seq_sect = this_sector + sectors;*/
580 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
581 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
589 static void unplug_slaves(mddev_t *mddev)
591 conf_t *conf = mddev_to_conf(mddev);
595 for (i=0; i<mddev->raid_disks; i++) {
596 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
597 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
598 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
600 atomic_inc(&rdev->nr_pending);
605 rdev_dec_pending(rdev, mddev);
612 static void raid10_unplug(struct request_queue *q)
614 mddev_t *mddev = q->queuedata;
616 unplug_slaves(q->queuedata);
617 md_wakeup_thread(mddev->thread);
620 static int raid10_congested(void *data, int bits)
622 mddev_t *mddev = data;
623 conf_t *conf = mddev_to_conf(mddev);
627 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
628 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
629 if (rdev && !test_bit(Faulty, &rdev->flags)) {
630 struct request_queue *q = bdev_get_queue(rdev->bdev);
632 ret |= bdi_congested(&q->backing_dev_info, bits);
639 static int flush_pending_writes(conf_t *conf)
641 /* Any writes that have been queued but are awaiting
642 * bitmap updates get flushed here.
643 * We return 1 if any requests were actually submitted.
647 spin_lock_irq(&conf->device_lock);
649 if (conf->pending_bio_list.head) {
651 bio = bio_list_get(&conf->pending_bio_list);
652 blk_remove_plug(conf->mddev->queue);
653 spin_unlock_irq(&conf->device_lock);
654 /* flush any pending bitmap writes to disk
655 * before proceeding w/ I/O */
656 bitmap_unplug(conf->mddev->bitmap);
658 while (bio) { /* submit pending writes */
659 struct bio *next = bio->bi_next;
661 generic_make_request(bio);
666 spin_unlock_irq(&conf->device_lock);
670 * Sometimes we need to suspend IO while we do something else,
671 * either some resync/recovery, or reconfigure the array.
672 * To do this we raise a 'barrier'.
673 * The 'barrier' is a counter that can be raised multiple times
674 * to count how many activities are happening which preclude
676 * We can only raise the barrier if there is no pending IO.
677 * i.e. if nr_pending == 0.
678 * We choose only to raise the barrier if no-one is waiting for the
679 * barrier to go down. This means that as soon as an IO request
680 * is ready, no other operations which require a barrier will start
681 * until the IO request has had a chance.
683 * So: regular IO calls 'wait_barrier'. When that returns there
684 * is no backgroup IO happening, It must arrange to call
685 * allow_barrier when it has finished its IO.
686 * backgroup IO calls must call raise_barrier. Once that returns
687 * there is no normal IO happeing. It must arrange to call
688 * lower_barrier when the particular background IO completes.
690 #define RESYNC_DEPTH 32
692 static void raise_barrier(conf_t *conf, int force)
694 BUG_ON(force && !conf->barrier);
695 spin_lock_irq(&conf->resync_lock);
697 /* Wait until no block IO is waiting (unless 'force') */
698 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
700 raid10_unplug(conf->mddev->queue));
702 /* block any new IO from starting */
705 /* No wait for all pending IO to complete */
706 wait_event_lock_irq(conf->wait_barrier,
707 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
709 raid10_unplug(conf->mddev->queue));
711 spin_unlock_irq(&conf->resync_lock);
714 static void lower_barrier(conf_t *conf)
717 spin_lock_irqsave(&conf->resync_lock, flags);
719 spin_unlock_irqrestore(&conf->resync_lock, flags);
720 wake_up(&conf->wait_barrier);
723 static void wait_barrier(conf_t *conf)
725 spin_lock_irq(&conf->resync_lock);
728 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
730 raid10_unplug(conf->mddev->queue));
734 spin_unlock_irq(&conf->resync_lock);
737 static void allow_barrier(conf_t *conf)
740 spin_lock_irqsave(&conf->resync_lock, flags);
742 spin_unlock_irqrestore(&conf->resync_lock, flags);
743 wake_up(&conf->wait_barrier);
746 static void freeze_array(conf_t *conf)
748 /* stop syncio and normal IO and wait for everything to
750 * We increment barrier and nr_waiting, and then
751 * wait until nr_pending match nr_queued+1
752 * This is called in the context of one normal IO request
753 * that has failed. Thus any sync request that might be pending
754 * will be blocked by nr_pending, and we need to wait for
755 * pending IO requests to complete or be queued for re-try.
756 * Thus the number queued (nr_queued) plus this request (1)
757 * must match the number of pending IOs (nr_pending) before
760 spin_lock_irq(&conf->resync_lock);
763 wait_event_lock_irq(conf->wait_barrier,
764 conf->nr_pending == conf->nr_queued+1,
766 ({ flush_pending_writes(conf);
767 raid10_unplug(conf->mddev->queue); }));
768 spin_unlock_irq(&conf->resync_lock);
771 static void unfreeze_array(conf_t *conf)
773 /* reverse the effect of the freeze */
774 spin_lock_irq(&conf->resync_lock);
777 wake_up(&conf->wait_barrier);
778 spin_unlock_irq(&conf->resync_lock);
781 static int make_request(struct request_queue *q, struct bio * bio)
783 mddev_t *mddev = q->queuedata;
784 conf_t *conf = mddev_to_conf(mddev);
785 mirror_info_t *mirror;
787 struct bio *read_bio;
789 int chunk_sects = conf->chunk_mask + 1;
790 const int rw = bio_data_dir(bio);
791 const int do_sync = bio_sync(bio);
794 mdk_rdev_t *blocked_rdev;
796 if (unlikely(bio_barrier(bio))) {
797 bio_endio(bio, -EOPNOTSUPP);
801 /* If this request crosses a chunk boundary, we need to
802 * split it. This will only happen for 1 PAGE (or less) requests.
