3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
7 #include <asm/spu_priv1.h>
9 #include <asm/unistd.h>
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu *spu, int irq)
16 struct spu_context *ctx = spu->ctx;
19 * It should be impossible to preempt a context while an exception
20 * is being processed, since the context switch code is specially
21 * coded to deal with interrupts ... But, just in case, sanity check
22 * the context pointer. It is OK to return doing nothing since
23 * the exception will be regenerated when the context is resumed.
26 /* Copy exception arguments into module specific structure */
29 ctx->csa.class_0_pending = spu->class_0_pending;
30 ctx->csa.class_0_dsisr = spu->class_0_dsisr;
31 ctx->csa.class_0_dar = spu->class_0_dar;
34 ctx->csa.class_1_dsisr = spu->class_1_dsisr;
35 ctx->csa.class_1_dar = spu->class_1_dar;
41 /* ensure that the exception status has hit memory before a
42 * thread waiting on the context's stop queue is woken */
45 wake_up_all(&ctx->stop_wq);
49 int spu_stopped(struct spu_context *ctx, u32 *stat)
54 *stat = ctx->ops->status_read(ctx);
56 if (test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags))
59 stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
60 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
61 if (!(*stat & SPU_STATUS_RUNNING) && (*stat & stopped))
64 dsisr = ctx->csa.class_0_dsisr;
65 if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED))
68 dsisr = ctx->csa.class_1_dsisr;
69 if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED))
72 if (ctx->csa.class_0_pending)
78 static int spu_setup_isolated(struct spu_context *ctx)
81 u64 __iomem *mfc_cntl;
84 unsigned long timeout;
85 const u32 status_loading = SPU_STATUS_RUNNING
86 | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
93 * We need to exclude userspace access to the context.
95 * To protect against memory access we invalidate all ptes
96 * and make sure the pagefault handlers block on the mutex.
98 spu_unmap_mappings(ctx);
100 mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
102 /* purge the MFC DMA queue to ensure no spurious accesses before we
103 * enter kernel mode */
104 timeout = jiffies + HZ;
105 out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
106 while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
107 != MFC_CNTL_PURGE_DMA_COMPLETE) {
108 if (time_after(jiffies, timeout)) {
109 printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
117 /* put the SPE in kernel mode to allow access to the loader */
118 sr1 = spu_mfc_sr1_get(ctx->spu);
119 sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
120 spu_mfc_sr1_set(ctx->spu, sr1);
122 /* start the loader */
123 ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
124 ctx->ops->signal2_write(ctx,
125 (unsigned long)isolated_loader & 0xffffffff);
127 ctx->ops->runcntl_write(ctx,
128 SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
131 timeout = jiffies + HZ;
132 while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
134 if (time_after(jiffies, timeout)) {
135 printk(KERN_ERR "%s: timeout waiting for loader\n",
143 if (!(status & SPU_STATUS_RUNNING)) {
144 /* If isolated LOAD has failed: run SPU, we will get a stop-and
146 pr_debug("%s: isolated LOAD failed\n", __func__);
147 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
152 if (!(status & SPU_STATUS_ISOLATED_STATE)) {
153 /* This isn't allowed by the CBEA, but check anyway */
154 pr_debug("%s: SPU fell out of isolated mode?\n", __func__);
155 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
161 /* Finished accessing the loader. Drop kernel mode */
162 sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
163 spu_mfc_sr1_set(ctx->spu, sr1);
169 static int spu_run_init(struct spu_context *ctx, u32 *npc)
171 unsigned long runcntl = SPU_RUNCNTL_RUNNABLE;
174 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
177 * NOSCHED is synchronous scheduling with respect to the caller.
178 * The caller waits for the context to be loaded.
180 if (ctx->flags & SPU_CREATE_NOSCHED) {
181 if (ctx->state == SPU_STATE_SAVED) {
182 ret = spu_activate(ctx, 0);
189 * Apply special setup as required.
