2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2003 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
12 * All EFI Runtime Services are not implemented yet as EFI only
13 * supports physical mode addressing on SoftSDV. This is to be fixed
14 * in a future version. --drummond 1999-07-20
16 * Implemented EFI runtime services and virtual mode calls. --davidm
18 * Goutham Rao: <goutham.rao@intel.com>
19 * Skip non-WB memory and ignore empty memory ranges.
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/time.h>
27 #include <linux/efi.h>
30 #include <asm/kregs.h>
31 #include <asm/meminit.h>
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
38 extern efi_status_t efi_call_phys (void *, ...);
42 static efi_runtime_services_t *runtime;
43 static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
45 #define efi_call_virt(f, args...) (*(f))(args)
47 #define STUB_GET_TIME(prefix, adjust_arg) \
49 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
51 struct ia64_fpreg fr[6]; \
52 efi_time_cap_t *atc = NULL; \
56 atc = adjust_arg(tc); \
57 ia64_save_scratch_fpregs(fr); \
58 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
59 ia64_load_scratch_fpregs(fr); \
63 #define STUB_SET_TIME(prefix, adjust_arg) \
65 prefix##_set_time (efi_time_t *tm) \
67 struct ia64_fpreg fr[6]; \
70 ia64_save_scratch_fpregs(fr); \
71 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
72 ia64_load_scratch_fpregs(fr); \
76 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
78 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
80 struct ia64_fpreg fr[6]; \
83 ia64_save_scratch_fpregs(fr); \
84 ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
85 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
86 ia64_load_scratch_fpregs(fr); \
90 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
92 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
94 struct ia64_fpreg fr[6]; \
95 efi_time_t *atm = NULL; \
99 atm = adjust_arg(tm); \
100 ia64_save_scratch_fpregs(fr); \
101 ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
103 ia64_load_scratch_fpregs(fr); \
107 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
108 static efi_status_t \
109 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
110 unsigned long *data_size, void *data) \
112 struct ia64_fpreg fr[6]; \
117 aattr = adjust_arg(attr); \
118 ia64_save_scratch_fpregs(fr); \
119 ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
120 adjust_arg(name), adjust_arg(vendor), aattr, \
121 adjust_arg(data_size), adjust_arg(data)); \
122 ia64_load_scratch_fpregs(fr); \
126 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
127 static efi_status_t \
128 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
130 struct ia64_fpreg fr[6]; \
133 ia64_save_scratch_fpregs(fr); \
134 ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
135 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
136 ia64_load_scratch_fpregs(fr); \
140 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
141 static efi_status_t \
142 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
143 unsigned long data_size, void *data) \
145 struct ia64_fpreg fr[6]; \
148 ia64_save_scratch_fpregs(fr); \
149 ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
150 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
152 ia64_load_scratch_fpregs(fr); \
156 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
157 static efi_status_t \
158 prefix##_get_next_high_mono_count (u32 *count) \
160 struct ia64_fpreg fr[6]; \
163 ia64_save_scratch_fpregs(fr); \
164 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
165 __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
166 ia64_load_scratch_fpregs(fr); \
170 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
172 prefix##_reset_system (int reset_type, efi_status_t status, \
173 unsigned long data_size, efi_char16_t *data) \
175 struct ia64_fpreg fr[6]; \
176 efi_char16_t *adata = NULL; \
179 adata = adjust_arg(data); \
181 ia64_save_scratch_fpregs(fr); \
182 efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
183 reset_type, status, data_size, adata); \
184 /* should not return, but just in case... */ \
185 ia64_load_scratch_fpregs(fr); \
188 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
190 STUB_GET_TIME(phys, phys_ptr)
191 STUB_SET_TIME(phys, phys_ptr)
192 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
193 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
194 STUB_GET_VARIABLE(phys, phys_ptr)
195 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
196 STUB_SET_VARIABLE(phys, phys_ptr)
197 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
198 STUB_RESET_SYSTEM(phys, phys_ptr)
202 STUB_GET_TIME(virt, id)
203 STUB_SET_TIME(virt, id)
204 STUB_GET_WAKEUP_TIME(virt, id)
205 STUB_SET_WAKEUP_TIME(virt, id)
206 STUB_GET_VARIABLE(virt, id)
207 STUB_GET_NEXT_VARIABLE(virt, id)
208 STUB_SET_VARIABLE(virt, id)
209 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
210 STUB_RESET_SYSTEM(virt, id)
213 efi_gettimeofday (struct timespec *ts)
217 memset(ts, 0, sizeof(ts));
218 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
221 ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
222 ts->tv_nsec = tm.nanosecond;
226 is_available_memory (efi_memory_desc_t *md)
228 if (!(md->attribute & EFI_MEMORY_WB))
232 case EFI_LOADER_CODE:
233 case EFI_LOADER_DATA:
234 case EFI_BOOT_SERVICES_CODE:
235 case EFI_BOOT_SERVICES_DATA:
236 case EFI_CONVENTIONAL_MEMORY:
242 typedef struct kern_memdesc {
248 static kern_memdesc_t *kern_memmap;
251 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
254 u64 start, end, voff;
256 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
257 for (k = kern_memmap; k->start != ~0UL; k++) {
258 if (k->attribute != attr)
260 start = PAGE_ALIGN(k->start);
261 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
263 if ((*callback)(start + voff, end + voff, arg) < 0)
269 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
270 * has memory that is available for OS use.