804 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
806 conf->near_copies < conf->raid_disks)) {
808 /* Sanity check -- queue functions should prevent this happening */
809 if (bio->bi_vcnt != 1 ||
812 /* This is a one page bio that upper layers
813 * refuse to split for us, so we need to split it.
815 bp = bio_split(bio, bio_split_pool,
816 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
817 if (make_request(q, &bp->bio1))
818 generic_make_request(&bp->bio1);
819 if (make_request(q, &bp->bio2))
820 generic_make_request(&bp->bio2);
822 bio_pair_release(bp);
825 printk("raid10_make_request bug: can't convert block across chunks"
826 " or bigger than %dk %llu %d\n", chunk_sects/2,
827 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
833 md_write_start(mddev, bio);
836 * Register the new request and wait if the reconstruction
837 * thread has put up a bar for new requests.
838 * Continue immediately if no resync is active currently.
842 disk_stat_inc(mddev->gendisk, ios[rw]);
843 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
845 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
847 r10_bio->master_bio = bio;
848 r10_bio->sectors = bio->bi_size >> 9;
850 r10_bio->mddev = mddev;
851 r10_bio->sector = bio->bi_sector;
856 * read balancing logic:
858 int disk = read_balance(conf, r10_bio);
859 int slot = r10_bio->read_slot;
861 raid_end_bio_io(r10_bio);
864 mirror = conf->mirrors + disk;
866 read_bio = bio_clone(bio, GFP_NOIO);
868 r10_bio->devs[slot].bio = read_bio;
870 read_bio->bi_sector = r10_bio->devs[slot].addr +
871 mirror->rdev->data_offset;
872 read_bio->bi_bdev = mirror->rdev->bdev;
873 read_bio->bi_end_io = raid10_end_read_request;
874 read_bio->bi_rw = READ | do_sync;
875 read_bio->bi_private = r10_bio;
877 generic_make_request(read_bio);
884 /* first select target devices under rcu_lock and
885 * inc refcount on their rdev. Record them by setting
888 raid10_find_phys(conf, r10_bio);
892 for (i = 0; i < conf->copies; i++) {
893 int d = r10_bio->devs[i].devnum;
894 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
895 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
896 atomic_inc(&rdev->nr_pending);
900 if (rdev && !test_bit(Faulty, &rdev->flags)) {
901 atomic_inc(&rdev->nr_pending);
902 r10_bio->devs[i].bio = bio;
904 r10_bio->devs[i].bio = NULL;
905 set_bit(R10BIO_Degraded, &r10_bio->state);
910 if (unlikely(blocked_rdev)) {
911 /* Have to wait for this device to get unblocked, then retry */
915 for (j = 0; j < i; j++)
916 if (r10_bio->devs[j].bio) {
917 d = r10_bio->devs[j].devnum;
918 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
921 md_wait_for_blocked_rdev(blocked_rdev, mddev);
926 atomic_set(&r10_bio->remaining, 0);
929 for (i = 0; i < conf->copies; i++) {
931 int d = r10_bio->devs[i].devnum;
932 if (!r10_bio->devs[i].bio)
935 mbio = bio_clone(bio, GFP_NOIO);
936 r10_bio->devs[i].bio = mbio;
938 mbio->bi_sector = r10_bio->devs[i].addr+
939 conf->mirrors[d].rdev->data_offset;
940 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
941 mbio->bi_end_io = raid10_end_write_request;
942 mbio->bi_rw = WRITE | do_sync;
943 mbio->bi_private = r10_bio;
945 atomic_inc(&r10_bio->remaining);
946 bio_list_add(&bl, mbio);
949 if (unlikely(!atomic_read(&r10_bio->remaining))) {
950 /* the array is dead */
952 raid_end_bio_io(r10_bio);
956 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
957 spin_lock_irqsave(&conf->device_lock, flags);
958 bio_list_merge(&conf->pending_bio_list, &bl);
959 blk_plug_device(mddev->queue);
960 spin_unlock_irqrestore(&conf->device_lock, flags);
962 /* In case raid10d snuck in to freeze_array */
963 wake_up(&conf->wait_barrier);
966 md_wakeup_thread(mddev->thread);
971 static void status(struct seq_file *seq, mddev_t *mddev)
973 conf_t *conf = mddev_to_conf(mddev);
976 if (conf->near_copies < conf->raid_disks)
977 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
978 if (conf->near_copies > 1)
979 seq_printf(seq, " %d near-copies", conf->near_copies);
980 if (conf->far_copies > 1) {
981 if (conf->far_offset)
982 seq_printf(seq, " %d offset-copies", conf->far_copies);
984 seq_printf(seq, " %d far-copies", conf->far_copies);
986 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
987 conf->raid_disks - mddev->degraded);
988 for (i = 0; i < conf->raid_disks; i++)
989 seq_printf(seq, "%s",
990 conf->mirrors[i].rdev &&
991 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
992 seq_printf(seq, "]");
995 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
997 char b[BDEVNAME_SIZE];
998 conf_t *conf = mddev_to_conf(mddev);
1001 * If it is not operational, then we have already marked it as dead
1002 * else if it is the last working disks, ignore the error, let the
1003 * next level up know.