191 if (ctx->flags & SPU_CREATE_ISOLATE) {
192 if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
193 ret = spu_setup_isolated(ctx);
199 * If userspace has set the runcntrl register (eg, to
200 * issue an isolated exit), we need to re-set it here
202 runcntl = ctx->ops->runcntl_read(ctx) &
203 (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
205 runcntl = SPU_RUNCNTL_RUNNABLE;
208 if (ctx->flags & SPU_CREATE_NOSCHED) {
209 spuctx_switch_state(ctx, SPU_UTIL_USER);
210 ctx->ops->runcntl_write(ctx, runcntl);
212 unsigned long privcntl;
214 if (test_thread_flag(TIF_SINGLESTEP))
215 privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP;
217 privcntl = SPU_PRIVCNTL_MODE_NORMAL;
219 ctx->ops->npc_write(ctx, *npc);
220 ctx->ops->privcntl_write(ctx, privcntl);
221 ctx->ops->runcntl_write(ctx, runcntl);
223 if (ctx->state == SPU_STATE_SAVED) {
224 ret = spu_activate(ctx, 0);
228 spuctx_switch_state(ctx, SPU_UTIL_USER);
232 set_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
236 static int spu_run_fini(struct spu_context *ctx, u32 *npc,
241 spu_del_from_rq(ctx);
243 *status = ctx->ops->status_read(ctx);
244 *npc = ctx->ops->npc_read(ctx);
246 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
247 clear_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
250 if (signal_pending(current))
257 * SPU syscall restarting is tricky because we violate the basic
258 * assumption that the signal handler is running on the interrupted
259 * thread. Here instead, the handler runs on PowerPC user space code,
260 * while the syscall was called from the SPU.
261 * This means we can only do a very rough approximation of POSIX
264 static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
271 case -ERESTARTNOINTR:
273 * Enter the regular syscall restarting for
274 * sys_spu_run, then restart the SPU syscall
280 case -ERESTARTNOHAND:
281 case -ERESTART_RESTARTBLOCK:
283 * Restart block is too hard for now, just return -EINTR
285 * ERESTARTNOHAND comes from sys_pause, we also return
287 * Assume that we need to be restarted ourselves though.
293 printk(KERN_WARNING "%s: unexpected return code %ld\n",
300 static int spu_process_callback(struct spu_context *ctx)
302 struct spu_syscall_block s;
308 /* get syscall block from local store */
309 npc = ctx->ops->npc_read(ctx) & ~3;
310 ls = (void __iomem *)ctx->ops->get_ls(ctx);
311 ls_pointer = in_be32(ls + npc);
312 if (ls_pointer > (LS_SIZE - sizeof(s)))
314 memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
316 /* do actual syscall without pinning the spu */
321 if (s.nr_ret < __NR_syscalls) {
323 /* do actual system call from here */
324 spu_ret = spu_sys_callback(&s);
325 if (spu_ret <= -ERESTARTSYS) {
326 ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
328 mutex_lock(&ctx->state_mutex);
329 if (ret == -ERESTARTSYS)
333 /* need to re-get the ls, as it may have changed when we released the
335 ls = (void __iomem *)ctx->ops->get_ls(ctx);
337 /* write result, jump over indirect pointer */
338 memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
339 ctx->ops->npc_write(ctx, npc);
340 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
344 long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event)
350 if (mutex_lock_interruptible(&ctx->run_mutex))
353 ctx->event_return = 0;
355 ret = spu_acquire(ctx);
361 spu_update_sched_info(ctx);
363 ret = spu_run_init(ctx, npc);
370 ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
373 * This is nasty: we need the state_mutex for all the
374 * bookkeeping even if the syscall was interrupted by
377 mutex_lock(&ctx->state_mutex);
381 if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE,
382 &ctx->sched_flags))) {
383 if (!(status & SPU_STATUS_STOPPED_BY_STOP)) {
384 spu_switch_notify(spu, ctx);
389 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
391 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
392 (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
393 ret = spu_process_callback(ctx);
396 status &= ~SPU_STATUS_STOPPED_BY_STOP;
398 ret = spufs_handle_class1(ctx);
402 ret = spufs_handle_class0(ctx);
406 if (signal_pending(current))
408 } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
409 SPU_STATUS_STOPPED_BY_HALT |
410 SPU_STATUS_SINGLE_STEP)));
412 spu_disable_spu(ctx);
413 ret = spu_run_fini(ctx, npc, &status);
416 spu_switch_log_notify(NULL, ctx, SWITCH_LOG_EXIT, status);
418 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
419 (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100))
420 ctx->stats.libassist++;
423 ((ret == -ERESTARTSYS) &&
424 ((status & SPU_STATUS_STOPPED_BY_HALT) ||
425 (status & SPU_STATUS_SINGLE_STEP) ||
426 ((status & SPU_STATUS_STOPPED_BY_STOP) &&
427 (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
430 /* Note: we don't need to force_sig SIGTRAP on single-step
431 * since we have TIF_SINGLESTEP set, thus the kernel will do
432 * it upon return from the syscall anyawy
434 if (unlikely(status & SPU_STATUS_SINGLE_STEP))
437 else if (unlikely((status & SPU_STATUS_STOPPED_BY_STOP)
438 && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff)) {
439 force_sig(SIGTRAP, current);
444 *event = ctx->event_return;
446 mutex_unlock(&ctx->run_mutex);