273 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
275 walk(callback, arg, EFI_MEMORY_WB);
279 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
280 * has memory that is available for uncached allocator.
283 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
285 walk(callback, arg, EFI_MEMORY_UC);
289 * Look for the PAL_CODE region reported by EFI and maps it using an
290 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
291 * Abstraction Layer chapter 11 in ADAG
295 efi_get_pal_addr (void)
297 void *efi_map_start, *efi_map_end, *p;
298 efi_memory_desc_t *md;
300 int pal_code_count = 0;
303 efi_map_start = __va(ia64_boot_param->efi_memmap);
304 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
305 efi_desc_size = ia64_boot_param->efi_memdesc_size;
307 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
309 if (md->type != EFI_PAL_CODE)
312 if (++pal_code_count > 1) {
313 printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
318 * The only ITLB entry in region 7 that is used is the one installed by
319 * __start(). That entry covers a 64MB range.
321 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
322 vaddr = PAGE_OFFSET + md->phys_addr;
325 * We must check that the PAL mapping won't overlap with the kernel
328 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
329 * 256KB and that only one ITR is needed to map it. This implies that the
330 * PAL code is always aligned on its size, i.e., the closest matching page
331 * size supported by the TLB. Therefore PAL code is guaranteed never to
332 * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
333 * now the following test is enough to determine whether or not we need a
334 * dedicated ITR for the PAL code.
336 if ((vaddr & mask) == (KERNEL_START & mask)) {
337 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
342 if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
343 panic("Woah! PAL code size bigger than a granule!");
346 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
348 printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
349 smp_processor_id(), md->phys_addr,
350 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
351 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
353 return __va(md->phys_addr);
355 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
361 efi_map_pal_code (void)
363 void *pal_vaddr = efi_get_pal_addr ();
370 * Cannot write to CRx with PSR.ic=1
372 psr = ia64_clear_ic();
373 ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
374 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
376 ia64_set_psr(psr); /* restore psr */
383 void *efi_map_start, *efi_map_end;
384 efi_config_table_t *config_tables;
387 char *cp, *end, vendor[100] = "unknown";
388 extern char saved_command_line[];
391 /* it's too early to be able to use the standard kernel command line support... */
392 for (cp = saved_command_line; *cp; ) {
393 if (memcmp(cp, "mem=", 4) == 0) {
395 mem_limit = memparse(cp, &end);
399 } else if (memcmp(cp, "max_addr=", 9) == 0) {
401 max_addr = GRANULEROUNDDOWN(memparse(cp, &end));
406 while (*cp != ' ' && *cp)
412 if (max_addr != ~0UL)
413 printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
415 efi.systab = __va(ia64_boot_param->efi_systab);
418 * Verify the EFI Table
420 if (efi.systab == NULL)
421 panic("Woah! Can't find EFI system table.\n");
422 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
423 panic("Woah! EFI system table signature incorrect\n");
424 if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
425 printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
426 "got %d.%02d, expected %d.%02d\n",
427 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
428 EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
430 config_tables = __va(efi.systab->tables);
432 /* Show what we know for posterity */
433 c16 = __va(efi.systab->fw_vendor);
435 for (i = 0;i < (int) sizeof(vendor) && *c16; ++i)
440 printk(KERN_INFO "EFI v%u.%.02u by %s:",
441 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