1004 * else mark the drive as failed
1006 if (test_bit(In_sync, &rdev->flags)
1007 && conf->raid_disks-mddev->degraded == 1)
1009 * Don't fail the drive, just return an IO error.
1010 * The test should really be more sophisticated than
1011 * "working_disks == 1", but it isn't critical, and
1012 * can wait until we do more sophisticated "is the drive
1013 * really dead" tests...
1016 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1017 unsigned long flags;
1018 spin_lock_irqsave(&conf->device_lock, flags);
1020 spin_unlock_irqrestore(&conf->device_lock, flags);
1022 * if recovery is running, make sure it aborts.
1024 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1026 set_bit(Faulty, &rdev->flags);
1027 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1028 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1029 "raid10: Operation continuing on %d devices.\n",
1030 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1033 static void print_conf(conf_t *conf)
1038 printk("RAID10 conf printout:\n");
1040 printk("(!conf)\n");
1043 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1046 for (i = 0; i < conf->raid_disks; i++) {
1047 char b[BDEVNAME_SIZE];
1048 tmp = conf->mirrors + i;
1050 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1051 i, !test_bit(In_sync, &tmp->rdev->flags),
1052 !test_bit(Faulty, &tmp->rdev->flags),
1053 bdevname(tmp->rdev->bdev,b));
1057 static void close_sync(conf_t *conf)
1060 allow_barrier(conf);
1062 mempool_destroy(conf->r10buf_pool);
1063 conf->r10buf_pool = NULL;
1066 /* check if there are enough drives for
1067 * every block to appear on atleast one
1069 static int enough(conf_t *conf)
1074 int n = conf->copies;
1077 if (conf->mirrors[first].rdev)
1079 first = (first+1) % conf->raid_disks;
1083 } while (first != 0);
1087 static int raid10_spare_active(mddev_t *mddev)
1090 conf_t *conf = mddev->private;
1094 * Find all non-in_sync disks within the RAID10 configuration
1095 * and mark them in_sync
1097 for (i = 0; i < conf->raid_disks; i++) {
1098 tmp = conf->mirrors + i;
1100 && !test_bit(Faulty, &tmp->rdev->flags)
1101 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1102 unsigned long flags;
1103 spin_lock_irqsave(&conf->device_lock, flags);
1105 spin_unlock_irqrestore(&conf->device_lock, flags);
1114 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1116 conf_t *conf = mddev->private;
1121 if (mddev->recovery_cp < MaxSector)
1122 /* only hot-add to in-sync arrays, as recovery is
1123 * very different from resync
1129 if (rdev->saved_raid_disk >= 0 &&
1130 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1131 mirror = rdev->saved_raid_disk;
1134 for ( ; mirror < mddev->raid_disks; mirror++)
1135 if ( !(p=conf->mirrors+mirror)->rdev) {
1137 blk_queue_stack_limits(mddev->queue,
1138 rdev->bdev->bd_disk->queue);
1139 /* as we don't honour merge_bvec_fn, we must never risk
1140 * violating it, so limit ->max_sector to one PAGE, as
1141 * a one page request is never in violation.
1143 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1144 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1145 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1147 p->head_position = 0;
1148 rdev->raid_disk = mirror;
1150 if (rdev->saved_raid_disk != mirror)
1152 rcu_assign_pointer(p->rdev, rdev);
1160 static int raid10_remove_disk(mddev_t *mddev, int number)
1162 conf_t *conf = mddev->private;
1165 mirror_info_t *p = conf->mirrors+ number;
1170 if (test_bit(In_sync, &rdev->flags) ||
1171 atomic_read(&rdev->nr_pending)) {
1175 /* Only remove faulty devices in recovery
1178 if (!test_bit(Faulty, &rdev->flags) &&
1185 if (atomic_read(&rdev->nr_pending)) {
1186 /* lost the race, try later */
1198 static void end_sync_read(struct bio *bio, int error)
1200 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1201 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1204 for (i=0; i<conf->copies; i++)
1205 if (r10_bio->devs[i].bio == bio)
1207 BUG_ON(i == conf->copies);
1208 update_head_pos(i, r10_bio);
1209 d = r10_bio->devs[i].devnum;
1211 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1212 set_bit(R10BIO_Uptodate, &r10_bio->state);
1214 atomic_add(r10_bio->sectors,
1215 &conf->mirrors[d].rdev->corrected_errors);
1216 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1217 md_error(r10_bio->mddev,
1218 conf->mirrors[d].rdev);
1221 /* for reconstruct, we always reschedule after a read.
