2 * File: arch/blackfin/kernel/time.c
3 * Based on: none - original work
7 * Description: This file contains the bfin-specific time handling details.
8 * Most of the stuff is located in the machine specific files.
11 * Copyright 2004-2006 Analog Devices Inc.
13 * Bugs: Enter bugs at http://blackfin.uclinux.org/
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, see the file COPYING, or write
27 * to the Free Software Foundation, Inc.,
28 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
31 #include <linux/module.h>
32 #include <linux/profile.h>
33 #include <linux/interrupt.h>
34 #include <linux/time.h>
35 #include <linux/irq.h>
37 #include <asm/blackfin.h>
39 /* This is an NTP setting */
40 #define TICK_SIZE (tick_nsec / 1000)
42 static void time_sched_init(irqreturn_t(*timer_routine)
44 static unsigned long gettimeoffset(void);
45 static inline void do_leds(void);
47 #if (defined(CONFIG_BFIN_ALIVE_LED) || defined(CONFIG_BFIN_IDLE_LED))
48 void __init init_leds(void)
52 #if defined(CONFIG_BFIN_ALIVE_LED)
53 /* config pins as output. */
54 tmp = bfin_read_CONFIG_BFIN_ALIVE_LED_DPORT();
56 bfin_write_CONFIG_BFIN_ALIVE_LED_DPORT(tmp | CONFIG_BFIN_ALIVE_LED_PIN);
59 /* First set led be off */
60 tmp = bfin_read_CONFIG_BFIN_ALIVE_LED_PORT();
62 bfin_write_CONFIG_BFIN_ALIVE_LED_PORT(tmp | CONFIG_BFIN_ALIVE_LED_PIN); /* light off */
66 #if defined(CONFIG_BFIN_IDLE_LED)
67 /* config pins as output. */
68 tmp = bfin_read_CONFIG_BFIN_IDLE_LED_DPORT();
70 bfin_write_CONFIG_BFIN_IDLE_LED_DPORT(tmp | CONFIG_BFIN_IDLE_LED_PIN);
73 /* First set led be off */
74 tmp = bfin_read_CONFIG_BFIN_IDLE_LED_PORT();
76 bfin_write_CONFIG_BFIN_IDLE_LED_PORT(tmp | CONFIG_BFIN_IDLE_LED_PIN); /* light off */
81 void __init init_leds(void)
86 #if defined(CONFIG_BFIN_ALIVE_LED)
87 static inline void do_leds(void)
89 static unsigned int count = 50;
91 unsigned short tmp = 0;
97 tmp = bfin_read_CONFIG_BFIN_ALIVE_LED_PORT();
101 tmp &= ~CONFIG_BFIN_ALIVE_LED_PIN; /* light on */
103 tmp |= CONFIG_BFIN_ALIVE_LED_PIN; /* light off */
105 bfin_write_CONFIG_BFIN_ALIVE_LED_PORT(tmp);
110 static inline void do_leds(void)
115 static struct irqaction bfin_timer_irq = {
116 .name = "BFIN Timer Tick",
117 .flags = IRQF_DISABLED
121 * The way that the Blackfin core timer works is:
122 * - CCLK is divided by a programmable 8-bit pre-scaler (TSCALE)
123 * - Every time TSCALE ticks, a 32bit is counted down (TCOUNT)
125 * If you take the fastest clock (1ns, or 1GHz to make the math work easier)
126 * 10ms is 10,000,000 clock ticks, which fits easy into a 32-bit counter
127 * (32 bit counter is 4,294,967,296ns or 4.2 seconds) so, we don't need
128 * to use TSCALE, and program it to zero (which is pass CCLK through).
129 * If you feel like using it, try to keep HZ * TIMESCALE to some
130 * value that divides easy (like power of 2).
136 time_sched_init(irqreturn_t(*timer_routine) (int, void *))
140 /* power up the timer, but don't enable it just yet */
145 * the TSCALE prescaler counter.