443 for (i = 0; i < (int) efi.systab->nr_tables; i++) {
444 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
445 efi.mps = __va(config_tables[i].table);
446 printk(" MPS=0x%lx", config_tables[i].table);
447 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
448 efi.acpi20 = __va(config_tables[i].table);
449 printk(" ACPI 2.0=0x%lx", config_tables[i].table);
450 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
451 efi.acpi = __va(config_tables[i].table);
452 printk(" ACPI=0x%lx", config_tables[i].table);
453 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
454 efi.smbios = __va(config_tables[i].table);
455 printk(" SMBIOS=0x%lx", config_tables[i].table);
456 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
457 efi.sal_systab = __va(config_tables[i].table);
458 printk(" SALsystab=0x%lx", config_tables[i].table);
459 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
460 efi.hcdp = __va(config_tables[i].table);
461 printk(" HCDP=0x%lx", config_tables[i].table);
466 runtime = __va(efi.systab->runtime);
467 efi.get_time = phys_get_time;
468 efi.set_time = phys_set_time;
469 efi.get_wakeup_time = phys_get_wakeup_time;
470 efi.set_wakeup_time = phys_set_wakeup_time;
471 efi.get_variable = phys_get_variable;
472 efi.get_next_variable = phys_get_next_variable;
473 efi.set_variable = phys_set_variable;
474 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
475 efi.reset_system = phys_reset_system;
477 efi_map_start = __va(ia64_boot_param->efi_memmap);
478 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
479 efi_desc_size = ia64_boot_param->efi_memdesc_size;
482 /* print EFI memory map: */
484 efi_memory_desc_t *md;
487 for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
489 printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
490 i, md->type, md->attribute, md->phys_addr,
491 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
492 md->num_pages >> (20 - EFI_PAGE_SHIFT));
498 efi_enter_virtual_mode();
502 efi_enter_virtual_mode (void)
504 void *efi_map_start, *efi_map_end, *p;
505 efi_memory_desc_t *md;
509 efi_map_start = __va(ia64_boot_param->efi_memmap);
510 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
511 efi_desc_size = ia64_boot_param->efi_memdesc_size;
513 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
515 if (md->attribute & EFI_MEMORY_RUNTIME) {
517 * Some descriptors have multiple bits set, so the order of
518 * the tests is relevant.
520 if (md->attribute & EFI_MEMORY_WB) {
521 md->virt_addr = (u64) __va(md->phys_addr);
522 } else if (md->attribute & EFI_MEMORY_UC) {
523 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
524 } else if (md->attribute & EFI_MEMORY_WC) {
526 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
532 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
533 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
535 } else if (md->attribute & EFI_MEMORY_WT) {
537 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
538 | _PAGE_D | _PAGE_MA_WT
542 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
543 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
549 status = efi_call_phys(__va(runtime->set_virtual_address_map),
550 ia64_boot_param->efi_memmap_size,
551 efi_desc_size, ia64_boot_param->efi_memdesc_version,
552 ia64_boot_param->efi_memmap);
553 if (status != EFI_SUCCESS) {
554 printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
555 "(status=%lu)\n", status);
560 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
562 efi.get_time = virt_get_time;
563 efi.set_time = virt_set_time;
564 efi.get_wakeup_time = virt_get_wakeup_time;
565 efi.set_wakeup_time = virt_set_wakeup_time;
566 efi.get_variable = virt_get_variable;
567 efi.get_next_variable = virt_get_next_variable;
568 efi.set_variable = virt_set_variable;
569 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
570 efi.reset_system = virt_reset_system;
574 * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
575 * this type, other I/O port ranges should be described via ACPI.