1222 * for resync, only after all reads
1224 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1225 atomic_dec_and_test(&r10_bio->remaining)) {
1226 /* we have read all the blocks,
1227 * do the comparison in process context in raid10d
1229 reschedule_retry(r10_bio);
1231 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1234 static void end_sync_write(struct bio *bio, int error)
1236 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1237 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1238 mddev_t *mddev = r10_bio->mddev;
1239 conf_t *conf = mddev_to_conf(mddev);
1242 for (i = 0; i < conf->copies; i++)
1243 if (r10_bio->devs[i].bio == bio)
1245 d = r10_bio->devs[i].devnum;
1248 md_error(mddev, conf->mirrors[d].rdev);
1250 update_head_pos(i, r10_bio);
1252 while (atomic_dec_and_test(&r10_bio->remaining)) {
1253 if (r10_bio->master_bio == NULL) {
1254 /* the primary of several recovery bios */
1255 md_done_sync(mddev, r10_bio->sectors, 1);
1259 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1264 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1268 * Note: sync and recover and handled very differently for raid10
1269 * This code is for resync.
1270 * For resync, we read through virtual addresses and read all blocks.
1271 * If there is any error, we schedule a write. The lowest numbered
1272 * drive is authoritative.
1273 * However requests come for physical address, so we need to map.
1274 * For every physical address there are raid_disks/copies virtual addresses,
1275 * which is always are least one, but is not necessarly an integer.
1276 * This means that a physical address can span multiple chunks, so we may
1277 * have to submit multiple io requests for a single sync request.
1280 * We check if all blocks are in-sync and only write to blocks that
1283 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1285 conf_t *conf = mddev_to_conf(mddev);
1287 struct bio *tbio, *fbio;
1289 atomic_set(&r10_bio->remaining, 1);
1291 /* find the first device with a block */
1292 for (i=0; i<conf->copies; i++)
1293 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1296 if (i == conf->copies)
1300 fbio = r10_bio->devs[i].bio;
1302 /* now find blocks with errors */
1303 for (i=0 ; i < conf->copies ; i++) {
1305 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1307 tbio = r10_bio->devs[i].bio;
1309 if (tbio->bi_end_io != end_sync_read)
1313 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1314 /* We know that the bi_io_vec layout is the same for
1315 * both 'first' and 'i', so we just compare them.
1316 * All vec entries are PAGE_SIZE;
1318 for (j = 0; j < vcnt; j++)
1319 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1320 page_address(tbio->bi_io_vec[j].bv_page),
1325 mddev->resync_mismatches += r10_bio->sectors;
1327 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1328 /* Don't fix anything. */
1330 /* Ok, we need to write this bio
1331 * First we need to fixup bv_offset, bv_len and
1332 * bi_vecs, as the read request might have corrupted these
1334 tbio->bi_vcnt = vcnt;
1335 tbio->bi_size = r10_bio->sectors << 9;
1337 tbio->bi_phys_segments = 0;
1338 tbio->bi_hw_segments = 0;
1339 tbio->bi_hw_front_size = 0;
1340 tbio->bi_hw_back_size = 0;
1341 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1342 tbio->bi_flags |= 1 << BIO_UPTODATE;
1343 tbio->bi_next = NULL;
1344 tbio->bi_rw = WRITE;
1345 tbio->bi_private = r10_bio;
1346 tbio->bi_sector = r10_bio->devs[i].addr;
1348 for (j=0; j < vcnt ; j++) {
1349 tbio->bi_io_vec[j].bv_offset = 0;
1350 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1352 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1353 page_address(fbio->bi_io_vec[j].bv_page),
1356 tbio->bi_end_io = end_sync_write;
1358 d = r10_bio->devs[i].devnum;
1359 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1360 atomic_inc(&r10_bio->remaining);
1361 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1363 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1364 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1365 generic_make_request(tbio);
1369 if (atomic_dec_and_test(&r10_bio->remaining)) {
1370 md_done_sync(mddev, r10_bio->sectors, 1);
1376 * Now for the recovery code.
1377 * Recovery happens across physical sectors.
1378 * We recover all non-is_sync drives by finding the virtual address of
1379 * each, and then choose a working drive that also has that virt address.
1380 * There is a separate r10_bio for each non-in_sync drive.
1381 * Only the first two slots are in use. The first for reading,
1382 * The second for writing.
1386 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1388 conf_t *conf = mddev_to_conf(mddev);
1390 struct bio *bio, *wbio;
1393 /* move the pages across to the second bio
1394 * and submit the write request
1396 bio = r10_bio->devs[0].bio;
1397 wbio = r10_bio->devs[1].bio;
1398 for (i=0; i < wbio->bi_vcnt; i++) {
1399 struct page *p = bio->bi_io_vec[i].bv_page;
1400 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1401 wbio->bi_io_vec[i].bv_page = p;
1403 d = r10_bio->devs[1].devnum;
1405 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1406 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1407 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1408 generic_make_request(wbio);
1410 bio_endio(wbio, -EIO);
1415 * This is a kernel thread which:
1417 * 1. Retries failed read operations on working mirrors.
1418 * 2. Updates the raid superblock when problems encounter.
1419 * 3. Performs writes following reads for array synchronising.