147 bfin_write_TSCALE((TIME_SCALE - 1));
149 tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1);
150 bfin_write_TPERIOD(tcount);
151 bfin_write_TCOUNT(tcount);
153 /* now enable the timer */
158 bfin_timer_irq.handler = (irq_handler_t)timer_routine;
159 /* call setup_irq instead of request_irq because request_irq calls
160 * kmalloc which has not been initialized yet
162 setup_irq(IRQ_CORETMR, &bfin_timer_irq);
166 * Should return useconds since last timer tick
168 static unsigned long gettimeoffset(void)
170 unsigned long offset;
171 unsigned long clocks_per_jiffy;
173 clocks_per_jiffy = bfin_read_TPERIOD();
176 bfin_read_TCOUNT()) / (((clocks_per_jiffy + 1) * HZ) /
179 /* Check if we just wrapped the counters and maybe missed a tick */
180 if ((bfin_read_ILAT() & (1 << IRQ_CORETMR))
181 && (offset < (100000 / HZ / 2)))
182 offset += (USEC_PER_SEC / HZ);
187 static inline int set_rtc_mmss(unsigned long nowtime)
193 * timer_interrupt() needs to keep up the real-time clock,
194 * as well as call the "do_timer()" routine every clocktick
196 #ifdef CONFIG_CORE_TIMER_IRQ_L1
197 irqreturn_t timer_interrupt(int irq, void *dummy)__attribute__((l1_text));
200 irqreturn_t timer_interrupt(int irq, void *dummy)
202 /* last time the cmos clock got updated */
203 static long last_rtc_update = 0;
205 write_seqlock(&xtime_lock);
211 update_process_times(user_mode(get_irq_regs()));
213 profile_tick(CPU_PROFILING);
216 * If we have an externally synchronized Linux clock, then update
217 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
218 * called as close as possible to 500 ms before the new second starts.
222 xtime.tv_sec > last_rtc_update + 660 &&
223 (xtime.tv_nsec / NSEC_PER_USEC) >=
224 500000 - ((unsigned)TICK_SIZE) / 2
225 && (xtime.tv_nsec / NSEC_PER_USEC) <=
226 500000 + ((unsigned)TICK_SIZE) / 2) {
227 if (set_rtc_mmss(xtime.tv_sec) == 0)
228 last_rtc_update = xtime.tv_sec;
230 /* Do it again in 60s. */
231 last_rtc_update = xtime.tv_sec - 600;
233 write_sequnlock(&xtime_lock);
237 void __init time_init(void)
239 time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
241 #ifdef CONFIG_RTC_DRV_BFIN
242 /* [#2663] hack to filter junk RTC values that would cause
243 * userspace to have to deal with time values greater than
244 * 2^31 seconds (which uClibc cannot cope with yet)
246 if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
247 printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n");
248 bfin_write_RTC_STAT(0);
252 /* Initialize xtime. From now on, xtime is updated with timer interrupts */
253 xtime.tv_sec = secs_since_1970;
256 wall_to_monotonic.tv_sec = -xtime.tv_sec;
258 time_sched_init(timer_interrupt);
261 #ifndef CONFIG_GENERIC_TIME
262 void do_gettimeofday(struct timeval *tv)
266 unsigned long usec, sec;
269 seq = read_seqbegin_irqsave(&xtime_lock, flags);
270 usec = gettimeoffset();
272 usec += (xtime.tv_nsec / NSEC_PER_USEC);
274 while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
276 while (usec >= USEC_PER_SEC) {
277 usec -= USEC_PER_SEC;
284 EXPORT_SYMBOL(do_gettimeofday);
286 int do_settimeofday(struct timespec *tv)
288 time_t wtm_sec, sec = tv->tv_sec;
289 long wtm_nsec, nsec = tv->tv_nsec;
291 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
294 write_seqlock_irq(&xtime_lock);
296 * This is revolting. We need to set the xtime.tv_usec
297 * correctly. However, the value in this location is
298 * is value at the last tick.
299 * Discover what correction gettimeofday
300 * would have done, and then undo it!
302 nsec -= (gettimeoffset() * NSEC_PER_USEC);
304 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
305 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
307 set_normalized_timespec(&xtime, sec, nsec);
308 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
312 write_sequnlock_irq(&xtime_lock);
317 EXPORT_SYMBOL(do_settimeofday);
318 #endif /* !CONFIG_GENERIC_TIME */
321 * Scheduler clock - returns current time in nanosec units.
323 unsigned long long sched_clock(void)
325 return (unsigned long long)jiffies *(NSEC_PER_SEC / HZ);