578 efi_get_iobase (void)
580 void *efi_map_start, *efi_map_end, *p;
581 efi_memory_desc_t *md;
584 efi_map_start = __va(ia64_boot_param->efi_memmap);
585 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
586 efi_desc_size = ia64_boot_param->efi_memdesc_size;
588 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
590 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
591 if (md->attribute & EFI_MEMORY_UC)
592 return md->phys_addr;
599 efi_mem_type (unsigned long phys_addr)
601 void *efi_map_start, *efi_map_end, *p;
602 efi_memory_desc_t *md;
605 efi_map_start = __va(ia64_boot_param->efi_memmap);
606 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
607 efi_desc_size = ia64_boot_param->efi_memdesc_size;
609 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
612 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
619 efi_mem_attributes (unsigned long phys_addr)
621 void *efi_map_start, *efi_map_end, *p;
622 efi_memory_desc_t *md;
625 efi_map_start = __va(ia64_boot_param->efi_memmap);
626 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
627 efi_desc_size = ia64_boot_param->efi_memdesc_size;
629 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
632 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
633 return md->attribute;
637 EXPORT_SYMBOL(efi_mem_attributes);
640 valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
642 void *efi_map_start, *efi_map_end, *p;
643 efi_memory_desc_t *md;
646 efi_map_start = __va(ia64_boot_param->efi_memmap);
647 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
648 efi_desc_size = ia64_boot_param->efi_memdesc_size;
650 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
653 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) {
654 if (!(md->attribute & EFI_MEMORY_WB))
657 if (*size > md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr)
658 *size = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr;
666 efi_uart_console_only(void)
669 char *s, name[] = "ConOut";
670 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
671 efi_char16_t *utf16, name_utf16[32];
672 unsigned char data[1024];
673 unsigned long size = sizeof(data);
674 struct efi_generic_dev_path *hdr, *end_addr;
677 /* Convert to UTF-16 */
681 *utf16++ = *s++ & 0x7f;
684 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
685 if (status != EFI_SUCCESS) {
686 printk(KERN_ERR "No EFI %s variable?\n", name);
690 hdr = (struct efi_generic_dev_path *) data;
691 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
692 while (hdr < end_addr) {
693 if (hdr->type == EFI_DEV_MSG &&
694 hdr->sub_type == EFI_DEV_MSG_UART)
696 else if (hdr->type == EFI_DEV_END_PATH ||
697 hdr->type == EFI_DEV_END_PATH2) {
700 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
704 hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
706 printk(KERN_ERR "Malformed %s value\n", name);
710 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
713 kmd_end(kern_memdesc_t *kmd)
715 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
719 efi_md_end(efi_memory_desc_t *md)
721 return (md->phys_addr + efi_md_size(md));
725 efi_wb(efi_memory_desc_t *md)
727 return (md->attribute & EFI_MEMORY_WB);
731 efi_uc(efi_memory_desc_t *md)
733 return (md->attribute & EFI_MEMORY_UC);
737 * Look for the first granule aligned memory descriptor memory
738 * that is big enough to hold EFI memory map. Make sure this
739 * descriptor is atleast granule sized so it does not get trimmed
741 struct kern_memdesc *
742 find_memmap_space (void)
744 u64 contig_low=0, contig_high=0;
746 void *efi_map_start, *efi_map_end, *p, *q;
747 efi_memory_desc_t *md, *pmd = NULL, *check_md;
748 u64 space_needed, efi_desc_size;
749 unsigned long total_mem = 0;
751 efi_map_start = __va(ia64_boot_param->efi_memmap);
752 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
753 efi_desc_size = ia64_boot_param->efi_memdesc_size;
756 * Worst case: we need 3 kernel descriptors for each efi descriptor
757 * (if every entry has a WB part in the middle, and UC head and tail),
758 * plus one for the end marker.
760 space_needed = sizeof(kern_memdesc_t) *
761 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
763 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
768 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
769 contig_low = GRANULEROUNDUP(md->phys_addr);
770 contig_high = efi_md_end(md);
771 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
773 if (!efi_wb(check_md))
775 if (contig_high != check_md->phys_addr)
777 contig_high = efi_md_end(check_md);
779 contig_high = GRANULEROUNDDOWN(contig_high);
781 if (!is_available_memory(md) || md->type == EFI_LOADER_DATA)
784 /* Round ends inward to granule boundaries */
785 as = max(contig_low, md->phys_addr);
786 ae = min(contig_high, efi_md_end(md));
788 /* keep within max_addr= command line arg */
789 ae = min(ae, max_addr);
793 /* avoid going over mem= command line arg */
794 if (total_mem + (ae - as) > mem_limit)
795 ae -= total_mem + (ae - as) - mem_limit;
800 if (ae - as > space_needed)
803 if (p >= efi_map_end)
804 panic("Can't allocate space for kernel memory descriptors");
810 * Walk the EFI memory map and gather all memory available for kernel
811 * to use. We can allocate partial granules only if the unavailable
812 * parts exist, and are WB.