1422 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1424 int sect = 0; /* Offset from r10_bio->sector */
1425 int sectors = r10_bio->sectors;
1429 int sl = r10_bio->read_slot;
1433 if (s > (PAGE_SIZE>>9))
1438 int d = r10_bio->devs[sl].devnum;
1439 rdev = rcu_dereference(conf->mirrors[d].rdev);
1441 test_bit(In_sync, &rdev->flags)) {
1442 atomic_inc(&rdev->nr_pending);
1444 success = sync_page_io(rdev->bdev,
1445 r10_bio->devs[sl].addr +
1446 sect + rdev->data_offset,
1448 conf->tmppage, READ);
1449 rdev_dec_pending(rdev, mddev);
1455 if (sl == conf->copies)
1457 } while (!success && sl != r10_bio->read_slot);
1461 /* Cannot read from anywhere -- bye bye array */
1462 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1463 md_error(mddev, conf->mirrors[dn].rdev);
1468 /* write it back and re-read */
1470 while (sl != r10_bio->read_slot) {
1475 d = r10_bio->devs[sl].devnum;
1476 rdev = rcu_dereference(conf->mirrors[d].rdev);
1478 test_bit(In_sync, &rdev->flags)) {
1479 atomic_inc(&rdev->nr_pending);
1481 atomic_add(s, &rdev->corrected_errors);
1482 if (sync_page_io(rdev->bdev,
1483 r10_bio->devs[sl].addr +
1484 sect + rdev->data_offset,
1485 s<<9, conf->tmppage, WRITE)
1487 /* Well, this device is dead */
1488 md_error(mddev, rdev);
1489 rdev_dec_pending(rdev, mddev);
1494 while (sl != r10_bio->read_slot) {
1499 d = r10_bio->devs[sl].devnum;
1500 rdev = rcu_dereference(conf->mirrors[d].rdev);
1502 test_bit(In_sync, &rdev->flags)) {
1503 char b[BDEVNAME_SIZE];
1504 atomic_inc(&rdev->nr_pending);
1506 if (sync_page_io(rdev->bdev,
1507 r10_bio->devs[sl].addr +
1508 sect + rdev->data_offset,
1509 s<<9, conf->tmppage, READ) == 0)
1510 /* Well, this device is dead */
1511 md_error(mddev, rdev);
1514 "raid10:%s: read error corrected"
1515 " (%d sectors at %llu on %s)\n",
1517 (unsigned long long)(sect+
1519 bdevname(rdev->bdev, b));
1521 rdev_dec_pending(rdev, mddev);
1532 static void raid10d(mddev_t *mddev)
1536 unsigned long flags;
1537 conf_t *conf = mddev_to_conf(mddev);
1538 struct list_head *head = &conf->retry_list;
1542 md_check_recovery(mddev);
1545 char b[BDEVNAME_SIZE];
1547 unplug += flush_pending_writes(conf);
1549 spin_lock_irqsave(&conf->device_lock, flags);
1550 if (list_empty(head)) {
1551 spin_unlock_irqrestore(&conf->device_lock, flags);
1554 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1555 list_del(head->prev);
1557 spin_unlock_irqrestore(&conf->device_lock, flags);
1559 mddev = r10_bio->mddev;
1560 conf = mddev_to_conf(mddev);
1561 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1562 sync_request_write(mddev, r10_bio);
1564 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1565 recovery_request_write(mddev, r10_bio);
1569 /* we got a read error. Maybe the drive is bad. Maybe just
1570 * the block and we can fix it.
1571 * We freeze all other IO, and try reading the block from
1572 * other devices. When we find one, we re-write
1573 * and check it that fixes the read error.
1574 * This is all done synchronously while the array is
1577 if (mddev->ro == 0) {
1579 fix_read_error(conf, mddev, r10_bio);
1580 unfreeze_array(conf);
1583 bio = r10_bio->devs[r10_bio->read_slot].bio;
1584 r10_bio->devs[r10_bio->read_slot].bio =
1585 mddev->ro ? IO_BLOCKED : NULL;
1586 mirror = read_balance(conf, r10_bio);
1588 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1589 " read error for block %llu\n",
1590 bdevname(bio->bi_bdev,b),
1591 (unsigned long long)r10_bio->sector);
1592 raid_end_bio_io(r10_bio);
1595 const int do_sync = bio_sync(r10_bio->master_bio);
1597 rdev = conf->mirrors[mirror].rdev;
1598 if (printk_ratelimit())
1599 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1600 " another mirror\n",
1601 bdevname(rdev->bdev,b),
1602 (unsigned long long)r10_bio->sector);
1603 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1604 r10_bio->devs[r10_bio->read_slot].bio = bio;
1605 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1606 + rdev->data_offset;
1607 bio->bi_bdev = rdev->bdev;
1608 bio->bi_rw = READ | do_sync;
1609 bio->bi_private = r10_bio;
1610 bio->bi_end_io = raid10_end_read_request;
1612 generic_make_request(bio);
1617 unplug_slaves(mddev);
1621 static int init_resync(conf_t *conf)
1625 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1626 BUG_ON(conf->r10buf_pool);
1627 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1628 if (!conf->r10buf_pool)
1630 conf->next_resync = 0;
1635 * perform a "sync" on one "block"
1637 * We need to make sure that no normal I/O request - particularly write
1638 * requests - conflict with active sync requests.
1640 * This is achieved by tracking pending requests and a 'barrier' concept
1641 * that can be installed to exclude normal IO requests.
1643 * Resync and recovery are handled very differently.
1644 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1646 * For resync, we iterate over virtual addresses, read all copies,
1647 * and update if there are differences. If only one copy is live,
1649 * For recovery, we iterate over physical addresses, read a good
1650 * value for each non-in_sync drive, and over-write.
1652 * So, for recovery we may have several outstanding complex requests for a
1653 * given address, one for each out-of-sync device. We model this by allocating
1654 * a number of r10_bio structures, one for each out-of-sync device.
1655 * As we setup these structures, we collect all bio's together into a list
1656 * which we then process collectively to add pages, and then process again
1657 * to pass to generic_make_request.
1659 * The r10_bio structures are linked using a borrowed master_bio pointer.
1660 * This link is counted in ->remaining. When the r10_bio that points to NULL
1661 * has its remaining count decremented to 0, the whole complex operation
1666 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1668 conf_t *conf = mddev_to_conf(mddev);
1670 struct bio *biolist = NULL, *bio;
1671 sector_t max_sector, nr_sectors;
1677 sector_t sectors_skipped = 0;
1678 int chunks_skipped = 0;
1680 if (!conf->r10buf_pool)
1681 if (init_resync(conf))
1685 max_sector = mddev->size << 1;
1686 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1687 max_sector = mddev->resync_max_sectors;
1688 if (sector_nr >= max_sector) {
1689 /* If we aborted, we need to abort the
1690 * sync on the 'current' bitmap chucks (there can
1691 * be several when recovering multiple devices).
1692 * as we may have started syncing it but not finished.
1693 * We can find the current address in
1694 * mddev->curr_resync, but for recovery,
1695 * we need to convert that to several
1696 * virtual addresses.
1698 if (mddev->curr_resync < max_sector) { /* aborted */
1699 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1700 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1702 else for (i=0; i<conf->raid_disks; i++) {
1704 raid10_find_virt(conf, mddev->curr_resync, i);
1705 bitmap_end_sync(mddev->bitmap, sect,
1708 } else /* completed sync */
1711 bitmap_close_sync(mddev->bitmap);
1714 return sectors_skipped;
1716 if (chunks_skipped >= conf->raid_disks) {
1717 /* if there has been nothing to do on any drive,
1718 * then there is nothing to do at all..
1721 return (max_sector - sector_nr) + sectors_skipped;
1724 if (max_sector > mddev->resync_max)
1725 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1727 /* make sure whole request will fit in a chunk - if chunks
1730 if (conf->near_copies < conf->raid_disks &&
1731 max_sector > (sector_nr | conf->chunk_mask))
1732 max_sector = (sector_nr | conf->chunk_mask) + 1;
1734 * If there is non-resync activity waiting for us then
1735 * put in a delay to throttle resync.
1737 if (!go_faster && conf->nr_waiting)
1738 msleep_interruptible(1000);
1740 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1742 /* Again, very different code for resync and recovery.
1743 * Both must result in an r10bio with a list of bios that
1744 * have bi_end_io, bi_sector, bi_bdev set,
1745 * and bi_private set to the r10bio.
1746 * For recovery, we may actually create several r10bios
1747 * with 2 bios in each, that correspond to the bios in the main one.
1748 * In this case, the subordinate r10bios link back through a
1749 * borrowed master_bio pointer, and the counter in the master
1750 * includes a ref from each subordinate.
1752 /* First, we decide what to do and set ->bi_end_io
1753 * To end_sync_read if we want to read, and
1754 * end_sync_write if we will want to write.
1757 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1758 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1759 /* recovery... the complicated one */
1763 for (i=0 ; i<conf->raid_disks; i++)
1764 if (conf->mirrors[i].rdev &&
1765 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1766 int still_degraded = 0;
1767 /* want to reconstruct this device */
1768 r10bio_t *rb2 = r10_bio;
1769 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1771 /* Unless we are doing a full sync, we only need
1772 * to recover the block if it is set in the bitmap
1774 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1776 if (sync_blocks < max_sync)
1777 max_sync = sync_blocks;
1780 /* yep, skip the sync_blocks here, but don't assume
1781 * that there will never be anything to do here
1783 chunks_skipped = -1;
1787 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1788 raise_barrier(conf, rb2 != NULL);
1789 atomic_set(&r10_bio->remaining, 0);
1791 r10_bio->master_bio = (struct bio*)rb2;
1793 atomic_inc(&rb2->remaining);
1794 r10_bio->mddev = mddev;