815 efi_memmap_init(unsigned long *s, unsigned long *e)
817 struct kern_memdesc *k, *prev = 0;
818 u64 contig_low=0, contig_high=0;
820 void *efi_map_start, *efi_map_end, *p, *q;
821 efi_memory_desc_t *md, *pmd = NULL, *check_md;
823 unsigned long total_mem = 0;
825 k = kern_memmap = find_memmap_space();
827 efi_map_start = __va(ia64_boot_param->efi_memmap);
828 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
829 efi_desc_size = ia64_boot_param->efi_memdesc_size;
831 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
834 if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
835 md->type == EFI_BOOT_SERVICES_DATA)) {
836 k->attribute = EFI_MEMORY_UC;
837 k->start = md->phys_addr;
838 k->num_pages = md->num_pages;
843 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
844 contig_low = GRANULEROUNDUP(md->phys_addr);
845 contig_high = efi_md_end(md);
846 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
848 if (!efi_wb(check_md))
850 if (contig_high != check_md->phys_addr)
852 contig_high = efi_md_end(check_md);
854 contig_high = GRANULEROUNDDOWN(contig_high);
856 if (!is_available_memory(md))
860 * Round ends inward to granule boundaries
861 * Give trimmings to uncached allocator
863 if (md->phys_addr < contig_low) {
864 lim = min(efi_md_end(md), contig_low);
866 if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
867 kmd_end(k-1) == md->phys_addr) {
868 (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
870 k->attribute = EFI_MEMORY_UC;
871 k->start = md->phys_addr;
872 k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
880 if (efi_md_end(md) > contig_high) {
881 lim = max(md->phys_addr, contig_high);
883 if (lim == md->phys_addr && k > kern_memmap &&
884 (k-1)->attribute == EFI_MEMORY_UC &&
885 kmd_end(k-1) == md->phys_addr) {
886 (k-1)->num_pages += md->num_pages;
888 k->attribute = EFI_MEMORY_UC;
890 k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
898 /* keep within max_addr= command line arg */
899 ae = min(ae, max_addr);
903 /* avoid going over mem= command line arg */
904 if (total_mem + (ae - as) > mem_limit)
905 ae -= total_mem + (ae - as) - mem_limit;
909 if (prev && kmd_end(prev) == md->phys_addr) {
910 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
911 total_mem += ae - as;
914 k->attribute = EFI_MEMORY_WB;
916 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
917 total_mem += ae - as;
920 k->start = ~0L; /* end-marker */
922 /* reserve the memory we are using for kern_memmap */
923 *s = (u64)kern_memmap;
928 efi_initialize_iomem_resources(struct resource *code_resource,
929 struct resource *data_resource)
931 struct resource *res;
932 void *efi_map_start, *efi_map_end, *p;
933 efi_memory_desc_t *md;
938 efi_map_start = __va(ia64_boot_param->efi_memmap);
939 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
940 efi_desc_size = ia64_boot_param->efi_memdesc_size;
944 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
947 if (md->num_pages == 0) /* should not happen */
950 flags = IORESOURCE_MEM;
953 case EFI_MEMORY_MAPPED_IO:
954 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
957 case EFI_LOADER_CODE:
958 case EFI_LOADER_DATA:
959 case EFI_BOOT_SERVICES_DATA:
960 case EFI_BOOT_SERVICES_CODE:
961 case EFI_CONVENTIONAL_MEMORY:
962 if (md->attribute & EFI_MEMORY_WP) {
964 flags |= IORESOURCE_READONLY;
970 case EFI_ACPI_MEMORY_NVS:
971 name = "ACPI Non-volatile Storage";
972 flags |= IORESOURCE_BUSY;
975 case EFI_UNUSABLE_MEMORY:
977 flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
980 case EFI_RESERVED_TYPE:
981 case EFI_RUNTIME_SERVICES_CODE:
982 case EFI_RUNTIME_SERVICES_DATA:
983 case EFI_ACPI_RECLAIM_MEMORY:
986 flags |= IORESOURCE_BUSY;
990 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
991 printk(KERN_ERR "failed to alocate resource for iomem\n");
996 res->start = md->phys_addr;
997 res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
1000 if (insert_resource(&iomem_resource, res) < 0)
1004 * We don't know which region contains
1005 * kernel data so we try it repeatedly and
1006 * let the resource manager test it.
1008 insert_resource(res, code_resource);
1009 insert_resource(res, data_resource);