1795 set_bit(R10BIO_IsRecover, &r10_bio->state);
1796 r10_bio->sector = sect;
1798 raid10_find_phys(conf, r10_bio);
1799 /* Need to check if this section will still be
1802 for (j=0; j<conf->copies;j++) {
1803 int d = r10_bio->devs[j].devnum;
1804 if (conf->mirrors[d].rdev == NULL ||
1805 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1810 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1811 &sync_blocks, still_degraded);
1813 for (j=0; j<conf->copies;j++) {
1814 int d = r10_bio->devs[j].devnum;
1815 if (conf->mirrors[d].rdev &&
1816 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1817 /* This is where we read from */
1818 bio = r10_bio->devs[0].bio;
1819 bio->bi_next = biolist;
1821 bio->bi_private = r10_bio;
1822 bio->bi_end_io = end_sync_read;
1824 bio->bi_sector = r10_bio->devs[j].addr +
1825 conf->mirrors[d].rdev->data_offset;
1826 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1827 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1828 atomic_inc(&r10_bio->remaining);
1829 /* and we write to 'i' */
1831 for (k=0; k<conf->copies; k++)
1832 if (r10_bio->devs[k].devnum == i)
1834 BUG_ON(k == conf->copies);
1835 bio = r10_bio->devs[1].bio;
1836 bio->bi_next = biolist;
1838 bio->bi_private = r10_bio;
1839 bio->bi_end_io = end_sync_write;
1841 bio->bi_sector = r10_bio->devs[k].addr +
1842 conf->mirrors[i].rdev->data_offset;
1843 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1845 r10_bio->devs[0].devnum = d;
1846 r10_bio->devs[1].devnum = i;
1851 if (j == conf->copies) {
1852 /* Cannot recover, so abort the recovery */
1855 atomic_dec(&rb2->remaining);
1857 if (!test_and_set_bit(MD_RECOVERY_INTR,
1859 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1864 if (biolist == NULL) {
1866 r10bio_t *rb2 = r10_bio;
1867 r10_bio = (r10bio_t*) rb2->master_bio;
1868 rb2->master_bio = NULL;
1874 /* resync. Schedule a read for every block at this virt offset */
1877 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1878 &sync_blocks, mddev->degraded) &&
1879 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1880 /* We can skip this block */
1882 return sync_blocks + sectors_skipped;
1884 if (sync_blocks < max_sync)
1885 max_sync = sync_blocks;
1886 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1888 r10_bio->mddev = mddev;
1889 atomic_set(&r10_bio->remaining, 0);
1890 raise_barrier(conf, 0);
1891 conf->next_resync = sector_nr;
1893 r10_bio->master_bio = NULL;
1894 r10_bio->sector = sector_nr;
1895 set_bit(R10BIO_IsSync, &r10_bio->state);
1896 raid10_find_phys(conf, r10_bio);
1897 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1899 for (i=0; i<conf->copies; i++) {
1900 int d = r10_bio->devs[i].devnum;
1901 bio = r10_bio->devs[i].bio;
1902 bio->bi_end_io = NULL;
1903 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1904 if (conf->mirrors[d].rdev == NULL ||
1905 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1907 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1908 atomic_inc(&r10_bio->remaining);
1909 bio->bi_next = biolist;
1911 bio->bi_private = r10_bio;
1912 bio->bi_end_io = end_sync_read;
1914 bio->bi_sector = r10_bio->devs[i].addr +
1915 conf->mirrors[d].rdev->data_offset;
1916 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1921 for (i=0; i<conf->copies; i++) {
1922 int d = r10_bio->devs[i].devnum;
1923 if (r10_bio->devs[i].bio->bi_end_io)
1924 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1932 for (bio = biolist; bio ; bio=bio->bi_next) {
1934 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1936 bio->bi_flags |= 1 << BIO_UPTODATE;
1939 bio->bi_phys_segments = 0;
1940 bio->bi_hw_segments = 0;
1945 if (sector_nr + max_sync < max_sector)
1946 max_sector = sector_nr + max_sync;
1949 int len = PAGE_SIZE;
1951 if (sector_nr + (len>>9) > max_sector)
1952 len = (max_sector - sector_nr) << 9;
1955 for (bio= biolist ; bio ; bio=bio->bi_next) {
1956 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1957 if (bio_add_page(bio, page, len, 0) == 0) {
1960 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1961 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1962 /* remove last page from this bio */
1964 bio2->bi_size -= len;
1965 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1971 nr_sectors += len>>9;
1972 sector_nr += len>>9;
1973 } while (biolist->bi_vcnt < RESYNC_PAGES);
1975 r10_bio->sectors = nr_sectors;
1979 biolist = biolist->bi_next;
1981 bio->bi_next = NULL;
1982 r10_bio = bio->bi_private;
1983 r10_bio->sectors = nr_sectors;
1985 if (bio->bi_end_io == end_sync_read) {
1986 md_sync_acct(bio->bi_bdev, nr_sectors);
1987 generic_make_request(bio);
1991 if (sectors_skipped)
1992 /* pretend they weren't skipped, it makes
1993 * no important difference in this case
1995 md_done_sync(mddev, sectors_skipped, 1);
1997 return sectors_skipped + nr_sectors;
1999 /* There is nowhere to write, so all non-sync
2000 * drives must be failed, so try the next chunk...
2003 sector_t sec = max_sector - sector_nr;
2004 sectors_skipped += sec;
2006 sector_nr = max_sector;
2011 static int run(mddev_t *mddev)
2015 mirror_info_t *disk;
2017 struct list_head *tmp;
2019 sector_t stride, size;
2021 if (mddev->chunk_size == 0) {
2022 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
2026 nc = mddev->layout & 255;
2027 fc = (mddev->layout >> 8) & 255;
2028 fo = mddev->layout & (1<<16);
2029 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2030 (mddev->layout >> 17)) {
2031 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2032 mdname(mddev), mddev->layout);
2036 * copy the already verified devices into our private RAID10
2037 * bookkeeping area. [whatever we allocate in run(),
2038 * should be freed in stop()]
2040 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2041 mddev->private = conf;
2043 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2047 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2049 if (!conf->mirrors) {
2050 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2055 conf->tmppage = alloc_page(GFP_KERNEL);
2059 conf->mddev = mddev;
2060 conf->raid_disks = mddev->raid_disks;
2061 conf->near_copies = nc;
2062 conf->far_copies = fc;
2063 conf->copies = nc*fc;
2064 conf->far_offset = fo;
2065 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2066 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2067 size = mddev->size >> (conf->chunk_shift-1);
2068 sector_div(size, fc);
2069 size = size * conf->raid_disks;
2070 sector_div(size, nc);
2071 /* 'size' is now the number of chunks in the array */
2072 /* calculate "used chunks per device" in 'stride' */
2073 stride = size * conf->copies;
2075 /* We need to round up when dividing by raid_disks to
2076 * get the stride size.
2078 stride += conf->raid_disks - 1;
2079 sector_div(stride, conf->raid_disks);
2080 mddev->size = stride << (conf->chunk_shift-1);
2085 sector_div(stride, fc);
2086 conf->stride = stride << conf->chunk_shift;
2088 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2089 r10bio_pool_free, conf);
2090 if (!conf->r10bio_pool) {
2091 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2096 spin_lock_init(&conf->device_lock);
2097 mddev->queue->queue_lock = &conf->device_lock;
2099 rdev_for_each(rdev, tmp, mddev) {
2100 disk_idx = rdev->raid_disk;
2101 if (disk_idx >= mddev->raid_disks
2104 disk = conf->mirrors + disk_idx;
2108 blk_queue_stack_limits(mddev->queue,
2109 rdev->bdev->bd_disk->queue);
2110 /* as we don't honour merge_bvec_fn, we must never risk
2111 * violating it, so limit ->max_sector to one PAGE, as
2112 * a one page request is never in violation.
2114 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2115 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2116 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2118 disk->head_position = 0;
2120 INIT_LIST_HEAD(&conf->retry_list);
2122 spin_lock_init(&conf->resync_lock);
2123 init_waitqueue_head(&conf->wait_barrier);
2125 /* need to check that every block has at least one working mirror */
2126 if (!enough(conf)) {
2127 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2132 mddev->degraded = 0;
2133 for (i = 0; i < conf->raid_disks; i++) {
2135 disk = conf->mirrors + i;
2138 !test_bit(In_sync, &disk->rdev->flags)) {
2139 disk->head_position = 0;
2147 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2148 if (!mddev->thread) {
2150 "raid10: couldn't allocate thread for %s\n",
2156 "raid10: raid set %s active with %d out of %d devices\n",
2157 mdname(mddev), mddev->raid_disks - mddev->degraded,
2160 * Ok, everything is just fine now
2162 mddev->array_size = size << (conf->chunk_shift-1);
2163 mddev->resync_max_sectors = size << conf->chunk_shift;
2165 mddev->queue->unplug_fn = raid10_unplug;
2166 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2167 mddev->queue->backing_dev_info.congested_data = mddev;
2169 /* Calculate max read-ahead size.
2170 * We need to readahead at least twice a whole stripe....
2174 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2175 stripe /= conf->near_copies;
2176 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2177 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2180 if (conf->near_copies < mddev->raid_disks)
2181 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2185 if (conf->r10bio_pool)
2186 mempool_destroy(conf->r10bio_pool);
2187 safe_put_page(conf->tmppage);
2188 kfree(conf->mirrors);
2190 mddev->private = NULL;
2195 static int stop(mddev_t *mddev)
2197 conf_t *conf = mddev_to_conf(mddev);
2199 md_unregister_thread(mddev->thread);
2200 mddev->thread = NULL;
2201 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2202 if (conf->r10bio_pool)
2203 mempool_destroy(conf->r10bio_pool);
2204 kfree(conf->mirrors);
2206 mddev->private = NULL;
2210 static void raid10_quiesce(mddev_t *mddev, int state)
2212 conf_t *conf = mddev_to_conf(mddev);
2216 raise_barrier(conf, 0);
2219 lower_barrier(conf);
2222 if (mddev->thread) {
2224 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2226 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2227 md_wakeup_thread(mddev->thread);
2231 static struct mdk_personality raid10_personality =
2235 .owner = THIS_MODULE,
2236 .make_request = make_request,
2240 .error_handler = error,
2241 .hot_add_disk = raid10_add_disk,
2242 .hot_remove_disk= raid10_remove_disk,
2243 .spare_active = raid10_spare_active,
2244 .sync_request = sync_request,
2245 .quiesce = raid10_quiesce,
2248 static int __init raid_init(void)
2250 return register_md_personality(&raid10_personality);
2253 static void raid_exit(void)
2255 unregister_md_personality(&raid10_personality);
2258 module_init(raid_init);
2259 module_exit(raid_exit);
2260 MODULE_LICENSE("GPL");
2261 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2262 MODULE_ALIAS("md-raid10");
2263 MODULE_ALIAS("md-level-10");